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We show that the high-temperature limits of the heterotic E8 × E8 and Spin 32=Z2 strings and their type I
A/B superstring duals are finite and convergent. The Hagedorn growth of the degeneracies in the string
mass level expansion is suppressed by an exponential that is linear in the mass level number for both
heterotic strings, and suppressed by the exponential of the negative square root of the mass level number for
the type IB superstring. However, in the massless gauge field-theoretic limit of the type IB open and closed
superstring, we find clear evidence for the thermal deconfinement phase transition at the self-dual
temperature by examining the annulus graph alone. Above the self-dual temperature, there is a
discontinuity in the first derivative with respect to temperature of both the free energy, and the heavy
quark potential, leading to a deconfined thermal gluon ensemble, with universal 1=r potential, and
temperature-dependent corrections, as predicted by Lüscher and Weisz. A number of essential aspects of
the worldsheet formalism of the heterotic strings are derived in an Appendix, deducing thereby the O8-D0-
D8-brane type IA duals of all of the heterotic Chaudhuri-Hockney-Lykken island universe moduli spaces.
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I. INTRODUCTION

The Nambu-Goto-Eguchi-Schild string has long been
the prototype effective string theory description of QCD
flux lines and flux tubes [1–4] and it is well known that the
Nambu-Goto and Polyakov string actions are classically
equivalent. While there has been an explosion of work
applying supergravity/M-theory techniques to the study of
nonperturbative strongly coupled supersymmetric large-N
gauge theories in recent years using Maldacena’s gauge-
gravity dualities [5], our current investigation examines
instead the anomaly-free perturbative non-Abelian gauge
theories [6] derived from exactly known one-loop results for
type I/heterotic superstring theory amplitudes—focusing in
particular on the phase structure of the finite-temperature
non-Abelian gauge theories appearing in the low-energy
field theory limit of the open string sector of the type IB/IA
superstrings.
Our starting point is finite-temperature string theory in the

Euclidean-time Polyakov path-integral formulation, com-
pactifying the (heterotic or type I) ten-dimensional (10D)
N ¼ 1 superstring theory. As was pointed out by Bernard,
the finite-temperature quantization of gauge theory in the
Feynman Euclidean path-integral prescription requires a
physical gauge choice on the Yang-Mills one-form potential,
such that the longitudinal degrees of freedom (d.o.f.) are
eliminated, and the usual choice is axial gauge, A0 ¼ 0 [7,8].
The analog here is the quantization of the Neveu-Schwarz
two-form field in the Polyakov path integral prescription.

This B field lives in the same sector as the graviton and
dilaton scalar, and is common to every superstring theory. To
set a string theory background field to zero is to violently
disrupt the moduli space symmetries [9,10], and we there-
fore choose the more benign path of requiring a relationship
on moduli space between two moduli fields, which has the
same consequence of reducing the number of physical d.o.f.
Namely, we set a single component of the B field propor-
tional to the radius, β ¼ 1=T, of the Euclidean scalar, X0

E:
B¼B09¼ tanhðπαÞ, α ¼ ðβC=βÞ, which is therefore linear
in the temperature, at low temperatures, asymptoting to unity
at the self-dual point. That this is the appropriate analog of
the axial gauge choice on the finite-temperature Yang-Mills
one-form gauge potential is apparent in its consequences on
the result for the one-loop string free energy. Moreover, we
can deduce that this is the unique choice which breaks
supersymmetry spontaneously, while being compatible with
the required two-dimensional Diff × Weyl gauge invarian-
ces of the Polyakov path-integral formulation.1

The twist on the B field achieves the necessary physical
gauge condition on the finite-temperature quantization of
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1It occurred to us to try this ansatz soon after the String Math
conference of 2011, upon meeting with Paul Aspinwall. That the
result was unique was already known to us from our previous
work on the renormalization of the noncommutative string theory
obtained by quantizing with the background fields of the open
and closed string theories. It takes some trial and error to verify
that this is the unique answer for the type IIA and type IIB
oriented closed string theories as well, and we give the result
directly for the heterotic closed and oriented superstring in the
paper.
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the (Neveu-Schwarz) two-form gauge potential which
couples to the fundamental string, in every superstring
theory, whether heterotic, type IA-IB, or type IIA-IIB. The
two-torus is a complex manifold, and marginal deforma-
tions are parametrized by two real numbers2:

B ¼ 1

2
Bij̄dx

i ∧ dxj̄; J ¼ 1

2
gij̄dx

i ∧ dxj̄; ð1:1Þ

and shifts in B, J, appear in the mass level expansions
through the, thermal and spatial, momentum modes and
winding modes. Shifts of B by an integer leave the action,
and all correlation functions, unchanged, due to the SLð2;ZÞ
symmetry generated by σ ¼ 1

4πα0 ðBþ iJÞ. The moduli space
of marginal deformations is the group SLð2;ZÞ × SLð2;ZÞ,
where the additional SLð2;ZÞ describes the complex struc-
ture of the torus: we have a rectangular domain of lengths,
R0, R9, where η ¼ iR9=R0 and σ ¼ i

α0 R9R0, which divide
the complex plane by the translations 2πR0 and 2πR9. The
thermal duality transformation, β ↔ 1=β, quite remarkably,
can be identified as an Abelian subset of the mirror map [11]
for the two-torus, the simplest Calabi-Yau manifold of
complex dimension one. Here, β ¼ R0=2π. Thus, R0 ↔
1=R0 generates the Z2 mirror map exchanging the two
SLð2;ZÞ factors. The additional Z2 symmetry is generated
by complex conjugation, interchanging the two real coor-
dinates, plus a change in the sign of B, namely, inversion in
the upper half-plane, ðσ; ηÞ ↔ ð−σ;−ηÞ.
Supersymmetry is spontaneously broken at low temper-

atures by the gravitino and gaugino masses [12], provided by
a scalar Kähler modulus, the inverse of the radius of
Euclidean time. It should be noted that supersymmetry
breaking occurs at very low temperatures, quite distinct from
the thermal duality transition at the self-dual temperature.
Nevertheless, our work provides a continuous parametriza-
tion in terms of ðβ; B; RÞ, for both of these phenomena. It
should be emphasized that nothing changes if the D ¼ 10,
N ¼ 1 superstring theories analyzed here are replaced by,
e.g., an orbifold compactification, yielding a D ¼ 4, N ¼ 1
superstring vacuum state. Our analysis can thus be said to
provide direct evidence by demonstration in favor of the
“continuity” conjecture made by Poppitz, Schäfer, and Unsal
[13], that low-temperature soft supersymmetry breaking in a
N ¼ 1 non-Abelian gauge theory mediated by a gaugino
mass—what has been named the SYM* theory in
Ref. [13]—can be seen to be continuously connected to

the thermal deconfinement phase transition in thermal
Yang-Mills gauge theory. The results we present here would
likely hold for any K3 compactification [11], e.g., on
R3×K3×ðS1×S1=Z2Þ, where the Z2 is chosen so as to give
a 4D N ¼ 1 supersymmetric gauge theory with four super-
charges for generic radii and the B field on the ðS1 × S1=Z2Þ,
since they hold at the orbifold points of the K3.
We begin in Sec. II by establishing the finiteness of the

finite-temperature one-loop vacuum energy density of the
heterotic E8 × E8 and Spin 32=Z2 strings in both the low-
temperature supergravity and Yang-Mills field-theoretic
limit, and in the high-temperature limit, both at, and beyond,
the self-dual temperature, TC. We show in particular how to
complete the integral over both worldsheet moduli of the
one-loop torus vacuum graph of closed superstrings (cor-
recting some errors in previous papers that might mislead the
reader), which is a tour de force that has important
implications for the applications of string scattering ampli-
tudes to problems in particle and astroparticle physics [14].
An analogous demonstration is carried out in Sec. III for the
open unoriented and closed string vacuum graphs of the type
IB superstring theory, except that the Hagedorn growth is
suppressed by an exponential of the square root of the mass
level number at the self-dual temperature. For clarity, we
show that the thermal duality transition of the full string
theory is benign: in both the heterotic and type I string
theories, it is a Kosterlitz-Thouless phase transition charac-
terized by an infinite tower of finite, and analytic, thermo-
dynamic potentials, including the Helmholtz free energy,
Gibbs free energy, entropy and specific heat.
In Refs. [15–17], we formulated the Polyakov string

path-integral prescription [18–21] for macroscopic incom-
ing and outgoing string states at finite separation in an
embedding target spacetime. MIBðxÞ is the expectation
value in the type IB string theory for the insertion of a
macroscopic boundary loop on the worldsheet mapped
to a fixed loop C at location x in the embedding target
spacetime. The mapping must preserve the worldsheet
super Diff × Weyl invariances, both in the bulk, and on
the boundaries, of the worldsheet, due to its fixed spatial
location. The observable MfðCÞ transforms in the funda-
mental representation f of the non-Abelian gauge group,
and the trace over the Chan-Paton index ensures that the
observable is gauge invariant. Since the end points of the
open strings carry color charge, the boundary of the hole in
the worldsheet is mapped to a Wilson loop in the low-
energy non-Abelian gauge theory limit, describing the
world history of an infinitely massive probe carrying color
charge. In Sec. IV, we analyze the insertion of a pair of
spacelike macroscopic loop observables, mapped to the fixed
spacelike loops in the target spacetime, C2, C1, spatially
separated by a distance R, which directly yields the potential
between two massive charged color sources in the gauge
field theory limit—rather than the exponentiated potential
which appears in the corresponding Wilson loop two-point
function of the non-Abelian gauge theory, as in Ref. [13].

2As has been noted by Aspinwall for K3 compactifications
[11], a constant, and periodic, B field on a K3 surface cannot be
strictly taken to zero, without approaching a singularity at finite
distance in the moduli space. The nonvanishing B field is
necessary in order to approach several of the enhanced gauge
symmetry points of interest, related to the orbifold points on
the K3 moduli space. This is not to be confused with the B field
on the T9-dualized two-torus, S1 × S1=Z2, where the constant B
field, B09 ¼ −B90, must vanish in the supersymmetric large-
radius limits.
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For open string end-point Chan-Paton wave functions trans-
forming in the fundamental representation f of the gauge
group, we shall derive an expression for the macroscopic pair
correlation function. In this analysis, we suppress the full
content of the unoriented open and closed type I superstring
theories, in order to draw attention to the properties of the
massless gauge theory limit in and of itself [16]3:

Wð2Þ
IB ðRÞ ¼ hTrfMfðC2ÞMfðC1Þi ¼ −βVðR; βÞ; ð1:2Þ

which interpolates neatly between the low-temperature, large
spatial separation, confinement regime of the non-Abelian
gauge theory, derived from the T9, and T0, dual, type IA
string, and dominated by a linear term in the heavy quark
potential, and the high-temperature, small spatial separation,
deconfinement regime, derived from the type IB string,
which is dominated by the 1=R Lüscher potential. We will
show that the expression for the heavy quark potential we
derive is in qualitative agreement with the original Cornell
phenomenological potential model [22], the Nambu-Goto-
Eguchi-Schild-Polyakov QCD effective strings [2–4,23],
and lattice gauge theory measurements [24]. At low type
IB temperatures, and for large type IB spatial separations of
the infinitely heavy quarks, in addition, we derive from the
expectation value of two Polyakov-Susskind loops the next-
to-leading-order thermal (field-dependent) corrections to the
universal 1=R potential in the deconfined phase, thereby
confirming Lüscher and Weise’s conjecture that the leading
correction to the universal 1=R term is Oð1=R3Þ [2,23].
The Appendix contains a series of significant develop-

ments in the worldsheet formalism of the heterotic string

theories that lend insight to the results in this paper, and on
the string/M-theory strong-weak duality web more gener-
ally. In particular, we deduce in Appendix AD the type IA
strong coupling duals of the heterotic Chaudhuri-Hockney-
Lykken (CHL) orbifold island universes, using the
formalism for the gauge group in O8-D0-D8-brane com-
pactifications, with 16 pairs of D0-D8-branes and their
images at each of two orientifold planes at the end points of
the interval in ðS1 × S1=Z2Þ compactifications of the type
IA Oð16Þ × ð16Þ superstring [25]. The spinor of Oð16Þ is
given by the solitonic fundamental strings created at the
intersection of D0-branes with D8-branes [25,26], and the
configuration we suggest gives the full gauge group
E8 × E8. It is straightforward to then identify all of the
type IA duals of the CHL orbifolds of the E8 × E8 heterotic
string, and breaking the supersymmetry further by orbifold
compactification gives three generations of chiral fermions
in the Standard Model embedded within the spinor of
SOð16Þ, a technique well known to string and grand unified
theory phenomenologists [27,28].

II. FINITE-TEMPERATURE HETEROTIC
STRING VACUUM FUNCTIONAL

The finite-temperature one-loop vacuum functional of
the E8 × E8 heterotic string is given in the Euclidean
time prescription by the compactification of the heterotic
string on the twisted two-torus with radii, ðβH; RHÞ, and
constant background B field parametrized as, B09 ¼
−B90 ¼ jBj ¼ tanhðπαÞ, where α¼T=TC, and TC is the
self-dual temperature:

WHðβÞ ¼ N βHð2πRHÞL8ð4π2α0Þ−5
Z
F

d2τ
4τ22

· ðτ2Þ−4½ηðτÞη̄ðτ̄Þ�−6
�
eπτ2α

2

ηðτÞ
Θ11ðα; τÞ

��
eπτ2α

2

ηðτ̄Þ
Θ̄11ðα; τ̄Þ

�

×
1

4

�
Θ̄00ðα; τ̄Þ
eπτ2α

2

η̄

�
Θ̄00

η̄

�
3

−
Θ̄01ðα; τ̄Þ
eπτ2α

2

η̄

�
Θ̄01

η̄

�
3

−
Θ̄10ðα; τ̄Þ
eπτ2α

2

η̄

�
Θ̄10

η̄

�
3
�

×
1

4

��
Θ00

η

�
8

þ
�
Θ01

η

�
8

þ
�
Θ10

η

�
8
�
2

×
X∞

n0;w0¼−∞

X∞
n9;w9¼−∞

exp

�
−πτ2

�
4π2α0n20

β2H
þ α0n29

R2
H

��

× exp

�
−πτ2ð1þ tanhðπαÞÞ2

�
w2
9β

2
H

4π2α0
þ w2

0R
2
H

α0

��

× exp½iπτ1ðn0w9 þ n9w0Þð1þ tanhðπαÞÞ�: ð2:1Þ

3This remarkable feature of type IA-IB open and closed superstrings follows from the relation of the couplings; at tree level, it is
simply gclosed ¼ g2open. We see that the annulus with macroscopic loops can be analyzed in the non-Abelian gauge theory alone, as with
the finite-temperature vacuum energy density, since the supergravity is decoupled at tree level. The supergravity multiplet belongs in the
closed string sector of the type IB-IA superstrings. Upon computing the renormalized couplings and string mass scale, this tree relation
receives loop corrections [14,17]. Very recent progress has been made in the computation of unambiguous multiloop superstring
amplitudes, at two loops and beyond, which lends promise to the systematic extension of our worldsheet analysis.
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Note the presence of the holomorphic one-loop E8 × E8

vacuum functional in the third line of this formula, which
we leave unchanged by a possible Wilson line since we
wish to keep the gauge group fixed.
In the high mass level number regime as we approach the

self-dual temperature, the parameters α →, tanhðπαÞ, will

asymptote to unity, giving pure numerical factors; we leave
them as parameters of the background B field in this
preliminary expression valid for all temperatures and mass
levels. Expressing the theta functions, and eta functions, in
terms of mass level number, namely, positive integer
powers of jqq̄j, we can expand in this variable to obtain

WHðβÞ ¼ N βHð2πRHÞL8ð4π2α0Þ−5
Z
F

d2τ
4τ2

· ðτ2Þ−5
X∞
m¼0

e−4mπτ2fðmÞ
E8×E8

ð1þ tanhðπαÞÞ

×
X∞

n0;w0¼−∞

X∞
n9;w9¼−∞

exp

�
−πτ2

�
4π2α0n20

β2H
þ α0n29

R2
H

��

× exp

�
−πτ2ð1þ tanhðπαÞÞ2

�
w2
9β

2
H

4π2α0
þ w2

0R
2
H

α0

��

× exp ½iπτ1ðn0w9 þ n9w0Þð1þ tanhðπαÞÞ�; ð2:2Þ

where fðmÞð0Þ, and fðmÞð2Þ, are, respectively, the numerical mass degeneracies of the partition function of the E8 × E8

heterotic string in the supersymmetric zero-temperature limit, and in the vicinity of the high-temperature self-dual critical
point. Solving for the Helmholtz free energy at one-loop order in string perturbation theory, we obtain

FHðβÞ ¼ −NV
1

4
ð4π2α0Þ−5

Z
1=2

−1=2
dτ1

Z
∞

ð1−τ2
1
Þ1=2

dτ2

× ðτ2Þ−6
X∞
m¼0

e−4mπτ2fðmÞ
E8×E8

ð1þ tanhðπαÞÞ

×
X∞

n0;w0¼−∞

X∞
n9;w9¼−∞

exp

�
−πτ2

�
4π2α0n20

β2H
þ α0n29

R2
H

��

× exp

�
−πτ2ð1þ tanhðπαÞÞ2

�
w2
9β

2
H

4π2α0
þ w2

0R
2
H

α0

��

× exp ½iπτ1ðn0w9 þ n9w0Þð1þ tanhðπαÞÞ�: ð2:3Þ

More familiar to a particle physicist, the Helmholtz free energy at one-loop order is nothing but the one-loop vacuum
energy density of the finite-temperature string vacuum, F ¼ V9ρH ¼ −WH=βH. Substituting y ¼ 1=τ2, we can express the
one-loop vacuum energy density at finite temperature as

ρHðβÞ ¼ −N ð4π2α0Þ−5
X∞
m¼0

X∞
n0;w0¼−∞

X∞
n9;w9¼−∞

fðmÞ
E8×E8

ð1þ tanhðπαÞÞ

×
Z

1=2

−1=2
dτ1 exp ½iπτ1ðn0w9 þ n9w0Þ�

Z ð1−τ2
1
Þ−1=2

0

dyy4e−A=y; ð2:4Þ

where the function in the exponent, A, is the mass formula for the finite-temperature heterotic string spectrum

AHðβ; α;mÞ ¼ mþ 1

4

�
4π2α0n20

β2H
þ α0n29

R2
H

þ ð1þ tanhðπαÞÞ2
�
w2
9β

2
H

4π2α0
þ w2

0R
2
H

α0

��
: ð2:5Þ

Note that mass level number,m, by mass level number, there is an infinite tower of thermal momentum and thermal winding
modes in the finite-temperature spectrum, in addition to the tower of possible spatial momenta and windings, as a
consequence of the generalized axial gauge condition necessitating compactification on the Neveu-Schwarz B09-field
twisted two-torus.
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The integral over the variable y in the expression for the vacuum energy density can be recognized as a standard integral
representation of the Whittaker function, W−νþ1

2
;ν
2
ðAuÞ [29],

ρHðβÞ ¼ −N ð4π2α0Þ−5
X∞
m¼0

X∞
n0;w0¼−∞

X∞
n9;w9¼−∞

fðmÞ
E8×E8

ð1þ tanhðπαÞÞ

×
Z

1=2

−1=2
dτ1 exp ½iπτ1ðn0w9 þ n9w0Þ�Aν−1

2 u
νþ1
2 e−

1
2
A=uW−νþ1

2
;ν
2
ðA=uÞ;

where ν ¼ 5; and u≡ ð1 − τ21Þ−1=2; ð2:6Þ

and upon substitution, it is helpful to make the change of variable x2 ¼ 1 − τ21 ¼ 1=u2. The one-loop vacuum energy
density therefore takes the form

ρHðβÞ ¼ −2N ð4π2α0Þ−5
X∞
m¼0

X∞
n0;w0¼−∞

X∞
n9;w9¼−∞

fðmÞ
E8×E8

ð1þ tanhðπαÞÞ

×
Z ffiffi

3
p

=2

0

dxCos½π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ðn0w9 þ n9w0Þ�Aν−1

2 x−
νþ1
2
þ1e−

1
2
AxW−νþ1

2
;ν
2
ðAxÞ: ð2:7Þ

Alternatively, we can use the integral representation in terms of the inverse variable, u:

ρHðβÞ ¼ −2N ð4π2α0Þ−5
X∞
m¼0

X∞
n0;w0¼−∞

X∞
n9;w9¼−∞

fðmÞ
E8×E8

ð1þ tanhðπαÞÞ
Z

2=
ffiffi
3

p

0

duð1 − u−2Þ−1=2

× Cos½πð1 − u−2Þ1=2ðn0w9 þ n9w0Þ�Aν−1
2 u−3þ

νþ1
2 e−

1
2
A=uW−νþ1

2
;ν
2
ðA=uÞ: ð2:8Þ

We will be interested in the low-temperature, power-law, and high-temperature asymptotics of the Whittaker function.
Prior to that step, notice that the cosine function, and its argument, can be further simplified by replacing each by their
Taylor expansions, both of which are completely valid in the domain of the integral over x. This is the form of the expression
for the one-loop vacuum energy density at finite temperature which we will analyze in the low-temperature limit in what
follows. With this substitution, we get the expression

ρHðβÞ ¼ −2N ð4π2α0Þ−5
X∞
m¼0

X∞
n0;w0¼−∞

X∞
n9;w9¼−∞

fðmÞ
E8×E8

ð1þ tanhðπαÞÞ

×
Z ffiffi

3
p

=2

0

dx

�X∞
s¼0

Xs
l¼0

s!
l!ðs − lÞ!

ð−1Þlþ2s

ð2sÞ! ðn0w9 þ n9w0Þ2sðxÞ2l
�

× A2x−2e−
1
2
AxW−3;5

2
ðAxÞ: ð2:9Þ

Alternatively, we use the inverse variable, u. This is the form of the expression for the one-loop vacuum energy density at
finite temperature which we will analyze in the high-temperature limit in what follows. With the two substitutions, we get
the alternative expression

ρHðβÞ ¼ −2N ð4π2α0Þ−5
X∞
m¼0

X∞
n0;w0¼−∞

X∞
n9;w9¼−∞

fðmÞ
E8×E8

ð1þ tanhðπαÞÞ

×
Z

2=
ffiffi
3

p

0

du
�X∞
s¼0

Xs

l¼0

s!
l!ðs − lÞ!

ð−1Þlþ2s

ð2sÞ! ðn0w9 þ n9w0Þ2sðuÞ−2l
�

×
X∞
r¼0

ð−1Þr u
−2r

r!

��
1

2

�
·

�
1

2
· 3

�
� � �

�
r −

1

2

��
A

ν−1
2 u−3þ

νþ1
2 e−

1
2
A=uW−νþ1

2
;ν
2
ðA=uÞ: ð2:10Þ

HETEROTIC TYPE I STRINGS AT HIGH TEMPERATURE PHYS. REV. D 98, 046017 (2018)

046017-5



A. Low-temperature supergravity-super-Yang-Mills theory limit

We now take the low-temperature field-theoretic limit of this expression, verifying that it has the expected properties of a
ten-dimensional finite-temperature field theory. We substitute the power-series expansion of the Whittaker function, prior to
performing the integral over the variable x (the τ1 worldsheet modulus). The expansion in powers of A, has as its leading
term at low temperatures, the thermal spectrum of the massless modes of the supersymmetric string:

ρHðβÞ ¼ −2N
ð−1Þ5
5!

ð4π2α0Þ−5
X∞
m¼0

X∞
n0;w0¼−∞

X∞
n9;w9¼−∞

A5fðmÞ
E8×E8

ð1þ tanhðπαÞÞ

×

�X∞
s¼0

Xs

l¼0

s!
l!ðs − lÞ!

ð−1Þlþ2s

ð2sÞ! ðn0w9 þ n9w0Þ2s
�

×

�X∞
k¼0

A2lþ2kγ

�
2lþ k;

1

2

ffiffiffi
3

p
A

��
Ψðkþ 1Þ − lnA

k!

�

þ
X4
k¼0

ð−1Þ5þkΓð5 − kÞA2lþ2k−10γ

�
2lþ k − 5;

1

2

ffiffiffi
3

p
A

�

−
X∞
p¼1

X∞
k¼0

A2lþ2kþp

k!

Xp
r¼0

p!
r!ðp − rÞ! γ

�
2lþ kþ p;

1

2

ffiffiffi
3

p
A

��
; ð2:11Þ

where the function A gives the full thermal, and spatial, momenta and windings, of the thermal spectrum, for any given mass
level number, m. Expanding about the massless modes

AHðT; α; 0Þ ¼
1

4

�
4π2α0n20T

2 þ α0n29
R2
9

þ ð1þ 2 tanh πðT=TCÞÞ
�

w2
9

4π2α0T2
þ w2

0R
2
9

α0

��
; ð2:12Þ

it is apparent that at low temperatures, the leading term is the tower of thermal Kaluza-Klein modes, or Matsubara
frequencies, in the language of thermal field theories. For low temperature, or large radius, the spatial coordinate is in the
large-radius limit, the spatial Kaluza-Klein modes tend towards a continuum, and no spatial windings are excited. Thus, we
first extract the thermal momentum modes, and the power A5 instantly gives the expected field-theoretic T10 in the one-loop
string free energy. The correction from the tower of thermal winding and spatial Kaluza-Klein modes is a purely string-
theoretic artifact:

A5ðT; α; 0Þ ≃ 1

4
ð4π2α0n20Þ5T10 ×

�
1þ 5

�
1þ α0n29

R2
94π

2α0n20T
2
þ ½1þ 2πðT=TCÞ�

w2
0R

2
9

4π2α02n20T
2

��
: ð2:13Þ

Suppressing the winding modes at the lowest temperatures, the string finite-temperature vacuum energy density takes the
simple form

ρHðβÞ ≃ −2N
ð−1Þ5
5!

ð4π2α0Þ−5
X∞

n0;w0¼−∞
fð0ÞE8×E8

×
1

4
ð4π2α0n20Þ5T10 ×

�
1þ 5

�
1þ α0n29

R2
94π

2α0n20T
2

��
: ð2:14Þ

B. High mass level asymptotics at the self-dual temperature

Finally, we substitute the asymptotic expansion of the Whittaker function into the expression derived above for the one-
loop free energy of the canonical ensemble of thermal E8 × E8 heterotic strings, valid for large mass level number. The
asymptotic series expands in negative powers of A, namely, large m, and arbitrary temperature, although we will be
interested in the behavior of this sum over mass levels in the vicinity of the self-dual temperature. Note that the expression is
finite, and convergent, for the full temperature range, even beyond the self-dual temperature. We begin with the inverse
variable representation
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ρHðβÞ ¼ −2N ð4π2α0Þ−5
X∞
m¼0

X∞
n0;w0¼−∞

X∞
n9;w9¼−∞

fðmÞ
E8×E8

ð1þ tanhðπαÞÞ

×
Z

2=
ffiffi
3

p

0

du

�X∞
s¼0

Xs

l¼0

s!
l!ðs − lÞ!

ð−1Þlþ2s

ð2sÞ! ðn0w9 þ n9w0Þ2sðuÞ−2l
�

×
X∞
r¼0

ð−1Þr u
−2r

r!

��
1

2

�
·

�
1

2
· 3

�
� � �

�
r −

1

2

��
A

ν−1
2 u−3þ

νþ1
2 e−

1
2
A=uW−νþ1

2
;ν
2
ðA=uÞ; ð2:15Þ

and substitute the asymptotic expansion for the Whittaker function, keeping its leading term, k ¼ 0:

FHðβÞ ≃ −2NVð4π2α0Þ−5
X∞
m¼0

X∞
n0;w0¼−∞

X∞
n9;w9¼−∞

fðmÞ
E8×E8

ð2Þ

×

�X∞
s¼0

Xs
l¼0

s!
l!ðs − lÞ!

ð−1Þlþ2s

ð2sÞ! ðn0w9 þ n9w0Þ2s
�

×
X∞
r¼0

ð−1Þr 1
r!

��
1

2

�
·

�
1

2
· 3

�
� � �

�
r −

1

2

��

×

�
1þ

X∞
k¼1

OðkÞ
�

×

�
e−2A=

ffiffi
3

p
Alþr

�
1

2

ffiffiffi
3

p �
−l−r−5=2

W4−2l−2r;2−l−rð2=
ffiffiffi
3

p
Þ
�
: ð2:16Þ

Note that the free energy is exponentially damped as a
linear power of m, the mass level number, correcting the
Hagedorn growth of the numerical degeneracies [30] as a
square root of the mass level number in the vicinity of the
self-dual temperature. The free energy is finite, and the
expression given above is strongly convergent at the critical
point. The function in the exponential, A, gives the full
thermal, and spatial, momenta and windings, of the thermal
spectrum, expanding about the asymptotic mass level
number, m, and setting tanhðπαÞ to unity

AHðβ;α;mÞ¼mþ
��

π2α0n20
β2H

þα0n29
4R2

H

�
þ
�
w2
0R

2
H

α0
þw2

9β
2
H

4π2α0

��
;

ð2:17Þ

where we have rearranged the formula to highlight the
symmetry linking Kaluza-Klein and winding modes, with
the twist having mixed spatial and thermal coordinates. For
large m, and at high temperatures of order the self-dual
temperature, we find that all of the thermal and spatial
winding modes are excited, and winding modes dominate
the expression for the free energy, due to the presence of the
exponential, in the small-radius, high-temperature limit.
The fmð2Þ in the one-loop free energy are the numerical
degeneracies at the critical temperature TC.
Finally, in passing, we recall that our starting point was

the generating functional for connected vacuum diagrams
in one-loop string perturbation theory, W, and we do not

face the usual problems associated with taking the thermo-
dynamic limit of the canonical partition function, Z. The
Helmholtz free energy, F, and the finite-temperature
vacuum energy density, ρ, are related to this as follows:

W ≡ lnZ ¼ −βHVρ; F≡ −THZ ¼ −W=βH ¼ Vρ;

P ¼ −
�∂F
∂V

�
TH

¼ −ρ; ð2:18Þ

where P is the pressure of the string canonical ensemble at
fixed temperature, and V is its spatial volume. Note that P
equals the negative of ρ for the string canonical ensemble.
The next few entries in the list of thermodynamic potentials
are the internal or Gibbs free energy, the entropy, and the
specific heat at constant volume:

U ¼ −T2
H

� ∂W
∂TH

�
V
; S ¼ −

� ∂F
∂TH

�
V
;

CV ¼ TH

� ∂S
∂TH

�
V
: ð2:19Þ

It is evident by inspection of the expressions for the
Helmholtz free energy and the detailed dependence on β
that the results for an infinity of partial derivatives are
completely analytic and finite, and we identify the thermal
duality transition as being of Kosterlitz-Thouless type.
There is no divergence in the expressions at any order in
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the thermodynamic potentials. We leave further discussion
of this intriguing observation to the future.

III. FINITE-TEMPERATURE TYPE IA STRING
VACUUM FUNCTIONAL

We now perform the analysis of the ultraviolet limit of
the unoriented graphs of the Oð32Þ type IA superstring at
finite temperature. If the N ¼ 32 D8-branes are all on a
single O8-plane, the Dirichlet string measures the potential
energy of the string stretched between the D8-brane stack
on an O8-plane, with the O8-plane defect at the other end of
the interval of length, R. We will show at the conclusion of
our derivation that it is in fact possible to take R to zero, and
recover the result for the finite-temperature type IB Oð32Þ
vacuum, without the Dirichlet stretched string. Note that we
have the constant mode of the Neveu-Schwarz (NS) sector
antisymmetric tensor gauge potential, B, which remains
after the orientation transformation which eliminates the
propagation of the NS two-form field. We shall set the
constant background field, jB09j ¼ −jB90j ¼ j tanhðπαÞj,
where α≡ ðβC=βÞ ¼ α01=2T, is linear in temperature, mea-
sured in units of the inverse string scale.

We analyze the small-t (high-temperature) behavior of
the three individual open and unoriented one-loop type IB
superstring graphs. We begin with the result for the oriented
open string sector, or annulus graph, in terms of Jacobi
theta functions, where N denotes the number of D8-branes
or, equivalently, the Chan-Paton factor carried by the end
points of the open string. We have expressed the Jacobi
theta functions in the integrand as the modular transformed
functions of 1=t, as appropriate in the small-t limit.
Dividing by the spatial volume, and the circumference
of Euclidean time, we have the following expression for the
vacuum energy density of the type IB superstring with N
D9-branes, thermal duality transformed after compactifi-
cation on the twisted torus with B field jB09j ¼ tanhðπαÞ,
and α ¼ βC=β. A T9-duality transformation likewise ena-
bles analysis of the short-distance limit of the Dirichlet
vacuum, with a stretched string extending along the interval
X9A, of length R ¼ R9

IA. The argument of the B field
asymptotes to its high-temperature value, tanhðπαÞ → 1,
and the high-temperature asymptotic expansion of the
Jacobi theta functions is in integer powers of q ¼ e−π=t,
exposing the t → 0 limit of the integrand:

FðIAÞ
ann ¼ −N2V9ð8π2α0Þ−5ð1þ tanhðπαÞÞ

Z
∞

0

dt
t
· t−5e−R

2t=2πα0 × ½ηðitÞ−6�
�
e−πα

2tηðitÞ
Θ11ðα; itÞ

�

×
X∞

w0¼−∞
exp

�
−
4π2w2

0β
2
IA

α0
t
�

×

�
Θ00ðα; itÞ
e−πα

2tηðitÞ

�
Θ00ð0; itÞ
ηðitÞ

�
3

−
Θ01ðα=; itÞ
e−πα

2tηðitÞ

�
Θ01ð0; itÞ
ηðitÞ

�
3
�

þ N2ð8π2α0Þ−5ð1þ tanhðπαÞÞ
Z

∞

0

dt
t
· t−5e−R

2t=2πα0 × ½½ηðitÞ�−6�

×
1

4

�
e−πα

2tηðitÞ
Θ11ðα; itÞ

��
Θ10ðα; itÞ
e−πα

2tηðitÞ

�
Θ10ð0; itÞ
ηðitÞ

�
3

þ Θ11ðα; itÞ
e−πα

2tηðitÞ

�
Θ11ð0; itÞ
ηðitÞ

�
3
�

×
X∞

w0¼−∞
exp

�
−
4π2w2

0β
2
IA

α0
t

�
; ð3:1Þ

where the last term from the Ramond-Ramond (R-R) sector is only formal, since Θ11ð0; 1tÞ ¼ 0.
Moving on to the corresponding results for the Möbius strip and Klein bottle, we express each worldsheet modular

integral in terms of the variable t, where t is the intrinsic length of either holes or crosscaps on the one-loop unoriented type
IB string worldsheets [31]. For the Möbius strip topology, we have

ρðIAÞmob ¼ −2Nð25Þð8π2α0Þ−5ð1þ jB09jÞ
Z

∞

0

dt
t
· t−5e−R

2t=2πα0 × ½ηðitÞ−6�
�
e−πα

2tηðitÞ
Θ11ðα; itÞ

�

×
X∞

w0¼−∞
exp

�
−
4π2w2

0β
2
IA

α0
t

�

×

�
Θ01ðα; itÞ
e−πα

2tηðitÞ

�
Θ01ð0; itÞ
ηðitÞ

�
3Θ10ðα=; itÞ
e−πα

2tηðitÞ

�
Θ10ð0; itÞ
ηðitÞ

�
3
�

×
e−πα

2tηðitÞ
Θ00ðα; itÞ

�
ηðitÞ

Θ00ð0; itÞ
�

3

; ð3:2Þ
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and likewise, summing unoriented type IB worldsheets with the topology of a Klein bottle, we have

ρðIAÞkb ¼ 210ð8π2α0Þ−5ð1þ jB09jÞ
Z

∞

0

dt
t
· t−5e−R

2t=2πα0 × ½ηðitÞ−6�
�
e−πα

2tηðitÞ
Θ11ðα; itÞ

�

×
X∞

w0¼−∞
exp

�
−
4π2w2

0β
2
IA

α0
t

�

×

�
Θ00ðα; itÞ
e−πα

2tηðitÞ

�
Θ00ð0; itÞ
ηðitÞ

�
3

−
Θ01ðα; itÞ
e−πα

2tηðitÞ

�
Θ01ð0; itÞ
ηðitÞ

�
3
�

− 210ð8π2α0Þ−5ð1þ jB09jÞ
Z

∞

0

dt
t
· t−5e−R

2t=2πα0 × ½½ηðitÞ�−6�

×
1

4

�
e−πα

2tηðitÞ
Θ11ðα; itÞ

��
Θ10ðα; itÞ
e−πα

2tηðitÞ

�
Θ10ð0; itÞ
ηðitÞ

�
3

þ Θ11ðα; itÞ
e−πα

2tηðitÞ

�
Θ11ð0; itÞ
ηðitÞ

�
3
�

×
X∞

w0¼−∞
exp

�
−
4π2w2

0β
2
IA

α0
t

�
: ð3:3Þ

A. Low-temperature massless limit of the type I Oð32Þ string
We begin with the low-temperature limit of the annulus amplitude by making the change of variable y ¼ A=t in order to

make the integral representation of the Whittaker function evident:

ρðIBÞann ¼ −ð8π2α0Þ−5ð1þ παÞ
Z

∞

0

dt
t
· t−5

X∞
m¼0

X∞
n0¼−∞

X∞
n9¼−∞

fðIBÞm ðαÞ

× exp

�
−πmtþ t

�
α0n29
R2
IB

þ 4π2n20α
0

β2IB

��

¼ −ð8π2α0Þ−5ð1þ παÞ
X∞

n0¼−∞

X∞
n9¼−∞

X∞
m¼0

fðIBÞm ðαÞ

×

�
mþ 4π2n20α

0

β2IB
þ α0n29

R2
IB

�−5 Z
dyy4e−1=y

¼ −ð8π2α0Þ−5ð1þ παÞ
X∞

n0¼−∞

X∞
n9¼−∞

X∞
m¼0

fðIBÞm ðαÞ

×

�
mþ 4π2n20α

0

β2IB
þ α0n29

R2
IB

�−5
A2Γð−5ÞeA=2W3;−5=2ðAÞ: ð3:4Þ

Substituting into this expression the power-series expansion of the Whittaker function gives the result

ρðIBÞann ¼ −ð8π2α0Þ−5ð1þ παÞ
X∞

n0¼−∞

X∞
n9¼−∞

X∞
m¼0

fðIBÞm ðαÞ
�
mþ 4π2n20α

0

β2IB
þ α0n29

R2
IB

�−5

×
Γð−5Þð−1Þ5
Γð1ÞΓð−5Þ

�X∞
k¼0

Γðk − 5Þ
k!ðk − 5Þ!A

kðψðkþ 1Þ þ ψðk − 4Þ − ψðk − 5Þ − lnðAÞÞ

þ ð−AÞ5
X4
k¼0

Γð5þ kÞΓðkÞ
k!

ð−AÞk
�
: ð3:5Þ

Expanding about the massless limit, and setting the degeneracies to the massless bosonic spacetime modes alone, we can
sum the thermal momentum modes to extract the zeta function, ζð−2; 0Þ, and the T10 leading behavior of the low-energy
finite-temperature gauge theory:
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ρðIBÞann ≃ −ð8π2α0Þ−5
X∞

n0¼−∞

X∞
n9¼−∞

bðIBÞ0

�
4π2n20α

0

β2IB
þ α0n29

R2
IB

�−5

×
Γð−5Þð−1Þ5
Γð1ÞΓð−5Þ

�X∞
k¼0

Γðk − 5Þ
k!ðk − 5Þ!A

kðψðkþ 1Þ þ ψðk − 4Þ − ψðk − 5Þ − lnðAÞÞ

þ ð−AÞ5
X4
k¼0

Γð5þ kÞΓðkÞ
k!

ð−AÞk
�

≃ −ð8π2α0Þ−5T10ζð−2; 0Þ496ð4π2α0Þ−5f1g: ð3:6Þ

Finally, we note that the normalization of the heterotic
Spinð32Þ=Z2 string vacuum energy density can be deter-
mined from this result by matching with the corresponding
graph of the type IB superstring, since the massless 496
gauge bosons of the spacetime gauge group are restricted to
the oriented open string sector. Comparing with the
analogous zero-temperature spacetime bosonic massless
mode limit of the heterotic string one-loop amplitude,

ρHðβÞ ≃ −2N 496
1

5!
ð4π2α0Þ−5 × 1

4
ð4π2α0Þ5T10; ð3:7Þ

we find the simple result

2−5 ¼ 2N
1

5!

1

4
: ð3:8Þ

B. High mass level limit of the type IB
Spinð32Þ=Z2 string

We begin with the high-temperature limit of the one-loop
vacuum energy density of the open oriented sector derived
above, recognizing in that expression the integral repre-
sentation of the modified Bessel function:

ρðIBÞann ¼
�
8π2α0Þ−5ð1þ tanhðπαÞÞ

Z
∞

0

dt
t
·t−5

X∞
m¼0

X∞
w0¼−∞

X∞
n9¼−∞

×fðIBÞm ðαÞexp
�
−
πm
t
−t

�
α0n29
R2
IB
þ4π2w2

0β
2
IB

α0

��

≃ð8π2α0Þ−5ð1þ tanhðπαÞÞ
X∞
m¼0

fðIBÞm ðαÞ
X∞

w0¼−∞

X∞
n9¼−∞

×ðmπÞ5=2
�
4π2w2

0β
2
IB

α0
þα0n29

R2
IB

�−5=2
K5ðzÞ: ð3:9Þ

The Bessel function can be replaced by its asymptotic
expansion (GR 8.446.1) in the limit of high mass level
numbers, and we can also set the tanh function to unity, and
the fm to their values at the self-dual temperature:

ρðIBÞann ¼ 2ð8π2α0Þ−5
X∞
m¼0

fðIBÞm ð1Þ
X∞

w0¼−∞

X∞
n9¼−∞

× ðmπÞ5=2
�
4π2w2

0β
2
IB

α0
þ α0n29

R2
IB

�−5=2
K5ðzÞ: ð3:10Þ

Restricting to the degeneracies of the bosonic spacetime

modes alone, bðIBÞm , the result is a damping of the
Hagedorn growth of the numerical degeneracies for large
level number by the exponential of the square root of the
mass level number with a coefficient which is always large
at high mass level numbers and high temperature. It is
helpful to T dualize to the thermal dual large radius, βIA,
since the thermal IB coordinate is approaching the small-
radius limit:

ρðIBÞann ¼ 2ð8π2α0Þ−5
X∞
m¼0

bðIBÞm ð1Þ
X∞

w0¼−∞

X∞
n9¼−∞

× ðmπÞ5=2
�
4π2w2

0β
2
IB

α0
þ α0n29

R2
IB

�−5=2

≃ 2ð8π2α0Þ−5
X∞
m¼0

bðIBÞm ð1Þ
X∞

w0¼−∞

X∞
n9¼−∞

×m9=426π−5=2e
−4πw0TIAα

01=2½1þn2
9
β2
IA

w2
0
R2
IB
�1=2 ffiffiffi

m
p

: ð3:11Þ
This completes our demonstration of the finiteness
of the type IB open and closed superstring theory. It
should be noted that the high mass level number limit of
the unoriented graphs are also integral representations of
the modified Bessel function, and their asymptotic growth
can be analyzed similarly.

IV. TYPE I PAIR CORRELATOR OF
SPACELIKE WILSON LOOPS

In the massless mode, field-theoretic, limit of the type IB
superstring amplitude annulus graph, the spacelike Wilson
loop expectation value [15–17,32] is the change in the
internal energy of the finite-temperature gauge theory
vacuum due to the introduction of an infinitely massive
quark in the presence of the external NS two-form field.4

4A shift of the NS two-form potential by an external Abelian
gauge field strength gives the result in the presence of an external
constant chromoelectric field, with slow-moving heavy quarks,
or, in an external chromomagnetic field, with static heavy quarks
[15,16,32].
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The spacelike Wilson loop is the world history of a
semiclassical heavy charged color source living in the
fundamental representation of an Oð4Þ subset of the
Oð16Þ gauge group. The coincidence of two D8-branes,
and their orientifold images, gives four additional
massless, zero-length, open string modes, which are
states that complete the 3 ⊕ 3 of the Oð4Þ ≃ SUð2Þ ×
SUð2Þ gauge group. Thus, the single spacelike
Polyakov-Susskind loop at spatial coincidence is the
world history of a heavy quark in the 2 ⊕ 2 represen-
tation of Oð4Þ. Namely, the parallel stack of two D8-
branes, and their two orientifold image D8-branes, at
one of the orientifold planes of the Oð16Þ ×Oð16Þ type
IA string compactified on a twisted torus, coincide to
give all of the massless zero-length open strings in the

adjoint representation of Oð4Þ, and the Chan-Paton
factor for the end points themselves, i.e., the end-point
wave function, transforms in the 2 ⊕ 2 fundamental
irrep of SUð2Þ × SUð2Þ. Note that the Wilson loop
operator always contains a trace over the representation
of the non-Abelian gauge group.
The pair correlator of spacelike Polyakov-Susskind

loops, Wð2Þ, can be derived from first principles. Incor-
porating the changes required by finite temperature for
the type IB superstring compactified on the twisted torus,
and using the results of Refs. [15,16] for superstring
amplitudes with macroscopic incoming and outgoing
strings, gives the following expression for the open
oriented contribution to the pair correlator of parallel
spacelike loops spatially separated by a distance RIB:

Wð2Þ
IB ¼ ð1þ j tanhðπαÞjÞ

Z
∞

0

dt
2t

ð2tÞ1=2 e
−R2

IBt=2πα
0

ηðitÞ6
�
eiπtα

2

ηðitÞ
Θ11ðα; itÞ

�

×
X∞

ni¼−∞
exp

�
−π

�
α0n29
R2
IB

þ 4π2α0n20
β2IB

�
t

�

×

�
Θ00ðα; itÞ
eiπtα

2

ηðitÞ

�
Θ00ð0; itÞ
ηðitÞ

�
3

−
Θ01ðα; itÞ
eiπtα

2

ηðitÞ

�
Θ01ð0; itÞ
ηðitÞ

�
3

−
Θ10ðα; τÞ
eiπtα

2

ηðitÞ

�
Θ10ð0; itÞ
ηðitÞ

�
3
�

− ð1þ j tanhðπαÞjÞ
Z

∞

0

dt
2t

· ð2tÞ1=2½ηðitÞ�−6e−R2
IBt=2πα

0

×
1

4

�
eiπtα

2

ηðitÞ
Θ11ðα; itÞ

��
Θ11ðα; itÞ
eiπtα

2

ηðitÞ

�
Θ11ð0; itÞ
ηðitÞ

�
3
�

×
X∞

ni¼−∞
exp

�
−π

�
α0n29
R2
IB

þ 4π2α0n20
β2IB

�
t

�
: ð4:1Þ

Note that the expression above is valid for all values of
T ¼ 1=βIB, where B and β are both target spacetime
moduli, and jBj is linear for small T, and asymptotes to
unity at temperatures approaching the string deconfinement
scale.
The massless Yang-Mills gauge field theory limit of

Wð2Þ
IB yields the potential between two heavy color-

charged sources at spatial separations RIB > α01=2. We
work in the large-radius limit, and at type IB temper-
atures much below the string scale. Note that the
amplitude Wð2Þ is dimensionless. We will find that this
is a good paradigm for a non-Abelian gauge theory in the
deconfinement regime; all of the thermal excitations are
Matsubara modes, namely, thermal momenta, and the
type IB superstring has no winding modes. The heavy
quark pair can be pulled out to spatial separations larger
than the string scale, giving clear evidence for the inverse
linear term which is universal—the Lüscher term,
common to all effective Nambu-Goto-Eguchi-Schild-
Polyakov QCD strings [1,2,23]. In addition, we can also

derive the systematic thermal corrections to the Lüscher
potential.
Retaining the leading terms in the q expansion, domi-

nated by thermal momentum modes at low temperatures far
below the string mass scale, and performing an explicit
term-by-term integration over the worldsheet modulus, t,
isolates the leading terms in the massless string spectrum,
m ¼ 0, and thermal and spatial Kaluza-Klein modes. In the
low-temperature regime, the inverse temperature lies within
the range, 2πα01=2 ≪ RIB ≪ βIB, in string scale units [16],
and we substitute the power-law expansion for the gamma
function, after a change of variable, t → At. The argument
of the gamma function, ΓðzÞ, takes the form, jzj < 1:

A ¼
�
mþ n29α

0

R2
IB

þ R2
IB

4π2α0
þ n204π

2α0

β2IB

�
; ð4:2Þ

expanding about m ¼ 0. The result of the modular integral
can be expressed in terms of the power-series expansion of
the gamma function, with argument z ¼ 1

2
:

HETEROTIC TYPE I STRINGS AT HIGH TEMPERATURE PHYS. REV. D 98, 046017 (2018)

046017-11



Γðzþ 1Þ ¼
X∞
k¼0

ckzk; c0 ¼ 1; c1 ¼ −C; cnþ1 ¼
Xn
k¼0

ð−1Þkþ1skþ1cn−k
nþ 1

; s1 ¼ C; sn ¼ ζðnÞ; ð4:3Þ

which gives the result

Wð2Þ
IA ¼ 2−1=2ð1þ j tanhðπαÞjÞ

X∞
m¼0

fðIBÞm ðαÞ
X∞

n0¼−∞

X∞
n9¼−∞

Z
∞

0

dt
t
t1=2e−t

×

�
R2

2π2α0
þ α0n29

R2
IB

þ n204π
2α0

β2IB

�−1=2

≃ 2−1=2Γð1=2Þð1þ tanhðπαÞÞfIB0 ðαÞ ×
�

R2

2π2α0
þ α0n29

R2
IB

þ n204π
2α0

β2IB

�−1=2

≃ 2−1=2Γð1=2Þð1þ παÞ ×
�

R2

2π2α0
þ α0n29

R2
IB

þ n204π
2α0

β2IB

�−1=2

× ½2ð2Coshð2½π tanhðπαÞ�Þ þ 6Þ − 16Coshð½π tanhðπαÞ�Þ�
¼ Γð1=2Þð1þ παÞ½16 − 16ð1þ ðπαÞ2Þ�

×

�
πα01=2

RIB
− ζð−2; 0Þ

�
4π5α05=2

β2IB

�
1

R3
IB
þOðα09=2=R5

IBβ
4
IBÞ

�
; ð4:4Þ

where we recall that the inverse temperature lies within the
range, 2πα01=2 < βIB ≪ RIB, in string scale units [16]. Our
result shows that the leading correction to the inverse linear
attractive potential, namely, the universal Lüscher term, in
the zero-temperature static heavy quark potential, is
Oð1=R3Þ, taking the form of a systematic series expansion
in powers of ðα02=β2IBR2Þ at type IB temperatures far above
the thermal duality transformation temperature, namely, the
string mass scale, TC ¼ 1

2π α
0−1=2.5

We now perform a thermal duality transformation on the
expression for the type IB pair correlator of spacelike
Wilson loops, in addition to a spatial T9-duality trans-
formation. Expressing the result in terms of type IA string
variables, the target spacetime geometry is that of a stack of
32 thermal D8-branes in the 10D type IAOð32Þ superstring
compactified on R8, with a S1=Z2 × S1=Z2 orthogonal to
the worldvolume of the thermal D8-brane stack.6 We
consider a pair of heavy colored sources whose world
histories are loops winding along X0

E, which is now an
interval of length βIA; hence the world histories of the
infinitely heavy “quarks” are stretched parallel to the

Euclidean time interval. In addition, they are spatially
separated by a Dirichlet-string of length R, stretched
parallel to the interval X0

9. Note that upon T dualizing
both the X9 and X0 coordinates, we obtain a type IA
superstring theory, with a tower of spatial, and thermal,
winding modes, replacing the thermal momentummodes of
the type IB superstring. Thus, the infinitely heavy color
sources are now confined in a bound state with spatial
separation within a type IA string length; remarkably, we
will show that we can nevertheless derive analytical
expressions for the binding energy.
We find that this novel type TA phase is a good model for

the confinement phase of non-Abelian gauge theories, with
its tower of thermal and spatial winding string modes.
Comparing with the expression for the pair correlator of
spacelike Wilson loops in the finite-temperature type IB
superstring theory given in Eq. (4), we can repeat the steps
taken above, and extract the massless level m ¼ 0 low-
energy gauge theory limit. The result is

Wð2Þ
Linear ≃ α0−1=2Γð1=2Þ½2ð2Coshð2½π tanhðπαÞ�Þ þ 6Þ

− 16Coshð½π tanhðπαÞ�Þ�

× R

�
1 −

1

2

X∞
w0¼−∞

�
4π2

α02

�
ðw2

0β
2
IAR

2Þ
�

¼ α0−1=2Γð1=2Þ½2ð2Coshð2½π tanhðπαÞ�Þ þ 6Þ
− 16Coshð½π tanhðπαÞ�Þ�
× R½1 − ζð−2; 0Þα0−2β2IAR2�: ð4:5Þ

This expression gives the subleading thermal correction to
the linear potential for a pair of semiclassical heavy quarks,

5Note the remarks by Lüscher and Weisz in Ref. [23] on the
absence of a 1=R2 term in the heavy quark potential, presciently
arguing in favor of the leading 1=R3 correction. It should be noted
their argument is valid on general grounds, and is not specific to
the finite-temperature gauge theory, but it is exactly what we too
find in our derivation from string theory of the static heavy quark
potential at finite temperature.

6A thermal Dp-brane has only p noncompact coordinates, and
a p-dimensional Euclidean, spatial, worldvolume. The gauge
fields supported on this brane are finite-temperature supersym-
metric gauge theories in (pþ 1) dimensions.
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with spatial separation R, and with a Dirichlet spatial
winding mode string stretched between them. Pulling apart
the heavy colored sources, gives a potential that grows
linearly with R and the Dirichlet string is the confining
string. There is a potential energy cost to separating the
color-charged sources, and the temperature-dependent term
is a further suppression, pointing to confinement.
Comparing with Eq. (17), note that the binding energy

density is a continuous function of temperature at the
string scale critical temperature, but the first derivative
with respect to temperature has a discontinuity.
Remarkably, precise computations can nevertheless be
carried out on either side of the phase boundary in
temperature by, respectively, working in the respective
low-energy gauge theory limits of thermal and spatial
dual string theories (both type IB and type IA). Thus, our
results are clearly suggestive of a thermal deconfinement
phase transition at TC ¼ 1=2πα01=2 in the type IA gauge
theory, and this deconfining phase transition can be
identified as first order. In particular, we note that taking
R → 0 smoothly gives a vanishing expectation value for
the single Polyakov-Susskind loop in the confinement
regime, as was conjectured for the order parameter of the
thermal deconfinement transition—for the Oð2nÞ groups
the center symmetry is Z2 × Z2. This completes our
discussion of the thermal deconfinement transition and
its order parameter for the Oð32 − 2nÞ anomaly-free non-
Abelian gauge theory limit of the finite-temperature type
I superstring. In closing, we should point out that we
have barely touched the considerable information in the
full string pair correlation function, and the thermal
spectrum with massive winding modes, which remains
for future analysis.

V. CONCLUSIONS

The original suggestion that the Polyakov string path
integral might provide a renormalizable analytic descrip-
tion of the expectation value of a Wilson loop valid to
arbitrarily short distances was made by Alvarez in Ref. [3],
although its implementation at the time was stymied by
many technical, and conceptual, problems. The extension
of the string path-integral formalism for on-shell scattering
amplitudes to those for the off-shell closed string tree
propagator, incorporating the modified Dirichlet, or Wilson
loop, boundary conditions proposed by Alvarez in Ref. [3],
was given by Cohen, Moore, Nelson, and Polchinski [19].
The suggestive sketch of the computation given in Ref. [19]
was subsequently reformulated by us in collaboration with
our students Chen and Novak [15–17], giving a proper
implementation of the super boundary reparametrization
invariance, that was also Weyl invariant, and for macro-
scopic Wilson loops. We incorporated also the modern
framework of Dirichlet strings, and D-branes and orienti-
fold planes in background two-form field strengths
[17,25,32]. Most importantly, a discussion of thermal

deconfinement required the development of a consistent
Euclidean time quantization of finite-temperature super-
string theory, settling also the troubling issue of the
Hagedorn divergence of the degeneracies of the string
mass level expansion, which is suppressed by a compen-
sating exponential suppression arising from the integral
over worldsheet moduli that preserves worldsheet repar-
ametrization invariance.
Our results show that the Polyakov macroscopic string

path-integral framework [15,16,19] provides not merely an
effective QCD string model for the computation of the
expectation value of the spacelike history of a semiclassical
heavy quark, but also strong evidence for the veracity of
heterotic type I superstring theories as accurate descriptions
of the real world at particle-accelerator-scale short dis-
tances and high energies, with a precise derivation of their
low-energy gauge theory limit. In particular, our work
expands upon the original analyses by Brink, Green, and
Schwarz, and others [6,21,33], by performing in closed
form the integrals over worldsheet moduli, and thereby
preserving the worldsheet super Diff × Weyl gauge sym-
metries, when taking both the low-energy supergravity and
non-Abelian gauge theory limits [15,16], in the presence of
background two-form field strengths [17], and at finite
temperature. Our considerations have been restricted to
one-loop string amplitudes, and it is fascinating to observe
the wealth of new physics which can be extracted with the
inclusion of macroscopic superstring amplitudes. In par-
ticular, it has been interesting to compare our results with
the analytic gauge theory methodology pursued by Poppitz
et al. [13].
Perhaps the most remarkable result of our analysis is the

light it sheds on the nature of the relationship between the
type IB and heterotic strings. While the former has a low-
energy field theory limit which is the closest approxima-
tion to pure gauge theory as we know it, the latter carries
the fuller insight into nonperturbative string/M-theory.
The type IB–heterotic strong-weak duality is the most
striking insight we have into the as yet unknown M-
theory, and our results further strengthen a rather benign
conclusion: the well-established fact that M-theory on
S1 × S1=Z2 is dual to a string theory, or a field theory, in
every one of its low-energy limits, continues to hold at
high temperatures, and high string mass levels! We have
made this behavior rather explicit in terms of the precise
exponential suppression, or exponential balance, of the
Hagedorn growth of the string d.o.f. at high temperature.
Most pertinently, while there is a clear match to the
physics of a thermal deconfinement transition in the low-
energy field theory limit, there are no infinities in the full
string theory, and we have a finite description of the phase
transition. Furthermore, our results in the Appendix
suggest a novel approach to studying the strong-weak
heterotic–type I duality by relating it to the dualities of the
type IIA and type IIB on K3 × T2=Z2 string, which would
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simplify our understanding of which is the most funda-
mental of the underlying string dualities.
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APPENDIX A: ASPECTS OF HETEROTIC
STRING THEORY

In this Appendix, we clarify certain aspects of the
worldsheet formalism of the heterotic strings, showing their
intimate relation to the basic building blocks—the type IIB
and the type IIA superstrings—and shedding light on the
strong-weak dualities of the superstrings and M-theory.

1. Chiral NS = 1 orbifolds of the 10D
type II superstrings

Recall that the type II superstring theories are named by
the parity of their 32-component 10D Majorana-Weyl
spinors. In the type IIA string theory, the 10D spinors,
and massless spin-3=2 gravitinos, have opposite spacetime
parity, whereas in the chiral IIB string theory, they have
identical spacetime parity. This property distinguishes the
two type II superstrings. Recall that spacetime parity is given
by the product of left and right worldsheet parities. We will
show that the Hilbert space of the type IIA superstring
admits two inequivalent NS ¼ 1 chiral projections, where
the subscript denotes the 10D target spacetime supersym-
metry. One of which eliminates the higher-rank p-form
potentials of the Ramond-Ramond sector, whereas the other
gives the T9-dual of the familiar type IB orientifold.
We will follow the pedagogical derivation of the sum over

spin structures for the type IIA and type IIB superstrings,
given in Sec. 10.6 of Ref. [34]. Each has two equivalent, and
self-consistent, ways to sum over spin structures, which
result in the Gliozzi-Scherk-Olive (GSO) projection to states
with even spacetime G parity (respectively, chiral and
nonchiral ten-dimensional type II superstrings). We begin
with the NS ¼ 1 chiral projection of the Hilbert space of the
type IIIB superstring leading to the well-known type IB
orientifold [21]:

type IIB∶ ððNSþ; NS−Þ ⊕ ðNS−; NSþÞÞs; ðR−; NSþÞ; ðNSþ; R−Þ; ðR−; R−Þ;
type IB∶ ððNSþ; NS−Þ ⊕ ðNS−; NSþÞÞs; ððNSþ; R−Þ ⊕ ðR−; NSþÞÞs; ðR−; R−Þ: ðA1Þ

Notice that the alternative choice of Hilbert space and worldsheet parity assignments in Ref. [34] gives the same result with
an Ω projection, since the type IIB superstring is a chiral theory:

type IIB0∶ ðNSþ; NSþÞ; ðRþ; NSþÞ; ðNSþ; RþÞ; ðRþ; RþÞ;
type IB0∶ ðNSþ; NSþÞ; ððNSþ; RþÞ ⊕ ðRþ; NSþÞÞs; ðRþ; RþÞ: ðA2Þ

Note that the 10D vector spinor now has positive spacetime parity, but the theory is identical to that above, being a mere
rewriting of the type IB orientifold projection.
Let us now contrast this with the inequivalent NS ¼ 1 chiral projections of the 10D nonchiral type IIA superstring, which

can be written as (see Chapter 10.6 of Ref. [34])

type IIA∶ ðNSþ; NSþÞ; ðRþ; NSþÞ; ðNSþ; R−Þ; ðRþ; R−Þ;
type IIA0∶ ðNSþ; NSþÞ; ðNSþ; RþÞ; ðR−; NSþÞ; ðR−; RþÞ: ðA3Þ

Notice that we have the freedom to symmetrize the type IIA superstring Hilbert space over both choices of GSO convention
for F̃: eπiF ¼ 1; with eπiF̃ ¼ þ1ðRÞ, −1ðNSÞ, and eπiF̃ ¼ −1ðRÞ, þ1ðNSÞ:

type IIA∶ ððNSþ; NS−Þ ⊕ ðNS−; NSþÞÞs; ððNSþ; RþÞ ⊕ ðRþ; NSþÞÞs;
ððR−; NSþÞ ⊕ ðNSþ; R−ÞÞs; ððR−; RþÞ ⊕ ðRþ; R−ÞÞs;

type IIA0∶ ðNSþ; NSþÞ; ððNSþ; RþÞ ⊕ ðRþ; NSþÞÞs;
ððR−; NSþÞ ⊕ ðNSþ; R−ÞÞs; ððR−; RþÞ ⊕ ðRþ; R−ÞÞs: ðA4Þ
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Under an Ω projection on the former, only states symmetric under the interchange of left and right movers remain, which
eliminates one of the 10D vector spinors, giving the 10D N ¼ 1 type I0, or type IA, string:

type IA∶ ððNSþ; NS−Þ ⊕ ðNS−; NSþÞÞs; ððR−; NSþÞ ⊕ ðNSþ; R−ÞÞs; ððR−; RþÞ ⊕ ðRþ; R−ÞÞs: ðA5Þ

Note that the left and right worldsheet parity of the states in
the Virasoro tower that contains the 10D spacetime vector-
spinor are opposite, giving a spacetime spinor with neg-
ative 10D parity.
The Hilbert space of the type IIA superstring allows an

even simpler NS chiral truncation which eliminates the
Ramond-Ramond states and does not break Poincaré
invariance. This chiral projection can therefore be identified
as the heterotic string: the superconformal gauge-fixed
Ns ¼ ð1; 0Þ conformal field theory has central charge
c ¼ ð12; 8Þ, and all closed string states with mixed left-
and right-moving worldsheet parity are absent. We have

type IA0∶ ðNSþ; NSþÞ; ððRþ; NSþÞ ⊕ ðNSþ; RþÞÞs;
ðA6Þ

with the following bosonic massless particle spectrum:

ð8vþ8Þ×8v ¼ð1;1Þþð28;1Þþð35;1Þþð56;1Þþð80;1Þ:
ðA7Þ

It is helpful to restate our result for the two distinct freely
acting asymmetric orbifolds of the type IIA string as
follows. Modding by a spacetime reflection on a target
space coordinate X9 → −X9, ψ9 → ψ9, ψ̃9 → −ψ̃9, maps
the IIA to the equivalent IIA0 sum over spin structures.
Modding in addition by the discrete groups, and setting
ð−1ÞFL ¼ þ1, ð−1ÞFR ¼ þ1, in both the Ramond and
Neveu-Schwarz sectors, defines the truncation to the type
IA0 orbifold, an anomalous 10D NS ¼ 1 theory that we will
show can be extended to either of the two ultraviolet finite
and infrared unambiguous, exact renormalized heterotic
string theories.
In closing, it should be noted that our derivation of the

heterotic strings as NS ¼ 1 chiral projections of the 10D
type IIA superstring has the following important conse-
quence: under the chiral projection, the zero-momentum
states in the Hilbert space of the heterotic descendant, for
both physical and ghost d.o.f., will be unchanged from
those deduced from a Bechi-Rouet-Stora-Tyutin analysis of
the type IIA superstring. In other words, as reviewed in the
Appendix, the measure in the string path integral is the
same as that for the type IIA superstring, namely, it
preserves the Wess-Zumino gauge-fixed N ¼ ð1; 1Þ local
worldsheet supersymmetry, except for choices of spin
structure which imply the presence of supermoduli, or
conformal Killing spinors. Neither is present at genus one,
except in the Ramond-Ramond sector.

Note that the type IIA R-R p-form potentials are
projected out of the Hilbert space of the descendant, since
the chiral projection removes all states in the type IIA
Hilbert space with mixed left and right worldsheet parity.
The parity projection, however, retains the constant modes
of the odd rank R-R potentials of the type IIA theory. This
suggests that heterotic strings can be formulated in back-
grounds with constant R-R type IIA p-form potentials of
definite parity. Note that R-R fluxes, and, consequently,
D-brane sources, are always absent in the heterotic
descendants.
Notice that because of our identification of spacetime

parity with the product of worldsheet parities, following
the projection to positive spacetime parity, Ramond
worldsheet fermions only appear in the Hilbert space
of the right-moving superconformal field theory. We no
longer have the ingredients to build the spinorial 8 or 80
in the Hilbert space of the left-moving conformal field
theory.7

2. Heterotic string descendants of
the type IIA string

An alternative means of fulfilling the infrared consis-
tency conditions on a closed string theory with massless
chiral fermions in the 80 is available for the chiral projection
of the type IIA superstring. Notice that the projection to
states with positive spacetime parity eliminates the R-R
sector of the worldsheet superconformal field theory in its
entirety. One consequence, of course, is that the heterotic
string theory therefore cannot accommodate D-branes and,
based on our discussion in the previous section, it is clear
that there is no consistent extension incorporating open
string sectors.
In addition, as mentioned earlier, the necessary ingre-

dients for building a spinorial vacuum no longer exist in
the left-moving conformal field theory. We wish to
extend the spectrum of the closed string theory in such
a way that the low-energy limit yields additional super-
multiplets with chiral fermions. Such chiral fermions can

7It is conventional to refer to the superconformal half of the
heterotic string theory as right-moving, or antiholomorphic,
listing the boundary conditions on right-moving worldsheet
fermions before those on fermions in the left-moving, or holo-
morphic, sector [35]: ([right],[left]), as in the equation above.
Thus, it is the right-movers that will provide a realization of the
SO(8) subgroup of the 10D Lorentz group in the heterotic string
theory, giving rise to the SOð8Þspin representations listed. Note
that right-moving worldsheet fields are distinguished by tildes.
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contribute the necessary compensating terms to the
anomaly polynomials. The analysis of the hexagon
anomaly in the chiral ten-dimensional N ¼ 1 supergravity
reveals that coupling to the chiral fermions of a 10D
super-Yang-Mills theory with precisely 496 massless
vector bosons meets the conditions for the cancellation

of all anomalies: gauge, gravitational, and mixed. What
extension to the chiral projection of the type IIA string
theory can account for this massless field content in the
low-energy field theory limit? Recall that as a conse-
quence of the chiral projection, we begin with the
bosonic massless particle spectrum:

ðNSþ; NSþÞ ⊕ ðRþ; NSþÞ∶ ð8v þ 8Þ × 8v ¼ ð1; 1Þ þ ð28; 1Þ þ ð35; 1Þ þ ð56; 1Þ þ ð80; 1Þ: ðA8Þ

We wish to augment this bosonic massless particle spec-
trum with a ð8v; 496Þ of vector bosons, and their (8,496)
chiral superpartners under the 10D N ¼ 1 supersymmetry.
The two Yang-Mills gauge groups with an adjoint repre-
sentation of dimension 496 are SOð32Þ and E8 × E8.
The clue towards uncovering the nature of the fully

consistent heterotic string lies in the peculiar mismatch in
the properties of the Hilbert spaces of left- and right-
moving conformal field theories of the type IIA string
following the chiral projection to physical states with
positive spacetime parity. Note that the worldsheet local
superconformal algebra following the chiral projection
remains the familiar (1,1) superconformal field theory
(SCFT) underlying the type IIA superstring, except that
the superconformal generators of the left-moving (super)
conformal field theory, which belongs in the ðNSþ;R−Þ
sector of the IIA string, can no longer contribute to the
physical Hilbert space of the heterotic string theories
because of the restriction to states of positive spacetime
parity! We emphasize that the total central charge of the

worldsheet superconformal field theory is (15,15), just as
in the type II superstrings, and the transverse d.o.f. that
remain after superconformal gauge fixing, following the
elimination of timelike and longitudinal worldsheet (1,1)
supermultiplets together with compensating bosonic and
fermionic ghosts, are also the familiar (12,12) of the type
II superstrings.8 Notice that the physical Hilbert space has
only states of positive definite norm. Thus, without
having any impact on the target spacetime Lorentz and
supersymmetry algebra, we can self-consistently extend
the left-moving conformal field theory with a unitary
compact chiral conformal field theory, subject to the
overall constraints of modular invariance on the expres-
sion for the string vacuum amplitude. Recall that invari-
ance of the one-loop vacuum amplitude under the
modular group of the torus also determines the physical
state spectrum.
From our earlier discussion on the 10D type II super-

strings, the one-loop vacuum amplitude for a heterotic
string theory will therefore take the general form

Whet ¼ L10ð4π2α0Þ−5
Z
F

�
d2τ
4τ22

· ðτ2Þ−4½ηðτÞη̄ðτ̄Þ�−8
�
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�
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�
4
�
× ZchiralðτÞ: ðA9Þ

Recall that the factor within curly brackets is already modular invariant. The holomorphic sum over Jacobi theta
functions is the remnant contribution from the eight transverse worldsheet fermions of the type IIA string following the
projection to states of positive spacetime parity. Under a τ → τ þ 1 transformation, this function transforms as

τ → τ þ 1∶
��
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ðA10Þ

8To the best of our knowledge, the perspective on the heterotic string theories offered here is completely new. The tradi-
tional approach, including that followed in the original papers [35], has been to invoke the Hamiltonian quantization of independent
left-moving and right-moving 2D conformal field theories with total central charge (15,26): namely, the left-moving half of a
26D bosonic string theory and the right-moving half of a 10D type II superstring. Eight of the 24 transverse bosonic left-
moving modes are subsequently paired with the eight transverse right-moving bosonic modes of the superstring, and identified as the
transverse “coordinates” of a 10D target spacetime. Our goal here is to point out that there exists an alternative derivation of the heterotic
string theories as chiral projections of the type IIA superstring that can reproduce the results of the traditional construction. To be precise,
the physical Hilbert spaces and on-shell scattering amplitudes derived in either approach will be indistinguishable.
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and it is invariant under the transformation τ → −1=τ.
Thus, the function ZchiralðτÞ must transform with the
compensating phase under the τ → τ þ 1 transformation,
and is required to be invariant under a τ → −1=τ
transformation. The latter property is very significant.
In terms of the vertex operator construction for the
physical states in the chiral conformal field theory,
namely, those counted by the level expansion of the
function Zchiral, it implies the self-consistency, or closure,
of the vertex operator algebra.
Closed vertex operator algebras with central charge c >

1 are known to exist for only special values of the central
charge. Vertex operator algebras with c taking integer
values are characterized by the properties of Euclidean,
even self-dual lattices of dimensionality c [35]. The
smallest integer solutions with c > 1 are 8 and 16, and
the corresponding Euclidean even self-dual lattices contain,
respectively, the direct sum of the root and weight lattices
of the simply laced Lie algebras E8, and either E8 × E8 or
SOð32Þ.9 Recall that the contribution to the vacuum energy
from a chiral vertex operator algebra with central charge c
is c=24. For c ¼ 16, we have Evac ¼ þ2=3, and either of
the given 16-dimensional Euclidean lattices contains pre-
cisely 480 lattice vectors of squared length two. Thus,
either choice is a consistent candidate that can provide the
496 massless vector bosons in the ðNSþ;NSþ; rÞ ¼
ð8v; 1; 496Þ sector, as was required by the infrared con-
sistency conditions mandating the absence of gauge,
gravitational, and mixed anomalies:

1

4
α0ðmassÞ2L ¼ Nμ

b þ NI
b þ Nμ

f − 1þ 1

2
k2L ¼ 1

4
α0ðmassÞ2R

¼ Ñμ
b þ Ñμ

f −
1

2
: ðA11Þ

Here, μ runs from 1 to 8, labeling the transverse modes of
the 10D type IIA superstring. The index I runs from 1 to 16,
labeling the 16 orthogonal directions of the Euclidean even
self-dual lattice that self-consistently extends the left-
moving conformal field theory, following the chiral pro-
jection to type IIA states with positive spacetime parity.
Note that the lattice vector kL has 16 components, and
states in the CFT with k2

L ¼ 2 correspond to massless
physical states in the closed string spectrum. The function
ZchiralðτÞ takes the form

ZchiralðτÞ ¼ ½ηðτÞ�−16
X

kL∈Λ16

q
1
2
k2
L ; ðA12Þ

where Λ16 is an even self-dual lattice of rank 16. Namely,
for every pair of vectors k, k0 in Λ16, k · k0 is an even
integer, and both the vector, k, and its dual, k�, where
k · k� ¼ 1, belong in the lattice Λ16. The transformation
τ → −1=τ simply interchanges the root lattice with its dual
lattice, the direct sum of the weight lattices of the
irreducible representations of the Lie algebra. The overall
multiplicative factor ð−iτÞ8 is canceled by the correspond-
ing transformation of the eta function. Under the τ → τ þ 1
transformation, the lattice summation instead transforms by
an overall phase which is unity for rank 16. Thus, the only
factor of relevance is the overall phase e−2πi=3 in the
transformation of ½ηðτÞ�−16; this phase is canceled by the
corresponding transformation of the antiholomorphic sum
over spin structures, namely, that for fermions in the right-
moving superconformal field theory. Invoking boson-fer-
mion equivalence in two dimensions, it is sometimes
convenient to write the result for the one-loop vacuum
amplitudes of the two heterotic string theories, respectively,
in the alternative form [35]

ZSOð32ÞðτÞ ¼
1

2

��
Θ00

η

�
16

þ
�
Θ01

η

�
16

þ
�
Θ10

η

�
16

þ
�
Θ11

η

�
16
�
;

ZE8×E8
ðτÞ ¼ 1

4

��
Θ00

η

�
8

þ
�
Θ01

η

�
8

þ
�
Θ10

η

�
8

þ
�
Θ11

η

�
8
�
2

; ðA13Þ

inferred from the equivalent fermionic representation of the respective chiral vertex operator algebras with c ¼ 16 by 16
complex (Weyl) worldsheet fermions. It is helpful to summarize the full massless spectrum of the two heterotic string
theories. For the SO(32) and E8 × E8 theories, respectively, we have

ð8v þ 8Þ × ð8v; 1Þ ¼ ð1; 1Þ þ ð28; 1Þ þ ð35; 1Þ þ ð56; 1Þ þ ð80; 1Þð10DN ¼ 1 supergravityÞ;
ð8v þ 8Þ × ð1; 496Þ ¼ ð8v; 496Þ þ ð8; 496Þ; or

ð8v þ 8Þ × ð1; 496Þ ¼ ð8v; 120; 1Þ þ ð8v; 1; 120Þ þ ð8v; 128; 1Þ þ ð8v; 1; 128Þ þ ð8; � � �Þ: ðA14Þ

9More precisely, the even self-dual lattice obtained in the latter case pertains to the Lie algebra Spinð32Þ=Z2; the Z2 projection
removes the root vectors of squared length unity, so that the massless vector bosons in the string spectrum live in a 496 of the simply
laced algebra SO(32).
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We have spelled out the SOð16Þ × SOð16Þ decomposition
of the 496 states in the adjoint representation of E8 × E8 in
the last equation. Note that the 56þ 80 of the 10D N ¼ 1
supergravity multiplet is generated by the 8 × 8v; the
gauginos live in an 8, precisely as in the type IB unoriented
string, and as required by the anomaly cancellation con-
ditions. However, unlike the type IB supergravity, there
appears to be no consistent extension to the spectrum
of antisymmetric supergravity potentials in the heterotic
string theories because the Ramond-Ramond sector of the
“parent” type IIA superstring, namely ðRþ;R−Þ, has
negative spacetime parity.

3. Compact Lie algebras and the R-R ten-form

We begin with a simple explanation of the realization of
E8 × E8 × Z2 in the type IIA string with parallel stacks of
eight D8-branes—and their eight orientifold image branes
—separated by the interval, X0

9, obtained by T9 dualizing
the circle X9 in the type IB superstring with 16 space-filling
D9-branes, plus their 16 orientifold image branes, and the
gauge groupOð32Þ. The Dirichlet coordinate separating the
O8-planes is of length R9. The gauge group realized on
each of the D8-brane stacks is clearly Oð16Þ. Are there any
additional massless open string states? If we introduce a
D0-brane on the stack of D8-branes, including its image
D0-brane, the D0-brane pair can freely explore all of the
16 D8-branes plus images. Zero-length D0-D0, or D0-D8
strings in the Neveu-Schwarz sector are massive, due to the
vacuum energy. However, in the Ramond sector of the open
string spectrum, we can describe the vacuum state of the
D0-brane pair as follows: its intersection with each
D8-brane is a two-state Ramond vacuum, of charge � 1

2
,

and vacuum energy, E0 ¼ 1
2
ð1
2
Þ2.

In nine dimensions, and below, it is well known that the
two, apparently inequivalent, ten-dimensional electrically
charged heterotic string theories with E8 × E8 and
Spinð32Þ=Z2 gauge symmetry [35], are, in fact, related
by a T9-duality transformation upon compactification on a
circle. A Wilson line background in the E8 × E8 string
continuously interpolates between the two stable and
supersymmetric heterotic string vacua, leaving unbroken
all 16 conserved supercharges. On the other hand, it is well
known that the only allowed perturbative type IB gauge
groups obtained by an analysis of Chan-Paton factors are
the classical groups An, Bn, Cn, and Dn, as was proven by
Marcus and Sagnotti [36]. This leaves us with the following
puzzle: by the Polchinski-Witten type IB heterotic string-
string duality map, it would have to be true that the strong-
coupling dual of the 9D heterotic E8 × E8 ×Uð1Þ vacuum
with 16 unbroken supersymmetries should be a stable,
massless-tadpole and tachyon-free, nonperturbative back-
ground of the open and closed unoriented type IB string
[37]. It was suggested in the early work [38], that in the
presence of D0-branes, in addition to the 16 D8-branes on
either of the two orientifold planes bounding the interval in

the type IA string with SOð16Þ × SOð16Þ gauge fields [37],
the non-Abelian gauge symmetry might extend to the
elusive E8 × E8. Many authors subsequently attempted
to solve this problem with partial success [26], but without
pointing out that the 9D type I E8 × E8 vacuum is tachyon
and tadpole free, an exact renormalized background with
16 conserved supercharges. We will fill in the gaps in that
sketchy presentation in what follows, in response to
questions since put to me, while also completing the details
for type I realizations of all of the simply-laced, and non-
simply-laced, compact Lie algebras in the Cartan-Weyl
classification.
My original goal was to provide a realization of the

exceptional Lie algebras in 9D D-brane backgrounds of the
type IB and type IA strings. We will now show that, in fact,
D-branes cover all of the Cartan-Weyl classification An, Bn,
Cn, Dn, E6, E7, and E8, including both simply-laced,
exceptional, and non-simply-laced Lie algebras. This fact,
long elusive, becomes rather obvious, once we establish a
detailed isomorphism, namely, a one-to-one mapping,
between the standard root and weight systems of the Lie
algebras and the sequence of jumps in the ten-form when a
D0-brane crosses a D8-brane in a generic type IA orienti-
fold. In addition to reviewing this analysis of positive, and
negative, vacuum energy contributions from the intersec-
tion, or crossing, of D0- and D8-branes, we will give an
even simpler derivation, directly in terms of the allowed
“no-force” configurations of D0-branes in the worldvolume
of the stack of D8-branes, such that the state conserves 16
supersymmetries.
Recall that, unlike the origin of gauge symmetry in affine

Lie algebras embedded in the bulk worldsheet conformal
field theory, non-Abelian gauge symmetry in the type IB
string open and closed string has a completely different
origin [21,34]. The Chan-Paton wave functions labeling the
end points of open strings provide a representation of a Lie
group, rather than a Lie algebra, and the massless lowest-
lying mode in the open string spectrum lives in the adjoint
representation of this group. This counting gives rise to
what were known to be the list of possible perturbative type
I gauge groups:UðnÞ,Oð2nÞ, Spð2nÞ, andOð2nþ 1Þ [36].
We remind the reader that the root and weight lattice and

Dynkin diagram representations of Lie algebras do not
distinguish between the classical and exceptional algebras
in the Cartan-Weyl classification of the compact Lie
algebras. In Ref. [25], we noticed that a precise counting
of states in the SOð16Þ spinor weight lattice is given rather
easily by an isomorphism to the sequence of jumps in the
Ramond-Ramond ten-form field upon D0- and D8-brane
crossings along the interval between the two O8-planes
[37]. We will derive the massless Ramond-Ramond tadpole
cancellation conditions that single out the stable 9D type IA
background with E8 × E8 non-Abelian gauge symmetry.
Note that this is a nonperturbative background of the type
IA, or type IB, string [37,38].
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Let us begin with type IA backgrounds with 32
D8-branes. The gauge group on the 9D worldvolume of
eight coincident D8-branes, and images, is given by the
counting of zero-length strings stretched between any pair
of D8-branes on either O8-plane. Note that for realizations
of the classical groups, we can count massless gauge
bosons by the traditional counting for the (classical)
SOð2nÞ group: 2n choices of D8-branes (or image) at
one end point, 2n − 1 choices for the other end point, with a
factor of 2 for symmetry under interchange. This method
of counting is predicted by T9 duality, from the usual
counting of Chan-Paton wave functions in the type IB
vacuum [21,34,36].
Fortunately, in the T9 dual type IA backgrounds, we

have an equivalent prescription that extends to cover excep-
tional algebras as was discovered by us in Ref. [25]: the
isomorphism of ten-form profiles on D8-D8-brane cross-
ings to a Lie algebra root lattice. We include all profile
vectors with net vanishing ten-form background on the O8-
plane; the compensating ten-form profile with an overall
negative sign exists for the image D8-D8 crossings. In
addition, we impose the cancellation of both dilaton tad-
poles and anomalies on each O8-plane. It is easy to verify
the correctness of this prescription for the SOð16Þ lattice
when n ¼ n̄ ¼ 8:

2nðn − 1Þ=2þ 2n̄ðn̄ − 1Þ=2 ¼ 56þ 56: ðA15Þ

We have either ðþ;þÞ or ðþ;−Þ ten-form profiles for
zero-length strings on any pair of coincident D8-branes.
The factor of 2 counts the negative of the profile, and the
factor of 1=2 corrects for overcounting, since this is an
interchange of branes and images: the pair of image
D8-branes always has the compensating ten-form back-
ground so that there is no net ten-form on the O8-plane.
This is consistent with our requiring the absence of dilaton
tadpoles in the absence of a gradient in the ten-form on
either O8-plane. The eight gauge bosons transforming
in the Uð1Þ8 subalgebra arise from the (null) ten-form
background due to a soliton between the D8-brane and its
own image, giving a total of 120 massless gauge bosons.
Let us move on to the 2mD0-2nD8-O8 background;m is

an integer, and we hope to find a solution for n ¼ 8, since
we wish to keep the 120 SOð16Þ gauge bosons. The
massless R-R tadpole cancellation for 2mD0-2nD8 strings
can be expressed by combining the conditions for
2nD8-2nD8, 2mD0-2nD8, and 2mD0-2mD0 strings
stretched between O8-planes. It is obvious that there is
no solution unless m ¼ 8, since the two O8-planes each
contribute-16 to these equations:

ð2nÞð2nÞ − 24½2nþ 2n� þ 28 ¼ 0;

ð2mÞð2nÞ − 24½2mþ 2n� þ 28 ¼ 0;

ð2mÞð2mÞ − 24½2mþ 2m� þ 28 ¼ 0: ðA16Þ

4. Sign of the R-R ten-form and SU(2)
anomaly cancellation

The counting of zero-length D0-D8 strings on each
O8-plane is as follows [25]. A D0-D8 crossing results in
soliton string creation, and there are eight D0-D8 soliton
strings, plus images, at each O8-plane. We can represent the
ten-form profile at the eight D0-D8 crossings by an eight-
component vector; the profiles take the form�
þ1

2
;þ1

2
;þ1

2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2

�
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2
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2
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2
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2
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1

2
;−

1

2
;−

1

2
;−

1

2

�
⊕ permutations:

ðA17Þ
This gives a total of 2 · ð1=1! ⊕ ð8 · 7Þ=2!Þ ⊕ ð8 · 7 · 6 ·
5Þ=4!2! ¼ 128 vectors. Each ten-form profile corresponds
to a degenerate vacuum: the distinct profiles differ by
permutations of the eight D0-D8 solitons, and are indis-
tinguishable in the coincidence limit. The factor of 2
accounts for the interchange of branes and images; the
factorials correct for permuting indistinguishable solitons.
Recall the standard definition of the spinor lattice ofOð16Þ:
we include all vectors of squared length two, with each
component normalized to � 1

2
, and an even total number of

plus signs. Namely, we have either a (8,0), (6,2), or (4,4),
split of plus and minus signs. The restriction to an odd total
number of plus signs will give the conjugate spinor lattice.
In the spirit of tracing all string consistency requirements

to infrared target space physics [21,34], we require the
absence of gauge, gravitational, and mixed anomalies.
The above-mentioned “sign” rule for consistent ten-form
profile vectors at the eight D0-D8 crossings has a simple
low-energy field theory origin in the SU(2) anomaly
first noticed in Ref. [39]. E8 contains SOð16Þ, and
SOð16Þ ¼ ðSOð4ÞÞ4 ¼ ðSUð2Þ × SUð2ÞÞ4. The SU(2)’s
come in pairs in all consistent backgrounds; a single,
unpaired, SU(2), in the low-energy gauge group indicates
an anomalous vacuum, and it is well known that the Kalb-
Ramond field of string theory entering the Green-Scwarz
mechanism can only correct for an Abelian anomaly [34].
Thus, an infrared consistency condition is the cancellation
of all SUð2Þ anomalies, leading to the following conse-
quence: the D8-branes can only be moved into the bulk
spacetime in pairs, each with its image. These rules tell us
what gauge groups can arise in nonanomalous vacua by
moving D8-branes in pairs off the O8-planes.
Note that we can invoke a T9 duality transformation,

from type IA with eight coincident D0-D8 to eight
coincident type IB D1-D9 solitons. How do we deduce
the number of gauge bosons and the gauge group for zero-
size coincident D-string–D9 solitons in the T-dual-type IB
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state? After all, this is a nonperturbative type IB back-
ground, and we need a method other than the counting of
Chan-Paton wave functions. Fortunately, the reversed T9-
duality provides the answer. Recall that there is a Wilson
line, A9 ¼ ðð1

2
Þ8; 08Þ, responsible for breaking the original

Oð32Þ ×Uð1Þ toOð16Þ ×Oð16Þ ×Uð1Þ in the 9D type IB
string, labeling the 32 D9-branes as two identical stacks of
16 D9-branes, coincident with the O9 plane. Thus, we can
deduce via T-duality, the existence of a 9D type IB D1-D9
background with 16 supercharges and a Yang-Mills gauge
group extended to E8 × E8 × Uð1Þ; the necessary D-strings
are wrapped around the circle.

5. Affine Lie algebras and type I duals
of the CHL strings

A related puzzle also having to do with enhanced
gauge symmetry, and with fundamental consequences for
the connectivity of the landscape, arises as follows. The
non-simply-laced algebras Spð2nÞ, SOð2nþ 1Þ, F2,
and G4 are known to arise at enhanced symmetry points
(ESPs) in the CHL supersymmetry-preserving Abelian ZN
orbifold moduli spaces, each with 16 supercharges [28],
including the 8D Spð20Þ and E8 × SOð5Þ ESPs in
the moduli space of the Z2 orbifold, obtained by modding
by the order-two outer automorphism exchanging the
identical E8 Euclidean self-dual lattices, accompanied
by a Z2 shift in the 2D momentum lattice, and at the
fermionic radius [28]: p ¼ ðpLjpRÞ ¼ ð1

2
; 0j 1

2
; 0Þ. The

resulting shift in masses of string states leaves massless
gauge bosons in the diagonal subgroup of E8 × E8, while
those in the orthogonal E8 acquire masses of order the
string scale. In 9D and below, the shift vector can be chosen
to preserve target spacetime supersymmetry [28]. Thus we
have a new 9D half-BPS state with 16 unbroken super-
charges and the E8 gauge group, realized at level two. Note
that there is no further enhancement of the gauge symmetry
at this radius: if R is tuned to the self-dual radius,
the Kaluza-Klein Uð1Þ current algebra is enhanced to a
SUð2Þ [28].
It may be helpful to point out that it is possible to find

sporadic examples of c > 24 self-consistent holomorphic
conformal field theories which meet the prerequisites for
the closure and completeness of the chiral algebra. As was
shown by Lykken and Chung in Ref. [27], using results by
Verlinde, holomorphic conformal field theories of twisted
Majorana fermions with self-consistent closed operator

algebras occur at only specific values of the central charge,
namely, 8, 12, 14, 16, 18, 20, 24, 32, and beyond, deduced
by imposing the requirements of a self-consistent fusion
algebra on the tensor product of an even number of twisted
c ¼ 1

2
Majorana (real) fermions [27]. Such an analysis

cannot provide an exhaustive classification, but suffices to
establish the consistency of sporadic self-consistent hol-
omorphic CFTs with c > 24, a useful complement to lattice
classifications.
It should be noted that the single E8 current algebra is

realized at level two [28]. A fermionic realization of an 8D
ESP with 16 unbroken supercharges and gauge group
Spð20Þ was discovered in Ref. [28]. It turns out to belong
in the E8 moduli space, as shown by us in Ref. [28]. The
full structure of the moduli spaces, and the intriguing
appearance of a systematic sequence of electric-magnetic
dual enhanced gauge symmetry points with non-simply-
laced groups, was uncovered by us, using the orbifold
technique. This is important, since unlike the simply laced
cases, where electric and magnetic groups are the same, the
electric and magnetic dual groups differ in the case of any
non-simply-laced Lie group. It turns out that it is indeed
true that an ESP with non-simply-laced gauge symmetry
can appear, without the magnetic dual ESP, in the moduli
spaces in Ref. [28] in spacetime dimensions 9 ≥ D ≥ 5.
Remarkably, precisely as required by the self-duality of the
4D N ¼ 4 supergravity coupled to super-Yang-Mills gauge
theory, it is only in four dimensions that the moduli space
contains both of the necessary enhanced symmetry points,
with electric-magnetic dual groups interchanged. This last
observation is due to Polchinski.
Not surprisingly, we discover the Spð20Þ ESP in its

moduli space, but in the T9-dual regime of large type IB
radius. It is quite easy to identify the type IA dual of 9D
E8 × ðUð1ÞÞ2 moduli space once we observe the analogy
between D0-D8 crossings and the vectors in the E8 × E8

gauge lattice. To begin with, it is helpful to write the ten-
form vectors for eight D0-D8 crossings, and their eight
image crossings, as 16-component profile vectors. We label
the slots in the 16-component profile vectors as follows:
ð1; 2; 3; 4; 5; 6; 7; 8j1̄; 2̄; 3̄; 4̄; 5̄; 6̄; 7̄; 8̄Þ. It can be confirmed
that this global pairing of D0-D8-branes, and images, is
compatible with all 128 ten-form profiles listed above, now
written in a 16-component basis. There is no new infor-
mation in the last eight slots of these vectors; they are the
negatives of the first eight:
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; ðA18Þ
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plus all vectors equivalent up to permutations of the first
eight components. Is it possible to find additional sets of
ten-form profile vectors that meet infrared consistency,
namely, dilaton tadpole cancellation and the absence of
SUð2Þ anomalies, but without a global mutually compatible
pairing of all eight D0-D8 crossings and eight image
D0-D8 crossings?

For readers familiar with the realization of Lie algebras
by Majorana fermions—the worldsheet framework for the
fermionic ESPs in the moduli spaces in Refs. [27,28]—it
should be obvious that many solutions to this problem are
already known. The minimal block of 2n-component
vectors that does not admit a mutually compatible pairing,
or complexification, has n ¼ 8, as was proven in Ref. [27]:
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: ðA19Þ

The analogy between eight branes, and eight images, and
16 Majorana worldsheet fermions is as follows. The
Ramond vacuum of a Majorana fermion exists in one of
two possible states which we denote � 1

2
. In the worldsheet

framework underlying the fermionic ESPs of the moduli
spaces in Ref. [28], the vacuum amplitude is a sum over
sectors with distinct Ramond, or Neveu-Schwarz, boundary
conditions for the 32 worldsheet fermions in the bosonic
CFT with total central charge 16. A mutually compatible
pairing of Majorana fermions among all sectors summed in
the vacuum amplitude provides a complexification of
Majorana fermions, ψ i þ iψ ī, i ¼ 1;…; n, where n ≤ 16.
Such a complexification gives n complex fermions, each
with central charge one, and, n U(1)’s in the gauge group,
since all n lowest excitations in the NS vacuum are retained
in the string spectrum: ψ i

−1ψ
ī
−1j0 >.

Conversely, if a complexification of 2n worldsheet
Majorana fusion algebras does not exist, the gauge group
in the type IA vacuum will have n fewer U(1)’s. It was
proven in Ref. [27] that the minimal solution has n ¼ 8.
Moreover, the basic rules for the overlap of common signs
among vectors in the block of ten-forms listed above
originate as follows: any pair of profile vectors is required
to have an overlap of 0 mod 4, while any triad must have an
overlap of 0 mod 2. Both of these conditions originate in
the ambiguity in the fusion rules of a 2D Majorana fermion
conformal field theory; the full derivation can be found
in Ref. [27].
The 9D type IA string with 16 unbroken supercharges

but eight fewer U(1)’s is a new stable half-BPS state; we
introduce the ten-form profiles above in Eqs. (A18) and
(A19), with O8-planes at the two end points of the interval.

The tadpole cancellation conditions are identical to those in
the previous section. The absence of a global pairing of
eight D0-D8 crossings, and eight image crossings, on either
O8-plane implies a gauge group with eight fewer U(1)’s.
The 9D gauge group is E8 ×Uð1Þ. This theory is the type
IB dual of the 9D heterotic CHL string inferred in Ref. [28]
as an asymmetric orbifold. In 8D, it contains both E8 ×
SOð5Þ and Spð20Þ ESPs [28].
Our identification of an isomorphism between the

Ramond-Ramond ten-form field in the bulk between the
O8-planes and the root and weight lattices of a Lie algebra
in the full Cartan-Weyl classification also leads to a rule for
the sign of the ten-forms, necessitated by the cancellation of
all SUð2Þ anomalies in the generic D0-D8-O8 background.
Finally, we make the following important observation. The
type IB-heterotic duality map with RH set to the Dirac
fermion radius also establishes that the fermionic CHL
strings [28], and type IA-IB duals [25], are exact renor-
malized conformal field theory backgrounds describing
weakly coupled ESPs in both the heterotic and the weak-
strong dual type IA-IB string moduli spaces, in nine and
lower target spacetime dimensions [25]. As pointed out in
the main text, while the type IB dual is strongly coupled, a
T-duality gives a type IA string that is weakly coupled, so
long as the heterotic string does not approach the self-dual
compactification radius, RH ¼ α01=2 [37]. We evade this
regime by matching the normalization of the heterotic and
type IA string vacuum functionals in the small-volume,
sub-string-scale, weakly coupled, regime of the type IA
string, restricting the compactification radii of the dual
Oð32Þ heterotic string to the large-volume regime,
RH ≫ α01=2, RIB ≫ α01=2.
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