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We introduce a unified mathematical framework that elegantly describes minimally supersymmetry
gauge theories in even dimensions, ranging from six dimensions to zero dimensions, and their dualities.
This approach combines and extends recent developments on graded quivers with potentials, higher
Ginzburg algebras, and higher cluster categories (also known as m-cluster categories). Quiver mutations
studied in the context of mathematics precisely correspond to the order-(mþ 1) dualities of the gauge
theories. Our work indicates that these equivalences of quiver gauge theories sit inside an infinite family of
such generalized dualities.
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I. INTRODUCTION

Recently, it was realized that minimally supersymmetric
gauge theories in 6 − 2m dimensions exhibit order-(mþ 1)
dualities, generalizing the well-known case of Seiberg
duality for four-dimensional (4D) N ¼ 1 theories [1].1

The first hint in this direction was the discovery that two-
dimensional (2D)N ¼ ð0; 2Þ gauge theories enjoy an order-
3 duality named triality [2]. This was soon followed
by the proposal of quadrality, an order-4 duality, for
zero-dimensional (0D) N ¼ 1 gauge theories [3].
There has also been significant progress in the brane

engineering of 2D N ¼ ð0; 2Þ and 0d N ¼ 1 theories.
These constructions include D-brane probes of toric Calabi-
Yau (CY) singularities [4], T-dual brane configurations
generalizing brane tilings [5–8] and D-branes in the mirror
geometries [3,9].2 These brane configurations have been
useful for both understanding and postulating some of these
dualities.

In parallel, there have been interesting mathematical
developments concerning graded quivers with potentials
[14,15], higher Ginzburg algebras [15,16], and higher
cluster categories [14]. While these topics are closely
related to each other, their presentation in the literature
has not been fully integrated. In this paper, we will show
that they can be combined into a unified mathematical
framework that elegantly describes minimally supersym-
metric (SUSY) gauge theories in even dimensions, ranging
from six dimensions to zero dimensions. Moreover, quiver
mutations studied in the mathematical context precisely
correspond to the order-(mþ 1) dualities of the gauge
theories. Higher Ginzburg algebras thus provide an alge-
braic unification of gauge theories in different dimensions
and their dualities, which is similar to the geometric
unification attained in Refs. [3,9,17] usingmirror symmetry.
Interestingly, this realization implies that these equivalences
of quiver gauge theories sit inside an infinite family of such
generalized dualities. For generalm, the graded quivers and
their new dualities have a physical realization in terms of the
category of branes in the topological B-model on CY
(mþ 2)-folds [18]. Therefore, our framework significantly
extends the results beyond those for six-dimensional (6D) to
0D gauge theories. Our presentation will try to make the
mathematical concepts accessible to the physics audience
and vice versa.
This paper is organized as follows. Section II introduces

graded quivers with potentials. These are quivers containing
different types of arrows, the number of which is controlled
by an integer m ≥ 1. Section III discusses the higher
Ginzburg algebras associated to such quivers. Section IV
contains some of the key ideas of this paper, introducing

*sfranco@ccny.cuny.edu
†musiker@math.umn.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1By “order-(mþ 1) duality,” we mean a generalization of
duality relating (mþ 1) different theories. Furthermore, in this
case, (mþ 1) consecutive applications of an elementary duality
transformation amount to the identity.

2See Refs. [10–13] for alternative constructions of 2D
N ¼ ð0; 2Þ theories.
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mutations of graded quivers and their potentials. The order
of such mutations is established in Sec. V. In Sec. VI, the
field theoretic concept of anomalies is generalized to graded
quivers with arbitrarym. SectionVII outlines the connection
between graded quivers withm ≤ 3 and physics, in terms of
gauge theories in various dimensions and D-brane probing
CY singularities. Section VIII discusses at length the
connection between graded quivers with m ¼ 0, 1, 2, 3
and minimally supersymmetric gauge theories in d ¼ 6, 4,
2, 0. Section IX explains how the mutations of graded
quivers unify the order-(mþ 1) dualities of the correspond-
ing gauge theories. In Sec. X, we discuss the class of graded
quivers coming from toric CY’s and explain how they are
described usingmirror symmetry. SectionXI generalizes the
physical notion of dimensional reduction to arbitrarym. We
summarize our results and present directions for future
research in Sec. XII. We also include four Appendices,
discussing the mathematics of potentials, the mutation of
differentials, cluster categories, and silting.

II. GRADED QUIVERS WITH POTENTIALS

In this section, we introduce graded quivers with
potentials. Our treatment combines the ideas developed
in Refs. [14,15]. Buan and Thomas [14] defined graded
quivers, called colored quivers therein, motivated by their
generalization of cluster categories to higher cluster
categories (or m-cluster categories). Further mathematical
details of (higher) cluster categories and (higher) tilting
theory are included in Appendix C. Oppermann [15] was
motivated by a variant of tilting theory known as silting, see
Appendix D, and higher Ginzburg algebras. Because of its
closer connection to Calabi-Yau manifolds and physics, we
utilize this second perspective for the majority of this paper.

A. Graded quivers

A quiver Q ¼ ðQ0; Q1; s; tÞ consists of a set of nodes
Q0,

3 a set of arrows Q1, and two functions s and t that
denote the start and target of every arrow. In particular,
φ∶ v → w ∈ Q1 has sðφÞ ¼ v and tðφÞ ¼ w. We say that a
quiver is finite if it consists of a finite number of nodes and
arrows. A path is a concatenation of arrows φ1φ2 � � �φk
such that sðφiþ1Þ ¼ tðφiÞ. We say that k is the length of
such a path. A path is known as a cycle if in addition it
satisfies the identity sðφ1Þ ¼ tðφkÞ.
Given an algebraically closed field k, e.g., C, we let kQ

be the path algebra ofQ. The path algebra is defined as the
algebra of which the elements are paths plus idempotents ei
for i ∈ Q0. By convention, we consider ei to be a path of
length 0 and set sðeiÞ ¼ tðeiÞ ¼ i. We define multiplication
in the path algebra by concatenation, i.e., p · q ¼ pq if
sðqÞ ¼ tðpÞ and p · q ¼ 0 otherwise (where p or q ¼ ei
possible). In particular, ei · ej ¼ δijei, i.e., the feig’s

indeed form an orthogonal collection of elements that
are unchanged by taking their power.
We now fix m to be a nonnegative integer and use this

parameter to turnQ into a graded quiverQ. In particular,Q0 ¼
Q0 is the same set of nodes, but Q1 is now the set of graded
arrows. A graded arrow φ∶ i → j ∈ Q1 has a start
sðφÞ ¼ i ∈ Q0, a target tðφÞ ¼ j ∈ Q0, and a degree jφj,
which we will assume is an integer from the set
f0; 1; 2;…; mg.4 For every graded arrow φ ∈ Q1, we also
adjoin its oppositeφop∶ j → iwith its start and target reversed
and degree given as jφopj ¼ m − jφj. Since the integer m
determines the possible degrees or colors, different values ofm
give rise to qualitatively different classes of graded quivers.
Lastly, for every node i ∈ Q0, we adjoin a loop li based

at node i, i.e., with sðliÞ ¼ tðliÞ ¼ i and degree
jlij ¼ mþ 1. These special loops are the only arrows of
Q with degree greater than m. Since such loops are present
at every node, we will leave them implicit whenever we
draw a quiver diagram.
We let Q denote the resulting graded quiver after

adjoining the opposite arrows and loops.5

We will soon incorporate potentials, which are linear
combinations of cycles. These will allow us to consider
quivers that contain loops (i.e., adjoints) and 2-cycles.

1. Double arrows

It is convenient to combine every φðcÞij with its corre-

sponding φðm−cÞ
op;ji to form a double arrow, as illustrated in

Fig. 1.6 In this extended notation, the subscripts are the
nodes connected by an arrow, and the superscript indicates
its degree. We will refer to such a pair as a ðc;m − cÞ arrow.
The number of different types of double arrows, i.e., the
number of ðc;m − cÞ pairs with 0 ≤ c ≤ m=2, is

nf ¼ bðmþ 1Þ=2c: ð2:1Þ

Double arrows of ð0; mÞ type exists for anym. Motivated
by physics, we refer to such arrows as chiral fields.
Furthermore, for even m, there is always a type of

FIG. 1. Double arrow in a graded quiver.

3The nodes are often indexed as f1; 2;…; ng.

4In other references, such as Ref. [14], the degree of an arrow is
instead referred to as the color. Graded quivers are consequently
also called colored quivers.

5In Ref. [15], Oppermann also includes the identity ðφopÞop ¼
ð−1Þjφjðm−jφjÞþ1φ as part of the definition. We gloss over this
technicality for the time being.

6This also applies to adjoint arrows, for which i ¼ j.
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(m=2, m=2) arrows, in which both components have the
same degree.
The (graded) signed adjacency matrix q is skew sym-

metric, which in the context of graded quivers means that

qðcÞij ¼ qðm−cÞ
ji : ð2:2Þ

2. Remark 1

We will not impose the monochromaticity condition of
Ref. [14]; i.e., we will not require that if qðcÞij ≠ 0 then

qðc
0Þ

ij ¼ 0 for c ≠ c0.

3. Cyclic order

Let us focus on a node in the quiver. Taking into
consideration both the degrees of arrows and their inci-
dence orientation with respect to the node, there are
(mþ 1) different possibilities. There is a natural cyclic
order for arrows around the node, in which the degree of
incoming arrows increases clockwise, as shown in Fig. 2.
There might be multiple or no arrows of each type.
This order will become handy when discussing muta-

tions and, as explained in Sec. X, also arises from mirror
symmetry.

4. Double arrows as quantum fields and their orientation

Perhaps it is not surprising that a framework that allows
multiple types of arrows can be useful for describing gauge
theories in different dimensions. Such theories can contain
different type of superfields, which, as we discuss below,
are captured by the different types, i.e., degrees, of arrows
in the quiver.
Given a double arrow, the distinction between φðcÞij and

φðm−cÞ
op;ji is arbitrary. As we will explain in Sec. VIII, in cases

with known physical interpretations as quantum field
theories, every double arrow corresponds to a matter
superfield. More generally, a double arrow should be
regarded as a single entity. With this in mind, it is natural

to associate an orientation to double arrows. Without loss
of generality, let us assume that 0 ≤ c ≤ m=2. We will
adopt the convention

�
φðcÞij ;φ

ðm−cÞ
op;ji

�
→

� evenc∶ ΦðcÞij

oddc∶ ΦðcÞji ;
ð2:3Þ

which is defined such that it coincides with the orientation

of fields in quantum field theories. In other words, φðcÞij and

φðm−cÞ
op;ji should be identified with physical fields or their

conjugates as follows:

φðcÞij φðm−cÞ
op;ji

even c ΦðcÞij Φ̄ðcÞij
odd c Φ̄ðcÞji ΦðcÞji

: ð2:4Þ

For brevity, in what follows, we will often use the terms
“double arrow" and “field" interchangeably.
In the special case of even m, there is an ambiguity in

identifying the field associated to an (m=2, m=2) double
arrow. We can pick the corresponding field to either be

Φðm=2Þ
ij ¼ φðcÞij or Φðm=2Þ

ji ¼ φðcÞop;ji. This is possible because
such fields are unoriented but, more importantly, are a

manifestation of a Φðm=2Þ
ij ↔ Φ̄ðm=2Þ

ij symmetry of such
theories.7 This issue will be revisited in the coming
sections.
The orientation of fields becomes more significant in

physics, in which it enters the determination of anomalies.
The orientation in (2.4) is nicely consistent with the
generalization of anomalies to arbitrary m that we will
introduce in Sec. VI.
Finally, in the cases with a gauge theory interpretation,

we can identify the loops li at every node with vector
superfields.8 Since these loops are in one-to-one corre-
spondence with nodes in the quiver and we will leave them
implicit, we can simply say, as it is standard, that nodes
correspond to vector multiplets. Notice that the li’s are
special in that graded quivers do not include their con-
jugates; they would be lop;i’s. This is in nice agreement
with physics, in which vector superfields satisfy a reality
condition.

(1)

(m-1)

(m-2)

(1)

(m-2)

(0)
(m)

(0)
(m)

(2) (2)

(m-1)

(m-3) (m-3)

(3) (3)

+1 +1

FIG. 2. Cyclic ordering of arrows connected to a node. The
degree of incoming arrows increases clockwise.

7Notice that we are not saying thatΦðm=2Þ
ij andΦðm=2Þ

ij are equal.
This symmetry is a generalization to all even m of the well-
known Fermi-conjugate Fermi symmetry of 2D N ¼ ð0; 2Þ
gauge theories. This symmetry acts on each unoriented field
independently.

8More precisely, we mean gauge supermultiplets. In particular,
we refer to the corresponding superfield in zero dimensions as a
gaugino superfield, since it has no vector component. For brevity,
this distinction will be implicit throughout most of the paper.
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5. Single arrow representation

For simplicity, throughout the paper, we will often
focus on a single arrow representative for every double
arrow. Away of doing so is by simply picking any of the two

arrows, let us call it φðcÞij , keeping φðm−cÞ
op;ji implicit. In what

follows, the choice of representative in a double arrow will
be guided by practical purposes. Another natural way of
picking a single-arrow representation is by using the
physical orientation we introduced above. This will be
the approach wewill use when connecting to gauge theories
in Sec. VIII.

B. Ranks

We complete the definition of a graded quiver by
assigning an integer Ni to every node. This ingredient is
typically absent in the math literature. In physics, each node
corresponds to anUðjNijÞ gauge group, so we refer to these
integers as ranks.
It is natural to restrict ourselves to positive ranks.

Negative ranks can even be generated when starting from
quivers with non-negative ranks and applying a sequence of
mutations. In physics, the presence of negative ranks is
typically an indication of SUSY breaking. It would be
interesting to determine whether SUSY breaking has a
mathematical counterpart.
For nontrivial ranks, arrows connecting nodes i and j

become jNij × jNjj matrices.9 The matrix structure of
arrows will be implicit in our presentation.

C. Potentials

In this section, we extend the theory of graded quivers to
include potentials. Our discussion is closely related to the
one in Ref. [15].
The potential W is a C-linear combination of certain

cycles in the path algebra kQ, excluding the loops li.
10

More precisely, W ∈ kQ=½kQ; kQ�, where we quotient by
the supercommutator ½u; v� ¼ uv − ð−1Þjujjvjvu. In other
words, a cycle is an equivalence class of words made by
closed paths of arrows up to sign as defined by

ðu1u2 � � � ukÞðv1v2 � � � vlÞ
∼ ð−1Þðju1jþju2jþ���þjukjÞðjv1jþjv2jþ���þjvljÞðv1v2 � � � vlÞ
× ðu1u2 � � � ukÞ: ð2:5Þ

This is well defined since we assume the path is a cycle, i.e.,
closed with tðvlÞ ¼ sðu1Þ.

In addition, cycles must have degree11 (m − 1) in order to
be allowed potential terms. The reasons for this will be
explained momentarily in Sec. III. It is important to note
that the potentialW does not necessarily contain all degree-
(m − 1) cycles. As an immediate important consequence
of this restriction on the degree of the potential, there
cannot be two arrows of the same type going in opposite
directions along a cycle in the potential. For example, when
considered with the same orientation, we cannot simulta-
neously have degree c and (m − c) for any c. Physically, no
potential term can simultaneously contain a type of super-
field and its conjugate. Additionally, arrows of degree m
cannot appear in potentials of such degrees.
As we explain in Sec. III, potentials give rise to relations

in the path algebra. In physics, they encode nongauge
interactions.

1. Further constraints on the potential:
Kontsevich bracket

The Kontsevich bracket, sometimes also referred to as
necklace bracket, between two functions f and g of the
arrows in a quiver is defined as

ff; gg ¼
X
Φ∈Q

�∂f
∂Φ

∂g
∂Φ̄ −

∂f
∂Φ̄

∂g
∂Φ
�
: ð2:6Þ

It is a generalization of a Poisson bracket defined by a
quiver [19–21]. When evaluating this bracket, it is neces-
sary to take into account the commutation rules for arrows,
which for a pair of them is given by uv ∼ ð−1Þjujjvjvu.
The potential is required to satisfy the condition that the

Kontsevich bracket vanishes,

fW;Wg ¼ 0: ð2:7Þ

In Sec. III, we will explain that this condition is necessary
for the differential on the Ginzburg algebra to square to
zero. The condition (2.7) leads to nontrivial constraints on
the potential. In Sec. VIII, we will explicitly consider the
Kontsevich bracket for m ¼ 1, 2, 3.

2. Mass terms and removable 2-cycles

Quadratic terms in the potential are of particular sig-
nificance. In physics, they correspond to mass terms. Since
the potential must have degree (m − 1), it is straightforward
to classify all possible mass terms. For this, it is convenient
to define the upper wedge of the plane. It corresponds to
the wedge containing the ð0; mÞ; ð1; m − 1Þ;…; ðm; 0Þ
sequence of arrows, as shown in Fig. 3.
Every consecutive pair of fields in the upper wedge

forming a closed path in the quiver can be combined into a

9This is also the case when i ¼ j.
10More generally, open paths terminating on frozen

nodes can also be terms in the potential. In what follows, this
additional possibility will be implicit whenever we refer to
cycles. In physics, the cycle condition corresponds to gauge
invariance.

11The degree of a product of arrows is the sum of the degrees of
the constituent arrows.
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quadratic term in the potential. We refer to such potential
terms as mass terms.
We define a removable 2-cycle as a length-2 closed path

in the quiver that, in addition, appears in a mass term in the
potential. In this case, it is possible to integrate out the
corresponding arrows, as we explain in Sec. IV B.12 In
physics, a removable 2-cycle corresponds to a massive pair
of fields. Note that chiral-chiral pairs can only form
removable 2-cycles for m ¼ 1, for which ð0; mÞ and
ðm; 0Þ fields are consecutive on the upper wedge.

III. DIFFERENTIAL GRADED STRUCTURES

We now introduce further structure that can be layered on
top of a graded quiver with potential, combining together
the treatments in Refs. [15,16].

A. Differential operators

For our final ingredient, we introduce a differential
operator d∶ kQ → kQ, which lowers the degree of a given
term by 1 and then extends linearly. Furthermore, d satisfies
the graded Leibniz rule on products

dðuvÞ ¼ dðuÞvþ ð−1ÞjujudðvÞ: ð3:1Þ
We define the differential d on graded arrows as follows:

dðαÞ¼ 0 if α has degree zero: ð3:2Þ

dðαopÞ¼ ∂αW if α has degree∈ f0;1;2;…;m−1g: ð3:3Þ

dðliÞ ¼ ei

�X
α∈Q1

½α;αop�
�
ei: ð3:4Þ

Here, ei is the idempotent in the path algebra kQ at node i.
The notation ∂αW signifies the cyclic derivative, which is
defined as ∂αðv1 � � � vk−1αÞ ¼ v1 � � � vk−1 and extended
linearly. In the case in which v ¼ v1v2 � � � vk is not written
ending with α, we use signed cyclic equivalence (2.5) to

move α to the rightmost position.13 As we will discuss later,
the vanishings of all these differentials have important
physical counterparts.
For later use, we also note that the right-hand side of

(3.4) can be expressed as

ei

�X
α∈Q1

½α; αop�
�
ei ¼

X
α∶i→?∈Q1

ααop −
X

β∶?→i∈Q1

βopβ ð3:5Þ

for fixed i ∈ Q0.
We now state two claims about differentials in our setting

that will provide the backdrop for the correspondence
between higher Ginzburg algebras and SUSY quantum
field theories in various dimensions.
Claim 1: The fact that W has degree (m − 1) implies

that dðαopÞ ¼ ∂αW indeed has degree one less than that of
αop (whenever α has degree14 ∈ f0; 1; 2;…; m − 1g).
Proof: Suppose that jαj ¼ c ∈ f0; 1; 2;…; m − 1g so

that jαopj ¼ ðm − cÞ ∈ f1; 2;…; mg. Then, in ∂αW, only
the terms containing α at least once survive. Furthermore,
each term resulting from ∂αW is a term v ofW with exactly
one copy of α removed, which we abbreviate as vnα. Hence,
ifW is homogenous of degree (m − 1), then jvj ¼ m − 1 and
jvnαj¼ðm−1Þ−jαj¼m−1−c. We conclude that dðαopÞ ¼
∂αW is homogeneous of degree ðm − cÞ − 1 as desired.
Claim 2: If the potential W vanishes under the

Kontsevich backet, i.e., fW;Wg ¼ 0, then the differential
defined above indeed squares to zero, i.e., d2 ¼ 0.15

Proof: FromRef. [16], it follows that forf∈kQwehave
df ¼ fW; fg. Hence, as in (10.6) of Ref. [16], we obtain

d2f ¼ fW; fW; fgg ¼ 1

2
ffW;Wg; fg ¼ 0: ð3:6Þ

Furthermore, we have

dli ¼ d

 X
α∶i→?∈Q1

ααop −
X

β∶?→i∈Q1

βopβ

!

¼
X

α∶i→?∈Q1

ðdðαÞαop þ ð−1ÞjαjαdðαopÞÞ

−
X

β∶?→i∈Q1

ðdðβopÞβ þ ð−1ÞjβopjβopdðβÞÞ

þ
X

α∶i→?∈Q1

ðð∂αopWÞαop þ ð−1Þjαjαð∂αWÞÞ

−
X

β∶?→i∈Q1

ðð∂βWÞβ þ ð−1Þjβopjβopð∂βopWÞÞ: ð3:7Þ

(1)

(m-1)

(m-2)

(1)

(m-2)

(0)
(m)

(0)
(m)

(2) (2)

(m-1)

(m-3) (m-3)

(3) (3)

FIG. 3. The upper wedge.

12It is important to emphasize that 2-cycles cannot be removed
if the corresponding term is not present in the potential.

13When a term v ¼ v1v2 � � � vk of the potentialW contains α at
multiple places, ∂αv is the sum of the remainders after each such
removal. More precisely, ∂αv is defined as

P
v¼pαqð−1Þjpαjjqjqp

in Ref. [15].
14In the special case in which jαj ¼ m, then jαopj ¼ 0, and we

use (3.2) to compute dðαopÞ instead.
15This property is in fact crucial because otherwise the map

d∶kQ̄ → kQ̄ defined above would not be a differential operator.
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Substituting in β ¼ αop, we note that these two sums
are actually over the same arrows and cancel each other
out.16 Hence, applying d2 to the central element

P
i∈Q0

li

yields zero.

B. Higher Ginzburg algebras

Given the three ingredients
(1) a graded quiver Q built from a quiver Q with arrows

α ∈ Q1, jαj ∈ f0; 1; 2;…; mg, opposite arrows αop
for every such α, and loops li of degree (mþ 1);

(2) a potential W ∈ kQ=½kQ; kQ� of degree (m − 1)
satisfying fW;Wg ¼ 0; and

(3) a differential operator d∶ kQðjÞ → kQðj−1Þ respect-
ing the grading as above,17

we let the higher Ginzburg algebra Γmþ2ðQ;WÞ denote the
differential graded (dg) algebra given as the direct sum

Γmþ2ðQ;WÞ ¼⊕j≥0 kQðjÞ; ð3:8Þ

where kQðjÞ denotes the space of paths of degree j in the
graded path algebra kQ and quotienting by the ideal of
arrows.
The ordinary Ginzburg algebra from Refs. [22,23] cor-

responds to the m ¼ 1 case of the above.18

C. Jacobian algebras and vacuum moduli spaces

We now consider the following result of Ladkani, which
in turn is a generalization of Ref. [23], Lemma 2.8. In
particular, the result implies that it is sufficient to consider a
quotient algebra formed by quotienting only by the
relations arising from cyclic derivatives with respect to
arrows of degree (m − 1).
Claim 3 (Ref. [24], Lemma 2.21): Let ðQ;WÞ be a

quiver with potential in which Q is the associated graded
quiver with degrees in f0; 1; 2;…; mg. Then, the Jacobian
algebra [with respect to the graded arrows of degree
(m − 1)] is the zeroth cohomology19 of the complete
Ginzburg dg algebra Γ̂mþ2ðQ;WÞ, i.e.,

kQ=ðf∂αW∶α ∈ Q̄ðm−1Þ
1 gÞ ¼ H0ðΓ̂mþ2ðQ;WÞÞ: ð3:9Þ

Proof: The zeroth homology is defined as

Ker d∶ Γ̂mþ2ðQ;WÞð0Þ
→ Γ̂mþ2ðQ;WÞð−1Þ=Im d∶ Γ̂mþ2ðQ;WÞð1Þ
→ Γ̂mþ2ðQ;WÞð0Þ; ð3:10Þ

where the superscripts indicate restricting to elements of the
dg algebra Γ̂mþ2ðQ;WÞ of certain degrees. Since we have
no elements of degree ð−1Þ, we get Γ̂mþ2ðQ;WÞð−1Þ ¼ 0,
and hence the kernel is all of Γ̂mþ2ðQ;WÞð0Þ, i.e., the
component of the graded path algebra kQð0Þ on arrows
of degree 0. We get the immediate equality kQð0Þ ¼ kQ,
the ordinary path algebra. Furthermore, the image consists
of fdðαopÞg, where αop has degree 1. Hence, the image

consists of f∂αW∶ α ∈ Q̄ðm−1Þ
1 g, where the (m − 1)th

component yields arrows in Q1 of degree (m − 1). In
conclusion, we obtain the desired relations in the modified
Jacobian algebra.
In the special case ofm ¼ 1, the result in Ref. [23] relates

the ordinary Ginzburg algebra to the ordinary Jacobian
algebra, i.e., the quotient algebra kQ=ðf∂αW∶ α ∈ Q1gÞ.
The mathematical importance of the Jacobian algebra

with respect to arrows of degree (m − 1), i.e., of next-to-
maximal degree, has a physical counterpart. As we will see
in Sec. VIII, it is all we need for computing the (classical)
moduli spaces of the corresponding quantum field theories.
The underlying reason is that, since the degree of the
potential is (m − 1), H0ðΓ̂mþ2ðQ;WÞÞ consists exclusively
of chiral fields, which are the only fields containing scalar
components. When determining the moduli space, we also
demand the vanishing of (3.4). When it is expressed as in
(3.5), it becomes clear that, when restricted to chiral fields,
this condition corresponds to the vanishing of D-terms.

D. Role of higher-degree arrows

Since we focused solely on the Jacobian algebra, i.e., the
zeroth homology, in the above, the reader might wonder
what the roles of the higher-degree arrows and components
of the (higher) Ginzburg algebra are. These higher-degree
arrows and the differential operator are exactly defined so
that all higher homologies of the (higher) Ginzburg algebra
vanish.
In particular, in the m ¼ 1 case, notice that

H1ðΓ̂mþ2ðQ;WÞÞ ¼ Ker d∶ Γ̂mþ2ðQ;WÞð1Þ
→ Γ̂mþ2ðQ;WÞð0Þ=Im d∶ Γ̂mþ2ðQ;WÞð2Þ
→ Γ̂mþ2ðQ;WÞð1Þ: ð3:11Þ

We note that Γ̂mþ2ðQ;WÞð2Þ is generated by the loops li
and hence the image under d is precisely generated by
eið
P

α∈Q1
½α; αop�Þei as i runs over possible nodes in Q0.

16Technically, one uses footnote 5 to simplify the instances of
ðαopÞop to �α, but since the same sign change is applied twice,
we still get zero.

17By convention, kQð−1Þ¼0, so using (3.2) we have d∶kQðjÞ→
kQðj−1Þ even when j ¼ 0.

18Additionally, in Ref. [23], the authors focus on the completed
Ginzburg dg algebra Γ̂ðQ;WÞ, i.e., the graded path algebra taking
the limit of including paths of infinite length. This subtlety will
not be needed in our work.

19In our language, this actually would be homology rather than
cohomology, since we give arrows degrees that are positive rather
than negative.
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Meanwhile, the elements of Γ̂mþ2ðQ;WÞð1Þ are the expres-
sions in kQ of which the terms contain exactly one arrow

αop ∈ Qð1Þ1 and the rest inQð0Þ1 ¼ Q1. The kernel of d acting
on this set is precisely the elements that become zero in
kQð0Þ ¼ kQ when αop is replaced with ∂αW.20 We will
show that the kernel is in fact also generated by the
elements of the form eið

P
α∈Q1
½α; αop�Þei, which has image

X
α∶ i→?∈Q1

αð∂αWÞ −
X

β∶ ?→i∈Q1

ð∂βWÞβ ð3:12Þ

under d. This quantity indeed equals zero because the two
summands express the sum over all terms in the potentialW
incident to node i, in two different ways. In the positive
summand, we sum over all terms ofW that contain an arrow
α starting at i, while in the negative summand, we sum over
all terms ofW that contain an arrow β ending at i. However,
since terms in W are cycles, these two summands cancel
each other out. For higher m, a related approach applies.
Construction 2.6 of Ref. [15] describes in more detail

how one can start with a basic finite-dimensional algebra,
e.g., one of the form kQ=ðRÞ, where kQ is a path algebra of
a quiver Q and R is a minimal set of relations given by
elements of the path algebra, and build a differential graded
algebra. In particular, let the arrows of the original quiverQ
be of degree 0 and adjoin new arrows αr of degree 1 for
each of the relations r ∈ R, such that the differential map
sends αr ∈ kQ̄ð1Þ to dðαrÞ ¼ r ∈ kQ̄ð0Þ. Consequently,
H0ðkQ̄ð1ÞÞ ¼ kQ̄ð0Þ=ðRÞ ¼ Λ. We then consider a generat-
ing set forH1ðkQ̄ð1ÞÞ and adjoin arrows of degree 2 for each
element therein, defining the differential accordingly.
Iterating this process, considering relations of relations,
we get a differential graded algebra such that all higher
homologies vanish.
Because all higher homologies vanish, the sequence of

homologies of the graded (higher) Ginzburg algebra agrees
identically with the sequence of homologies of the basic
algebra Λ, treating this vacuously as a graded algebra
(concentrated in degree 0). We conclude that the higher
Ginzburg algebra Γmþ2ðQ;WÞ andΛ are quasi-isomorphic.
As an application, when Λ is the Jacobian algebra, it is
quasi-isomorphic to Γmþ2ðQ;WÞwhile also agreeing to the
zeroth homology of Γmþ2ðQ;WÞ.
However, because the higher Ginzburg algebra

Γmþ2ðQ;WÞ has the extra structure of a dg algebra, we
observe that the higher Ginzburg algebra is (mþ 2)-
Calabi-Yau. This means that Γmþ2ðQ;WÞ is homology
smooth and the shift functor [mþ 2] is a Serre functor on
the bounded derived category of finite-length Γmþ2ðQ;WÞ

modules. In particular, the composition of the suspension
[mþ 2] and duality yields a bimodule quasi-isomorphism
(Ref. [22], Definition 3.2.3), i.e., a transformation that
induces certain symmetries between spaces of homomor-
phisms under duality.

IV. ORDER-(m + 1) MUTATIONS

In this section, we introduce mutations of graded quivers
with potentials. Our treatment builds on the work in
Refs. [14,15]. We explain how all the defining elements of a
theory transform: the quiver in Sec. IVA, the potential in
Sec. IV B, and the ranks in Sec. IVC. We postpone the
explanation of how the differential transforms until
Appendix B.
We will restrict to mutations on nodes without adjoint

fields, i.e., without loops. Preliminary studies of this case have
appeared in the mathematics literature [15,25]. However, we
consider the understanding of such cases to be incomplete. It
would be very interesting to revisit this problem.

A. Mutation of the quiver

Let us first explain how the graded quiver transforms
under mutation:
(1) Flavors.—Let us consider a mutation on node j. In

physics, the arrows connected to the mutated node
are usually referred to as flavors. The flavors are
transformed as follows:

(1.a.) Replace every incoming arrow i!ðcÞj with the

arrow i !ðc−1Þj.
(1.b.) Equivalently, replace every outgoing arrow j!ðcÞk

with an arrow j !ðcþ1Þk.
Both of these values are taken modulo (mþ 1).
This transformation has an elegant implementation

in terms of the cyclic ordering of arrows introduced in
Sec. II A. It simply becomes a rotation, as shown in Fig. 4,
in which we have numbered the spectator nodes to
emphasize that they remain fixed under the mutation.
(2) Composite arrows.—The second step in the trans-

formation of the quiver involves the addition of
composite arrows as follows. For every 2-path

i!ð0Þj!ðcÞk in Q, where c ≠ m, add a new ar-

row .

In other words, we generate all possible composite arrows
consisting of chiral fields, of degree 0, coming into the
mutated node and all other types of fields attached to it. In
physics, such composite arrows are referred to as mesons.

1. Anticomposition

Equivalently, we can also understand the rule above as
the composition of φð0Þij and φðm−cÞ

op;kj , with m − c ≠ 0, even
though their orientations seem to be incompatible. The

result is a meson that we can call φðm−cÞ
op;ik , which is

20This calculation uses dðu1u2…ukαopÞ ¼ dðu1u2…ukÞαop þ
ð−1Þ0u1u2…ukdðαopÞ ¼ u1u2…uk∂αW if ju1j ¼ ju2j ¼… ¼
jukj ¼ jαj ¼ 0. In fact, for any such cyclic ordering, we have
dðujþ1ujþ2 � � � ukαopu1u2…ujÞ ¼ ujþ1ujþ2 � � � uk∂αWu1u2…uj.
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equivalent to a meson φðcÞki . This phenomenon has been
noted in both mathematics [15] and physics [3], and we
refer to it as anticomposition. Anticomposition becomes
important for m ≥ 3. This alternative formulation of the
composition rule is illustrated in Fig. 6.
Anticomposition becomes most shocking when focusing

on the physical orientation of fields. In this case, ameson can
correspond to the combination of a chiral field with another
field of seemingly incompatible orientation, hence requiring
the conjugation of the chiral field. This phenomenon was
first noticed in Ref. [3] in the context of 0D N ¼ 1
quadrality. We will discuss it in further detail in Sec. IX.
It is worth noting we that we require c ≠ m in rule 2. In

other words, the definition of composition forbids the
anticomposition of two incoming chiral fields; i.e., we
cannot generate a meson by composing an incoming chiral
with the conjugate of another incoming chiral.21

B. Mutation of the potential

We now explain how the potential transforms under
mutation, which can be summarized by a short set of rules.
In Ref. [15], Oppermann provided an alternative, but
equivalent, prescription for mutating the potential. Our
approach is more combinatorial than his differential geo-
metric treatment. The connection between the two is
discussed in Appendix B.
(2.a.) Cubic dual flavors-meson couplings.—The first rule

concerns new potential terms that are in one-to-one
correspondence with mesons. For every 2-path,

i!ð0Þj!ðcÞk in Q̄, with c ≠ m, add the new arrow

i!ðcÞk in Q̄ and the new cubic term φðcÞik φ
ðcþ1Þ
jk φðmÞij ¼

φðcÞik φ
ðm−c−1Þ
kj φð0Þji to W. Figure 7 shows the general

form of these cycles.
Besides adding these new terms to the potential, the

original terms can also be altered. Terms in the original
potential that do not go through the mutated node remain
unchanged. However, let us consider what happens to terms
in the potential that contain the mutated node. There are
two possibilities, depending on the degrees of the arrows
that are connected to the mutated node in the corresponding
cycle. These are handled by rule 2.b in the first case and
rules 2.c and 2.d in the second.

(0) (c)
i j k i j k

(c)

FIG. 5. Composite arrow, i.e., meson, generated by a mutation.

0 m

(0)

(m-2)

(m-3)

(m) (m-1)

(1)

(2) (m-4)

1

2

3

m-1

m-2

m-3

0 m

(1)

(m-1)

(m-2)

(0) (m)

(2)

(3) (m-3)

1

2

3

m-1

m-2

m-3

j j

FIG. 4. The transformation of flavors upon a mutation on node j can be implemented as a rotation of the degree of the arrows. The
nodes remain fixed.

(0) (m-c)
i j k

(m-c)

i j k

FIG. 6. Meson generated by anticomposition. Here, m − c ≠ 0. This rule is equivalent to the one in Fig. 5.

21Our mutation rule for mesons coincides with some works in
the mathematics literature such as Ref. [15], Sec. 6, but slightly
differs from others, particularly Ref. [14]. In Appendix C, we
elaborate on the relation between our mutation prescription and
Ref. [14]. Contrary to ours, those rules do not follow from a proper
consideration of the potential but have an equivalent effect when
we restrict to higher cluster categories associated to graded quivers
of Dynkin type, which is the problem of interest in Ref. [14].
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(2.b.) Replace instances of φð0Þij φ
ðcÞ
jk in W with the meson

φðcÞik obtained by composing the two arrows. Given
the observation in Sec. II C, we know that c ≠ m
(see Fig. 8).22

(2.c.) Replace instances ofφðcÞij φ
ðdÞ
jk inW, where c ≠ 0 andd

is arbitrary (again, the case d ¼ m is already ruled

out) with the product of dual flavors φðc−1Þij φðdþ1Þjk

(see Fig. 9).
(2.d.) Additionally, if there is an incoming chiral arrow

φð0Þi0j
at the mutated node, an additional term in W is

generated by duplicating this cycle but replacing

instances of φðcÞij φ
ðdÞ
jk with the product of mesons

φðcÞii0 φ
ðdÞ
i0k
, which result from (anti)composing the

original flavors φðcÞij and φðdÞjk ,with φð0Þi0j
(see

Fig. 10).23 It is clear that whenever we apply 2.d
we also apply 2.c.
Rules 2.c and 2.d are new features of graded

quivers and are only relevant for m ≥ 2. Interest-
ingly, it is possible to distinguish the previous three
rules by the number of mesons in the new potential
terms. Rules 2.b, 2.c, and 2.d correspond to 1, 0, and
≥ 2 mesons, respectively.

(3) Finally, we can apply reductions of mass terms, see
Sec. II C 2, to get an equivalent graded quiver with
potential. Massive fields are eliminated using the
relations coming from the corresponding cyclic
derivatives of the potential.

1. Cycles that pass multiple times through
the mutated node

Additionally, in the preceding discussion, we have
deliberately kept the nodes in potential cycles arbitrary.
In particular, our rules also apply when a cycle passes
through the mutated node multiple times. When this occurs,
we simply apply the appropriate rules to all appearances of
the mutated node in the cycle.
Rather than going into a lengthy analysis, it is probably

better to illustrate this discussion with an explicit example.
Figure 11 shows a potential cycle that passes twice through
the mutated node j, which for clarity is shown in blue.

Furthermore, c, c0 ≠ 0, and there is an incoming chiral φð0Þi0j
.

Both passings through node j hence satisfy the conditions
for rules 2.c and 2.d. Applying 2.c and 2.d in all possible
ways, we obtain the four terms shown in Fig. 12.24

2. Allowable potential terms and mutations

As explained in Sec. II C, potential terms correspond to
degree-(m − 1) cycles. Having explained how the potential

(0) (c)
i j k

(c)

i j k
(m) (c+1)

(c)

i j k
(0) (m-c-1)

=

FIG. 7. New cubic terms coupling mesons to dual flavors.

j i1

(c)

ik ik-1

(ck-1)

(c1)

(ck-2)

(0)

j i1

ik ik-1

(ck-1)

(c1)

(ck-2)

(c)

FIG. 8. Mutation of a potential term with a 2-path giving rise to
a meson.

j i1

(d)

ik ik-1

(ck-1)

(c1)

(ck-2)

(c)

(c1)

(ck-2)

j i1

(d+1)

ik ik-1

(ck-1)

(c-1)

FIG. 9. Mutation of a potential term with a 2-path that goes
through the mutated node but does not generate a meson.

22The case c ¼ m is ruled out since this arrow is part of a
potential term that has degree (m − 1).

23Technically, to preserve fW0;W0g ¼ 0 once the potential W
is mutated to W0, we in fact negate the coefficient in front of this
additional term. However, we will not worry about the signs of
potential terms in this exposition.

24Technically, the terms corresponding to the second and third
cycles illustrated in this figure would have negative signs in front
of them.
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transforms under mutations, it is possible to show that any
such cycle can be reached via a sequence of mutations from
the basic configuration shown in Fig. 13. We prove this
claim in Appendix A.

3. Kontsevich bracket

The transformation rules for the potential that we
introduced imply that the fW;Wg ¼ 0 condition is pre-
served by mutations. In Appendix B, we show that this is
the case and present an alternative proof based on

Oppermann’s ideas [15]. In the process, we will discuss
connections between the two approaches.

4. Mutation of the potential in combinatorial models

It is worth noting that there exist various combinatorial
models that can be interpreted as certain classes of graded
quivers with potentials in which m > 1. Going back to
Ref. [14], the case of type-An m-graded quivers (called
colored quivers therein) corresponds to (mþ 2)-angulations
of an (mnþmþ 2)-gon. In toric cases whenm ¼ 2, graded
quivers and triality correspond to brane bricks and their
transformations as studied in Refs. [4–6,9]. Both (mþ 2)-
angulations and brane bricks can bemodeled by potentials as
defined in Sec. II C. The (mþ 2)-gons give rise to (mþ2

3
)

potential terms, each of which corresponds to a choice of
three not necessarily consecutive edges on the boundary of
the (mþ 2)-gon. For the brane brickmodels, potential terms
correspond to edges of these three-dimensional cell com-
plexes. Using these combinatorial models, one can describe
howmutation affects potentials by comparing the potentials
associated to the (mþ 2)-angulation (respectively, brane
brick model) before or after mutation. The mutation of the
potentials in these classes of combinatorialmodels coincides

j i1

(d)

ik ik-1

(ck-1)

(c1)

(ck-2)

(c)

i0

(0)

j i1

(d)

ik ik-1

(ck-1)

(c1)

(ck-2)

(c)

i0

FIG. 10. Mutation of a potential term in the presence of an additional chiral field incoming into the mutated node.

j i1

(d)

ik ik-1

(ck-2)

(c)

i0

(0)

i2

j i0

(0)

FIG. 11. A cycle going through the mutated node twice, such
that the conditions for 2.d (and hence for 2.c) hold for both
passings. The mutated node is shown in blue.

j i1

(d+1)

ik ik-1

(ck-2)

(c-1)

i2

j

(d)

(c)

j i1

ik ik-1

(ck-2)

i0 i2

j

j i1

(d+1)

ik ik-1

(ck-2)

(c-1)

i2

j i0

(d)

(c)

j i1

ik ik-1

(ck-2)

(c)

i0 i2

j i0

FIG. 12. The four terms generated by the cycle in Fig. 11 upon mutating on node i0.
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with our general rules, providing further motivation for
their study.

C. Mutation of the ranks: Fractional brane
charges and c vectors

We postulate that the rank N⋆ of a mutated node
transforms as

N0⋆ ¼ N0 − N⋆; ð4:1Þ
where N0 indicates the total number of incoming chiral
fields. More generally, we will indicate with Nc the total
number of incoming arrows of degree c. While we opt for
keeping our notation as simple as possible, allowing several
nodes for each degree and multiple arrows between nodes
is straightforward.
Equation (4.1) coincides with the transformation of ranks

for m ¼ 1, 2, and 3, for which the mutations can be
interpreted as quantum field theory dualities, as explained
in Sec. IX. It is natural to assume, as we will do, that this
mutation rule extends to arbitrary m. Below, we motivate
this proposal by discussing fractional brane charges and c
vectors, suggesting a connection between these two classes
of objects along the way. Further motivation coming from
higher cluster categories is provided in Appendix C.

1. Fractional brane charges

In quivers with a brane realization, every node i is
associated to a fractional brane charge vector Qi, the
dimension of which is equal to n, the total number of gauge
groups in the quiver. The number of arrows between a pair
of nodes i and j is controlled by the intersection number
hQi;Qji.25 We assume that objects with these properties
exist for quivers without a D-brane realization.
Without loss of generality, we can focus on a local

configuration of the quiver as shown in Fig. 14.26 In this
case, the multiplicity of fields is absorbed in the Nc’s. In

particular, hQ0; Q⋆i ¼ 1. As will be discussed in Sec. X 2,
mutation comes from a simple reorganization of the brane
system, moving the branes associated to the mutated node
over the ones that contribute incoming chirals to it. In this
process, brane charges transform as

Q0⋆ ¼ −Q⋆
Q00 ¼ Q0 þ hQ0; Q⋆iQ⋆ ¼ Q0 þQ⋆
Q01 ¼ Q1

..

.

Q0m ¼ Qm; ð4:2Þ
where we have naturally extended the known rule for
m ≤ 3 to arbitrary m. This rule leads to the appropriate
transformation of the quiver. We refer the reader to
Refs. [3,9,17] for discussions of the m ¼ 1, 2, 3 cases.
Focusing on the initial configuration in Fig. 14, the total

initial brane charge is

QT ¼ N⋆Q⋆ þ
Xm
i¼0

NiQi: ð4:3Þ

After mutation, the total brane charge becomes

Q0T ¼ N0⋆Q0⋆ þ
Xm
i¼0

N0iQ
0
i

¼ QT þ ½ðN0 − N⋆Þ − N0⋆�Q⋆; ð4:4Þ

where we have used that only N⋆,Q⋆, andQ0 are modified.
Conservation of the total brane charge Q0T ¼ QT requires
that the second term vanishes, implying that the rank of the
mutated node transforms as in (4.1).

2. c vectors: The m=1 case

What are the mathematical counterparts of fractional
branes charges? We now argue that they are (some
generalization of) c vectors.

i1 i2

(m-1)

ik ik-1

(0)

(0)

(0)

(0)

FIG. 13. Allowable potential terms can be connected by
mutations to this basic configuration. 0 m

(1)

(m-1)

(m-2)

(0) (m)

(2)

(3) (m-3)

1

2

3

m-1

m-2

m-3

FIG. 14. Basic initial quiver. We consider consecutive muta-
tions of the blue node.

25Whether the intersection pairing is symmetric or antisym-
metric and the details regarding the degree and orientation of
arrows depend on m.

26This does not mean that there are no additional nodes in the
quiver, which would determine the dimension n of theQi vectors.
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The following discussion is restricted to the m ¼ 1 case.
In the original formulation of cluster algebras from Fomin
and Zelevinsky [26], a seed for a cluster algebra is
determined not only by an n-by-n skew-symmetrizable
matrix B0 (equivalently a quiver on n vertices) and by an
initial cluster fx1; x2;…; xng but also by the data of a
coefficient 2n-tuple fp�1 ; p�2 ;…; p�n g. The coefficients
play a role in the binomial exchange relations

xkx0k ¼ pþk
Yn
i¼1

x
½b0ki�þ
i þ p−

k

Yn
i¼1

x
½−b0ki�þ
i ; ð4:5Þ

where ½α�þ ¼ maxðα; 0Þ. In their follow-up work [27],
Fomin and Zelevinsky reexpress such seeds27 using coef-
ficient n-tuples fy1; y2;…; yng, extend the matrix B0 to a
2n-by-n matrix starting with appending the n-by-n identity
matrix underneath, and use the binomial exchange relations

xkx0k ¼
Yn
i¼1

x
½b0ki�þ
i

Y2n
j¼nþ1

y
½b0ki�þ
j−n þ

Yn
i¼1

x
½−b0ki�þ
i

Y2n
j¼nþ1

y
½−b0ki�þ
j−n

ð4:6Þ

instead.
As we mutate the seed of a cluster algebra, the extended

skew-symmetrizable matrix ½B0

I � mutates according to the
same rules as quiver mutation, and after a generic sequence
of mutations, ½B0

I � becomes ½BC�, where C ¼ ½cij�n;ni¼1;j¼1 is an
invertible n-by-n integer matrix. We refer to the columns of
this C matrix as c vectors and denote them as cj
as j ¼ 1;…; n.
Based on the quiver mutation rules, it follows that the c

vectors satisfy the following recurrence, e.g., see (2.9) of
Ref. [28]:

c0ij ¼
(
−cij if j ¼ k

cij þ cik½bkj�þ þ ½−cik�þbkj if j ≠ k:
ð4:7Þ

This recurrence is also a tropicalization of the recurrence
for coefficient tuples made up of yj ’s, letting the c vector
cj ¼ ½c1jc2j � � � cnj�T denote the exponent vector of yj in
terms of the initial coefficients fu1; u2;…; ung (i.e.,
yj ¼

Q
n
i¼1 u

cij
i ). The coefficients, i.e., detropicalized c

vectors, also correspond to X coordinates of Fock and
Goncharov [29,30].
We are now ready to investigate whether c vectors are

related to fractional brane charges. A quick comparison of
(4.7) and (4.2) reveals various similarities. To facilitate the
comparison, it is convenient to translate (4.7) to the
language we used to discuss fractional branes. Given cij,

the j index indicates a node, and i runs over the components
of the c vector. In other words, we can identify cij ¼ Qj;i.
Recall that we are working withm ¼ 1, so we only haveQ⋆
for the mutated node and Q0 and Q1 for the incoming and
outgoing chirals, respectively. If we work in the convention
in which b⋆0 ≥ 0, it implies that b⋆1 ≤ 0 and hence
ðb⋆1Þþ ¼ 0. Furthermore, in supersymmetric configura-
tions, ð−Q⋆;iÞþ ¼ 0.28 With all this, Eq. (4.7) becomes

Q0⋆ ¼ −Q⋆
Q00 ¼ Q0 þ b⋆0Q⋆
Q01 ¼ Q1 ð4:8Þ

in agreement with (4.2).
We conclude that for m ¼ 1 c vectors can be identified

with fractional brane charges. Our discussion of fractional
brane charges suggest that the formulas for the ordinary
quiver case, i.e., m ¼ 1, naturally lift to the case of m ≥ 1.
Thus, in future work, we wish to develop a theory of c
vectors for graded quivers with arbitrary m.

V. PERIODICITY OF THE MUTATIONS

We now show that the mutation introduced in previous
sections is indeed an order-(mþ 1) transformation, namely,
that after (mþ 1) consecutive mutations acting on the same
node of a quiver we obtain the original theory.
It is sufficient to focus on the basic configuration shown

in Fig. 14 as a starting point. In this figure, some of the
ranks of the flavor nodes might be zero; i.e., flavors of the
corresponding degrees might be absent. Our discussion
extends to general initial configurations. We consider
consecutive mutations of the blue node.
The transformation of flavors is simply given by a

rotation, as shown in Fig. 4. It is thus clear that flavors
return to the original configuration after (mþ 1) mutations.
Initially, there are no mesons stretching between external

nodes in Fig. 14. Since mesons are created at every
mutation, it is important to verify that all of them disappear
by the end of the mutation sequence. Let us first focus on
the pair of nodes 0 and c, initially corresponding to flavors
of degrees (0) and (c), both with nonvanishing ranks. If any
of the ranks are zero, the corresponding flavors will be
absent, and no mesons between these two nodes will ever
be generated.
Figure 15 shows a sequence of cþ 1mutations acting on

the blue node. After the first mutation, a meson of degree
(m − c) is created between the two nodes. This remains the
only meson between nodes 0 and c until the (cþ 1)th
mutation, after which a meson of degree (c − 1) in the
opposite direction is generated. The sum of the degrees of

27Here, we focus on the case of cluster algebras of geometric
type with principal coefficients.

28It is natural to conjecture that having ½−Q⋆;i�þ ≠ 0 corre-
sponds to the inclusion of antibranes. It would be interesting to
explore this idea in further detail.
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both mesons is (m − 1). In fact, they form a mass term in
the potential and can be integrated out. We conclude that
after (cþ 1) mutations the mesons connecting nodes 0 and
c disappear. Given the transformation of flavors, only after
(mþ 2) mutations will we again generate a meson between
nodes 0 and c.
Let us now consider a pair of arbitrary nodes i and j,

initially connected to flavors of degrees ci < cj. As shown
in Fig. 16, after ci mutations, we reach the starting
configuration of Fig. 15, with c ¼ cj − ci. The analysis
in the previous paragraph applies after this point. The
meson generated at the cith mutation, is removed after the
(ci þ 1)th mutation by forming a massive pair with a meson
going in the opposite direction. Since for any pair of nodes
cj − ci ≤ m, we conclude that after (mþ 1) mutations we
return to a configuration without mesons between exter-
nal nodes.
The mutation rules in Sec. IV preserve the global

symmetries of the theory. This in particular requires/implies
that if the final quiver is identical to the initial one, as we
have just shown, then the final potential also coincides with
the original one.
We complete the proof of periodicity in the next section,

in which we explain how, under certain conditions that
generalize the cancellation of anomalies, the rank of the
mutated node also returns to its original value after (mþ 1)
mutations.

VI. GENERALIZED ANOMALY CANCELLATION

At present, physical interpretations of graded quivers as
quantum field theories are only known for m ¼ 1, 2, and 3.
This correspondence will be explained in Sec. VIII. Since
anomalies play a central role in quantum field theories, it is
reasonable to expect that they can be generalized to
arbitrary m and that they will remain important in this
broader context. For example, in the case of m ¼ 1,
cancellation of gauge anomalies requires at every node
that the weighted number of incoming arrows equals the
weighted number of outgoing arrows, with the weighting
given by the ranks of the gauge groups.
From the discussion in Sec. IV C, in order for the rank of

a node to return to the original value after (mþ 1)
consecutive mutations on it, we must have

N⋆ ¼
Xm
c¼0
ð−1Þm−cNc þ ð−1Þmþ1N⋆: ð6:1Þ

Here, N⋆ is the rank of the node ⋆, the node to be
mutated, and Nc equals the number of arrows of degree c
incoming into that node as part of a double arrow. For
m ¼ 1, 2, and 3, this agrees with the cancellation of the
gauge anomaly, as will be discussed in Sec. VIII.29 We will
thus promote (6.1) to a generalized anomaly cancellation
condition for arbitrary m. It is in fact quite remarkable that
anomaly cancellation emerges from the periodicity con-
dition of theories under mutations.
Equation (6.1) becomes (locally at every node)

odd m∶ 0 ¼ Nm − Nm−1 þ � � � − N1 þ N0

even m∶ 2N⋆ ¼ Nm − Nm−1 þ � � � − N1 þ N0: ð6:2Þ

The rank of the gauge group N⋆ only enters anomaly
cancellation for even m.
The preceding discussion of generalized anomalies is

based on periodicity under (mþ 1) consecutive mutations

(m)

(c-1)

0

c

(0)

(c)

0

c

(m-c+1)

(0)

0

c

(m-c)

(m)

0

c

(m-c) (m-c) (m-c)
(c-1)

1st 2nd cth (c+1)th

FIG. 15. Evolution of mesons connecting nodes 0 and c under cþ 1 consecutive mutations of the blue node.

(0)

(cj-ci)

i

j

(ci)

(cj)

c1 mutations

FIG. 16. Starting from a general pair of nodes, we reach the
initial configuration in Fig. 15 after ci mutations.

29Here, we focus on the anomalies associated to the SUðNiÞ
factors in the UðNiÞ ¼ SUðNiÞ ×Uð1Þ gauge groups. We will
not consider anomalies involving the Uð1Þ factors, which in
D-brane constructions can be canceled by a stringy mechanism.

HIGHER CLUSTER CATEGORIES AND QFT DUALITIES PHYS. REV. D 98, 046021 (2018)

046021-13



of the same node. Since we have not defined mutation in the
presence of adjoint fields, our argument does not apply to
nodes containing such fields. However, form ≤ 3, anomalies
can instead be computed by calculating the appropriate loop
diagrams. It is then possible to include the contribution of
matter in arbitrary representations of the gauge group, which
are controlled by certain group theoretic factors. It is
reasonable to expect that by directly generalizing such
expressions we can incorporate the contributions of other
representations, including adjoints, to generalized anomalies.
The convention of (2.4) ensures that the signs of the

terms in (6.2) coincide with the ones for the corresponding
physical fields.
To conclude this section, let us mention that frozen nodes

can be anomalous. In physics, they correspond to global
symmetry groups. The invariance of their anomalies under
mutations of other nodes is called ’t Hooft anomaly
matching and constitutes a powerful constraint on dualities.
More generally, mathematically, it is still interesting to
consider theories with anomalous unfrozen nodes.

VII. MAP TO PHYSICS

We are now ready to explain the connection between
graded quivers with potentials and physics. Quivers with a
maximum degree m correspond to ð6 − 2mÞ-dimensional
gauge theories with 23−m supercharges. More precisely,
m ¼ 1, 2, and 3 correspond to 4D N ¼ 1, 2D N ¼ ð0; 2Þ,
and 0DN ¼ 1 gauge theories, respectively.30 Such theories
are called minimally supersymmetric. This correspondence
will be explained in detail in Sec. VIII. Only theories with
m ≤ 3 have a standard gauge theory interpretation, since
m > 3 would naively correspond to theories in a negative
number of dimensions. Interestingly, for any m, the graded
quivers admit a physical realization in terms of the category
of branes in the topological B-model on CY (mþ 2)-folds.
This correspondence will be investigated in detail in a
forthcoming paper [18].
It would be extremely interesting to determine whether

there are physical systems described by graded quivers with
m > 3 or to detect a mathematical obstruction or qualita-
tively distinctive feature that first appears at m ¼ 4.
In physics, a quiver diagram summarizes the gauge

symmetry and matter content of a quantum field theory.
Nodes correspond to gauge groups, i.e., to vector super-
fields, and arrows indicate matter fields. As the dimension
in which the field theory lives decreases, there are more
types of matter superfields. This fact is nicely captured by
the increasing number of possible degrees in the quiver as
m grows. The quiver diagram does not fully specify a
minimally supersymmetric theory. To do so, additional
information regarding interactions between matter fields

needs to be provided. Such interactions are encoded in the
potential.
A large class of these (6 − 2m)-dimensional theories

can be realized in type-IIB string theory on the world
volume of Dð5 − 2mÞ-branes probing CY (mþ 2)-folds
(see Refs. [3,4,31–34] and references therein). The probed
CY manifolds emerge from the gauge theories as their
classical moduli spaces. In this way, string theory provides a
direct connection between these quivers andCYgeometries,
in nice parallel with the relationship based on (higher)
Ginzburg algebras. Table I summarizes these setups and
their mirror configurations. The use of mirror symmetry for
understanding these theories is discussed in Sec. X.
When the CY (mþ 2)-folds are toric, a beautiful descrip-

tion of these theories in terms of objects that generalize
dimer models exists. In this case, T-duality connects the
Dð5 − 2mÞ-branes probing CY (mþ 2)-folds to new con-
figurations of branes living on tori Tmþ1. Form ¼ 1, 2, and
3, these configurations are brane tilings [35,36], brane
brick models [5,6,9], and brane hyperbrick models [3].
These constructions significantly streamline the connection
betweenCYgeometry and graded quivers in both directions.
We envision profound connections between these combi-
natorial objects and the ideas presented in this paper. We
postpone the exploration of this special toric case to
future work.

VIII. GAUGE THEORIES FOR m= 0, 1, 2, 3

In this section, we discuss how the general framework of
graded quivers with potentials with m ¼ 0, 1, 2, 3 captures
and unifies the physics of supersymmetric gauge theories in
d ¼ 6, 4, 2, 0, respectively. Moreover, our framework
provides a systematic prescription for the transformation of
the potentials under duality, which was not yet known for
d ¼ 2, 0. We include references with in-depth presentations
of such quantum field theories. We start from m ¼ 1 and
comment on m ¼ 0 toward the end.

A. m= 1: 4D N = 1

Here, we explain how m ¼ 1 quivers correspond to 4D
N ¼ 1 gauge theories. There is a vast amount of literature
on these theories; see, e.g., Refs. [37,38].

1. Superfields

Let us first discuss how the different elements in the
quiver map to superfields. Nodes correspond to vector

TABLE I. D-brane configurations engineering quantum field
theories in various dimensions.

m QFT Original geometry Mirror

1 4D N ¼ 1 IIB D3 probing CY3 IIA D6 on 3-cycles
2 2DN ¼ ð0; 2Þ IIB D1 probing CY4 IIB D5 on 4-cycles
3 0D N ¼ 1 IIB D(-1) probing CY5 IIA ED4 on 5-cycles

30In the coming section, we explain how many of the ideas
presented here extend to the case of m ¼ 0.
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multiplets. As explained earlier, it is sufficient to focus on
arrows with degrees 0 ≤ c ≤ m=2, which can also be
completed into (c, m − c) double arrows. This means that
in this case there is a single type of arrow, i.e., of matter
superfield, which corresponds to c ¼ 0, i.e., to a (0,1)
double arrow. We identify such arrows with chiral super-
fields, as shown in Fig. 17. Here and in what follows, we
determine the orientation of physical fields using the
convention in (2.4). To follow standard 4DN ¼ 1 notation,

we call Xij ≡ φð0Þij . We conclude that m ¼ 1 quivers
precisely match the most general field content of 4D N ¼
1 gauge theories.

2. Anomalies

For every node, the generalized anomaly cancellation
(6.2) takes the form

0 ¼ Nχin − Nχout ; ð8:1Þ

where Nχin and Nχout are the number of incoming and
outgoing chiral fields, respectively. This is precisely the
condition for the cancellation of the SUðN⋆Þ3 gauge
anomaly. The relative sign reflects the opposite contribu-
tion of fields transforming in the fundamental and anti-
fundamental representations of SUðN⋆Þ.

3. Potential

Following the definition in Sec. II C, the degree of the
potential for m ¼ 1 must be equal to 0. Then, terms in the
potential correspond to oriented cycles of chiral fields, as
shown in Fig. 18. Different terms in the potential might
involve different numbers of fields. In physics, we refer to
the m ¼ 1 potential as the superpotential. An important
property of the superpotential is that it is a holomorphic

function of the chiral fields; i.e., it does not involve
conjugate fields X̄ij.
The moduli space of these theories is determined by

imposing vanishing D and F-terms. The F-terms are the
cyclic derivatives of the superpotential with respect to
chiral fields. This agrees with (3.9).
For clarity, the figures in this section show potential

terms containing a large number of fields.

4. Kontsevich bracket

Since the superpotential is holomorphic, the Kontsevich
bracket vanishes automatically. This implies that, as is well
known from physics, there is no additional constraint on the
superpotential.

B. m= 2: 2D N = ð0;2Þ
We now consider m ¼ 2 quivers, which correspond to

2D N ¼ ð0; 2Þ gauge theories. Thorough introductions to
these theories can be found in Refs. [2,4,39,40].

1. Superfields

Once again, every node corresponds to a vector super-
field. There are two types of arrows, associated to c ¼ 0, 1.
The resulting (0,2) and (1,1) double arrows correspond to
chiral and Fermi superfields, respectively. Following stan-
dard notation, we will refer to chiral fields as Xij and Fermi
fields as Λij. Fermi fields are the first examples of (m=2,
m=2) unoriented fields that we encounter in quantum field

theories. Specifically, since φð1Þij and φð1Þop;ji have the same
degree, we can identify the pair with either Λij or Λji. The
symmetry under the exchange of Λij ↔ Λ̄ij for any Fermi
field is an important property of 2D N ¼ ð0; 2Þ gauge
theories. Below, we will discuss this symmetry on the
potential.

i j
(0)

(1)
i j

Xij
Chiral

FIG. 17. (0,1) arrows corresponds to 4D N ¼ 1 chiral fields.

FIG. 18. The m ¼ 1 potential corresponds to the 4D N ¼ 1 superpotential.
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Figure 19 shows the map between arrows in an m ¼ 2
graded quiver and matter fields in a 2D N ¼ ð0; 2Þ theory.
Given the undirected nature of Fermi fields, it is standard to
represent them by undirected lines.

2. Anomalies

The generalized anomaly cancellation condition (6.2)
becomes

0 ¼ Nχin þ Nχout − NF − 2N⋆; ð8:2Þ

withNχin ,Nχout ,NF, andN⋆ the numbers of incoming chirals,
outgoing chirals, and Fermis and the rank of the gauge group,
respectively. A few words are in order for understanding this
expression. First, we notice that the contributions of the
incoming and outgoing chirals, i.e., of chirals transforming in
the fundamental and antifundamental representations, have
the same sign. This is because anomalies in 2D are quadratic.
Second, unlike in the 4D case, there is a nonvanishing term

proportional toN⋆. This is the contribution to the anomaly of
gauginos in the vector multiplet. Finally, the contributions
from chiral fields have a sign opposite to the ones of Fermis
and vector multiplets. This is due to the opposite chirality of
the fermions in these superfields. It is quite remarkable that
all these details emerge from the simple requirement of
periodicity under mutations.

3. Potential

The degree of the potential for m ¼ 2 is 1. This means
that all terms in the potential are of the general form shown
on the left of Fig. 20; namely, they consist of a single Fermi
field and an arbitrary number of chiral fields. The physical
interpretation of such a potential term is interesting. In
particular, following our previous discussion, a c ¼ 1 arrow
connecting nodes i1 and i2 can be interpreted either as a
Fermi fieldΛi1i2 or as a conjugate Fermi field Λ̄i2i1 . The first
possibility leads to a contribution to a so-called J-term,
while the second option gives a contribution to an E-term:

i j
(0)

(2)
i j

Xij
Chiral

i j
(1)

(1)
i j

ij
Fermi

FIG. 19. (0,2) and (1,1) arrows correspond to 2D N ¼ ð0; 2Þ chiral and Fermi fields, respectively.

(a) J-term

(b) E-term

FIG. 20. There are two types of potential terms for m ¼ 2. They map to contributions to J or E-terms in the corresponding 2D
N ¼ ð0; 2Þ gauge theories.
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φð1Þi1i2
φð0Þi2i3

…φð0Þiki1
→

� J term∶ Λi1i2Xi2i3…Xiki1

E term∶ Λ̄i2i1Xi2i3…Xiki1 :
ð8:3Þ

More precisely, we refer to the chiral field parts of the
cycles in (8.3) as J and E-terms. Every Fermi field in the
theory is associated to a J and an E-term, which are given
by sums over contributions that, generically, can be of
different orders. For the terms in (8.3), we have

JΛi1i2
¼ Xi2i3…Xiki1 þ � � �

EΛi2i1
¼ Xi2i3…Xiki1 þ � � � ; ð8:4Þ

where the dots indicate possible additional terms.
The potential takes the form

W ¼
X
a

½ΛaJaðXÞ þ Λ̄aEaðXÞ�; ð8:5Þ

where a is an index that runs over all the Fermi fields in the
theory.
The classical moduli space of the gauge theory requires

vanishing J and E-terms. This is in agreement with the
discussion around (3.9), which states that only the Jacobian
algebra with respect to arrows of degree (m − 1) is
important for the moduli space. In this case, m − 1 ¼ 1,
implying that we must consider the Jacobian algebra with
respect to both Fermis and conjugate Fermis. In addition, as
always, we demand vanishing D-terms.

4. Λ ↔ Λ̄ symmetry

We have already mentioned that the unoriented nature of
Fermi fields leads to a symmetry under the exchange of
Λa ↔ Λ̄a for any Fermi field. This symmetry corresponds
to the exchange Ja ↔ Ea.

5. Kontsevich bracket

The potential (8.5) contains both Fermi fields and
their conjugates. This implies that the vanishing of the
Kontsevich bracket gives rise to a nontrivial constraint,
which takes the formX

a

JaðXÞEaðXÞ ¼ 0: ð8:6Þ

This is precisely the trace condition of 2D N ¼ ð0; 2Þ
theories [39].

C. m= 3: 0D N = 1

Let us consider m ¼ 3 quivers. They correspond to 0D
N ¼ 1 gauge theories. These theories were recently
studied in Ref. [3].

1. Superfields

Nodes correspond to gaugino superfields. There are two
types of arrows, associated to c ¼ 0, 1. The (0,3) and (1,2)
double arrows map to chiral and Fermi superfields, respec-
tively.Wewill refer to chiral fields asXij and Fermi fields as
λij. Unlike what happens in them ¼ 2 case, Fermi fields are
oriented for m ¼ 3. The correspondence between double
arrows and fields is illustrated in Fig. 21.

2. Anomalies

Anomaly cancellation becomes

0 ¼ Nχin − Nχout þ NFin
− NFout

: ð8:7Þ
Fields transforming in the fundamental and antifundamen-
tal representations of the gauge group contribute with
opposite signs. The orientation prescription of (2.4) is
crucial for obtaining this correlation.

3. Potential

The potential for m ¼ 3 has degree 2. This implies that
there are two possible types of potential terms, which
precisely reproduce the possible interaction terms of 0D
N ¼ 1 gauge theories [3]. The first one, shown in Fig. 22,
has the form

J term∶ φð2Þi1i2
φð0Þi2i3

…φð0Þiki1
→ λi1i2Xi2i3…Xiki1 ð8:8Þ

and corresponds to a contribution to a so-called J-term. J-
terms are defined as the chiral field part of such loops.
There is one J-term for every Fermi field, which becomes

Jλi1i2 ¼ Xi2i3…Xiki1 þ � � � ; ð8:9Þ
where the dots indicate the possibility of multiple
contributions.
The second type of potential term is a contribution to an

H-term. It is shown in Fig. 23 and is given by

i j
(0)

(3)
i j

Xij
Chiral

i j
(1)

(2)
i j

ji
Fermi

FIG. 21. (0,3) and (1,2) arrows correspond to 0D N ¼ 1 chiral and Fermi fields, respectively.
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H term∶ φð1Þi1i2
φð1Þi2i3

φð0Þi3i4
…φð0Þiki1

→ λ̄i2i1 λ̄i3i2Xi3i4…Xiki1 :

ð8:10Þ

There is an H-term for every pair of Fermi fields. Once
again, H-terms are defined in terms of the chiral fields in
the loops. For (8.10), we have

Hλi2i1 λi3i2
¼ Xi3i4…Xiki1 þ � � � ð8:11Þ

The full potential can be written in terms of J and H-
terms as

W ¼
X
a

λaJa þ
X
a;b

λ̄aλ̄bHab; ð8:12Þ

where a and b run over Fermi fields.
In addition to vanishing D-terms, the moduli space of

these theories is determined by only imposing vanishing J-
terms. Once again, this is in full agreement with (3.9);
namely, we only use the Jacobian algebra with respect to
degree-(m − 1) arrows, which in this case are the λa’s.

4. Kontsevich bracket

The potential is holomorphic in chiral fields but contains
both Fermi fields and their conjugates. The vanishing of the
Kontsevich bracket requires

X
a;b

HabðXÞJ̄aðXÞλb ¼ 0: ð8:13Þ

Since every λa is independent, this condition becomes

X
b

HabðXÞJ̄aðXÞ ¼ 0 for every a: ð8:14Þ

This is the H constraint, which in physics is necessary for
preserving SUSY [3].
It is striking that the mathematical formulation of SUSY

gauge theories in different dimensions in terms of graded
quivers with potentials provides a unified explanation for
seemingly unrelated constraints on the potential, such as
the trace condition in two dimensions and the H-constraint
in zero dimensions.

D. Comments on m = 0 and 6D N = ð1;0Þ
Our discussion in previous sections started from m ¼ 1.

This is a natural starting point since, mathematically, it
corresponds to ordinary quivers and the first nontrivial
example of mutations. However, our framework applies
even for m ¼ 0, which becomes the natural initial case for
the infinite tower of theories.
Extending the dictionary in Sec. VII, m ¼ 0 corresponds

to 6D N ¼ ð1; 0Þ gauge theories. Such theories can be
realized on the world volume of D5-branes probing CY 2-
folds. The case in which the CY2 is toric is particularly

FIG. 22. Contribution to a J-term in a 0D N ¼ 1 gauge theory.

FIG. 23. Contribution to an H-term in a 0D N ¼ 1 gauge theory.
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tractable. Toric CY2’s can only be C2=Zn orbifolds, for
which the toric diagrams are given by segments of nþ 1
points in Z [41–44]. These setups are T dual to so-called
elliptic models consisting of stacks of D6-branes suspended
from n parallel NS5-branes on S1 [44]. Elliptic models can
be regarded as the simplest cousins of brane tilings. The
corresponding necklace quivers realize the McKay corre-
spondence for Ãn−1 [45].
The interpretation of m ¼ 0 quivers as 6D N ¼ ð1; 0Þ

gauge theories works as follows. Nodes correspond to
vector multiplets, while (0,0) unoriented arrows correspond
to hypermultiplets. Six-dimensional N ¼ ð1; 0Þ gauge
theories need to be coupled to tensor multiplets in order
to be anomaly free. For example, in the simple elliptic
models mentioned above, there is one (1,0) tensor multiplet
for each NS5-brane.31 This in turn means that there is one
tensor multiplet per gauge group factor. We conclude that
within the class of theories considered in this paper nodes
also represent the tensor multiplets. Since m − 1 ¼ −1 in
this case, these theories do not have a potential. Finally,
there is no mutation, i.e., duality, in this case.

IX. MUTATIONS AS QFT DUALITIES

For m ¼ 1, 2, 3 the mutations introduced in Sec. IV
reproduce exactly the dualities of the corresponding quan-
tum field theories. More precisely, form ¼ 1, we obtain the
Seiberg duality of 4D N ¼ 1 theories [1]; for m ¼ 2, we
recover the triality of 2D (0,2) theories [2]; and for m ¼ 3,
we get the quadrality of 0D N ¼ 1 theories [3].
Seiberg duality is the prototypical and best-understood

example of a SUSY quantum field theory duality. It has
passed numerous tests and found countless applications.
The discovery of triality is far more recent [2], and it was
initially motivated by the invariance of the elliptic genus.
By now, triality has been derived from Seiberg duality
through compactification [46,47] and realized in terms of
branes [6,9]. Finally, quadrality was postulated based on
mirror symmetry [3]. These dualities are beautifully unified
when realized in terms of geometric transitions using
mirror symmetry [3,9,17]. Remarkably, the theory of
graded quivers with potentials and their mutations achieves
a similar algebraic unification of dualities in different
dimensions. The existence of this subjacent mathematical

structure adds further credence to the recently proposed
dualities.32

Below, we show in simple examples how the mutation of
graded quivers precisely reproduces the dualities of min-
imally supersymmetric gauge theories in d ¼ 4, 2, 0. In
doing so, we illustrate the straightforward reformulation of
the mutation rules in physics language. We will consider
simple theories that can be regarded as generalizations of
super QCD (SQCD) in various dimensions, consisting of a
single gauge group and flavors of all mþ 1 possible types.
In the rest of this section, circular and square nodes

correspond to gauge and global nodes, respectively. The
ranks of the different flavor nodes are denoted Ni, where
i ¼ 0;…; m is the degree of the corresponding field
regarded as an arrow going into the gauge node as in
Fig. 4. N⋆ is the original rank of the gauge group.

A. m= 1: 4D N = 1 Seiberg duality

Let us first considerm ¼ 1. Our starting point is standard
4D SQCD, the quiver of which is shown on the left of
Fig. 24. It contains two flavor nodes, which correspond to
incoming and outgoing chiral fields at the gauge node. The
anomaly cancellation condition (6.2) requires N0 ¼ N1,
which is often referred to as the number of flavors NF.
Similarly, N⋆ is usually denoted the number of colors Nc.
According to the general rules in Sec. IVA, mutating the

gauge node transforms the quiver as follows:
(i) Flavors.—Figure 4 summarizes the transformation

of flavors for generalm in terms of a rotation. In this
simple case, this rotation reduces to reversing the
orientation of the flavor arrows.

(ii) Mesons.—According to rule 2, the dual theory con-
tains a meson that, expressed in terms of the fields in
the original theory, is given by M01 ¼ X0⋆X⋆1.

The final quiver is shown on the right-hand side of
Fig. 24. Following (4.1), the new rank of the gauge group
is N0⋆ ¼ N0 − N⋆. Finally, rule 2.a implies that the final
theory contains the superpotential

W ¼ M01X1⋆X⋆0: ð9:1Þ

We conclude that for m ¼ 1 the mutation introduced in
Sec. IV precisely coincides with Seiberg duality.

N0 N N1

X 0 X1
N0 N N1

X0 X 1

M01

FIG. 24. The mutation of an m ¼ 1 quiver reproduces 4D N ¼ 1 Seiberg duality.

31One of these tensor multiplets corresponds to the center-of-
mass motion and is hence decoupled.

32The term “duality”might sound like a misnomer since we are
referring to transformations that are not involutions, but this
nomenclature has become standard in physics, so we adhere to it.
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B. m= 2: 2D N = ð0;2Þ triality
We now consider the 2D (0,2) theory on the left of

Fig. 25. It contains three flavor nodes, corresponding to
incoming chirals, outgoing chirals, and Fermis. Anomaly
cancellation (6.2) requires

N⋆ ¼
N0 − N1 þ N2

2
: ð9:2Þ

Mutating the gauge node, the quiver transforms as
follows:

(i) Flavors.—The rotation of flavors in Fig. 4 becomes

chiral in → chiral out

Fermi → chiral in

chiral out → Fermi: ð9:3Þ
(ii) Mesons.—Following rule 2, the incoming chirals

can be composed with the outgoing chirals or the
Fermis, giving rise to two mesons,

M02 ¼ X0⋆X⋆2 ðchiralÞ
μ01 ¼ X0⋆Λ⋆1 ðFermiÞ; ð9:4Þ

where we have indicated the type of superfield. The
resulting quiver is presented on the right of Fig. 25.

Once again, the rank of the gauge group in the dual
theory is N0⋆ ¼ N0 − N⋆. Following rule 2.a, the
potential of the dual theory consists of the cubic dual
flavors–meson couplings

W ¼ Λ̄⋆2X⋆0M02 þ μ01X1⋆X⋆0; ð9:5Þ

where the first term corresponds to an E-term and
the second one corresponds to a J-term. Since each
term involves a different Fermi field, the trace
condition (8.6) is trivially satisfied.

In summary, form ¼ 2 the mutation in Sec. IV coincides
with triality.

C. m= 3: 0d N = 1 quadrality

Finally, let us study the 0D N ¼ 1 theory on the left of
Fig. 26. This model was originally studied in Ref. [3].
Anomaly cancellation (6.2) requires

N0 − N1 þ N2 − N3 ¼ 0: ð9:6Þ

Mutating the gauge node, the transformation of the
quiver is given by:

N N

N2N0

N1

N2N0

N1

X0
X 0X 2

X11

M02

2

µ01

FIG. 25. The mutation of an m ¼ 2 quiver reproduces 2D N ¼ ð0; 2Þ triality.

X 3

N0

N1 N2

N3 N0

N1 N2

N3

X0 N N
X 0

M03

2

3

µ01

21
X1

µ20

FIG. 26. The mutation of an m ¼ 3 quiver reproduces 0D N ¼ 1 quadrality.
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(i) Flavors.—From Fig. 4, the flavors mutate accord-
ing to

chiral in → chiral out Fermi in → Fermi out

Fermi out → chiral in chiral out → Fermi in:

ð9:7Þ

(ii) Mesons.—From rule 2, we obtain three mesons:

M03 ¼ X0⋆X⋆3 ðchiralÞ
μ01 ¼ X0⋆λ⋆1 ðFermiÞ
μ20 ¼ λ2⋆X̄0⋆ ðFermiÞ: ð9:8Þ

The meson μ20 results from the composition be-
tween a Fermi field and a conjugate chiral field and
is thus an example of anticomposition. Indeed,
anticomposition was first observed in physics in
the context of quadrality [3]. In view of the results of
this paper, this is not surprising, since zero dimen-
sions corresponds to m ¼ 3, which is the first
nontrivial instance of anticomposition.33 In Ref. [3],
evidence for anticomposition came from multiple
fronts, including the transformation of brane charges
under a geometric transition, the matching of
anomalies and deformations between dual theories,
and the periodicity under four consecutive dual-
izations. The emergence of anticomposition from a
simple mathematical structure is reassuring.

The final quiver is presented on the right-hand side of
Fig. 26. The rank of the gauge group in the dual theory is
N0⋆ ¼ N0 − N⋆. As in the two previous examples, since the
original theory has no potential, the final potential follows
entirely from rule 2.a and is given by

W ¼ μ01X1⋆X⋆0 þ λ3⋆X⋆0M03 þ μ̄20λ̄⋆2X⋆0: ð9:9Þ
The first two terms correspond to J-terms, while the last
one corresponds to an H-term. The H-constraint (8.14) is
trivially satisfied.
We conclude that for m ¼ 3 the mutation in Sec. IV

reproduces quadrality.
We conclude this section with some comments regarding

the mutation of potentials. The basic physics principle for
determining the potentials of dual theories is that every
term that is allowed by the symmetries of a theory must be
present. The rules for mutating the potential introduced in
Sec. IV B beautifully implement this principle. While the
prescription based on symmetries is absolutely general, it
can become hard to apply in complicated theories. The
rules of Sec. IV B are local; namely, they focus on
the modification of the quiver in the neighborhood of

the mutated node and are hence much more practical. In
fact, they can be automatically implemented in a computer.
Before this work, such local rules were only known for
Seiberg duality (m ¼ 1). For triality, the most detailed
understanding of the mutation of potentials was attained for
toric theories [4–7,9]. Even in this class of theories, the
potential of dual theories must be read off from periodic
quivers or brane brick models, and doing so can become
quite challenging. For 0D N ¼ 1 theories, local rules for
the transformation of the potential under quadrality are just
not known. The rules in Sec. IV B hence represent a
significant development in our understanding on how
potentials mutate in four dimensions, two dimensions,
and zero dimensions. The list of known explicit examples
in two dimensions and zero dimensions is still limited but
rapidly growing (see, e.g., Refs. [3–9]). It is indeed possible
to verify that our prescription reproduces all of them.

X. MIRROR SYMMETRY: GRADED QUIVERS
FOR TORIC CALABI-YAUS

In this section, we focus on toric CY (mþ 2)-folds,
which give rise to a particularly nice family of m-graded
quivers. We have already seen hints of this class of theories
in Secs. VII and VIII, in which we discussed D-branes
probing these geometries for m ¼ 0, 1, 2, 3. A powerful
way for connecting toric geometry to quivers involves
mirror symmetry. Our primary goal is to emphasize that,
while this construction has a D-brane interpretation for
m ≤ 3, it actually applies to arbitrary m. Below, we present
a brief review of the key ideas and refer the reader to
Refs. [3,9,48,49] for further details.
A toric CYmþ2 M is specified by a toric diagram V,

which is a convex set of points in Zmþ1. The corresponding
mirror geometry [50,51] is an (mþ 2)-fold W defined as a
double fibration over the complex W plane,

W ¼ Pðx1;…; xmþ1Þ
W ¼ uv; ð10:1Þ

whereu, v∈C and xμ∈C�, μ¼ 1;…;mþ1.Pðx1;…; xmþ1Þ
is the Newton polynomial, which is defined as

Pðx1;…; xmþ1Þ ¼
X
v⃗∈V

cv⃗x
v1
1 …xvmþ1n−1 ; ð10:2Þ

where the cv⃗ are complex coefficients and the sum is over
points v⃗ in the toric diagram. We can set mþ 2 of the
coefficients to 1 by rescaling the xμ’s.
The critical points of P are given by ðx�1;…; x�mþ1Þ

satisfying

∂
∂xμ Pðx1;…; xmþ1Þ

���
ðx�

1
;…;x�mþ1Þ

¼ 0 ∀ μ: ð10:3Þ
33We can think that anticomposition is also present for m ¼ 2,

but it acts rather trivially due to the Fermi-conjugate Fermi
symmetry.
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The corresponding critical values on the W plane are
W� ¼ Pðx�1;…; x�mþ1Þ. For toric diagrams with at least
one internal point, it can be shown that the number of
critical points of P, which we call G, is equal to the
normalized volume of the toric diagram [48]. In more
detail, the normalization is determined with respect to the
volume of a minimal “tetrahedron" in (mþ 1) dimensions.
The double fibration consists of a holomorphic m com-

plex-dimensional surface ΣW coming from Pðx1;…; xmþ1Þ
and a C� fibration from uv. The corresponding Sm × S1 is
fibered over a vanishing path, which is a line segment
connectingW ¼ 0 andW ¼ W�, and gives rise to an Smþ2.34

We refer to these spheres as Ci, i ¼ 1;…; G.
The Ci are in one-to-one correspondence with

vanishing cycles Ci at W ¼ 0, where the S1 fiber vanishes.
Every Ci gives rise to a vanishing cycle Ci with Smþ1
topology. TheCi live on the Riemann surfaceΣ0, defined by
Pðx1;…; xmþ1Þ ¼ 0. Aswe explain below, the quiver theory
is determined by how the Ci’s intersect.

A. Tomography

A convenient way of visualizing the geometry of the
Sm’s is in terms of tomography [9,49]. The xμ tomography
corresponds to the projection of the Sn−2 spheres at W ¼ 0
onto the xμ plane. An attractive feature of tomography is
that it is easy to scale: every time m is increased by 1, we
just include an additional xμ plane. Various explicit
examples of tomography for m ¼ 1 and 2 can be found
in Ref. [9].

1. From mirror symmetry to quivers

The quiver diagram can be read from the mirror
geometry. In fact, the mirror geometry specifies the full
theory, namely, not only its quiver but also its potential. The
theories associated to toric CY (mþ 2)-folds are fully
encoded by periodic quivers living on an (mþ 1)-
dimensional torus Tmþ1. All the terms in the potential
are mapped to minimal plaquettes in the periodic quiver.
We refer the reader to Refs. [3–5,35] for implementations
of this construction tom ≤ 3. In this section, we outline the
basics of the map between mirror geometries and quiver
theories. A detailed study of the quiver theories associated
to toric CY (mþ 2)-folds for arbitrary m will be presented
elsewhere [52].
Every vanishing cycle Ci corresponds to a node in the

quiver. According to our previous discussion, the number
of nodes is then equal to the normalized volume of the toric
diagram.
Every intersection between vanishing cycles gives rise

to a field in the quiver. Depending on the coefficients
in the Newton polynomial, intersections might not be fully

resolved; i.e., they might have higher multiplicity. Explicit
examples of this situation are studied in Ref. [9].
Finally, the periodic quiver is obtained by taking the

coamoeba projection

ðx1;…; xmþ1Þ↦ ðargðx1Þ;…; argðxmþ1ÞÞ; ð10:4Þ

which maps the intersections between vanishing cycles to
the positions of the corresponding fields on the torus Tmþ1.

Example: C6=Z6.—To illustrate these ideas, let us briefly
consider the C6=Z6 orbifold with action (1,1,1,1,1,1). The
toric diagram for this geometry is given by the following
collection of points in Z5:

ð1; 0; 0; 0; 0Þ
ð0; 1; 0; 0; 0Þ ð0; 0; 0; 0; 0Þ
..
. ð−1;−1;−1;−1;−1Þ
ð0; 0; 0; 0; 1Þ: ð10:5Þ

Six of the coefficients of the corresponding Newton
polynomial can be scaled to 1, leaving a single free
coefficient. In the notation of (10.2), we pick this coef-
ficient to be cð0;0;0;0;0Þ. Setting it to zero, we obtain

Pðx1;x2;x3;x4;x5Þ¼ x1þx2þx3þx4þx5þ
1

x1x2x3x4x5
:

ð10:6Þ

The normalized volume of the toric diagram defined by
(10.6) is 6. This leads to six critical points of P, which in
turn map to six nodes in the quiver, as expected for aC6=Z6

orbifold. The critical values are W�j ¼ 6ωj, with ω ¼ eiπ=3

and j ¼ 1;…; 6. Figure 27 shows the vanishing paths on
the W plane and the x1 tomography.
The quiver theory associated to this geometry hasm ¼ 4.

The theory has an SUð6Þ global symmetry corresponding
to the isometry of the orbifold.35 The quiver diagram

consists of six nodes and arrows ΦðcÞi;iþcþ1, c ¼ 0, 1, 2,
transforming in the (cþ 1)-index antisymmetric represen-
tation of SUð6Þ. These properties generalize straightfor-
wardly to Cmþ2=Zmþ2 orbifolds with action ð1;…; 1Þ, as
will be explained in Ref. [18]. The Φð2Þi;iþ3 fields are
unoriented.
Figure 28 shows the quiver diagram for this theory.

Black, red, and purple lines correspond to degrees 0, 1,

34More precisely, vanishing paths can be curved. See Ref. [9]
for a discussion.

35Notice that the SUð6Þ global symmetry follows from the fact
that we picked an orbifold that has the same action on each
complex plane. Other C6=Z6 orbifolds have different global
symmetries.
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and 2, respectively. We also indicate the SUð6Þ represen-
tation in which each type of field transforms.
The potential is purely cubic and takes the form

W ¼
X6
i¼1

ϵa1…a6 ½ϵa3…a8Φa1ð0Þ
i;iþ1Φ

a2ð0Þ
iþ1;iþ2Φ

ð1Þ
a7a8;i;iþ2

þΦa1ð0Þ
i;iþ1Φ

a2a3ð1Þ
iþ1;iþ3Φ

a4a5a6ð2Þ
iþ3;i

þ ϵa4…a9Φa1ð0Þ
i;iþ1Φ

a2a3ð1Þ
iþ1;iþ3Φ̄

ð2Þ
a7a8a9;i;iþ3

þΦa1a2ð1Þ
i;iþ2 Φa3a4ð1Þ

iþ2;iþ4Φ
a5a6ð1Þ
iþ4;i �: ð10:7Þ

The bifundamental indices are taken mod(6). The aμ
superscripts and subscripts are SUð6Þ fundamental and
antifundamental indices, respectively. They are contracted
such that the potential is SUð6Þ invariant. This is the first
example of a graded quiver theory associated to a toric CY6

to appear in the literature.

Mirror symmetry and degree.—So far, we have discussed
how every intersection between vanishing cycles gives rise

to a field in the quiver. We have not, however, explained
how to determine the corresponding degree. Understanding
this is a crucial ingredient for completing the map between
the mirror geometry and graded quivers.
This question has been already addressed for the cases of

m ¼ 1 and 2. For m ¼ 1, the two possible degrees
correspond to the two orientations of chiral fields and
follow directly from the orientation of the intersecting
cycles. This prescription is equivalent to the one based on
the directions of intersecting zigzag paths on brane tilings
[48,53]. For m ¼ 2, the degree can also be determined by a
detailed analysis of the intersection [9]. An alternative
systematic approach consists of connecting the geometry of
interest to an orbifold by partial resolution. It is straightfor-
ward to determine field degrees for orbifolds and to follow
them through the process of partial resolution. This method
has been successfully exploited for m ¼ 1 and 2 (see, e.g.,
Refs. [4,31–34] and references therein) and will be studied
for general m in Ref. [52].
Let us mention a general connection between the

degree and the mirror. Consider an arbitrary vanishing
cycle C⋆. Other vanishing cycles intersecting with C⋆
provide flavors to the corresponding node. For m ¼ 1, 2,
and 3, it has been observed that the corresponding
vanishing paths are arranged on the W plane according
to the cyclic order of increasing degree discussed in
Sec. II A. The cyclic order emerges from geometry.
This is more than an empirical observation; as we explain
in the coming section, it is at the heart of the geometric
realization of Seiberg duality, triality, and quadrality in
terms of geometric transitions in the mirror [3,9,17]. We
thus expect this property, which is schematically shown in
Fig. 29, to hold for arbitrary m.
It is reasonable to expect that a prescription for reading

the degree of an intersection directly from the mirror might
exist. We leave this interesting question for future work.
Note that the tomography of the mirror of a CYmþ2

C1

C2

C3

C4

C5

C6

6

12

3

4 5

FIG. 27. Vanishing paths and x1 tomography for the C6=Z6 orbifold with action (1,1,1,1,1,1).

21

45

36

(0)
6

(1)
15

(2)
20

FIG. 28. Quiver diagram for the C6=Z6 orbifold with action
(1,1,1,1,1,1).
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involves (mþ 1) xi planes. This is precisely the same
number of possible degrees in the corresponding quiver.

2. Mirror symmetry and mutations

For completeness, let us briefly discuss how the muta-
tions of Sec. IV are realized as geometric transitions in the
mirror geometry. This understanding was developed for
m ¼ 1 in Ref. [17], for m ¼ 2 in Ref. [9], and for m ¼ 3 in
Ref. [3]. Indeed, in Ref. [3], it was emphasized that mirror
symmetry provides a unification of the mutations for
different values of m. The previous works focused on
the physically understood instances of m ≤ 3. Our main
new statement is that this geometric implementation of
mutations applies to arbitrary m.
The mutation of a node in the quiver associated to

the vanishing cycle C� corresponds to the geometric
transition shown in Fig. 30. The moduli of the underlying
CY (mþ 2)-fold are changed until the vanishing path γ⋆
moves past all the degree-0 vanishing paths, i.e., those

contributing incoming chirals to the mutated node, on the
W plane.
Figure 30 makes it clear that the mutation is an

order-(mþ 1) operation, since the vanishing paths associ-
ated to different degrees divide the W plane into (mþ 1)
wedges.

XI. ALGEBRAIC DIMENSIONAL REDUCTION

In physics, dimensional reduction is the process that starts
from a gauge theory in d dimensions, assumes that fields are
independent of Δd of them, and results in a new gauge
theory in d0 ¼ d − Δd dimensions. The relevant cases for
this paper are the 6D → 4D, 4D → 2D, and 2D → 0D
reductions of minimally supersymmetric gauge theories.36

Each of them decreases the dimension d → d0 ¼ d − 2
while increasing m → m0 ¼ mþ 1. From the perspective
of the number of dimensions in which the gauge theory
lives, it is clear that dimensional reduction cannot proceed
beyond m ¼ 3, since it would require us to go below zero
dimensions. We instead focus on the corresponding CY.
Dimensional reduction increases the dimensionof theCYby
1 in a very special way, simply adding a C factor to the
original geometry. The underlying geometry, i.e., themoduli
space, thus changes as follows:

CYmþ2 → CYmþ3 ¼ CYmþ2 × C: ð11:1Þ

It is natural to adopt (11.1) as the definition of algebraic
dimensional reduction acting on graded quivers, or dimen-
sional reduction for short.37 This procedure coincides with
dimensional reduction for the physical cases and generalizes
it to arbitrary m.38 A more appropriate name for this
operation would perhaps be CY dimensional increase.
We now explain how this generalized notion of dimen-

sional reduction admits an elegant implementation within
the framework of graded quivers.

A. Quiver

Let us first discuss how the quiver transforms under
dimensional reduction. We use the notation of (2.4) for
arrows. To facilitate their distinction, we refer to the fields
in the original theory as Φ and those in the dimensionally
reduced theory as Ψ. Dimensional reduction is given by

(1) (m-1)

(0) (m)

*

FIG. 29. For any reference cycle, the other vanishing paths are
degree ordered on the W plane.

(1) (m-1)

(0) (m)

*

0

FIG. 30. A mutation is realized as a geometric transition in
the mirror.

36It is important to note that the dimensional reduction of a
minimally supersymmetric theory is not minimally supersym-
metric, but it has twice the minimal amount of SUSY in the lower
dimension. Despite the extended SUSY, dimensionally reduced
theories can be written in minimal SUSY language, which is what
we do in this section.

37We will refer to this procedure simply as dimensional
reduction for brevity and to emphasize the connection to the
standard case.

38In the type-IIB string theory constructions discussed in
Sec. VII, the upper bound on the dimension of the CY is 5. This
follows from the fact that the ambient space is ten dimensional.
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m mþ 1

nodei → nodei þ adjoint chiralΨð0Þii

ΦðcÞij → ΨðcÞij þ Ψ̃ðcþ1Þij ;
ð11:2Þ

where 0 ≤ c ≤ m=2. The previous table also applies
when i ¼ j, namely, when the starting theory contains

adjoint fields. Notice that, modulo the new Ψð0Þii fields, this
procedure preserves the chiral field content of the theory.
Equation (11.2) fully determines the dimensional reduc-

tion of a quiver. It is interesting to consider the undirected
fields of degree m=2 that can be present in theories with
even m in further detail. According to (11.2), we get

even m mþ 1
Φðm=2Þ

ij → Ψðm=2Þ
ij þ Ψ̃ðm=2þ1Þ

ij ¼ Ψðm=2Þ
ij þ Ψ̃ðm=2Þ

ji
;

ð11:3Þ

where we have used the fact that Ψ̃ðm=2þ1Þ
ij ¼ Ψ̃ðm=2Þ

ji . We
went from a degree greater than m0=2 to a degree smaller
than m0=2 by reversing the orientation of the arrow. In

summary, the undirected fields Ψðm=2Þ
ij are dimensionally

reduced to a pair of fields of degree m=2 with opposite
orientations.

B. Potential

Let Wm denote the original potential, and let Wmþ1 be
the one for the dimensionally reduced theory. There are two
types of contributions to Wmþ1:
(1) Dimensional reduction of terms inWm.—The degree

of the potential increases by 1, going from m − 1 in
the parent theory tom0 − 1 ¼ m in the dimensionally
reduced one. According to (11.2), every arrowΦðcÞij in
the initial theory gives rise to a pair of arrows
ΨðcÞij þ Ψ̃ðcþ1Þij . The dimensional reduction of Wm is
then straightforward. For every term in Wm, we
replace every field with the corresponding ΨðcÞij
except for one, which we instead replace by
Ψ̃ðcþ1Þij . We repeat this process for all fields in the
term. This procedure generates a series of terms in
Wmþ1 for every term in Wm.
Schematically, for any term in Wm, we have

m mþ 1

Φðc1Þi1i2
Φðc2Þi2i3

…ΦðckÞiki1
→

Ψ̃ðc1þ1Þi1i2
Ψðc2Þi2i3

…ΨðckÞiki1
þΨðc1Þi1i2

Ψ̃ðc2þ1Þi2i3
…ΨðckÞiki1

þ…þΨðc1Þi1i2
Ψðc2Þi2i3

…Ψ̃ðckþ1Þiki1

: ð11:4Þ

(2) New terms involving adjoints.—In addition, Wmþ1
contains a new class of terms. For every arrow ΦðcÞij

in the original quiver, we introduce the pair of
potential terms in the dimensionally reduced one,

Ψð0Þii Ψ
ðcÞ
ij Ψ̃

ðm−c−1Þ
ji − Ψ̃ðm−c−1Þ

ji ΨðcÞij Ψ
ð0Þ
jj ; ð11:5Þ

which uses the adjoint chiral fields arising from the
dimensional reduction of every node.39 The choice
of relative sign is a convention.

These two steps generate all possible terms inWmþ1 that
are consistent with the symmetries of the theory.
It is straightforward to check that the prescription

introduced in this section reproduces the 6D → 4D,
4D → 2D, and 2D → 0D dimensional reduction of mini-
mally supersymmetric gauge theories.

1. Dimensional reduction of the moduli space

We now explain how, under dimensional reduction, the
moduli space transforms simply as in (11.1). For simplicity,
let us restrict to theories in which the ranks of all nodes are

equal to 1. Following the discussion in Sec. III C, for
computing the moduli space, we should focus exclusively
on the chiral fields. Let us first consider the adjoint chiral
fields Ψð0Þii descending from nodes in the parent theory.
They only appear in the potential Wmþ1 through the terms
(11.5). The relations arising from the cyclic derivatives of
those terms with respect to either ΨðcÞij or Ψ̃ðm−c−1Þ

ji imply

that Ψð0Þii ¼ Ψð0Þjj for any i and j. All of the Ψð0Þii ’s are thus
equal and give rise to the decoupled C factor in (11.1).
Next, we know that the chiral fields in the original theory
Φð0Þij subject to vanishing D-terms and the relations coming
from the initial potential Wm correspond to the geometry
that we call CYmþ2 in (11.1). According to (11.2), every
such chiral gives rise to a chiral Ψð0Þij in the dimensionally
reduced theory. The D-terms remain the same.
Furthermore, the potential terms in (11.4) guarantee that
the relations for the Ψð0Þij ’s that follow from Wmþ1 are

precisely the same as the ones for the Φð0Þij ’s due toWm. We

conclude that the Ψð0Þij ’s give rise to the CYmþ2 factor
in (11.1).
Let us conclude this section with a few clarifications.

The dimensional reduction procedure we have introduced is
analogous to, and for m ≤ 2 coincides with, standard

39These fields should not be confused with other adjoint fields
that descend from preexisting adjoints in the initial theory.
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dimensional reduction at the level of the classical Lagrangian.
We are not making any statement about the well-known
subtleties regarding the interplay between dimensional
reduction and the renormalization group (RG) flow. In fact,
there is no notion ofRG flow form > 2. In addition, it is clear
that, in its current basic form, dimensional reduction does not
connect the dualities form andm0 ¼ mþ 1.Having said that,
we would like to stress that dimensional reduction is,
however, a powerful tool for determining quiver theories
for CY (mþ 3)-folds starting from those of CY (mþ 2)-
folds. This tool will be heavily exploited in the context of the
topological B-model in Ref. [18].

XII. CONCLUSIONS AND OUTLOOK

Let us conclude by summarizing some of the key results
of this paper:

(i) In Secs. II–VI, we introduced a mathematical
framework based on graded quivers with potentials
and higher Ginzburg algebras that provides a unified
description of minimally supersymmetric quantum
field theories in even dimensions. Moreover, for
m > 3, our framework establishes the existence of
an infinite tower of quiver theories with potentials
generalizing such gauge theories and specifies their
structure. These quivers have a physical implemen-
tation in terms of the category of branes in the
topological B-model on higher-dimensional CYs.
Our mathematical framework is even broader and
applies to generic theories regardless of whether or
not they have a string theoretic origin.

(ii) In Secs. VII–IX, we discussed in detail the corre-
spondence between the 0 ≤ m ≤ 3 cases and gauge
theories in six dimensions to zero dimensions. Our
framework succinctly captures their field content,
interactions, anomaly cancellation, constraints on
the Lagrangian coming from SUSY, etc.
Moreover, mutations of these quivers precisely

correspond to dualities of the associated quantum
field theories. Some of these dualities, like triality
and even more so quadrality, have been discovered
recently, and their studies are therefore limited.
Identifying the mathematical structures underlying
them is thus a significant step forward.

(iii) We were led to postulate a completely new, infinite
class, of generalizations of the few known dualities
to m > 3. These new mutations encode the trans-
formation of the category of branes of the topologi-
cal B-model under geometric transitions in the
underlying CY (mþ 2)-folds. This problem will
be studied in further detail in Ref. [18].

(iv) The mathematical framework has considerable prac-
tical applications. In Sec. IV B, we introduced a
complete set of local rules for the mutation of the
potential for arbitrary m. This is particularly useful
for cases with a gauge theory interpretation. Let us

contextualize this. The m ¼ 1 case, i.e., 4D N ¼ 1,
has been thoroughly studied in the literature. The
m ¼ 2 case, namely, 2D N ¼ ð0; 2Þ, remains rela-
tively less explored. For example, the most detailed
studies of the mutation of potentials under triality
correspond to toric theories [6]. In this class of
models, the dual potential can in principle be
determined from periodic quivers. However, there
are explicit examples in which this prescription is
insufficient, and it needs to be supplemented by
additional considerations [6]. The rules introduced
in this paper overcome these obstacles. Finally, an
algorithmic prescription for the transformation of the
potential form ¼ 3, i.e., 0DN ¼ 1, was not known.
Our results fully solve these issues and, moreover,
explicitly answer the question for arbitrary m.

(v) In Sec. X, we outlined how to use mirror symmetry
to determine the quiver theories associated to toric
CY (mþ 2)-folds for m > 3. We also presented the
first example in the literature of a graded quiver with
potential associated to a CY6 as well as its con-
struction in terms of mirror symmetry.

(vi) Finally, we introduced a generalization of dimen-
sional reduction to arbitrary m. An interesting appli-
cation of this procedure is the iterative construction of
quiver theories for higher-dimensional CY singular-
ities starting from lower-dimensional ones. Infinite
classes of such explicit CY/quiver theory pairs, with
arbitrarily high m, will be presented in Ref. [18].

Our results also considerably extend the mathematical
understanding of these theories. In particular:

(i) Our explicit rules for the mutation of potentials
supersede the treatment in Ref. [14], which did not
incorporate potentials, and are more explicit and
combinatorial than the rules in Ref. [15], which are
based on differentials for dg algebras. Appendix B
explains the nontrivial relation between our ap-
proach and the one in Ref. [15].

In addition, the current paper adds an important
feature to the mathematical discussion in Ref. [15],
namely, the fact that successive mutation at the same
nodeis(mþ 1)periodic.Thisisnaturalfromthephysics
standpoint, see Sec. V, and adds to the mathematics.

Our work suggests several interesting directions for
future investigation. A few of them are as follows:

(i) Graded quivers with potentials nicely describe
SUSY gauge theories in even dimensions. Does a
similar unified description exist for gauge theories
and their dualities in odd dimensions?

(ii) In Sec. X, we outlined how higher-dimensional
generalizations of dimer models living on Tmþ1
can be constructed for toric CY (mþ 2)-folds for
arbitrary m. For m ¼ 2, such generalizations are
called brane brick models and have been introduced
in Ref. [5]. Similarly, brane hyperbrick models
correspond to m ¼ 3 and were first postulated in
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Ref. [3]. In future work, we plan to develop these
constructions for general values ofm and investigate
how they bridge geometry to the corresponding
quivers. In particular, this will require the generali-
zation of combinatorial notions such as perfect
matchings, zigzag paths, etc. [52].

(iii) It would be interesting to extend the mathematical
understanding of mutations of graded quivers with
potentials to the case in which the mutated node
contains adjoint fields. This is a promising direction
for uncovering new order-(mþ 1) dualities for
m > 1. For m ¼ 2, 3, i.e., d ¼ 2, 0, these would
be generalizations of triality and quadrality analo-
gous to the generalization of Seiberg duality to 4D
SQCD with an adjoint chiral field [54–56].

Furthermore, there are clear questions worth studying in
mathematics, which include the following:

(i) The graded quivers, potentials and mutations dis-
cussed in this paper match up exactly with oriented
flips in (mþ 2)-angulations of polygons. These
details will be fleshed out in a forthcoming math-
ematical companion [57].

(ii) Brane brick models, brane hyperbrick models, and
their extensions tom > 3 lead to higher-dimensional
generalizations of perfect matchings [52]. The con-
nection between these objects and higher cluster
tilting objects leads to new avenues for investigating
algebraic exchange relations that complement
graded quiver mutations, thereby extending the
algebraic structure beyond the m ¼ 1 case.

ACKNOWLEDGMENTS

We would like to thank A. Garver, S. Gurvets, A. Hasan,
R.-K. Seong, and especially S. Lee andC.Vafa for enjoyable
discussions. We are also indebted to S. Oppermann for
useful correspondence. S. F. gratefully acknowledges sup-
port from the Simons Center for Geometry and Physics,
Stony Brook University, where some of the research for this
paperwas performedduring the SimonsSummerWorkshop.
The work of S. F. is supported by the U.S. National Science
Foundation Grant No. PHY-1518967 and by a Professional
Staff Congress of the City University of New York (PSC-
CUNY) award. The work of G.M. is supported by NSF
Grant No. DMS-1362980.

APPENDIX A: ALLOWABLE POTENTIAL
TERMS AND MUTATIONS

Definition 1: A configuration of k arrows, with ori-
entations of double arrows chosen so that it is an oriented
cycle, graded as ðc1; c2;…; ckÞ is an allowable potential
term if and only if

c1 þ c2 þ � � � þ ck ¼ m − 1: ðA1Þ

Definition 2: Given a graded quiver Q, we call a node
i ∈ Q0 is mesonic if there is an incoming chiral, i.e., an
arrow of degree 0, incident to v. We call that i nonmesonic
otherwise.
Claim 4: Any allowable potential term is mutation

equivalent to a configuration of the form ðm − 1; 0; 0;…; 0Þ
with exactly one nonchiral with degree (m − 1) as an
oriented cycle via a sequence of nonmesonic mutations.40

Proof: A configuration ðm − 1; 0; 0;…; 0Þ clearly sat-
isfies (A1). Furthermore, a nonmesonic mutation replaces a
2-path of arrows having degrees ðd; eÞ with one of degrees
(d − 1, eþ 1), and hence the sum on the left-hand side of
(A1) is unchanged by such mutations. Thus, it is clear that
all allowable potential terms will satisfy identity (A1).
We now show that any ðc1; c2;…; ckÞ satisfying this

equation is indeed reachable from ðm − 1; 0; 0;…; 0Þ via
nonmesonic mutations.41 First, we note that

ðc1; c2;…; cd; 0; 0;…; 0; ckÞ
∼ ðc1; c2;…; cd − 1; 1; 0;…; 0; ckÞ
∼ ðc1; c2;…; cd − 1; 0; 1;…; 0; ckÞ
∼ � � � ∼ ðc1; c2;…; cd − 1; 0; 0;…; 1; ckÞ
∼ ðc1; c2;…; cd − 1; 0; 0;…; ck þ 1Þ ðA2Þ

by mutating at the ðdþ 1Þst; ðdþ 2Þnd;…; kth node in
order. Using this identity repeatedly, we convert between
configurations

ðc1; c2;…; cd−1; cd; 0; 0;…; 0; ckÞ
∼ ðc1; 0;…; 0; 0; 0; 0;…; 0; c2 þ c3 þ � � � þ cd þ ckÞ:

ðA3Þ

Since we assumed that c1 þ c2 þ � � � þ ck ¼ m − 1 up
front, this last entry is still from f0; 1; 2;…; m − 1g.
And one final sequence of applications of this identity
yields

ð0; 0;…; 0; 0; 0; 0;…; 0; c1 þ c2 þ c3 þ � � � þ ckÞ
¼ ð0; 0;…; 0; 0; 0; 0;…; 0; m − 1Þ: ðA4Þ

Up to cyclic rotation, we have a configuration of the
desired form.

APPENDIX B: MUTATION OF DIFFERENTIALS
AND RELATION TO OPPERMANN’S WORK

We now discuss how the differential structure transforms
under mutation. In particular, we will show that fW;Wg ¼
0 is preserved by mutations. While doing so, we will

40This statement applies in the obvious way in the case m ¼ 1.
41In the proof, we assume that no node containing adjoint

fields needs to be mutated along the sequence.
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discuss the connections between our approach and
Oppermann’s work in Ref. [15].
Claim 5: If the potential W vanishes under the

Kontsevich backet, i.e., fW;Wg ¼ 0, then after mutation,
the resulting potentialW0 still vanishes under theKontsevich
bracket, i.e., fW0;W0g ¼ 0.
Proof: This has been proven as Theorem 8.1 of

Ref. [15]. We now provide an alternative proof using the
description of differentials given in Sec. III and the
mutation rules for the potential in Sec. IV B.

Let us write the potential as

W ¼
X
σ∈W

cσWσ; ðB1Þ

where σ indicates a cycle in the potential, Wσ ¼
φ1;σφ2;σ � � �φkσ ;σ is the corresponding term involving kσ
arrows, and we explicitly indicate the possibility of numeri-
cal coefficients cσ. For the proof, we set all cσ’s to be 1 and
introduce a new notation for arrows, in which φi;σ indicates
the ith arrow in the cycle σ. Then,

fW;Wg ¼ dW ¼
X
σ

dðWσÞ ¼
X
σ

dðφ1;σÞφ2;σ � � �φkσ ;σ þ ð−1Þjφ1;σ jφ1;σdðφ2;σ � � �φkσ ;σÞ

¼
X
σ

ð∂φop
1;σ
WÞφ2;σ � � �φkσ ;σ þ ð−1Þjφ1;σ jφ1;σdðφ2;σÞφ3;σ � � �φkσ ;σ þ ð−1Þjφ1;σ jþjφ2;σ jφ1;σφ2;σdðφ3;σ � � �φkσ ;σÞ

¼
X
σ

Xkσ
i¼1
ð−1Þ

P
i
j¼1 jφj;σ jφ1;σφ2;σ � � �φi−1;σð∂φop

i;σ
WÞφiþ1;σ � � �φkσ ;σ: ðB2Þ

In this previous expression, the factors involving deriva-
tives are given by

∂φop
i;σ
W ¼

X
θ∈W;Wθ⊃φ

op
i;σ

φ1;θφ2;θ � � �φj−1;θφjþ1;θ � � �φkθ ;θ; ðB3Þ

where φop
i;σ coincides with φj;θ and is hence removed from

the corresponding summand in (B3). Consequently, the
condition fW;Wg ¼ 0 in the initial theory implies that the
double sum in (B2) decomposes into a sum of alternating
sums of the form

φ1;σφ2;σ � � �φi−1;σφjþ1;θ � � �φkθ ;θφ1;θφ2;θ � � �φj−1;θφiþ1;σ � � �φkσ ;σ

− ð−1Þ
P

i
j¼1 jφj;σ jφjþ1;θ � � �φkθ ;θφ1;θφ2;θ � � �φj−1;θφiþ1;σ � � �φkσ ;σφ1;σφ2;σ � � �φi−1;σ: ðB4Þ

The first term comes from the potential terms Wσ and Wθ,
while the second one comes from the potential terms

Wβ ¼ φjþ1;θ � � �φkθ ;θφβφ1;σφ2;σ � � �φi−1;σ

Wα ¼ φiþ1;σ � � �φkσ ;σφαφ1;θφ2;θ � � �φj−1;θ; ðB5Þ

where φop
α ¼ φβ. Equation (B4) can then be written as

∂φi;σ
Wσ∂φj;θ

Wθ − ∂φα
Wα∂φβ

Wβ: ðB6Þ

We thus conclude that in fW;Wg every pair of terms of the
form (B6) independently cancels due to signed cyclic
equivalence (2.5). Furthermore, for each cancellation, it
is only necessary to focus on a set of four potential terms of
the type Wσ þWθ þWα þWβ. Figure 31 shows a graphi-
cal representation of this process. This provides a clear
strategy for proving that fW0;W0g ¼ 0 after mutation: it is
sufficient to follow the evolution of such combinations of
four potential terms. There are two possibilities, depending
on whether some of the arrows in (B6) pass through the

mutated node k or not. Below, we analyze each of them
independently.
Let us first consider the case in which no arrow in (B6)

runs through node k. Then, mutating at node k will leave
Wσ þWθ þWα þWβ and the alternating sum of (B4)
invariant, and it will thus still vanish after mutation.
Next, let us consider the case in which some arrows in

(B6) go through node k. This case can be separated into two
possibilities. First, let us assume that node k is not incident
to φop

i;σ ¼ φj;θ nor φop
α ¼ φβ. Instead, node k is at some

intermediate point of the 2-path •!φ
ðcrÞ
r;σ
k !φ
ðcrþ1Þ
rþ1;σ

•, where we have
expanded our notation to indicate the degree of the arrows

in the exponents. If the degree cr ¼ 0, i.e., if φð0Þr;σ is a chiral
going into k, then a mesonic arrow corresponding to the
composition φr;σφrþ1;σ is created according to rule 2.
Following rule 2.b, the product φr;σφrþ1;σ is replaced by
the meson in both Wσ and Wα (respectively, Wβ). The
resulting alternating sum in fW0;W0g still vanishes.
Additionally, a new cubic term is added to the potential
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according to rule 2.a, but since the opposite of this mesonic
arrow is not also adjoined, this contributes 0 to fW0;W0g as
well. If instead cr ≠ 0, then we use rule 2.c instead and

replace φðcrÞr;σ φ
ðcrþ1Þ
rþ1;σ with φðcr−1Þr;σ φðcrþ1þ1Þrþ1;σ . Again, after this

replacement, fW0;W0g ¼ 0 still holds.
Lastly, let us consider the other possibility, in which we

mutate at k, which is incident to φj;θ or φβ. This means that
the mutated node is located at the end point of one of the
dashed arrows in Fig. 31, at the triple intersection between a
dashed arrow and the two solid lines of a different color.42

We illustrate this situation in Fig. 32, in which we explicitly
indicate the mutated node (blue) and the three other
relevant nodes connected to it (yellow).
Without loss of generality, we consider the node at the

intersection of the three arrows φj−1;θ (incoming), φj;θ ¼
φop
i;σ (outgoing), and φiþ1;σ (outgoing). We then apply rules

2.a–2.d as appropriate, depending on whether φj−1;θ is

chiral or not. We replace Wσ þWθ þWα þWβ with
W0σ þW0θ þW0α þW0β þW0D, where W0D is the new term
arising from rule 2.d. We obtain

W0σ ¼ φðciþ1þ1Þiþ1;σ φðciþ2Þiþ2;σ � � �φðci−1Þi−1;σ φj;θ
ðci−1Þ

W0θ ¼ φ
ðdjþ1Þ
jþ1;θ φ

ðdjþ2Þ
jþ2;θ � � �φ

ðdj−2Þ
j−2;θΨðm−ciÞ

þ Ψðm−ciÞφj;θ
ðci−1Þφj−1;θ

ð0Þ

W0α ¼ φðd1Þ1;θ φðd2Þ2;θ � � �φ
ðdj−2Þ
j−2;θΦðciþ1Þφ

ðciþ2Þ
iþ2;σ � � �φ

ðckσ Þ
kσ ;σ

φðaÞα

þΦðciþ1Þφiþ1;σðm−ciþ1−1Þφj−1;θ
ð0Þ

W0β ¼ Wβ ¼ φ
ðdjþ1Þ
jþ1;θ � � �φ

ðdkθ Þ
kθ ;θ

φα
ðm−aÞφðc1Þ1;σ φ

ðc2Þ
2;σ � � �φðci−1Þi−1;σ

W0D ¼ −ΨðciÞΦðciþ1Þφðciþ2Þiþ2;σ � � �φðci−1Þi−1;σ ; ðB7Þ

where, in order not to clutter the notation, we used φ for
φop. Keeping track of the extra negative term resulting from
rule 2.d, we indeed obtain fW0;W0g ¼ 0 in this case as
well. In particular, fW0σ þW0θ þW0α þW0β þW0D;W

0
σ þ

W0θ þW0α þW0β þW0Dg equals

FIG. 31. Graphical representation of the two terms in (B4), which follow from four potential terms Wσ þWθ þWα þWβ.

FIG. 32. Mutation at a node sitting at a triple intersection of arrows in Fig. 31. In this figure, we assume ci ¼ 0
and dj ¼ m − ci.

42We assume such cycles go through node k only once. The
proof for cycles that pass multiple times through the mutated
node is analogous but requires a more lengthy analysis.
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∂
ΨðciÞ

WD0∂Ψðm−ciÞWθ0 þ ∂
φðaÞα

Wα0∂φ̄α
ðm−aÞWβ0

þ ∂
φ
ðciþ1þ1Þ
iþ1;σ

Wσ0∂φiþ1;σ ðm−ciþ1−1ÞWα0

¼ −Φðciþ1Þφðciþ2Þiþ2;σ � � �φðci−1Þi−1;σ φ
ðdjþ1Þ
jþ1;θ φ

ðdjþ2Þ
jþ2;θ � � �φ

ðdj−2Þ
j−2;θ

−Φðciþ1Þφðciþ2Þiþ2;σ � � �φðci−1Þi−1;σ φj;θ
ðci−1Þφj−1;θ

ð0Þ

þ φðd1Þ1;θ φðd2Þ2;θ � � �φ
ðdj−2Þ
j−2;θΦðciþ1Þφ

ðciþ2Þ
iþ2;σ � � �φ

ðckσ Þ
kσ ;σ

φðc1Þ1;σ φ
ðc2Þ
2;σ � � �

× φðci−1Þi−1;σ φ
ðdjþ1Þ
jþ1;θ � � �φ

ðdkθ Þ
kθ ;θ

þ φðciþ2Þiþ2;σ � � �φðci−1Þi−1;σ φj;θ
ðci−1Þφj−1;θ

ð0ÞΦðciþ1Þ ¼ 0 ðB8Þ

up to signed cyclic equivalence.
The prescription for mutating the potential and reduc-

ing it via massive terms that we introduced in Sec. IV B
was partially motivated by Sec. VI of Oppermann’s
work [15], which is formulated in terms of the higher
Ginzburg algebra. The latter has the advantage of
showing that the derived endomorphism ring of the
graded quiver with potential is invariant under mutation
(Ref. [15], Theorem 1.1). In the remainder of this section,
we discuss how the terminology of Ref. [15] compares
with ours.
To help the reader interested in a more detailed

comparison with Ref. [15], we will clarify the notation
in that paper and use it in the discussion that follows.
There are two new operations acting on arrows α of the
quiver:

(i) α−1.—Roughly speaking, this is the same as αop.
The distinction between the two is subtle and
depends on whether we regard the quiver as con-
sisting of single arrows, in which case we use α−1 to
label a piece of a mesonic arrow, or double arrows,
for which we use the notation αop.

(ii) α�.—This is a compact way of indicating a mutated
flavor, namely, the mutation of an arrow connected
to the mutated node. The rule for mutating flavors
was given in Sec. IVA. Oppermann’s convention is
to also flip the orientation of the flavors. Hence, in
his notation, our mutation takes the form α → α�op.

In Ref. [15], the transformation of the potential in a
mutation on node k is described in an extremely compact
form as

W → W0 ¼ deccycW þ
X
α∶!ð0Þ k
φ∶ k!ðcÞ

αdecðφφ̄Þα�: ðB9Þ

Such a compact expression becomes possible thanks to
the introduction of the functions dec and deccyc, defined as
an action on a cycle γ and then extended linearly to act on a
potential. In particular, if γ is a cycle that is never incident
to node k, the node in which mutation is occurring, then
decðγÞ and deccycðγÞ are defined to be equal to γ.

Otherwise, for every 2-path φi;kφk;j contained
43 inside of

γ, we replace such a 2-path with the element
ðφi;kφk;j −

P
α∶!ð0Þ k φi;kα

−1αφk;jÞ. The result is decðγÞ.
For the case of deccycðγÞ, this operation is taken cyclically,
meaning that if γ starts and ends at the node k, then
ð1 −P

α∶!ð0Þ kα
−1αÞ is also multiplied at the beginning of

the cycle. In particular, to compare our combinatorial
rule for mutation of potentials to that in Ref. [15],
we split his rule into two pieces: (a) W → deccycW
and ðbÞW0 → W0 þP

α∶!ð0Þ kφ∶ k!ðcÞ αdecðφφ̄Þα
�.

The first piece agrees with our rules 2.b and 2.c
implicitly, since terms appearing in the potential remain
in it after mutation. The only differences are that the
degrees of the arrows are updated accordingly and, in the
case of a composition or anticomposition involving a
degree-0 incoming arrow α, the 2-path αφ (respectively,
φα−1) becomes a single arrow ½αφ� (respectively, ½φα−1�) of
degree matching that of φ prior to mutation. The square
bracket notation ½αβ� indicates this single mesonic arrow
corresponding to the composition of α and β.
On the other hand, rule 2.d is applied explicitly since the

insertion of the factor ð1 −P
α∶!ð0Þ k α

−1αÞ yields44 one new
potential term in which the α and α−1 are paired with two
different flavors to yield new mesonic arrows ½φikα

−1� and
½αφkj�. Focusing on the prescence of a single chiral from a
vertex denoted as i0, i.e., denoted as α∶ i0→ð0Þ k, we have
½φikα

−1�∶ i→ðcÞ i0 and ½αφkj�∶ i0→ðdÞ j. This is consistent
since this insertion of the above factor turns the term
Wγ ¼ φi1;i2 � � �φir;iφi;kφk;jφj;irþ4 � � �φil;i1 intoWγ − φi1;i2 � � �
φir;i½φi;kα

−1�½αφk;j�φj;irþ4 � � �φil;i1 .
Lastly, rule 2.a, which adjoins a new cubic term

involving a product of three arrows for every composition
½αφ�, involving an incoming arrow α of degree 0 and any
outgoing arrow φ, is exactly of the form45

αdecðφφ̄Þα� ¼ ½αφ�φ̄α�: ðB10Þ

Notice that, since we are assuming that there are not
adjoints at the node under mutation, we indeed have
decðφφÞ ¼ φφ. In particular, the source of φ is a node
other than k.

43For convenience, we now think of cycle γ ¼ φi1;i2φi2;i3 � � �
φil;i1 , where the subscripts denote the head and tail of the
constituent arrows. We also let i, k, and j label three of these
vertices in a row.

44Originally, our rule 2.d did not specify the sign of the new
potential term. However, as motivated by Ref. [15] and to ensure
fW0;W0g ¼ 0, it is mathematically natural to give such new
potential terms from the case of two mesons a coefficient of −1.

45In Ref. [15], potential terms are read right to left rather than
left to right, and outgoing chirals are used instead of incoming
chirals. These two reversals from our convention cancel each
other out.
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Note that Secs. 7 and 8 of Ref. [15] explicitly describe
the cyclic derivatives with respect to certain arrows. Putting
this together, the vanishing of the square of the differential
in the mutated theory is proved. This is equivalent to
showing that the Kontsevich bracket vanishes for the
mutated potential, hence giving an alternative to our proof
based on the mutation rules given in Sec. IV B.

APPENDIX C: BACKGROUND ON CLUSTER
CATEGORIES

We include a brief background on cluster categories and
higher cluster categories for the interested reader. This
provides some of the motivation behind graded (i.e.,
colored) quivers from the mathematical perspective.
We first focus on them ¼ 1 case of ordinary quivers. The

path algebra kQ of a finite acyclic quiver Q, i.e., a quiver
that contains no cycles, satisfies a lot of important math-
ematical properties. Such a path algebra is a hereditary
finite-dimensional basic algebra, and its modules form an
Abelian k category that is also Krull-Schmidt. In other
words, given two representations (equivalently, modules)
of the path algebra M and N, the set of homomorphisms
between M and N is a k-vector space denoted as
HomðM;NÞ. Further, any representation can be written
as a direct sum of indecomposable representations in a
unique way up to reordering.
From this, we form DðkQÞ, the bounded derived

category of kQ with shift functor ½1�, the indecomposable
objects of which are all of the form M½i�, where M is an
indecomposable of kQ and i ∈ Z signifies an application
the shift functor (or its inverse) a certain number of times.
The bounded derived category is a triangulated category,
which means that we can write down certain sequences
A → B → C → known as (distinguished) triangles.
Given an indecomposable representation C, there is a

unique triangle → → C →. We define the Auslander-
Reiten translation of indecomposable C to be τC ¼ A,
unique indecomposable that fills in to the leftmost object of
the distinguished triangle with C as the rightmost object.
The Auslander-Reiten translation has the property that it
sends projective indecomposable objects to 0 and otherwise
sends nonprojective indecomposables to indecomposables.
We work with a certain quotient of the bounded derived

category known as the cluster category C1ðHÞ defined as
DðHÞ=ðτ−1∘½1�Þ, where τ is Auslander-Reiten translation
and [1] is the shift functor. Because of this identification, if
Pi is the projective indecomposable associated to node
i ∈ Q0, then τPi ¼ Pi½1� rather than zero in C1ðHÞ.
Furthermore, τPi½1� ¼ Ii, the injective indecomposable
associated to node i ∈ Q0.
Remark 2: For a finite acyclic quiver Q and a node

i ∈ Q0, the projective indecomposable Pi is the module
with the basis given by all paths beginning at i and ending
at any other node. In particular, Pi ¼ kQei. In contrast, the
injective indecomposable Ii is the module with the basis

given by all paths ending at i, i.e., Ii ¼ eikQ. Lastly, kQ ¼
P1 ⊕ P2 ⊕ � � � ⊕ Pn as a module because of the ortho-
gonality of idempotents.
The cluster category is again triangulated and Krull-

Schmidt and also has the property that it is a 2-Calabi-Yau
category, meaning that the Serre functor ν ¼ ½1�τ is equiv-
alent to [2] (since τ−1∘½1� ∼ id). Cluster categories provide a
categorification for cluster algebras, and by the Caldero-
Chapoton map, the Laurent expansions of cluster variables
even correspond to rigid indecomposables of C1ðHÞ.
This motivated the higher m-cluster category, which is

the triangulated (mþ 1)-Calabi-Yau category obtained by
the quotient DðHÞ=ðτ−1∘½m�Þ. Here, (mþ 1)-Calabi-Yau
signifies that the Serre function ν ¼ ½1�τ ∼ ½mþ 1�.
The cluster-tiling objects are maximally dimensional

direct sums of indecomposables that have no self-exten-
sions. They can also be organized into what are called
exchange triangles,

Xi → B0 → X0i →

X0i → B1 → X00i →

X00i → B2 → X000i →

..

.

XðmÞi → Bm → Xi →; ðC1Þ

where

Bc ¼ ⨁
φ∶ i!ðcÞ j

Xj: ðC2Þ

Higher tilting objects are X1 ⊕ X2 ⊕ … ⊕ Xn, where we
take one element out, i.e., Xi, and then B0 is some direct
sum of the other Xj’s. These category theory definitions
generalizing tilting theory (from the 1970s) lead to the work
of Ref. [14] to define graded quivers combinatorially from
this algebra. See Ref. [58] for a related but different
treatment.
From a physical point of view, these exchange triangles

also give rise to a relationship between ranks

NB0
¼ NXi

þ NX0i
; ðC3Þ

which nicely agrees with the transformation rule for ranks
under mutation (4.1).
Note that in the m ¼ 1 case this sequence reduces to

Xi → B0 → X0i → and X0i → B1 → Xi → ðC4Þ

because of the ðmþ 1Þ ¼ 2 periodicity. In fact, this leads to
a single exchange relation,

CCðXiÞCCðX0iÞ ¼ CCðB0Þ þ CCðB1Þ; ðC5Þ
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where CC denotes the Caldero-Chapton map [59,60]. This
relates the cluster category to cluster variables and cluster
algebras in the m ¼ 1 case. An analog of such an algebraic
structure for higher m is an open question.

1. Constraints in the potential and
higher cluster categories

The treatment of graded quivers and higher cluster
categories in Ref. [14] does not include potentials.46

However, that work proposes a condition that is closely
related to our general discussion of potentials. Proposition
5.1 of Ref. [14] states that if a graded quiver associated to a
higher-cluster tilting object has a local configuration of the
form shown in Fig. 33 then the degree (e) must be (c) or
(cþ 1). This local configuration is an allowable potential
term if and only if ðeÞ ¼ ðcþ 1Þ.
Forbidding other cyclic configurations of three arrows

is important because otherwise mutation at the middle
node j would lead to a configuration in which monochro-
maticity breaks. In particular, as we saw in Sec. II C 2,
the only massive potential terms are of the form

φðcÞik φ
ðm−c−1Þ
ki ∼ φðcÞik φ

ðcþ1Þ
ik . As a result, only 2-cycles arising

from mutation at the middle term where Proposition 5.1 of
Ref. [14] holds, i.e., e ¼ cþ 1, can be deleted. The other
case of ðeÞ ¼ ðcÞ yields multiple arrows of degree (c).

2. Comments on mesons at nodes with multiple
incoming chirals

Notice that rule 2 of Sec. IVA regarding the generation
of mesons under mutation forbids new mesons

coming from 2-paths of the form i!ð0Þj!ðmÞk, or equivalently
from the anticomposition i!ð0Þj ð0Þk. This differs from Buan
and Thomas (Ref. [14], Sec. X), which creates new arrows
from such compositions. In fact, they not only generate a

new arrow from the composition

i!ð0Þj!ðmÞk but also a new arrow (which

is equivalent to ). This second arrow

arises since every arrow in sight is in reality a double arrow

and thus the configuration i!ð0Þj!ðmÞk is not only equivalent to
i!ð0Þj ð0Þk but is also equivalent to i⟵

ðmÞ
j⟵
ð0Þ

k, and so we
have compositions in both directions. The authors of
Ref. [14] include a rule that removes any chiral-chiral 2-
cycle, which results in the cancellation of these two arrows
between nodes i and k. Since they do not work with
potentials for graded quivers, the result of constructing two
new mesons from such compositions and then canceling
them as a pair is identical to our rule of this paper

forbidding compositions from i!ð0Þj!ðcÞk with c ¼ m in the
first place.
Not only does rule 2.a as we stated it avoid extra

bookkeeping that would arise from the creation and
deletion of such 2-cycles, but more importantly, it is in
fact necessary since, as explained in Sec. II C 2, chiral-
chiral pairs cannot correspond to mass terms in the
potential for m > 1. Hence, this 2-cycle could not corre-
spond to a mass term, and rule 3 would not apply for
reducing it. Nonetheless, up to this nuance,47 the definition
of colored quiver mutation in Ref. [14] indeed agrees with
our definition of graded quiver mutation. Furthermore,
while they do not implement the full treatment that would
follow from a potential, the results they focus on are
insensitive to this discrepancy.

APPENDIX D: SILTING

There is a variant of tilting, known as silting. Roughly
speaking, it can be regarded as them → ∞ or CY∞ limit of
graded quivers and their dualities. In particular, in this case,
there is no upper limit on the degree of arrows, which can
grow arbitrarily under mutations. Similarly, sequences of
repeated mutations on the same node are not periodic.
Oppermann’s work on potentials for graded quivers [15]
was in fact motivated by considering this particular setting.
In this Appendix, we sketch the relationship between silting
and higher cluster categories, thereby providing the math-
ematical bridge between Buan and Thomas [14] and
Oppermann [15].
Following Buan et al. [61], we now compare silting

objects and m-cluster tilting objects. Let H be a finite-
dimensional hereditary algebra. For m ≥ 1, the m-cluster
category Cm is defined as the quotient category D=τ−1½m�.
Here, D is the bounded derived category of H, τ is
Auslander-Reiten translation in D, and [m] signifies apply-
ing the shift functor ½1� m times.
The m-cluster category is a Krull-Schmidt category,

meaning that we can decompose objects into finite direct
sums of indecomposables. Let modH denote the indecom-
posables objects of H and modH½i� denote the set after

(0) (c)

(e)

i j k

(0) (c)

(m-e)

i j k

=

FIG. 33. A special local configuration considered in Ref. [14].

46While that work does not consider potentials explicitly, it is
possible to argue that their manipulations are mostly consistent
with assuming a totally generic potential. This statement is true,
modulo the observation we made in Sec. IV B regarding the
inconsistent removal of chiral-chiral pairs for m > 1, for which
they cannot form mass terms in the potential, in Ref. [14].

47As well as a reversal of the role of incoming and outgoing
that we include to better match physics.
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applying i copies of the shift functor to each indecompos-
able. Because Cm is a quotient of D, a fundamental domain
for the set of indecomposables is given by

Sm ¼ modH½0� ∪ modH½1� ∪ … ∪ modH½m − 1�
× ∪ fP1½m�; P2½m�;…; Pn½m�g; ðD1Þ

where P1; P2;…; Pn are projective objects in H.
Proposition 1: (Proposition 2.4 of Ref. [61]): With the

above setup, let T be an object ofD given as a direct sum of
indecomposables, all of which lie in Sm. Then, T is a silting
object if and only if T is an m-cluster tilting object in Cm.
Theorem 1: (Theorem 3.5, Corollary 3.6 of Ref. [61]):

Let T1 ⊕ T2 ⊕ � � �Tn be a basic silting object in D, where
Ti are indecomposable and n is the number of isomorphism

classes of simpleH modules (here, “basic”means that each
of the Ti’s are distinct). Assume that all Ti ¼ M½j�, where
M is an indecomposable of H and j ≥ 0. Choose m large
enough so that each Ti ∈ Sm.
Then, for each i ∈ f1; 2;…; ng, there are (mþ 1) non-

isomorphic complements M0;M1;…;Mm lying in Sm for
the almost complete silting object

T=Ti¼T1 ⊕T2⊕ � � �⊕Ti−1⊕Tiþ1⊕ � � �⊕Tn: ðD2Þ

Furthermore, T=Ti has a countably infinite number of
nonisomorphic complements Mi for i ∈ Z, where there
exists M−1 and Mmþ1 such that Mjþmþ1 ¼ Mmþ1½j� and
M−j−1 ≅ M−1½−j� for j ≥ 0.
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