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Quantum evolution of black hole initial data sets: Foundations
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We construct a formalism for evolving spherically symmetric black hole initial data sets within a
canonical approach to quantum gravity. This problem can be formulated precisely in quantum reduced loop
gravity, a framework which has been successfully applied to give a full theory derivation of loop quantum
cosmology. We extend this setting by implementing a particular choice of partial gauge which is then used
to select a kinematical Hilbert space where the symmetry reduction is imposed through semiclassical states.
The main result of this investigation is an effective Hamiltonian that can be used to solve for quantum black
hole geometries by evolving classical black hole initial data sets.
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I. INTRODUCTION

Singularities are generic predictions of general relativity;
this was the conclusion of the first singularity theorem that
was discovered by Roger Penrose in 1964 [1]. Prior to this,
it was widely suspected that singularities are aspects of
algebraically special spacetimes or end results of highly
symmetric processes [2], as in the gravitational collapse of
a spherically symmetric compact object [3]. Penrose’s
arguments instead attributed the occurrence of singularities
to the formation of trapped surfaces in geometries where
the Ricci curvature tensor satisfies R,,k*k” > 0 for all null

vectors k.! Further progress concerning the formation of
singularities in general relativity was subsequently made by
the landmark theorems of Hawking and Penrose [4,5].2

Despite their robustness, singularity theorems are reli-
able only in the regime where spacetime geometry is
classical. This, however, runs contrary to what they set
out to accomplish. In fact, one expects quantum corrections
to classical geometry to become relevant on scales where
IRupeaR4| 2 1%, where R4 is the Riemann curvature
tensor and /, ~ 107 cm is the Planck length. For the most
elementary examples of singularity in general relativity,
IR 4pcaR?’“| blows up as one approaches the singularity.
Therefore, whether singularities generically form in nature
as predicted by the singularity theorems hinges on how
spacetime behaves in the quantum domain.
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Penrose’s theorem requires global hyperbolicity for the
spazcetime.

See [6] for an extensive discussion of these results.
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The degree to which quantum effects modify classical
singularities has long been a subject of speculation. Penrose
argued in [7] that understanding the quantum structure of
the initial spacetime singularity is the key to resolving one
of the long-standing puzzles in theoretical physics, namely
the second law of thermodynamics and the origin of the
observed (albeit minute) time asymmetry in nature.’ Should
quantum effects resolve this initial spacetime singularity by
replacing it with a bounce, it may be difficult to concoct a
compelling explanation for the second law of thermo-
dynamics [1 1].4‘5 However, in the context of quantum
geometry, one expects the notion of entropy and how it
evolves to be scale dependent. Therefore, the fate of the
second law in quantum gravity is tied to understanding the
quantum structure of the Universe near the cosmological
singularities as well as the exact mechanism by which the
classical and continuous spacetime manifold emerges
from them.

Aside from cosmological singularities, one can also
ponder upon consequences of black hole singularities being
removed by quantum effects. In that case, a resolution for a
number of outstanding riddles and open questions may be
within reach. Of significant importance are the cosmic
censorship hypothesis [14] and the information loss para-
dox of black hole evaporation [15]. For the latter, if the

3A microscopic example of this time asymmetry is the CP-
violating decay of K° mesons [8—10].

*We refer the interested reader to [7] where the vanishing Weyl
curvature hypothesis is explained.

>Steinhardt and Turok have argued in [12,13] that in ekpyrotic
models the second law of thermodynamics is respected; the total
entropy increases from cycle to cycle while the entropy density
undergoes periodic behavior. Nonetheless, ekpyrotic models do
not provide any explanations for the origin of the second law.
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semiclassical approximation scheme is correct, the unitarity
principle of quantum mechanics is violated by pure states
evolving into mixed states during black hole evaporation
(see [16] for a review of the basic arguments). Several ideas
have been proposed to resolve this paradox with some
being more radical than others. On the more exotic side,
there are ideas proposing black hole event horizons turning
into “firewalls” [17] or “fuzzballs” [18]. In these specula-
tive scenarios, phenomena in gross violation of the equiv-
alence principle are required to occur on a black hole event
horizon in order to shut down correlations between the
infalling and outgoing pair of created particles. On the more
conservative end of the spectrum, there are proposals such
as Planck-sized remnants of the evaporation process
[19,20], and singularity resolution by quantum gravity
effects that lead to an extension of the spacetime diagram
for evaporating black holes [21]. However, a clear-cut
resolution to the aforementioned paradox has not yet
emerged in these latter proposals either. Indeed the idea
of black hole remnants has been criticized for a lack of
viability as it requires a Planck-sized object to have an
enormous entropy, roughly on the order of M? where M is
the black hole mass, which in turn leads to the infinite pair
production problem, although objections have been raised
against this critique in the literature (see, e.g., [16,22-24]
for a discussion). Similarly in the case where the black hole
singularity is resolved and a classical spacetime emerges to
the causal future of the would-be singularity, a description
for a concrete mechanism that purifies the early radiation
degrees of freedom (d.o.f.) is lacking (see, however, [25]
for an interesting proposal). Beyond all speculations, a
definitive fate of a classical singularity is only predicted by
a detailed full quantum gravity calculation. Given the
intimate relation between the last stages of black hole
evaporation and Planck-scale physics, this paradox will
likely be resolved by a better understanding of a quantum
gravity description.

Presently, string theory and loop quantum gravity (LQG)
have been sufficiently developed to allow for problems
of this kind to be explored within their respective frame-
works. In the past two decades some evidence has emerged
in string theory in favor of quantum singularity resolution.
One of the earliest results is by Horowitz ef al. [26] where
AdS/CFT duality was used to argue that the interior of a
black hole in anti-de Sitter space is described by a
singularity-free supersymmetric field theory on the boun-
dary. Similar results have been obtained for cosmological
singularities using the AdS/CFT duality [27-30]. Aside
from AdS/CFT, other well-known proposals include
models with tachyon condensation [31,32], matrix
models [33,34], and models that use orientifolds [35].
Nevertheless, no full theory calculation has been produced
that can provide a definitive answer.

LQG [36] embodies the most studied nonperturbative
quantization program of the gravitational field. Questions

such as the quantum fate of classical spacetime singularities
can in principle be formulated and investigated within this
framework [37,38]. On the specific subject of black hole
singularities, a number of very important studies [39—47]
have been conducted where the primary focus is on the
geometry interior to the event horizon of a Schwarzschild
black hole. The aforementioned geometry is homogeneous
and can be described by the Kantowski-Sachs type metric.
This particular geometry can be treated as a minisuperspace
for which the techniques developed in the cosmological
context by loop quantum cosmology (LQC) [48-50] are
available and can be readily used. The results of these
investigations point to a singularity resolution of the
bouncing cosmological type [51-53]. Further evidence
of singularity resolution due to the implementation of
the LQG dynamics was provided also in [54,55].

The study of the complete phase space in the symmetry
reduced case started with the work of Kuchar [56] in metric
variables and the work of Thiemann and Kastrup [57] in
complex Ashtekar variables which was then revised using
LQG techniques [58]. In [59-61] the Ashtekar-Barbero
connection was used to obtain a kinematical description
along with the Hamiltonian constraint. In [62,63] the
extension of the previous results within a classical modi-
fication of the Dirac algebra that transforms the symmetry
reduced case in a Lie algebra allowed one to define the
physical Hilbert space and observables corresponding to a
metric that was shown to be free of singularity.

A parallel line of investigation was conducted within the
framework of covariant LQG, namely the spinfoam models
[64]. The idea is that if the singularity is removed as in the
homogeneous LQC, it is reasonable to expect a black hole—
white hole transition named a Planck star [65] that can be
modeled with a nonsingular metric [66,67] of the Hayward
type [68]. The tunneling can then be studied in terms of
transition amplitudes between coherent states representing
classical spacetimes [69,70]. Phenomenological conse-
quences were discussed in [71-73].

An alternative approach to model semiclassical and
continuous spherically symmetric geometry has recently
been pursued within the framework of group field theory
(GFT) [74] in its operatorial formulation, providing a
second quantized version of LQG. The main idea behind
this approach is to describe homogeneous continuum
geometries in terms of GFT condensate states encoding
the information in a condensate wave function depending
on a few collective variables [75]. This allows one to model
a black hole geometry by starting from the full theory and
implementing the symmetry reduction at the quantum level
[76,77]. In this case, application of the GFT condensates
formalism to the cosmological setting has allowed one to
recover modified Friedmann equations showing the pres-
ence of a bounce in the Planck regime [78-82]. One could
then hope that also for the black hole case singularity
resolution could be proven. However, implementation of

046014-2



QUANTUM EVOLUTION OF BLACK HOLE INITIAL DATA ...

PHYS. REV. D 98, 046014 (2018)

the GFT dynamics in the black hole context is currently out
of reach due to the highly challenging technical difficulties
when dealing with generalized condensate states imple-
menting graph connectivity. The main achievement of this
manuscript is to show how to successfully implement the
LQG dynamics to the case of a spherically symmetric black
hole geometry while starting from the full theory and
keeping the graph structure.

In this article we adopt the so-called quantum reduced
loop gravity (QRLG) [83-91] approach and apply it to
spherically symmetric geometries. At the heart of this
approach lies the old familiar idea that a choice of symmetry
compatible coordinate system drastically simplifies the task
of solving the Einstein equations. QRLG intends to carry this
simplification to the quantum level. To understand this
better, it is helpful to briefly review how this framework
has been applied to homogeneous anisotropic cosmologies.

In the case of Bianchi I spacetime, the existence of three
Killing vector fields allows one to choose a coordinate
system in which the metric is diagonal and only dependent
on the time variable. The space of Bianchi I metrics is then
just a subspace of the full Arnowitt-Deser-Misner (ADM)
phase space that consists of homogeneous and diagonal
3-metrics. Note that diagonalizing 3-metrics is always
achievable by imposing a partial gauge fixing (i.e., by
using the gauge freedom provided by the spatial diffeo-
morphisms [92,93]), which comes at the cost of dealing
with second class constraints and selecting a partially
reduced phase space. A subspace of the latter is coordinate
independent metrics singled out by symmetry. The classical
use of a minisuperspace can thus be seen as first reaching
the partially reduced phase space and then restricting it to
its symmetric sector. The QRLG approach to cosmology
was devoted to access this sector at the quantum level as
opposed to LQC, in which the symmetry reduction is
performed classically and one is then left with finite-
dimensional systems. The main reason for this extra step
is that the fundamental structure of LQG does not permit
one to use differential geometry to define the notion of
symmetry at the quantum level. In the process of symmetry
reduction followed by quantization (as required in LQC)
most of the structure of the full Hilbert space is lost and has
to be reintroduced via assumptions.

The QRLG approach is to revert the process of symmetry
reduction and quantization to derive a symmetric sector
of LQG in which none of the fundamental structures of the
full theory is lost. To achieve this goal, a reduced Hilbert
space is first selected from the full kinematical Hilbert
space for which the metric is diagonal and then the
symmetry reduction is performed, selecting homogeneous
coherent states. This procedure allows one to work with the
complete structure of the full theory, consisting of quantum
states of polymeric nature labeled by graphs and SU(2)
representations. Moreover, it shows that the minisuper-
space effective quantization of LQC can be reproduced at

the level of the expectation values of quantum operators
acting on the partially gauge fixed Hilbert space. However,
the presence of the graphs also leads to some modification
in the deep Planckian regime.

Here we intend to apply the same construction to
spherically symmetric geometries. We will do this in four
steps: in the first step, we implement the gauge fixing
condition at the quantum level to define the partially gauge
fixed Hilbert space.6 This corresponds to the classical
reduced phase space for a suitable choice of gauge that
results in the triad E£¢ having only the five components E%,
EY, ES, E‘f’ Ef In terms of the 3-metric, this partial gauge
choice amounts to having only the rr, 66, 6¢ and ¢¢
components as nonzero. In the second step, we project the
constraints defined in the full theory to represent the
classical gauge unfixed constraints [97]. The third step is
to define states belonging to this kinematical Hilbert space
where the classical notion of symmetry can be defined
using spherically symmetric coherent states. Finally, we
define the effective constraints by taking the expectation
value of the quantum reduced constraints on the symmetry
reduced states.

This article is organized as follows. In Sec. II we review
the canonical formulation of general relativity when
restricted to spherically symmetric geometries. In Sec. III
we show how this symmetric phase space can be seen as a
subspace of a partially gauge fixed phase space. We work out
the first class constraint algebra obtained from the gauge
unfixing procedure that preserves this subspace. In Sec. IV
we build the reduced kinematical Hilbert space that imple-
ments at the quantum level this partial gauge fixing. We then
derive the Hamiltonian constraint operator acting on this
Hilbert space in Sec. V. After this, we build the semiclassical
states representing spherically symmetric states in Sec. VL
Finally in Sec. VII we derive the effective Hamiltonian by
taking the expectation value of the reduced Hamiltonian
constraint evaluated on the coherent states. Further technical
details are presented in Appendices A and B; Appendix C
contains an alternative approach to the quantization of the
Lorentzian part of the Hamiltonian constraint.

II. CANONICAL FORMULATION IN
ASHTEKAR VARIABLES FOR GEOMETRIES
IN SPHERICAL SYMMETRY

The ADM formalism [98] describes the Hamiltonian
evolution of initial data sets in general relativity. In this

®Recent studies [94-96] attempted to provide a quantization
for the reduced phase space in a radial gauge for the ADM
variables different from the one introduced in [97] for connection
variables. In [96] a scheme to implement symmetry reduction at
the quantum level was also introduced; however, this analysis
relies on a Peldan hybrid connection, yielding a description of the
kinematical Hilbert space in terms of point holonomies and a
restricted action of the Hamiltonian constraint to a single point for
a given 2-sphere.
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context, a vacuum initial data set consists of a spacelike
Cauchy surface’ %, together with its intrinsic metric ¢, and
a symmetric tensor 7% that are required to satisfy

GR 1
— - g ' 7ny + g7t =0,
K 2

D,(q~'/?z%") =0, (1)

on %,. Here D, is the ¢, compatible torsion-free derivative
operator, x = 87G, g = det(q,;,), and 7 = q,,7*’. Once
embedded in a four-dimensional spacetime, 7" is related to
the extrinsic curvature K, of X, by

ﬂ.ab — %\/a(Kab _ anb)_ (2)

The canonical phase space variables, namely ¢, and 7,
are evolved by the relevant Hamiltonian (to be described
below) and are subject to the following Poisson bracket:

{8 (1.%). qualt.¥)}) = k8L (x—y)  (3)

at all times. Note that not all components of g, and 7% are
independent; of 12 components, 4 can be eliminated by a
choice of coordinate gauge and another 4 are eliminated by
virtue of Eq. (1). This leaves two propagating d.o.f. for the
gravitational field as expected.

The intrinsic metrics on all Z, can be sewed together to
provide a spacetime metric given by

ds? = =N*di* + q,,(dx® + N°dt)(dx? + N°dt), (4)

where N is the lapse function and N¢ is the shift vector.
A choice of N and N“ determines a foliation for the
spacetime. One needs to specify a foliation prior to solving
the Hamilton’s equations for ¢,, and 7.

Here we are interested in the case where X, has the
topology X, = R x §? and the spacetime geometry is
assumed to be spherically symmetric. The most generic
spacetime metric is then given by

ds? = —N2di® + NX(dr + N'di)* + R*(d6” + sin6dg?),
(5)

where N, N”, R, A are functions of r and ¢, with —c0 < ¢,
r<oo. A(t,r) and R(t,r) are assumed to be positive
functions; together with their conjugate momenta they
represent the set of phase space canonical variables.
Note that it follows from the above equation that the
intrinsic metric on the spacelike hypersurfaces is

s, represents an instant of time in the spacetime M. One
tacitly assumes that M = R x Z,.

do® = N2dP? + R2(d6? + sin?0dg?). (6)

Expectedly, once a foliation is chosen, two independent
functions are sufficient to describe an arbitrary metric in
spherical symmetry.

As it turns out, the canonical quantization program is
most conveniently formulated in terms of the Ashtekar-
Barbero connection A, and the densitized triad E¢ instead
of ¢, and 7% 8 This way, deriving the quantum corrected
semiclassical Hamiltonian is significantly more straightfor-
ward, as will be shown in the subsequent sections. The
spatial index a runs over {r, 8, ¢}, while the SU(2) internal
index i € {1,2,3}. One then has the following Poisson
bracket:

{AL(x). E} ()} = kr58,555° (x —y) (7)

in lieu of Eq. (3). Note that here 5*(x —y) = &(ry — ry)
5(0x —0y)6(x —@y) and y is the Barbero-Immirzi
parameter.

To derive the densitized triad, we begin by deriving the
tetrad e/, for the metric (5). This is done using the relation
Jap = eéelﬁ. A quick calculation reveals

= N+ NN = (e ()
Gy = N°N™ = =90 + e,
g =N = _(69)2 + (63)27
goo = R* = eperg + egen.
9pp = R*(sin0)? = eley, + eles,,
9o, = 0 = epen, + eGen,,

from which we read off the complete set of tetrad
components

e’ = Ndt, (8a)
e’ = AN"dt + Adr, (8b)
e' = Rcos &df — R sin 0 sin adg, (8¢)
e? = Rsinadf + Rsin 6 cos adg. (84)

Here we have left a rotation freedom for the components
e! and e? described by the angle &, which can have any
arbitrary given value. The tetrad components also satisfy

the following equations:

¥See [99] for a thorough exposition on the subject.
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el + el =0,

ege2 + e,ﬂe2 =0.

If we go to the time gauge where €% = n,, the densitized
triad

E = R?sin07°0, + AR sin 0(cos ar' + sin@z?)9,

+ AR(cos @z? — sinaz' )0, (10)

-
Here 7' are basis vectors in the internal space.9

The connection components w/ = —w!/ can be com-
puted from the torsion-free condition de! = —w'; A €’.

o R S The explicit derivation is provided in Appendix A. Using
E = E{7t'0,, where Ef = 7€ EijkCpCe (9 the result of Eqgs. (A3a), the Ashtekar-Barbero connection
Al =T"+yK', where I'" = —1él 0% and K' =", is
becomes given by
A = Alz;dx?
AN+ AN"" — A R R R
:—y( +N )f3dr+x{[y<Nr—ﬁ) Sin&+COS&:|T2+ {y(Nr—E) cosa—sma]ﬂ:l}dé
in R’ R R

+s1nA { { <Nr_E> cosa—sma]fz [y(Nr_E> sma+cosa]rl}dgo+005913dgo. (11)

If one is to use the notation of [61], where the spherically
symmetric Ashtekar-Barbero connection and triad are
written as

E = E'(t,r)sin0730, + [E'(t, r)t| + E*(t, r)7,] sin 00y

+ [EMN(t, r)T, — E%(2, r)71]0,, (12)

A= Ar(t, r)7:3dr + [Al(t, r)Tl +A2(l, r)Tz]de

+sin0[A,(t, r)t, — Ay (t, r)71|de + cos Otzdep, (13)
one has
E"(t,r)=R?, E'(t,r)=ARcosa, E*(t,r)=ARsing,
(14)
AN'N"+AN" — A
A(t,r)= —y( ks ) (15)

N
R[ R _
A'(t’r>:X y<N’—R,> cosa—sina|, (16)

[ R
Ay(tr) =— y(N’—R,> sina +cosa|. (17)

"We use the anti-Hermitian basis z;, where [z;,7,] = ¢; ]-krk and

(z;,)* = —iI for all i’s and Tr(z;7;) = —16;;.

The Poisson bracket (7) then takes the form

{A(t,r),E"(t,7)} =2GyS(r —+'), (18a)
{A\(t,r),EN(t,7)} = Gys(r—7), (18b)
{Ay(t,7), EX(t,7)} = Gys(r = ). (18¢c)

III. CONSTRAINTS FOR THE PARTIALLY
GAUGE FIXED PHASE SPACE

In this section we derive the classical Hamiltonian,
diffeomorphism, and gauge constraints subject to the
particular gauge fixing scheme of [97].

The classical phase space is characterized by the follow-
ing standard seven constraints
(19a)

kG; = 0,E¢ + ¢; kA’ EY, Gauss constraint

kH, = F' E? — AiG,, Diffeomorphism constraint
(19b)
EEY | o
= T(E‘) |:€UkF];4b - 2(1 + y2)KfaKé]j| y
Hamiltonian constraint (19¢)
where
Fi, = 8,A, — 0,AL + ¢, ALAL (20)

are the curvature components of the Ashtekar-Barbero
connection. Notice that when we substitute the triad and
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the connection given in Egs. (10) and (11) in the above
constraints, we are merely left with the Gauss constraint in
the 3 = r direction, the radial diffeomorphism constraint,
and the Hamiltonian constraint.

In [97] we performed the Dirac treatment of this con-
strained system when the following radial partial gauge
fixing conditions are introduced:

E; =0,

=12, (21a)

E3 =0, A=20,¢. (21b)

These conditions can be seen as additional constraints in
the phase space which render the Hamiltonian system to be
of second class. Instead of building the Dirac bracket to
impose the second class constraints, in [97] we followed an
alternative strategy that goes under the name of a “gauge
unfixing” procedure (GU) [100-102]. This procedure,
which also requires the inversion of the Dirac matrix,
|

allows us to use the Poisson bracket given in Eq. (7) for
imposing the remaining three first class constraints.
However, while one of these constraints still corresponds
to the original i = 3 component of the Gauss constraint, the
other two are given by the reduced phase space part of the
radial diffeomorphism constraint given in Eq. (19) and
the Hamiltonian constraint in Eq. (19¢) plus extra terms.
Explicitly, denoting with a tilde the extended'” representa-
tion of these remaining constraints, we have

~ 1
Galos] = *Gula] = ¢ [ @ranfo 5+ e/ abEf). (22

. 1 1 eV EfOgEE
H,[N"] :;RH,[N’] +- / d3x(0,N") |:IEBJ
3

5”E§‘E‘}IB]
(E5)?

10 B (OE]) T,

_ 1 N T,EATLE!B
H[N] =~ d3x—[RH—{A’B
£[N] P det(E) 3TY (Eg)z
~ 1472 NRH
N = 24 [ L (25)

x Y JdeE)

where a3 is the i =3 component of the a; smearing
function associated with the Gauss constraint, RH, is the
reduced radial diffeomorphism

RH, = (0,AL)E} — A}O,EY, (26)
RH; is the reduced Euclidean Hamiltonian

RHp = E5E}e! ;0,A4 + EJEJAL A

wAz + ESETARAL,(27)

and ®H, is the reduced Lorentzian Hamiltonian

"H| = E}EJK[,K} + E5E} KK (28)

"“The connotation “extended” refers to the fact that the new
expressions for the constraints are obtained by replacing the
connection components conjugate to the triad components that
we have gauge fixed with their extended versions. This results
from solving the second class constraints explicitly. In fact, in [97]
it was shown that this corresponds to adding a linear combination
of second class constraints to the original H, and H so that the new
expressions preserve the gauge conditions. Effectively, this gauge
unfixing procedure amounts to having a new set of first class
constraints, equivalent to the initial one, but now written as
functionals of only the reduced phase space coordinates.

EB ORE'B
I.IEA_’Z' 6 _J _ErEAa B ,
E; T € Ly Lp0y E; 3L7 04 E;

(24)

To shorten the notation, in the expressions above we
have defined

Dy = E}0,A — Op(ALET), (29)
T, = / "dr[Dy + E50,A7). (30)
0

Notice that the Lorentzian part of the Hamiltonian
constraint does not pick up any extra contribution in
addition to the reduced term. This is because, once
projected on the gauge surface described by Eq. (21),
the Lorentzian term given in Eq. (19) does not contain any
extrinsic curvature component conjugate to the flux (i.e.,
triad) components that we have gauge fixed; therefore, in
the gauge unfixing procedure of [97], we do not have to
perform any substitution of extended momenta inside H;..

The Hamiltonian constraint that appears in Eq. (19) can

also be written as
72
+ (1 ——> det(E) } (31)
S

where s = + is the spacetime metric signature, R is the
Ricci scalar given by

H:_{M

v det(E)

R =Ry efel = €,y RE,ele?, (32)
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with

Ry, =20,y + 0Ly (33)

As we will see in Sec. IV, our aim is to build the QRLG
quantum theory where we will access the reduced phase
space using projectors from the full theory. Therefore we
are not going to perform the reduced phase space quan-
tization as attempted in the existing literature. This means
that if we had the physical Hilbert space of the full theory,
namely the kernel of the quantum operators corresponding
to the constraints given in Eq. (19), we would simply
transform it to the Hilbert space of QRLG. Unfortunately,
while the structure of the solutions to the Gauss and the
vector constraints are very well understood in the full
theory [36,103,104], very little is known about the structure
of the Hamiltonian constraint [105,106] and its kernel
|

ESE?

€iij§h (A)

Hy [N] :%L d3XN(x)T(E)

Zl/d3x N(x)
KJx \/EHEf/’_EGE!ﬂ Eg

[E5(ETF5(A) -

ESFL(A) + E{F3,(A) -

[107,108]. Our strategy is then to use the projector on the
kernel of the Gauss and the vector constraints and instead
quantize the reduced Hamiltonian constraint. In particular
our final aim in this paper is not to find the full set of
solutions but just to derive the effective reduced
Hamiltonian constraint when the symmetry reduction is
imposed at the level of coherent states. To this end, we will
compute in the next section the reduced Hamiltonian
constraint for spherically symmetric geometry.

A. Symmetric subspace of the reduced
phase space: Hamiltonian

Using the curvature components of the Ashtekar-
Barbero connection that we worked out in Eq. (A7), the
spherically symmetric Euclidean part of the Hamiltonian
constraint reduces to

EJF},(A)) + (E{EY — ESE7)F;,(A)]

/ v El x) sin@ o REA(E'A, + E*A,) +2E7(E' Ay — E?A7) + ((E')> + (E2)?) (A} + A3) - 1)).

(34)
On the other hand, the reduced Euclidean Hamiltonian given in Eq. (27) yields
RHE|N] :% / d3x\/%[E§E§‘A§Af\+E§E?e’ J0,A} +EEJA{, Ay
/ V(G :?; 2EA,(E'A; + E2A) + 27 (E' Ay — EPA)) + ((E' )+ (E2)2) (A3 +43)).  (35)

while the correction terms in the extended version of the Euclidean Hamiltonian constraint given in Eq. (24), resulting from

the gauge unfixing procedure, reduce to

1
———FE(0,04E"8

\/—

=y / e e (B + ()

We thus see that

E
H sph

1 ENOgER)T,

1/ s N {IAEAZBE’B
—— | d°x =~ + el
K ,/det (E3) 5

[N] = HF[N].

A L EM 5O, (

EB OgE'B
)P
5 3

(36)

(37)

as expected; namely, the role of the extra terms in the extended Euclidean Hamiltonian is to provide the contribution given

, in HE

by DA} inside F;, o

space appears.

[N, since this is the only term where a connection component not belonging to the reduced phase
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For the spherically symmetric Lorentzian part of the Hamiltonian constraint given in Eq. (28), we have

H,[N] = ” / \/d_ (EAERKL K} + ESEAKIKY)
e
(1+ 2 )/ N(x)sin6
=TT [ YO gy 4 (g2, 38
s =\ (B + (B) (38)
where
R R
K=" (N=2 39
(v -5) )

is the trace of extrinsic curvature of X,. Let us also write the Lorentzian Hamiltonian constraint in terms of the Ricci scalar.

By means of Eq. (A17), we have

HN) = -1 <1 +12> /)E PxN(x)/d(E)R

14
N(x)

1 1
=—(1+ > / dx -

k ( ) S 2By sin' POl(ET)? + (B9
— 2ELEY (EY[(sin OEY OyEY — 4E509EY)DpEY + sin OEES O3 ES)
1)?(—4sin’0(E3)*[(0,E%)* —
+ (0,E5)? + AE502ES]) + ES(—2sin*0(ES)* (0, E5 )2
— 4(E%)30,EY0,Ef +

R”) +A<1 -~ (112)2)]. (40)

— 2sin OF;(EY )3 [0gE5 09 ES + E403EY)
+2(E5)%0,E70,E%) + (E
+ (E5)*[4(00EY)?
X E5(E7)?[0pE300E] + E505E]]

2 1 ) 2R (R'N
:—K<1—|—y2>/>:d3xN(x)sm9[A< T

The expression in terms of the fluxes that appears in the
second equality above is the one that we are going to use to
quantize the Lorentzian Hamiltonian constraint. In fact, given
the diagonal action of the reduced flux operators, we can
compute its expectation value in a lengthy but straightforward
manner, without having to rely on any recoupling theory.
Despite the fact that we used spherical symmetry to arrive at
this expression, such simplifications would in any case be
enforced by the coherent states that we build in the next
section. This way we have simplified the calculation of the
expectation value of the Lorentzian Hamiltonian without the
need to sacrifice any relevant quantum corrections (see
Appendix A for more details on the symmetry assumptions
used to derive the expression above).

IV. QUANTUM REDUCED LOOP GRAVITY
KINEMATICAL HILBERT SPACE

In this section we construct step by step a reduced
kinematical Hilbert space HF that implements at the
quantum level the radial partial gauge fixing in Eq. (21).
We start with the standard LQG kinematical Hilbert space
HX representing quantum holonomy-flux algebra. We then
perform a weak imposition for the quantum version of
Eq. (21) that restricts the non-gauge-invariant spin network

[~2sin?0(EY)*|(Dp5)? — E5 035

ES02ES] + 2 sin OELES [0y EL 09 E + ELO5EY)
— EL03FE5] + 2sin6
(E5)E3[4(9pES) + (0,E%)* + 4E507ES))]

[

basis states arriving at HX. Symbolically, PHX = HXE,
where P is the projection operator defined below.

The first ingredient of the quantum reduction process
consists of a choice of spatial manifold triangulation adapted
to the topology of interest and selecting a subclass of graphs
labeling the spin network basis of HX. A natural choice for a
spherically symmetric geometry is to restrict to cuboidal
triangulations, where at each vertex we have three directions,
one corresponding to the radial direction and the other two to
the angular directions on the 2-spheres foliating the spatial
manifold.

In what follows we present the technical details of our
construction.

A. Reduced spin network states

Given a two-dimensional surface S¢ with normal vector

Oxb 0x¢
ng, = 861 862 €abes (41)
where o, and o, are local coordinates on S¢, we restrict our
choice of fluxes to the surfaces whose normal vectors are
aligned with the three tangent directions r, 8, ¢. We choose
two su(2) orthonormal bases labeled by {x,y,z} and
{1,2,3} for which the basis elements 3 and z coincide
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FIG. 1. Tangent and internal directions.

[{1,2} differ from {x,y} by an SO(2) rotation «a].
Consistently with our classical gauge fixing, we take the
direction r to be aligned with the internal direction 3 while
the directions ¢ and ¢ are aligned with x and y (see Fig. 1).
Therefore, our gauge fixing reads

E5(8%) = 0 = E5(8?), (42)
E\(S") =0 = Ey(5). (43)

where
E;(89) = /E?nadaldaz. (44)

In order to implement the above partial gauge fixing at
the quantum level, we select cuboidal graphs I"’s adapted to
this set of coordinates. This means that the edges £, are
aligned with the three directions {r,0,¢} such that

£% « 5. Along these directions the SU (2) holonomies are

_ ’Peffe 'r,-Af,fZ(s)ds' (45)

The set of discretized 2-spheres at a given value of r is
equipped with a grid of plaquettes with edges labeled by the
tangential coordinates 6 and ¢. In a graphical representa-
tion, this is given by

0,¢) ! (r+e,0,0+€,)

(r+er,

(46)

(r + €00 + €9, 0+ €)

(r,0+¢€g,0+€p)

(r,0 +¢€9,9)

with e,, €9, and €, being coordinate lengths in the tangential
directions. We designate this set as the set of reduced

graphs. Our projection operator P acts on H* =@, HX,
where y are arbitrary graphs labeling HX, in two steps: first
by restricting y to I', where I" is given by cubulation of at
most 6-valent vertices as shown in Eq. (46), and then
projecting HE to its reduced subspace HK. The kinematical
Hilbert space HR is then obtained from the direct sum over
all reduced graphs of this form that we construct from the
union of I', namely

HR =@ HE. (47)

HE is defined by assigning to each link in a given tangent
direction the following basis elements:

<g9|X, jxv ﬁlx’ ﬁx>v
(48a)

"D}, (99) = (. g DI+ (gp) | i) =

"D} ;. (9,) = iy 1, | DV (g, )iy idy) = (g,|y. Jy- iy 1)),

(48b)

(grlrsjrinz, i),
(48¢c)

D% 1 (9,) = (. jIDF(g)|joo ) =

where |j, m) is an element of the spin basis that diago-
nalizes both 7'z; and 73, and /m,, i, = £j,, m,, i, = £j,,
and m,, i, = £j,. We denote two orthogonal unit vectors
in the arbitrary internal directions I € {x, y} on the (1,2)-
plane by i,;. Then

ZL]I’ mn I) (49)

\Ap,iiy) = D7 (idg)]jg. i)

is an SU(2) coherent state having maximum or minimum

magnetic number along ii; [D7,,(g) are the standard Wigner
matrices in the spin basis |j, m)].

The basis elements given in Eqgs. (48) and (48) can also
be written as

D}, (9) =

mpny

—1 i
D%,m(ul)Di’lm( )Dgn,(ul)’ (50)
where u; is an SU(2) group element that rotates the 3-axis
into #; and repeated indices are summed over. Given the
convention shown in Fig. 1, we parametrize the rotation
group elements as

u, = R<a,g,0> = "R, (51)
uy, =R (a + ; , ;T , —;) = eltneine=in, (52)

The angle a above that enters the construction of the
reduced states and the operators that we construct

046014-9



ALESCI, BAHRAMI, and PRANZETTI

PHYS. REV. D 98, 046014 (2018)

below is a priori independent of & that appears in the
classical solutions for the connection and the densi-
tized triad of Sec. II [the relation between the couples of
internal directions (1,2) and (x, y) can be chosen inde-
pendently for the classical solution and the quantum
construction]. In order to implement the residual U(1)
gauge invariance, we are going to integrate over the angle o
in the reduced states, while the & appearing in the classical
solutions given in Eqs. (12) and (13) for triad and
connection, around which our semiclassical states are
peaked, is held fixed.

Notice that unlike the reduced states built for cosmo-
logical applications in [86], in Eq. (48) we also include
the off-diagonal terms, i.e., states peaked on maximum-
minimum magnetic numbers and not just maximum-
maximum or minimum-minimum. As we will show below,
these states are in fact allowed by the radial gauge fixing
given in Eq. (21). They are important in the black hole
context since the symmetry reduced Ashtekar-Barbero
connection contains general off-diagonal terms (see
Sec. IIT A).

We can now show that on H* the gauge fixing conditions
given in Egs. (42) and (43) are weakly satisfied. Let us
concentrate on 3-cells with surfaces S¢ that intersect the
respective dual edges KZ only once. Hence S¢ are three
orthogonal faces of the cube dual to a 6-valent node of the
reduced graph. This provides a regularization of the
reduced fluxes. By means of the Baker-Hausdorff formula,
let us first derive the following relations:

u,T3u;! =17, cosa+ 1, sina = 7, (53a)
u,t3u;! = —7; sina 4+, cosa = 7, (53b)
Uy t3u, = 7, (53¢)
uy'tyu, = —1,, (53d)
uy'tiu, = 75 cosa — 1, sina, (53e)
uy'tiu, = —73sina + 7, cos a, (53f)
u;'tou, = 73 sina + 7, cos a, (53g)
uy'tyu, = 73 cosa + 7y sina. (53h)

It is then immediate that

<];m ﬁ/l;c’ ﬁ;c’ X|E3(Sg)

‘x’ jx’ mm ﬁx>
— —ixyo(¢3.5%) [ dg'Dl (0Dl (Dl (9

= —ikyo(¢3, Sg)xDj—* w (13) =0, (54)

m X mX

and similarly for the other gauge fixing conditions. Notice
that this relation is only valid for j # 1/2 since in that case
the off-diagonal matrix elements will not be necessarily
vanishing. However, this case is not relevant for our
construction because we are only interested in the semi-
classical limit of the effective Hamiltonian through coher-
ent states which provide good approximation to classical
geometry only in the limit j > 1 (see Sec. VI). Since these
states peak the spin quantum numbers on large values, the
spin 1/2 contributions to the semiclassical expectation
values we compute below are largely suppressed and we do
not have to worry about them for the purposes of our
analysis.

For the other components of the fluxes which are
classically nonvanishing we get the following expectation
values:

(E5(87)) = —ixyo(£3, S)DF; s (%)

m.m;,
"z

= —kyo(?5,8")m,, (55a)
(E\(8%)) = —ixyo(£,. S")'D}; 5. (71)

= —xyo(¢y, S)m, cos a, (55b)
(E1(87)) = ~irro(¢,.57)' D 5, (7))

= kyo(?y,8%)nsina, (55¢)
(Ex(S%)) = —ixyo(¢,, S D s (72)

= —«kyo(?,,S%)m, sina, (55d)
(E5(87)) = ~iKyo(¢,.57)' D 5, (2)

= —kyo(?,,8?)m, cos a, (55e)

where o(Z, S) is a sign denoting the orientation between a
link and its dual face. All off-diagonal matrix elements
vanish for these operators as well, as long as j # 1/2,
which, as just explained, is not relevant for the semi-
classical limit.

B. Quantum Gauss constraint

We proceed by projecting the kernel of the full theory
Gauss constraint. As expected, this will be performed by
the operation

PGP, (56)

where P is the projection operator defined previously. The
kernel of G; is given by the well-known gauge-invariant
spin network states obtained by contraction with the SU(2)
intertwiners at the nodes of the graphs. Operator P is
then restricting the intertwiners in the way explained in
Sec. IV C. The operation PTGiP maps the kernel of Gi to
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the kernel of RG;, representing the classical phase space
reduction given in Eq. (22). The states annihilated by RG3
are now a invariant, where a is parameter of rotation around
the internal 3-axis that has been aligned to the r-axis by the
projector P.

C. 3-valent vertex state

Let us write the resolution of the identity in terms of
coherent states:

L=

m

:@/dewﬁm
S2
= JZ/ duD’

The gauge-invariant version of our states given in
Eq. (50) can be obtained from the standard gauge-invariant
spin network states as

Jom)(m, j

)D} () j,m) (n, | (57)

G Diin(9)1), = df,/ dujduir;™(m. jiliny, iip) iy, mg |\ D7 (g) |y, id7) Gidg . g, ),

:dz /Sduld”% *mD{f‘( )Dh (up)(m, jiljr, ><b’j1\Dj’(9)|jl,C><d’jl|j1’”>D“ (ul)Djdln (”?)l,,
ahLd :

_ﬁ/me%“(W“«

L Jr ming myiy

where ;" is an intertwiner in the 3 basis. Setting ul =
u? = u; amounts to projection on HR. The reduced
holonomies are then obtained by restricting the Haar
measure du only to U(1) rotation around the z-axis, namely

Diilg) = &, [ daily, (1(@)
0
x Dy, (uy (@)~ guy () Dy (s (@) (59)
In a graphical notation, this is

2T
Dyto) = [ da _r
0

.71 Jr
-
)

Here we denoted the projection on the highest or lowest

magnetic number as
o J1 JI
(mr, j1| = }7 4‘
J.m) basis for the u;

and the Wigner matrices in the
rotations and a generic SU(2) group element g respectively
as

ljr,mr) = (61)

) )

J1

D, (u

J

D}ag) = @

Dy, (uf)el,

) g”])

(58)

Using this notation, we can represent a reduced 3-valent
vertex state as

where the 3-valent node represents the standard 3 — j
symbol and its contraction with SU(2) coherent states
defines the reduced intertwiners.

D. Geometric operators

On HXR that we constructed above, we can now define
the action of geometric operators such as the area and
the volume operators by importing the regularization
techniques of the full theory [109-111]. These geo-
metric operators are constructed out of the reduced flux
operators defined as follows. Let us introduce the
projectors

Pr= 3" |j.im

m,==%j,

)z, (63)
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N

P =

Z |ty i) (imy,

mp==tj;

, (64)

where we recall I € {x,y}. The reduced flux operators
are then

RE.(S") = PZE,(S") P, (65)
RE[(SH) = P\XEA‘i(Sg)P\X, (66)
RE.(89) = PYE;(S*)P”. (67)

In a similar fashion as one can prove the validity of the
partial gauge fixing condition given in Eq. (54) (as well
as all the others), it is immediate to see that the reduced
flux operators defined above are diagonal on the
reduced quantum states constructed in the previous
part of this section. Nonvanishing eigenvalues corre-
spond only to those components associated to the
remaining reduced phase space densitized triad varia-
bles as written in Eq. (12), and they are given by the
relations that appear in Eq. (55). This is a key result of
our construction, which will allow us to compute the
expectation value of the Hamiltonian constraint in a
relatively straightforward manner. But let us first
exploit this property of the reduced fluxes to compute
the spectrum of the main geometrical operators in LQG.

We can concentrate on a 3-valent node with three
links departing along the three directions {r,8, ¢} that
appears in Eq. (62). If we consider three surfaces S¢ that
intersect the dual links #, once, we can construct the
associated area operators in terms of the reduced fluxes
given in Egs. (65)—(67). The action of these reduced area
operators on the reduced states associated with the dual
links that they intersect is

RA(S?) Drin(90) = \/ “Ei(S)E'(S?) Diin(g0)

= Kk7j X Dhin(g0). (68)
A s ] ” q Fir e\ Ry
RA(S2)"Din(g,) = \/RE«(S?)FE(S?) " Drn(g,)
= K"J/ijDiVlyn(gq))7 (69)

RA(S"Y Dl (g,) = \/RE(ST)RE(S") " Dlin(g,)

= k1j.RD}in(g,). (70)

Next, we can consider the volume of the region con-
taining only the 3-valent node v. The associated reduced
volume operator regularized on the cube dual to v acts
diagonally on the reduced 3-valent vertex state given in
Eq. (62) as

B )0} ()

1 I ~ B (e ;
- \/'§€abc€’f"REi(S“)REj(Sb)REj(S‘) |03(7))

— (BB (S)RE,(57) = FE> (S)RE, (57))REx(S7)102()))
= (k03 |idydz 105 (). (71)

This diagonal action of the volume operator on the reduced
3-valent vertex state represents a key characteristic of this
construction which enables us to considerably simplify the
calculation of the Hamiltonian constraint action.

E. Recoupling theory

In order to study the action of holonomy operators in ¥,
we need to define the recoupling theory for our states. To
this end, for a product of states along the same direction we
introduce the following “reduced” recoupling rule:

. (72)
Ji, N
mi ny

. |17 +ﬁl2‘| |ﬁ1+ﬁ2|

7711+777,2| I

J2 Imz

Ifll + Ny

J
ﬁ2|_2

where a triangle denotes the Wigner matrix of either a
given rotation or a generic SU(2) element. Let us point
out that in the case sign(mm,) = sign(77,) = +, the
explicit expression of the two Clebsch-Gordan coefficients
Cry i m, and CKA o are nonvanishing only for K =
|ﬁ’ll +ﬁ’12‘, k:ﬁ’ll +l’7’12 andK: |’Tll +712|, k:ﬁl +7_12
respectively. Hence, in this case the reduction is naturally
implemented in this product rule. However, in the case
where the two magnetic numbers have opposite signs, there
is a tower of spins K that are allowed. In this case we need
to restrict to the lowest spin in the tower in order for the
reduction to be implemented in our recoupling rule.
Moreover, in the case where the reduced states in the
tensor product contain a U(1) integral, as in Eq. (60), we
first need to align the two states by fixing the same value for
the U(1) angles and then project by integrating the tensor
product of the two states over this angle, in order to rewrite
the product in terms of original reduced states on the links.
We can now use these recoupling rules to compute the
product of two 3-valent reduced states. Doing this we find

046014-12



QUANTUM EVOLUTION OF BLACK HOLE INITIAL DATA ... PHYS. REV. D 98, 046014 (2018)

27
[oE(7)) ® [0 (7)) = / da

|72 + 7|
[+l i

|72 + 7|
where we have introduced the graphical notation
JI JI
—{ul-=

to use the fact that, due to the gauge invariance at the 3-valent node of |v§(j’)), the @ dependence of the rotation group
elements u,, u, [see Egs. (51) and (52)] acting near the node can be reabsorbed and then the integral sees only these group
elements on the links of the reduced state.

Finally, we can rewrite the product of two 3-valent reduced states as

(74)

|7z + |

Jo g M 4 M| o
WEG) © [WF () = 4y 3, iy + | / do
go 3L lme+ml|) 70

i + 7, iy + 1|

where we have used once more the recoupling rule of Eq. (72), as well as the standard SU(2) recoupling theory, to rewrite
the product in terms of an original reduced 3-valent vertex state times a 9j symbol.

If we now compute the norm of the 3-valent vertex state (62) through a scalar product consistent with the reduced
recoupling rule introduced above, namely by again first aligning the bra and ket states, then performing the integration over
the SU(2) group elements through standard recoupling theory and finally performing the integral over o, we get

046014-13



ALESCI, BAHRAMI, and PRANZETTI

PHYS. REV. D 98, 046014 (2018)

vz ()] =

(76)

where the factor of 1/8 for the 2z coming from the integral
over a is due to the fact that the same angle a is eventually
shared by four 3-valent vertices around a cell in the (x, y)-
plane; similarly for v%(j"). Therefore, comparing (73)

with (75), we see that

DS = 22)'#{97}H0E (| + ')

. (77)

where the 9/ symbol is the one in (75). It follows that, in
terms of normalized 3-valent vertex states

o 1950)
105 (7)) = WE ) (78)

we get the product rule

~ ~ 1
2§(7) ® [5(J) = 20
Namely, by working with normalized intertwiners, the 9;
symbol gets reabsorbed in the product rule and this
provides a great simplification in the expectation value
of the Hamiltonian constraint that we compute below.

Within this construction, the kinematical Hilbert space
encodes the information of a radial metric tensor [as
defined by the partial gauge fixing in Egs. (42) and
(43)]. The residual gauge freedom left is encoded by the
U(1) internal rotations around the 3-direction and radial
diffeomorphisms preserving the reduced graphs structure,
in accordance with the classical analysis of [97]. The latter
can be implemented by standard group averaging tech-
niques, defining the dual Hilbert space in terms of a sum
over all the reduced graphs related by a (reduced) radial
diffeomorphism with a shift smearing function depending
only on the r coordinate.

F. Quantum vector constraint

The quantum vector constraint is imposed in the full
theory by group averaging the spin network states over
spatial diffeomorphisms as described in the seminal paper
[112]. One introduces a Gelfand triple Cyl ¢ HX c Cyl*
where Cyl is the space of cylindrical functions. The vector
constraint has a well-defined action on Cyl*. Let U[¢] be an
operator acting on Cyl with ¢ being a self-diffeomorphism
of Z,. We then have

Ulply,(A) = vy, (A), (80)

where y, € Cyl and A is the Ashtekar-Barbero connection.
However, since U[¢] is not weakly continuous, it cannot
be produced by a self-adjoint infinitesimal generator.
Therefore one has to restrict attention to finite spatial
diffeomorphisms when searching for diffeomorphism
invariant states. Solving the “finite version” of the vector
constraint equation boils down to searching for all y that
satisfy

Ulplw = w. (81)

This equation, however, has no nontrivial solutions in HK.
Nonetheless, it can be solved for y € Cyl*. Formally, the
solution is given as the averaging of the dual states over the
group of spatial diffeomorphisms,

il = D (gl (82)

HEDIff(Z,)

where [y] is the equivalence class of graphs.

In principle one should try to find the kernel of H,. But
this goal is too ambitious at the moment. However, we
know that classically and in the case where the shift vector
N" does not depend on the angular coordinates [see
Eq. (23)], H, = ®H,. Therefore it may not be implausible
to assume that the kernels of the corresponding quantized
operators coincide. We expect that averaging the kinemati-
cal states constructed here over the group of radial diffeo-
morphisms will provide the required solutions to Eq. (81).

V. REDUCED HAMILTONIAN
CONSTRAINT OPERATOR

A regularized expression of the Hamiltonian constraint
operator in LQG was introduced in [105] with an action
defined on a graph-dependent triangulation of the spacelike
hypersurfaces. This construction can be easily adapted to
the cubulation used here to define H~.

A. Euclidean term

Importing techniques developed for the cosmological
case [84,88], we can define the Euclidean part of the
reduced Hamiltonian constraint regularized on the faces of
a cubic cell dual to a 6-valent node v (modulo an overall
constant) as

N 2 - . T 1EA N
RH% [N] = _KTyN(U)el']kTr[(Rg(zij - Rga,»:-)Rgskl [Rgskf RV(U)H’

(83)

where N(v) is the lapse function at the node v; the reduced
holonomies jo are taken in the fundamental representation;
and the internal indices i, j, k take values over 3, x, y. In the
regularization above, the link s; corresponds to one of the
six edges £3, £, ¢, (two per direction, both denoted with
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the same ¢;) departing from the node v, while ;; corresponds to a loop in the plane (ij). Thus o;; = f,-OKjo{i‘%fjfl and we
consider the non-graph-changing version of Thiemann’s regularization. We take the Hamiltonian operator in the
fundamental representation.

To elucidate the action of the operator given in Eq. (83), it is enough to concentrate on a reduced 3-valent vertex state that
is defined in Eq. (62) for the case k = z, i = x, j = y. The other components of Eq. (83) act in a similar fashion. The extra
structure of the 6-valent vertex state, namely the 6-valent reduced intertwiner, is not directly affected by the action of
RAE[N]. In fact, in the process of computing the expectation value of ®HE[N] those coefficients cancel due to
normalization. By means of the reduced recoupling rules introduced in Sec. IV E, the reduced Hamiltonian constraint action
can be computed analogously to the cosmological case [86] and it yields

— - NO)Tr [(*dar, = "8a) ) "05 s, "V )] [05(5))

27
——am/ 2N Y it [ da

p==x1/2

= —47T\/ZN(11) > s(u)\/ Gy (3= + 1) /0 " da

Bl iy iy =+1/2

If we now include also the other three 3-valent nodes of the graph that close the loop attached by the Hamiltonian
constraint and we denote the associated state as [vX), we obtain
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2

S N [(“Ga, — "Ga ) "5

K2y @y

= —47r\/gN(v) >

’ ’ ’ ’
B B S g s s A S g iy =12

where s(u) denotes the sign of y and the dashed lines
indicate the radial links of the other nodes where the
constraint has not acted. Notice that we have not used the
recoupling theory at the nodes since, in the expectation
value of the Hamiltonian constraint, the intertwiners of the
states will get reabsorbed in the normalization of the
vertices [see Eq. (76)].

The complete action of the operator given in Eq. (83) can
now be deduced from Eq. (84) with the following consid-
eration. The loop operator in the ij plane, being made of ‘D
and /D reduced states, will introduce the 2-valent inter-
twiners projected in the ij direction and a coupling of
the spins. The expression #g;![Rg, . ®V(v)] will now just
introduce a 3-valent intertwiner oriented along ijk and a
coefficient \/j;j;(jx+1/2)—+/Jjij;(jx—1/2). The result-
ing expression is given by the sum over cyclic permutations
of the second line of Eq. (85).

B. Lorentzian term

As anticipated above, we are going to quantize the
Lorentzian term of the Hamiltonian constraint starting from
its classical expression in terms of the Ricci scalar as it
appears in Eq. (31). In fact, by replacing the spin con-
nection components in terms of the fluxes and their first and
second derivatives, as follows from solving the torsion-free
condition, we obtain the Lorentzian term in the form given
in Eq. (40). In the final operator only the reduced fluxes and
their derivatives appear. In the H~ construction that was

["gs., "V ()] [v2)

27
s(p)\/ Jedy (G2 + 1) / do
0

(85)

outlined in Sec. IV D, we saw how the reduced fluxes have
a representation which is diagonal on the reduced spin
network states. The spatial derivatives of the reduced fluxes
RE,(S?(x)) can be quantized in terms of discrete differences
of reduced flux operators acting on neighboring links. More
precisely, for first and second order derivatives we have,
respectively,

O Ei(S"(0)) =RE(S" (v + €,)) = REi(S"(v)).  (86)

ORRE, (8P (1)) = REL(S (v + 2¢,)) — 2RE,(S" (v + €,)

+RE(S(v)), (87)
where v denotes the node whose departing links are dual
to the surfaces S” where the fluxes are smeared and v +
€,(v + 2¢,) are the neighboring (next to the neighboring)
nodes in the direction a, taking into account the spatial
manifold orientation.

In this way, the lengthy expression in Eq. (40) can be
quantized in a straightforward manner, without having to
rely on Thiemann’s regularization techniques [105] for the
Lorentzian term expressed in terms of the extrinsic curva-
ture. We will use the quantization scheme given in Egs. (86)
and (87) to compute the expectation value of the Lorentzian
Hamiltonian operator in Sec. VII B below (as well as for the
extension term of the Euclidean part in Sec. VII A). See
Appendix C for an alternative quantization scheme for the
3D Ricci scalar.
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VI. SEMICLASSICAL STATES

The construction of semiclassical states in H® follows
the prescription outlined in [86], which is in turn based on
the definition introduced in [113]."" The key ingredient
is the heat kernel of the Laplace operator for each edge £ of
the graph acting on the §-function of the SU(2) group
element g, associated to the link. Explicitly

_A
K;(9s.9) = e ZA"”’5(9%9)

= Z(zjf + 1)6_%j”(jf+l))(j,(9219),
Je

(88)

with A being a positive real number controlling the
fluctuations of the state and y;, the SU(2) character in
the irreducible representation j,. Here we are introducing
the convention that the index ¢ indicates both the tangent
coordinate and the associated internal direction, namely

|

£ e€{(r,z),(0,x),(p,y)}. Coherent semiclassical states
are then obtained by analytic continuation from g &
SU(2) to G € SL(2,C), namely

w5(9¢) = Ki(9s. G), (89)
where the complexifier G reads
A N
G =gexp | i—E;(S)7" ), (90)
Ky

and E;(S7) is the flux across the surface dual to the link £ of
area &2 in the fiducial metric.

Therefore, using the classical expressions for the fluxes
and connection components found in the previous sections,
the semiclassical states for the three directions of the
cellular decomposition read (see Appendix B for more
details on the derivation)

V() = > 30 @7, 4+ e HUAIDE (gD (b5 5000
Jz=0 i
= S 27 1)e—%:U:+1) MD{ (eEATDE (o] 91
(2, +1)e nm, (€7 2) Dy 5 (g70), (91)
J:=0 m;
=S a4 1D (5Dl o
Jx=0 1y ity
© bzfx
— Z Z 2. + —EJx(JH‘l) AL fofm (e (A171+A272))XD1X (gg ). (92)
Jx=0 1 ity
© b ) o ) 157, )
=3 3 @y + Ve BUIDL ; (g,1)°D 5 (efo( A ind) 7 E )
Yy yory
Jy=01my.ny
[oe] . .
= Z Z 2Jy 1)e_7b J>+1) my Ky D{;m ( ((AIQ_AM)Sme))yD%‘,ﬁy(g(;])’ (93)
Jy=0my.n,
where we have used the property E* = (E'cos@& + E*sin@)sinf = ARsin@, (95)
(1 ‘nyie —1
297 G) = D"’tmf( G) EY = E'cosa + E*sin@ = AR. (96)
12 ‘e
Z Dy, mgn gf )'D "'"f(G) Notice that in the coherent state associated with the ¢-
n==j,

=D} 5,(97") Dy, (G), (94)

and the following relations that we derived in Appendix B,

"See also [114] for a previous attempt to investigate singu-
larity resolution through the use of LQG coherent states for a
Schwarzschild spacetime.

direction we have not included the AZ, = cos ¢ component
of the connection since this does not enter the reduced
phase space (it is conjugate to a flux component that we
have gauge fixed) and thus it is not part of the reduced
Hilbert space HX either. Its contribution to the spherical
Euclidean Hamiltonian constraint given in Eq. (34) is
encoded in the extra terms that appear in Eq. (24), as
already pointed out above.
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We can see from Eq. (98) that for j,, j,, j, > 1 the coefficients l/fé (j) in the coherent states become Gaussian weights
for the fluxes peaked around the semiclassical values j, = 62j%, with j% given by

ARsing ./ EY ES 1
= _ VIRRGpw _ T — = — (Ef cos @ + Ef sin @), (97a)
Ky Ky Kycosd Kkysind Ky
AR / EY EY 1
N=—= L — —=—2 = (—Efsina+ EYcos @), (97b)
Ky Ky Kysina kycosd Ky
o R%sin@ g E"
Ky Kysin@ Ky
and &2 = €,€ps 53 = €., 2 = €9€-
Let us write the quantum reduced coherent states in the compact notation
¢ _
Z Y Qiet DWEin, Dl (97"): (98)
=01mp.np=%jr
with the matrix coefficients (wé){l’; m, explicitly given by Egs. (91)-(93).
Finally, we can define the normalized quantum reduced coherent states as
— A
v (9e)
We(9,) = g (99)

where

|Wé(gf)| = Z Z n,ml (100)

Je=0img.np= ij/

Let us conclude this section by defining the coherent state associated to the reduced spin network state used in Eq. (85) to
compute the action of the reduced Euclidean Hamiltonian constraint on it. By including also the faces in the (7, 8)-plane and
(r, @)-plane, the reduced spin network state reads

(101)

The associated normalized quantum reduced coherent state is then given by
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) = 11 Z > Z & Vim, (B3, (3 m, vE),

= ’Eyz‘u,_]z,]”—()ﬂlg ne==xj¢ m ﬁ: 2 / ﬂ:j”

S \7, X Vi
W3, ; W& Ve,

(102)

where for each 3-valent vertex in the state defined in Eq. (101) we have used the norm given in Eq. (76) and we have
introduced the notation

Jz *
Jae ANJy

- i s ’ (103)
IIND ION?

CROI IR

in order to include the full normalization of the coherent state wave function.

VII. EFFECTIVE HAMILTONIAN

We are now ready to compute the expectation value of the reduced Hamiltonian constraint on the coherent state that we
define in Eq. (102) based on a single cuboidal cell of the spatial manifold triangulation by means of the action given in
Eq. (85) and its analogue on the other two orthogonal planes.

A. Euclidean term

Let us start with the Euclidean Hamiltonian constraint operator whose action on the basis of H® was computed in
Eq. (85) for one choice of tangent loop. For the other two possibilities it is straightforward to see that a similar result holds,
as already explained at the end of Sec. V A. If we now use this action to compute the expectation value on the normalized
coherent state of the form given in Eq. (102), by means of the normalized coherent state wave function properties we obtain
the following result:

(WA RAE NIy z—zﬁsz) S s

pu==+1/2

A /jz}y (}x + ﬂ)Tr[Txeew((A|(’)Tz—A2<’)T|)Sin"'))eerAr(r)ﬁ e—é‘q)((Al(H‘ﬁ'r)Tz—Az(VJré‘r)Tl)Sine)e—frAr(r+€r)T3]

-}:Z-}:x (-;V + ﬂ)Tr[TyeEH(AI (r>‘[l +A2(r)72)e€rAr(r)T3 e_€€<Al (r+€r)Tl+A2(r+€r)72) e_erAr'(r+€r)T3]

4y /j’xj'v(}'z +M)Tr[73e€()(141(V)TlJrAz(r)Tz)eé‘(/»((Al(V)Tz—Az(r)Tl)Sin (0+¢9))

% e—GH(Al(V)T|+A2(’)Tz)e—€¢((f\|(")Tz—Az(’)Tl)Sine)]>

X

/
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N—z\ﬁ Nw)

K \/m
< (€02 10Te[z o641 (11r2=A1)m)Sin0) ey, (1)t e (A )23 e 1) sin0) Ay )
— e, 10Tz, oA (P)e HAs(r)e2) oA (s o (e a1, )e2) e, (146,
T €, 1003 R HA2(7)e) gy (A1 ()ra=Aa(r)e) sin (040)

x e~€o(A1(nT1+A2(r)12) =€, (A1 (r)12—As (r)71) Sine)])

2 N(v)

Kk \/det(E)
% [ €0 E(IJ sin & + E Cos (X)[ i&—%(Ar(r)—&-A,(r—&-e,))e,—%(\/—A%(r)—Ai(r)+\/—Af(r+€,)—A§(r+€,)) sinGeq,}
% (( r)—A%(r) smee,,,)( 1+ e\/ 2(r+e,)—Al(r+e,) mnﬂeq,) —A%(r) —A%(r)
% ((621 r)+A, (r+€,))e,)Al(r te ) _ l'(eZi?z + ei(A,(r)+Ar(r+e,))e,)Az(r + €r>)

+ (_1 +e —Al(r)—Ag(r)ynﬁe(p) (1 +e A3 (r+e,)—A3 (r+e,)sin9€¢)

X < 12atA e (A (r) — 1Ay (1)) + e Arlrreer (A (r) + iAy(r \/—Az(r—l—e A%(r—l—e,))
/(8y/-43(r) = B3(r)\/ -4 + ) - A3 +e,)

+ ¢,E5(E{ cos & + Efsin [ =44, () +A, (r+er))er =3/ ~AT () A%(’)+\/—Af(’+€r)—A§(r+€r>>€e]

(1 eV (1 g e Ag(’“’“) ~A() 430
% (_(ezla ( A(r)+A,(r+e,))e, )A (r te ) (621‘& + ei(A,(r)+A,(r+e,))e,)Az(r_I_ er))
_ (_1 Te —A?(r)—Aﬁ(r)e‘n) (1 Te —A1<r+e,>—A§<r+ey>eo)
x (e A A, (1) — idg (7)) + 4 (A, (1) + ida () A (r ) — A3(r +c,)
/(8y/-43(r) = 431\ /-A3(r + ¢,) - A3 + ;)
1 o
+ €,(Ef cos @ + Ef sin@)(—E{ sina + EY cos &) 3 eIV A ()AL () Qeqt(sin O+ sin (0:+¢p))e,)

% (_1 1ot —Af<r)—A§<r>e(,> (_1 Te —Af(r>—A§(r><sin9+sm(9+69)>e¢)}’ (104)

where we have used Eq. (97) of the coherent states to peak the fluxes around their semiclassical values.
If we now expand the lengthy expression above to third order in the €¢’s and use Eq. (97), we get

~ A ~ N(v)

A RETE [N [y ~ ErC0%
<‘//|:|‘ ol ]|U/D> T 4(1 (E)
+ sin§(E5A ,(E%’Al — E‘{’Az) + Eg(E‘é’A’2 + E‘{’A’l))
+ sin O(EYEY — ESEY)(A? + A2)] + o(e*), (105)

which matches exactly the classical expression given in Eq. (35) in the limit €,, €p, €, — 0, once summed over all the
vertices.

In order to obtain the full expression of the spherically symmetric Euclidean Hamiltonian constraint given in Eq. (34), we
also need to quantize the extra terms in Eq. (24) coming from the phase space extension of the gauge unfixing procedure.
The quantization of all these extra terms would result in a rather complicated operator. However, we know from the classical
analysis that only the last term in Eq. (36) will remain. Therefore, in order to simplify the construction of the full Euclidean
Hamiltonian constraint, let us just quantize the term

[EZA,(EYA| + ESA,) + E5(EYAL — ESA))
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RHext[N] — l

deL
kJz 4 /det(E)

Following the quantization prescription given in Eq. (87) for the second derivatives of the fluxes, the quantized Euclidean
Hamiltonian constraint regularized on a cubic cell dual to a 6-valent node v with coordinates {r, 8, ¢} and its neighbouring
ones is given by

EAD,O04E®. (106)

_1N(v)
" xR (v)
+RE(S7(r,0,0))(CEL(S(r.0+ €, + ) = FE(S7(r,0 + €%, 0)) = RE(S°(r, 0,0+ €?)) + RE/(S(r, 0, 9)))
+RE (S(r,0.0)) R/ (S (r.0+ €+ €2)) = FE (S (r,0,0 +€7)) = RE/(S?(r,0 + ¢, ) + "E (57 (1, 0. 9)))
+RE(S7(r,0,0)) ("EL(S(r,0,0 +267)) = 2RE (S (r,0,0 + €7)) +RE/(S(r,0,0)))]. (107)

R I:Iext[ N]

0 [“E(S°(r.0.0)) ("E1(S°(r.0 + 2¢%.0)) = 27E;(S°(r. 0 + €. 0)) + "E (S (1. 6.90)))

When computing its expectation value on the coherent state defined in Eq. (102), it is immediate to see that only the first line
on the right-hand side of the expression above contributes. Therefore we get

_leeg, N(v)
K €9 +/det(E)

€€, N(v)

(p [REEN ) (EYEY — ESE”)[sin (0 + 2¢4) — 2sin (0 + ¢¢) + sin 6]

EYEY — ESE?) sin0 + o(e*). 108
e (BVEE ~ BED)sin0 + ofe) (108)

Therefore, at the leading order we recover
> (wh|(CHEIN] + *HE N wh) = HELIN] + o(e*), (109)

O

showing how our construction exhibits the correct semiclassical limit.
We can now write the first order correction to the classical expression of the reduced Euclidean Hamiltonian constraint
above. This is obtained by looking at the terms of order four in € in Eq. (104) as well as in Eq. (107). We find

S . ~ €€, N(v) [1
(whI*AEIN] + *AZ N lwh) () & T(/)?(E) [E3(E?(—A3Az +24,A] + AY) + ES(A7A| 4 24,4, — A))e,

2
_sin@r P (A2 _ I AN E«:z I AN
5 E5(E5(A7Ay — 2A,A] — AY) + ET(A7A| + 24,45 — AY))e,
sin(20)

(E5A,(E3A; + ETA)) + E5(ETA, — E5AY))e,,

+ cos O(ESEY — ESET) (A2 + A3 — 1)e,
€696, N(v)
K V(B + (E2)?)E
x [Sin OE"(E'(=A2A, + 2A,A) + AY) + E2(A2A, + 24,4} — A)))e,

+ cosO((E)? + (E?)?)(A? + A3 — 1)ey

in(26
_SInC9) pra (B, - E2A,) - EN(E2AL + ElA’l))eq)} , (110)

where in the last equality we have used Eq. (12). Notice that since the second and the last correction terms proportional to €
and €, contain an overall #-dependent part of the form, respectively cos# and sin(26), in the continuum limit when
integrating over 6 € [0, z] they both vanish. However, the first correction term proportional to €, has an overall 6
dependence that survives the integral and it represents the only correction at first order.
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Therefore, after performing the sum over all cuboidal cells of the triangulation and taking the continuum limit €,, €,
€, — 0, we obtain the effective Euclidean Hamiltonian constraint for a spherically symmetric spacetime given by the
quantum corrected expression

r) [(QE"A,(E'A, + E?A,) + 2E"(E' A — E2A!)

2G/ \/ E"? + (E?)?)E"
+((E")? + (B2)? )(A% +A%))
+ €,.(E"A(AE?A; — A E'A, + 2E'A| + 2E*AL) + E'(E'A} — E*AY)))). (111)

RpyE
Heff

B. Lorentzian term

The expectation value of the Lorentzian Hamiltonian constraint operator can be computed using its expression in terms of
the densitized scalar curvature expressed as a function of the fluxes and their derivatives alone, as obtained in Eq. (A17). Let
us set g = €, = € and quantize derivatives of the fluxes again in terms of discrete differences as defined in Egs. (86) and
(87). We have

. -~ 1 1\ 1 N(v)
A RHL N A ~— (1 _|_>
<W|j| D[ ]|WD> K 7/2 6368 2(E5>5/2 /Sine[(EQDZ + (Eg)2]3/2

x [=2(sin@)%e¥e}(ET)*(ET)?[(sin(0 + €) — sin0)? — sin O(sin(6 + 2¢) — 2sin(0 + €) + sin )]
—2(sin )28t (EY)3 E*(ET)?[(sin(0 + €) — sin@)? + sin O(sin(0 + 2¢) — 2sin(0 + €) + sin6)]
—2(sin0)2€8¢2EY (E")*(e2E*EY[(EY — 4E")(sin(0 + €) — sin 0)?
+ EY sinf(sin(0 + 2¢) — 2sin(0 + €) + sin )]
—2e*(sin@)E"(E*(r +€,) — E*(r))(E"(r +€,) — E"(r)))
+ (E7)*(sin0)%e¥ e (E")? (—4€2(EY)?[(sin(0 + €) — sin#)? — sin O(
+ 2€2EY EY[(sin(0 + €) — sin@)? + sinO(sin(0 + 2¢) — 2sin(6 + €)
+ [4€2(E")?(sin(0 + €) — sin0)? + (sin0)2e*(E"(r +¢,) — E"(r))?
+ 4(sin 0)22E" () (" (r 4 2€,) = 2E" (r +€,) + E*(r)))
+ €3€2E5 (sin0)? (E")?(—2(EY)3€2[(sin(0 + €) — sin0)? — sinO(sin(6 + 2¢) — 2sin(0 + €) + sin )]
+ 2(EY)?e2E (sin(0 + €) — sin0)? + sin@(sin(6 + 2¢) — 2sin(0 + €) + sin )]
—4€e(sin0)*E"(E' (r +€,) — EN(r))(E"(r +€,) — E'(r))
+ EY[4€2(E?)?(sin(0 + €) — sin0)? + €*(sin0)*[(E"(r +¢€,) — E"(r))?
FAET(E (r 4 26,) = 2E"(r 4 €,) + E"(M)]])]
1 1 N(v

(5 Fmr s

x [4e,[(E*(r))* + (E'(r))?]*(sin(0 + 2€) — 2 sin(@ + €) + sin )

2

+ e—sine[(E] (r)? + (E*>(r)2J((E"(r+€,) —E"(r))? +4E"(r)(E"(r +2¢,) = 2E"(r +€,) + E"(r)))

€r

sin(0 + 2¢) — 2sin(0 + €) + sin0)]
+sind)]

2

—42—51n9E’(r)(E’(r+€r) = E"(r)[E'(r)(E'(r+e,) — E'(r) + E*(r)(E*(r +€,) = E*(1))]].

(112)

By expanding the above expression for the expectation value up to the fourth order in €’s, we get
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< el SO 1 €,€*N(v)
<'/’E| HD[N]|WE> Y (1 )2\/?[(E1( )) (EZ( )) }3/2
x [-4sin0[(E*(r))* + (E'(r))’]?
+sin@[(E' (r))* + (E*(r)*)((E" (r))> + 4E"(r)E” (1))
— 4sinQE"(r)E” (r)[E'(r)E" (r) + EX(r)E? (r)]
—4ecosO[(E2(r))2 + (EN(r))?)?
+ e, sinQ[[(E'(r))? + (E*(r)}(E” (r)E” (r) + 4E"(r)E"" (1))
= 2E"(r)[E"(r)(E"E" (r) + E"E"(r)) + E*(r)(E"E* (r) + E" E* ())]l] (113)
— % (1 +yi2> €,€*N(v)
| (R(7)) R() (i NOR)
x {smG[A(r)( N0 1> +2m <R (r) - A )]
sin @ AR AR () _ N(r)(R'(r))? _AN'(r)R(nR'(r)  N(r)R(r)R"(r)
Fe g [PROOR) + 2R0R7 () -3 A 2 AQ
—ecosHA(r)}. (114)

We see that the leading term in the last equality above repro-
duces the classical expression given in Eq. (40) for the
Lorentzian part of the Hamiltonian constraint. The last two
subleading terms correspond to quantum corrections.
However, notice that the second correction term proportional
to € vanishes when the integral over 6 is performed and only the
correction proportional to €, remains. Equivalently, the
classical and the correction terms’ expressions in terms of
densitized triads can be read off of the firstequality in Eq. (113).

VIII. CONCLUDING REMARKS

In this article we laid the foundations for a systematic
treatment of spherically symmetric spacetimes in the frame-
work of LQG. Applying the QRLG proposal, we imple-
mented a quantization program that is aimed at identifying a
symmetric sector at the quantum level, thus reverting the
process of symmetry reduction and quantization that is
frequently adopted in all existing treatments of quantum
black holes. The main result of this paper is the construction
of an effective Hamiltonian that can now be used to evolve
black hole initial data sets while incorporating quantum
corrections. To construct this Hamiltonian, we first built a
convenient quantum gauge fixed kinematical Hilbert space
that is compatible with a radial gauge even in the absence of
symmetry. This was used to define coherent states where a
notion of spherical symmetry could be imposed at the level
of expectation values of geometrical operators. We then
quantized the modified Hamiltonian constraint resulting
from the gauge unfixing procedure as explained in
Sec. III. Finally we computed the effective Hamiltonian
as the expectation value of the modified Hamiltonian

operator on the coherent states that, if sharply peaked, are
the best candidates to describe classical geometries.

The classical data entering the coherent states can now be
seen as the initial data set to be evolved with the effective
Hamiltonian. The importance of our result lies in the fact
that it is not tied to a particular choice of foliation, allowing
one to treat on equal footing various sets of coordinate
systems such as horizon penetrating coordinates or coor-
dinates restricted to the interior or exterior of the event
horizon of a black hole. This is a significant addition to the
existing literature that mainly deals with either the interior
or the exterior of event horizons. In most of the previous
treatments of this problem, one has been forced to use
different Hilbert spaces for the interior and the exterior (as a
result of the classical symmetry reduction process) which is
normally plagued by ambiguities associated with gluing
together interior and exterior geometries.12

“In the symmetry reduced phase space quantization scheme of
[62,63,115] one is still able to use the same kinematical Hilbert
space for the solutions to the Hamiltonian constraint both in the
exterior and the interior, in the sense that they have a finite norm
with respect to the same inner product. However, one of the
quantum numbers characterizing the solutions changes from real
to pure imaginary when going from the exterior to the interior.
This implies that, effectively, one ends up treating the two regions
separately and the structure of the complete solution at the
horizon is not specified, leaving the gluing ambiguity. Let us also
point out that the Hamiltonian that is quantized in [62,115]
corresponds to the correct equation of motion on shell but it
results in an algebra that is not equivalent to Dirac algebra
restricted to the symmetric subspace. Here, in contrast, we deal
with the original set of constraints.
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We are now in a position to study the equation of motion
generated by the effective Hamiltonian. In the forthcoming
works we will present the dressed metric that incorporates
the quantum corrections and verify its compatibility with
the existing results based on polymerlike quantization that
is used in LQC or the proposed Planck star metric. In
particular, it was shown in the cosmological context that
scenarios different from a symmetric or asymmetric bounce
are possible13 and it would be interesting to explore the
consequences of this type of singularity resolution on
the black hole-white hole scenario. Our final aim in the
foreseeable future is to solve the quantum gravitational
collapse problem in the presence of matter through the
simplifications introduced by the QRLG approach, which
facilitates the inclusion of extra fields [116,117].

Another important application of our construction that is
related to the issues of singularity resolution and the black
hole information loss paradox is to illuminate the quantum
nature of black hole entropy. This problem has quite a long
history in the LQG literature. The first ideas on how to
microscopically describe the d.o.f. accounting for the
Bekenstein-Hawking entropy formula date back to the
works [118-120]. This approach was then refined within
the framework of “isolated horizons” in [121-123] and
generalized to the full gauge-invariant case in [124-128].
Despite the remarkable success of these results in recov-
ering the entropy-area law from a quantum description of
the horizon gravitational d.o.f., there are two open issues
that still affect the LQG derivation of black hole entropy.
The first concerns the role of the Barbero-Immirzi param-
eter in recovering the exact numerical coefficient 1/4 in the
Bekenstein-Hawking entropy formula (see [129-138] for
an extensive debate on this topic). The second somehow
unsatisfactory feature of the LQG black hole entropy
calculation that is oftentimes simply glossed over is the
assumption of the validity of the “weak holographic
principle,” [139] leading to a horizon density matrix in
which both the interior and the exterior of the black hole
quantum geometry d.o.f. are traced over.

Our construction has the potential to solve both issues, or
at least to provide important insights about them. In fact,
concerning the fixation of the Barbero-Immirzi parameter,
it has recently been pointed out in the literature
[76,77,132,140,141] that new d.o.f. should be included
in the partition function in order to set y free from any
numerical constraint.'* This is in addition to the internal

“Namely, the emergent bouncing Universe [90].

“A possible source of the ambiguity behind the role of y may
also be related to the issue pointed out in [142], namely the
inadequacy of the isolated horizon boundary condition usually
implemented in the quantum theory to single out the notion of a
horizon. The characterization of an isolated horizon through new
d.o.f. emerging from some particular boundary conditions, as
well as through a maximal entropy principle, may settle this
ambiguity.

gauge d.o.f. already accounted for in the standard calcu-
lation. These new d.o.f. have been identified with either
graph combinatorial structures or inclusion of matter (see,
however, [140] for a possible unification of the two). Since
our construction of a spherically symmetric black hole
quantum geometry derives from the full theory and does
not rely on Chern-Simons techniques to model the horizon
as a single intertwiner Hilbert space, new horizon graph
d.o.f. are automatically included in the horizon partition
function. At the same time, inclusion of matter can be
implemented in a straightforward manner as pointed out
above. This provides the possibility to investigate the role
of the Barbero-Immirzi parameter in the entropy calcula-
tion through a physically richer modelization of the horizon
quantum geometry.

Concerning the validity of the weak holographic princi-
ple, i.e., the idea that the d.o.f. relevant to the Bekenstein-
Hawking entropy formula are only those lying at the horizon
and in its vicinity, this is expected to be proven by the
implementation of the quantum dynamics. More precisely, it
is the solution of the Hamiltonian constraint, as well as the
implementation of semiclassical consistency conditions,
that should introduce correlations between the horizon
and the interior d.o.f. In fact, contrary to the AdS/CFT
proposal, we expect the notion of holography to emerge only
at the semiclassical level (see, e.g., [25] for a discussion of
this point of view). An intriguing scenario would be the
possibility to construct physical solutions from the repeated
action of the Hamiltonian constraint operator on a seed state,
along the lines of the GFT condensates philosophy [76,77]
but now with a concrete notion of the dynamics at hand. This
could allow for the construction of a physical black hole
interior density matrix given by a weighted sum over graphs
with weights provided by matrix elements of the
Hamiltonian constraint. In this picture then, a concrete
notion of holography could be described and tested by
understanding how dynamics is implemented as a refine-
ment operation and by going to a continuum limit by means
of coarse graining techniques, in the spirit of [ 143,144]. This
is clearly a very ambitious and long-term plan that we leave
for future investigations. However, all the necessary ingre-
dients and tools are now at our disposal.
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APPENDIX A: CONNECTION COEFFICIENTS AND CURVATURE
FOR GEOMETRIES IN SPHERICAL SYMMETRY

The components of an antisymmetric spin connection solution to the torsion-free equation de/ = —w’; A e’ can be
written as

(cux + cixs — cixr)e®, (A1)

N[ =

Wy =

where c¢;;x are the structure functions. Using this one can read off the expression

1

de! = —Ecm’e’ A ek, (A2)
From Eq. (8a) we have
N/
de® = N'dr ndt = —¢e3 A €Y,
NA
. A'N" 4+ AN" = A
de® = (NN" + AN™)dr A dt — Adr A dt = ( +NA )e3 A e,
de' = R' cosadr A df — R’ sin@sinadr A dg
+ Rcosadt A df — RsinOsin adt A do
— Rcos@sinadd A do
2163 nel 4 (R—R'N") 0 Aol _cothinael A e,
RA RN R
de? = R'sinadr A dO + R’ sin@cos adr A dg
+ Rsinadt A dO + Rsin@cos adt A dp
+ Rcos@cosadfd N de
R s 2 fBERNY o cOtOcOsa

RA RN R

Using Eq. (A2), the corresponding nonvanishing structure functions are

N/

0 0
C3’ = —Cpy’ = ———
30 03 NA
; , (NN +AN"—A)
Cy° = —Co3” = —
30 03 NA
, .
corl = —cy! :M
RA
5 RN"—R
Cp~ = —Cyp" = ———
02 20 RA
/
ey = —cp3! = —i
RA
el — e 1_cotﬁsinoz
e
R/
2 2
C3p~ = —Cypy™ = ———
32 23 RA
cotdcosa
0122 = —0212 = _T
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We insert these in Eq. (A1) and find

b N o (NNTHANT - A) r
%7 NA NA
N' N (A'N"+ AN" — A)
=—(ANN" +AN" —A) —— |drt d A3
< N ( + ) A> + N r, (A3a)
R'N"—R R'N"—R R'N"—R
o' = —wy = ( ) el = ( ) cos adf — (RN -R) sin @ sin adg, (A3b)
RA A
R'N" - R R'N"—R R'N" - R
0" = —wgy, = ( A ) e’ = ( ) sin adf + gsin&cos ade, (A3c)
12:cotHSinoz I—COtecosaezz—cosedqo, (A3d)
R R
n_ R : O
w®=pre = (cosadf — sinf@sinadg), (A3e)
»n_R , R . :
w? =gt = (sinadf + sin O cos adp). (A3f)
|
For the connection coefficients I'; = —1¢/ jkwék, from and
the expressions above we obtain . b
R = _el'ijabe?ej
/ r
Fé; = —sin 9]—% = —cosasin HX , (A4a) = 4e3 (Rieeg - R%E)e?) + 2R3(p(€g€€f - 6?6(5)
4 (R'N 2 R')?
/ :W<A _RH>+F<1_(A2)>' (A6)
I'2 = sinfl) = —sinasin GX , (A4b)
For the components of the Ashtekar-Barbero connection
I = cos®, (Ade) AL =T} +yK, namely F!,(A) = 28[aAZ] + €' JALA}, we
use Eq. (13) to get
I =0, (A4d)

from which we compute the intrinsic curvature components
ko k k1l
R, = 28[an] + €, T,

. . R// R/A/
R}(/, = —sm9R§9 = 8r1"(1p — —Cosasm9<x_ e )7
(A5a)
R// RIA/

R, =sin6R,, = 0,I', = - sino:sin@(X - 7) ,

(AS5b)
R)?

R}, = 0,03 + 20T, = sin6<(A2) - 1) (ASc)
Ry, = Rj, =0, (A5d)

Fly(A) = 0,A) — AGA} = A\ = AsA,. (AT

Fl,(A) = 0,Al, — A2A} = —sin0(A} + AjA,).  (ATb)
Fy,(A) = 9pA,, + AZA;, = 0, (A7c)

F2(A) = 0,A3 + A)A} = Ay + A\A,,  (ATd)
F?,(A) = 0,A; + ALA; =sinf(A] — AA,),  (ATe)
F},(A) = 0,A% — A}A3 =0, (ATf)

F3y(A) = F},(4) =0, (ATg)

Fg(p(A> = aHA;gp +A;A(2p —A;Aé = SinH[A% +A% —1].
(A7h)
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1. Densitized scalar curvature in terms of fluxes

Here we express the densitized scalar curvature,

v/det(E)R, in terms of the fluxes and their derivatives.
The final result of this calculation appears in Eq. (40).
The starting equation is

Vdet(E)R = —v/det(E)e; xRk, ed e

€iik a m
— K _F Ef(28[al“’;] + e ey

\/det(E)

(A8)

Note that by our gauge condition, the only nonvanishing
fluxes are

E§7E2,E2)1E4107E§' (Ag)
We are also going to exploit some simplifications resulting
from spherical symmetry. Let us emphasize that this is not
going to undermine the generality of our quantum result

when computing the expectation value of the Lorentzian
|

€;i
det(E)R = — —=L— EZE}(20,,T + €, TLTY)

\/det(E)

2

Hamiltonian constraint operator. This is due to the fact that
the coherent states constructed to implement the spherical
symmetry enforce these simplifications in the final result
for the expectation value. This is just a matter of conven-
ience to avoid even lengthier expressions which in the end
yield the same effective result. However, we are not going
to use the explicit spherically symmetric expressions for the
fluxes within terms containing nonvanishing derivatives (in
the spherically symmetric case) since this would yield
simplifications which a priori, while preserving the semi-
classical expression, could remove sources of quantum
corrections at higher orders.

So first, as it was also previously shown due to spherical
symmetry, the only nonzero I'/;’s are

1 72 13 11 12
r,.I2,13, 15,13,

(A10)
Additionally, due to spherical symmetry neither the
fluxes nor the spin connections depend on the coordinate
@. Taking advantage of these simplifications, Eq. (A8)
becomes

o — [E‘fE’z’(Za[aF'z] + €3, TL0m) + EgEg(za[aF},] + ey, TL0m) + EgE’;(za[aF},] + €2, CLrm)]

\/det(E)

2

= ———— [E{E5 (20,1}, + oI, = TGT}) + ESE5 (20,1 + Il

\/det(E)
CISID) + E4E}(20,13 + T3T) — T4Y)
2

= ————(E{E] = ESE7)0,I, + E{E3(Tal'y — T30) — ESES0,Tq + E{E0,TG]

det(E)
2
= ————[2EVE}9,T, + 4E/ EYT),I2

\/det(E) o

]

— ESES0,T), — ESELO,T), + E{EL0, 15 + E{ES0,T2].

(Al1)

For our purposes, we can further simplify Eq. (A11) by using the following relations which are due to spherical symmetry:

EY = sin OEY,

I}, = —sin6ly,

We shall use these equations everywhere except for the fluxes that are acted on by dy. Doing this, we find

\/det(E)R = 2 >

~\/sinOE;[(E7)? + (E3)7]

2

= [sin O[(ET)? + (E5)*) (DT

/s OB [(E])” + (E9)7]

E§ = —sinOEY,
I2 = sin6l). (A12)
[sinO[(EY)* + (E5)*]00T,
+ sin®0[(ET)? + (ES)?)[(T})* 4+ (I'3)%] + 2sinOESEYO, T’y + 2sin OEYEL0,T75)]
(A13)

+sin0[(T))* + (T3)%]) + 2sinOE5(EY0,T'y + EY0,I3)].
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We now eliminate I, in favor of E¢ and its derivatives. By definition we have

Fj — _lejikEa Ei _ Ei + EgEl El + Ei det(E),a lEl det<E),b
b 2 k b,a a,b i~b+ca b det(E) p a det(E) P

with

E! - €apc€FEPES.
“ 7 2det(E) et TITk

For I' and T}, we find

1 ‘
3 = S BIEL  + E{(ELESy + E3E3) + Y (YL o + E3E2,)

1
+ E, log [det(E)] o] + iEf[Esz.e +ES(EyEpy + ELEG ) + E5 (EYE,

+ ELE; 5) + Eg log [det(E)] 4]
1

= s =y E B, + EEETE, - B
321 172

x [ESE )+ EVES ) + (ED(ESEVEL , + EYESEY y + EVEY,))
— EYES(ESESES g + 2E5[-EVE] g + ESES )]

B 1 2(E3)

T B E + (EDF | sing

(ETE] g + ESE )° + sin O[(EY)?

+ (E9)’PPI(E5 9)* = ESES o] + E5[(EY)? + (ES)*)(=ES[E5 oEY y + E5EY gg)

+ﬂmw%+@£mﬁ

1
Uy = =3 B5lEj, + ES(EgEy, + EGEG,) + E5 (EgEy,, + EGES,)

@.r o.r

+ E3log [det(E)] ]
1
+ EVES,| + ES[EVEY, + ESEY | - ES [(EY)” + (E3)?))]
B ETVE},
~ 2sinQ[(ET)? + (ED)?]

1 ’
5 =S EilEy, + EV(EyEy, + EGE},) + EV(EGE,,, + EGES,)

+ Eé log [det(E)] ]
1
~ T 2(EJE] — EVEY)? [ESE; (ESEY — EVES) + E5(ES[-ESEY,
+EVEY ]~ EY[EVEY, + ESEY | + E} [(EY)? + (E2)?))]
_ EEs,
2sinO[(EY)? + (E9)*’
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In Eq. (A16) we used 0yE? =
1
2(E5)%sin!26](EY)? + (E$)?)2
— 25in OF(E?)} [0, E;0,E + EL03ES)
+ sinOE5EY03ES) + 2(E5)?0,EY0,E}) + (E

det(E)R

x (E)*[(09E%)
x [4(0pES)* + (0,E5)* + 4E507ES) ).

APPENDIX B: COHERENT STATES

The derivation of Eq. (91) is straightforward given that
only 73 appears. Let us then show how we arrive at
Egs. (92) and (93) by providing a few more details. First
of all, given the property u;'z,u, = 73 and the relations
given in Eq. (53), we have

T, = T1COS@ + 7, sin &,
7, = —7; 8in& + 7, cos &,
7| = 7,C08& — 7, 8ind,
7y = 7, 8in@ + 7, COS &,
from which
E't, + E*7, = Er,,
E't, — E?’7, = Ez,,

with £ = AR. Notice that we have expressed the relation
between the internal directions (1,2) and (x, y) in terms of
the angle @ since we are interested in the classical solution
for the triad and connection to define the SL(2,C) group
elements around which the semiclassical states are peaked.
It follows that for the coherent state along the #-direction
we have

XD.]X - ( SH(AITIJrAZTZ)eK;)(E]1]+E7tz)sm6')
nxml'

752
7] .
Dh (u e (A]T]+A2T2)eK_yETX Smﬂux)

2 px
— e/lmvé,: )CD]r ~ (eeg(Alrl+A212)) <B3)
where E* = E'sin 0.
Similarly, for the coherent state along the ¢-direction we
have

2

52
yD]y ( €,[(A172—Ay7)) sin 0+cos O3] eK—;‘(E' 7,—E’1)) )
iy i,

52 EY

iy~ ny‘ (

€,[(A17,—Ay7)) sin O-+cos 073])’ (B4)

where £V = E.

[—2sin’d(E

0 as suggested by spherical symmetry. Using the above, Eq. (A13) reduces to

1) [(0pE%)? — E505ES]

— 2ELEY(EY[(sin OEY OgE — AE504E)) 09 ES
72 (~4sin?0(E)2[(0,E5)*
+ 25in O EZ (00 E50,EY + E503EY] + (E5)[4(9,E))’
— E503ES] + 2sin OE5(EY)* (0o E09E + ES05EY)

E03E]

+ (0,E})? + 4E50%ES)) + ES (—2sin%0

— 4(E3)°0,E70,E5 + (E})’E}

(A17)

APPENDIX C: APPROXIMATING THE
LORENTZIAN HAMILTONIAN VIA
TECHNIQUES OF REGGE CALCULUS

In this Appendix we provide an alternative method
for quantizing the Lorentzian part of the Hamiltonian
constraint.

As we noted in Sec. III, the Lorentzian term can be
written either in terms of the extrinsic curvature or in terms
of the 3D Ricci scalar as we do so in Eq. (31). In [145] a
proposal was introduced aiming at providing an alternative
approach to Thiemann’s construction [105] for quantizing
the Lorentzian term. The advantage of this approach is that
it is computationally straightforward. Nonetheless, this
approach is inherently “perturbative” as will become clear
below. In situations where nonperturbative quantum gravity
effects are likely to be influential (e.g., black hole singu-
larity resolution), this approach may fall short of providing
both the correct qualitative and quantitative pictures.
Nevertheless, we now briefly review the regularization
scheme of [145] and then describe how the Lorentzian part
of the Hamiltonian constraint can be quantized in our
framework, using this approach.

The main idea behind the construction of [145] is to
regularize the integral of the Ricci scalar over X, by means
of Regge calculus [146], i.e., in terms of lengths and angles
of the triangulation. More precisely, assuming that curva-
ture lies only on the hinges 4 of the simplicial decom-
position A of the 3D manifold %, we have the simplicial
approximation

;/A\/WR D7 (-9*) )

s hes

where the first sum is over the simplices s of A and the
second one is over the hinges in the given simplex.
The geometrical quantity Lj represents the length of
the hinge 4 in the simplex s, ) is the dihedral angle
at the hinge A, and a;, is the number of simplices sharing the
hinge /. The continuum limit can be obtained by sending
the typical length of the lattice to zero and the construction
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can be straightforwardly generalized to nonsimplicial
decompositions, as long as the hinges are straight lines."
Let us focus on a 3-valent vertex v of our cuboidal
decomposition. The three edges in the directions 7,6, ¢
emanating from the vertex v represent the three hinges on
which the curvature is concentrated (see Fig. 2). The
lengths of these three hinges are given respectively by

Ve ES (ST () Er(S)E,(°)

= V(o)
_|E)IE(S?)] .
= V) . (C2a)
V" E (S E(SV)eEN(S)E (S7)
fo= V(o)
_|EHIIE(S?)]
- (C2b)
Ve ES (ST EK(S )™ E () Ey(S7)
b= V()
_|EGIIES”) .
- (C2¢)

Here the flux E;(S%) is defined in Eq. (44). The
corresponding dihedral angles are

N 8VE;(S°[x1])E;(S¢[x2])]
0,=r— arccos[ EGDEGST] | (C3a)
0p = m — arccos FUE];E)’C)]EEE? ;Z;/) |[XZD- . (C3b)
N SVE(S"[x1]) E;(S°[x2])]
6, = m — arccos { BT IE(S7)] , (C3c¢)

where |[E(S)| = \/6YE;(S*)E;(S*). We promote the right-

hand side of Eq. (Cl) to an operator by replacing the
classical length and angle variables by their quantum
counterparts. Now the expectation value of the quantum
version of the right-hand side of Eq. (C1) on the semi-
classical states is simply given by the classical expression
described below.

To compute the right-hand side of Eq. (C1), we need the
following expansion in terms of the holonomies of spin
connections:

"In particular to the case of a cuboidal triangulation which we
are interested in.

FIG. 2. Intersection of the graph with the dual surfaces where
the fluxes are evaluated in order to compute the dihedral angle
around the hinge h.

Ei(Sa[xl])Ej(Sb[x2]) = Ei(S“[vD[éﬁ- - €a€b€jk1Rﬁh(v)]
x E;(Sb[v]) + o(€?). (C4)

On the left-hand side of the expression above, the two fluxes
that read the dihedral angle around the hinge h are not
computed at the same point. They intersect the dual links
(the edges of the graph) away from the vertex v, at two points
x; and x,. On the right-hand side we have expressed their
product in terms of the fluxes evaluated at the same point »
times the parallel transport through holonomies of the
intrinsic curvature I, from x; and x, to v. Such parallel
transport can be written as a Wilson loop on the plane dual to
the hinge and thus expressed in terms of the curvature of ;.

It is immediate to see that the zeroth order in ¢ inside the
arccos function vanishes, since the fluxes are orthogonal,
and thus the leading order gives a o(e?) term.

The contribution of a single 3-valent vertex to the
integral of the Ricci scalar is hence given by (considering
that each hinge is shared by four cubes)

(E2(SP)E((S?) = E((SP)Ex(S?)) R, €06,
' [E(S?)||E(S?)]
E3(S")(Ex(S?)Ry, — Ei(S”)R7, )e,€

[E(ST)I[E(S?)]
E5(S")(E>(S”)R}y — E1(S*)R3)e €
[E(S)IIE(S?)]

By means of Egs. (C2) and (A3), and the relation

E¢ = y/det(E)e?, it is straightforward to check that

+ Ly L

+L, (Cs)

= e,ege,\/det(E)[(¢5e! — Je)RS,
+ e§<e§R}(p - egloR%(p) + eg(egR;H - e?Rzé))]

= €,€9€,\/det(E)R,

as expected.

(Co)
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1. Higher order holonomy correction to the triangulation formula for total curvature

Equation (C4) contains the first nontrivial correction due to the curvature. Here we derive the next order correction.
From the derivation of [147], we have

1
leab (€2€" + — R e E)(SP[0]) + o(e?). (C7)

E{(S[x1]))Ej(S"[x2]) = E{(S“[v])[0'; + R jupee” + 5 5

2

For the length-angle formula, the first term in the square bracket does not contribute. The contribution of the second term
was worked out above. Here we focus on the third and fourth terms.

Note that since total curvature is invariant under arbitrary spatial diffeomorphisms, the final result of this calculation
cannot depend on the internal angle a. Therefore, for simplicity and to reduce the number of expressions we set a = 0 at the
vertex v. This way e = e2 = 0 at v. The nonvanishing holonomy corrections are

e
E(S[x1])Ei (S?[xa]) | = TEI (S?)EL(S?)[R? 10gi0€” + R?194:€”),

€"e?
E5(S"[x1]) E3(S?[x2]) ] = TE3(S’)E2(S‘/’)[R23,¢;,6’ + R%3€"],

e'e?

> E5(S)E;(S7)[R'3,0,0€" 4 R'3,0,0€]. (C8)

E3(8"[x1]) E5($°[xa])] o =
The correction to the length-angle term becomes

e’e’e? 0,9 (P2 0 2
=7 det(E)[efe] (R”19,:0€” + R”194:0€?)

+ ege%)(th(p;rer + R23r(p (/7 ) + e’% ( 3r0, re + R 3r0; 660)]

e’e’e? 0( 0,9 2 0, pl
=" det(E)[e”(e7e3 R 19450 + €1€5R 3,59)

? 0p2 ? rp2
+€(/}(€2€1R 10¢;p +6265R 3rt/);(/)) +eé (63 lR 3r0;r +e3€2R 3re; r)]
e’e’e 0/ p2 1 2 0 2 0
i det(E)[e”(R?112:9 + R'331:0 — R*11,€5.9 — R 19267 4

1 10 2 2 2 0
—R'31€55 — Rigzpely) + € (R 110, + R332, — R 11405,
2 0 2 @ 2 r r(pl 2
- R*1ppel,, — Ro33p€5, — R73p0€5,) + € (R 331, + R332,

1 1,0 2 2. L0
— Rise5, — Risypel, — R%300%, — RP33,€5,)]. (C9)

We can simplify the above expression by noting that

1 1
€5y = eyg+ 1 g5 = —rcoté’ + Rsmecote =0,

sin @
o _ ,r _ 0 _ 0 _ ,r __
61;9_83;19_62;4)_61;1/1_83;(/1_0’
N A

eg;r = eg.r + F;reg A2 + E = 0’
R R
ef, = el + el =—gte=0
R’ R’
P =e? I%.¢0 =— + =0. C10
= Tl = T G0 T R sing (C10)

Thus, (C9) becomes
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e"efe?

a=r,0,p

=T det(E)[e?(R? 1120 + R'33159) + €”(R112,, + R%330,,) + € (R'331,, + R%330,)]. (C11)

It follows from symmetries of the Riemann tensor and the definition of the internal metric that

» _
R*112 = Ra11o = —Rya12,

> _
R%33 = Ra33p = —Rp33,
Ri212 + Ri313 = Ry,

1 _ _
R 331 = Ri331 = —Ry313,

Ri212 + R33 = Ry,

Ri313 + Rozpz = Ras. (C12)
Therefore, (C11) reduces to
/s e'ele? 9 .
Z La 5 - 9a = 2 det<E) [6 R11;9 + €¢R22;(p +e€ R33;r]' (C13)
a=r0,p e
Due to spherical symmetry we have
Ry = e?zRee;e = e?zRae.e =0,
Ry, = engw;q) = e(ngw,q}
2
R33;r = engrr;r = eg2 [Rrr,r - 2F£rRrr] = W [_3RR/A/2
+ A(=AN'[R? = 3RR"] + RR'A") + A2(R'R" — RR")). (C14)
Putting everything together, (C13) reduces to
\2 .0 ¢
Z La (z - 9a> = m V det(E)R33'r
2 4 2 ’
a=r,0,p €
in 6
= (e")2ele? % [~3RR'A” + A(~A'[R? — 3RR"] + RR'A") + A*(R'R" —RR")].  (C15)

That this result is somewhat different from what was obtained in Eq. (114) is not all that surprising. Indeed the method here
and the one is Sec. VII B correspond to two different regularization schemes for the spin connections.
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