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We study dilaton-gravity theories in two dimensions obtained by dimensional reduction of higher-
dimensional nonrelativistic theories. Focusing on certain families of extremal charged hyperscaling
violating Lifshitz black branes in Einstein-Maxwell-scalar theories with an extra gauge field in four
dimensions, we obtain AdS2 backgrounds in the near-horizon throats. We argue that these backgrounds can
be obtained in equivalent theories of two-dimensional dilaton-gravity with an extra scalar, descending from
the higher-dimensional scalar, and an interaction potential with the dilaton. A simple subcase here is the
relativistic black brane in Einstein-Maxwell theory. We then study linearized fluctuations of the metric,
dilaton and the extra scalar about these AdS2 backgrounds. The coefficient of the leading Schwarzian
derivative term is proportional to the entropy of the (compactified) extremal black branes.
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I. INTRODUCTION

Gravity in two dimensions, trivial as such, is rendered
dynamical in the presence of a dilaton scalar and additional
matter. Such dilaton-gravity theories arise generically under
dimensional reduction from higher-dimensional theories
of gravity coupled to matter. There is interesting inter-
play with AdS2 holography, which arises in the context
of extremal black holes and branes: the near-horizon
regions typically acquire an AdS2 × X geometry, and a
two-dimensional description arises after compactifying the
transverse space X. Almheiri and Polchinski [1] considered
toy models of two-dimensional dilaton-gravity of this sort,
with backgrounds involving AdS2 with a varying dilaton.
Analyzing the backreaction of a minimally coupled scalar
perturbation on the AdS2 background reveals nontrivial
scaling of boundary 4-point correlation functions thereby
indicating the breaking of AdS2 isometries in the deep IR.
This breaking amounts to breaking of local reparametriza-
tions of the boundary time coordinate (modulo global
SLð2Þ symmetries), which would have been preserved in
the presence of exact conformal symmetry. In [2], as well
as [3–5], it was argued that the leading effects describing
such nearly AdS2 theories are captured universally by a
Schwarzian derivative action governing boundary time
reparametrizations modulo SLð2Þ, which arises from keep-
ing the leading nonconstant dilaton behavior. This picture
dovetails with the absence of finite energy excitations in

AdS2 discussed previously in [6,7]. Parallel exciting
developments involve various recent investigations of the
SYK model [8–10], a quantum mechanical model of
interacting fermions. This exhibits approximate conformal
symmetry at low energies: the leading departures from
conformality are governed by a Schwarzian derivative
action for time reparametrizations modulo SLð2Þ, as above.
A recent review is [11].
AdS2 throats arise quite generally in the near-horizon

regions of extremal black holes and black branes, where
other fields acquire near constant “attractor” values. This
attractor mechanism, first discussed in [12] for BPS black
holes in N ¼ 2 theories, arises from extremality rather than
supersymmetry, as studied in [13,14]. In the last several
years, this has been ubiquitous in the context of non-
relativistic generalizations of holography: a nice review
is [15]. A large family of such theories is obtained by
considering Einstein-Maxwell-scalar theories with a nega-
tive cosmological constant and potential: the Uð1Þ gauge
field and scalar serve to support the nonrelativistic back-
ground, typically of the form of a Lifshitz, or hyperscaling
violating (conformally Lifshitz) theory. The duals to the bulk
uncharged black branes in these hvLif theories capture many
features of finite density condensed matterlike systems.
Towards studying extremal black branes, we note that charge
can be added to these theories by adding an additional Uð1Þ
gauge field, as discussed in, e.g., [16–18]. Now at extrem-
ality, the infrared region approaches an AdS2 × X throat,
with X typically of the form of an extended transverse plane
Rd. The discussion above of AdS2 holography now applies
upon compactifying X taken as, e.g., a torus Td. This was in
fact the broad context for [1]: other recent discussions of
reduction from higher-dimensional theories appear in, e.g.,
[19–25]; see also [26].
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Towards studying such AdS2 theories arising in this
nonrelativistic context, we study effective gravity theories
of the above form, with two Uð1Þ gauge fields and a scalar
fieldΨwith a negative cosmological constant and potential.
We focus for concreteness on the charged hyperscaling
violating Lifshitz black branes in four dimensions
described in [17]. In the extremal limit, the near-horizon
geometry of these charged hyperscaling violating Lifshitz
black branes becomes AdS2 ×R2. These charged hyper-
scaling violating Lifshitz attractors arise for certain regimes
of the Lifshitz z and hyperscaling violating θ exponents
allowed by the energy conditions, with the additional
requirement that the theory exhibits hvLif boundary con-
ditions in the ultraviolet: these are perhaps best regarded as
intermediate infrared phases themselves in some bigger
phase diagram. Then compactifying the two spatial direc-
tions as a torus T2, we dimensionally reduce this charged
hvLif extremal black brane to obtain a two-dimensional
dilaton-gravity-matter theory. This theory is equivalent to
gravity with a dilaton Φ and an additional scalar Ψ that
descends from the hvLif scalar in the higher-dimensional
theory, along with an interaction potential UðΦ;ΨÞ. The
interaction potential raises the question of whether the extra
scalar destabilizes the AdS2 regime, possibly in some
region of parameter space. Towards understanding this,
we study small fluctuations about the extremal AdS2
background in these theories and argue that these are in
fact stable, the stability stemming from the restrictions
imposed on z, θ stated above from energy conditions and
asymptotic boundary conditions. Studying the action for
small fluctuations up to quadratic order, it can be seen that
the leading corrections to AdS2 arise at linear order in δΦ
leading again to a Schwarzian derivative action from the
Gibbons-Hawking term, although there are subleading
coupled quadratic corrections (Sec. III). The coefficient
of the Schwarzian is proportional to the entropy of the
compactified extremal black branes, which being the
number of microstates of the background is akin to a
central charge of the effective theory. In Sec. II A, we first
describe in detail the simpler case of the relativistic black
brane, which has z ¼ 1, θ ¼ 0, arising in Einstein-Maxwell
theory, the extra scalar being absent: at leading order this
shows how the Jackiw-Teitelboim theory [27,28] arises,
with subleading terms at quadratic order. We finally study,
in Sec. V, a null reduction of the charged relativistic black
brane: this results in charged hvLif black brane back-
grounds with specific exponents, but with an extra scalar
background profile (for the uncharged case, these coincide
with [29]). Section VI contains a brief discussion and an
Appendix contains some technical details.

II. EINSTEIN-MAXWELL THEORY
IN FOUR DIMENSIONS

Einstein-Maxwell theory with a negative cosmological
constant is a useful playground for various interesting

physics: see, e.g., [15] for a review. We focus on four
dimensions for simplicity: as a consistent truncation of M-
theory on appropriate seven-manifolds, the bulk gauge field
can be taken as the dual to the Uð1ÞR current. The action is

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q �
1

16πG4

ðRð4Þ − 2ΛÞ − 1

4
FMNFMN

�
;

ð2:1Þ

where Λ ¼ −3 is the cosmological constant in four
dimensions. The field equations are

Rð4Þ
MN − ΛgMN − 8πG4

�
FMPFN

P −
gMN

4
F2

�
¼ 0;

∂Mð
ffiffiffiffiffiffi
−g

p
FMNÞ ¼ 0: ð2:2Þ

These equations have both electrically and magnetically
charged black branes as solutions.
Magnetic branes: These are slightly simpler and we

discuss them first, mostly reviewing discussions already in
the literature. The metric and field strength [30] are

ds2 ¼ −r2fðrÞdt2 þ dr2

r2fðrÞ þ r2ðdx2 þ dy2Þ;

fðrÞ ¼ 1 −
�
r0
r

�
3

þQ2
m

r4

�
1 −

r
r0

�
;

Fxy ¼ Qm; ð2:3Þ

where Qm is related to the magnetic charge of the black
brane, r0 is the location of the horizon and r → ∞ is the
boundary. In the extremal limit, the Hawking temperature
vanishes, fixing the horizon location in relation to the
charge,

T ¼ 3r0
4π

�
1 −

Q2
m

3r40

�
¼ 0 ⇒ Q2

m ¼ 3r40: ð2:4Þ

The near-horizon geometry of the magnetic black brane
becomes AdS2 ×R2,

ds2 ¼ −r20fðrÞdt2 þ
dr2

r20fðrÞ
þ r20ðdx2 þ dy2Þ;

fðrÞjr→r0 ≃
6

r20
ðr − r0Þ2: ð2:5Þ

We compactify the two spatial dimensions xi as T2 and
dimensionally reducing with an ansatz for the metric

ds2 ¼ gð2Þμν dxμdxν þΦ2ðdx2 þ dy2Þ; ð2:6Þ

with gð2Þμν and Φ being independent of the compact coor-
dinates x; y ∈ T2. The action (2.1) for the magnetic black
brane solution then reduces to

KEDAR S. KOLEKAR and K. NARAYAN PHYS. REV. D 98, 046012 (2018)

046012-2



S ¼ 1

16πG2

Z
d2x

ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q

×

�
Φ2Rð2Þ − 2ΛΦ2 −

Q2
m

2Φ2
þ 2∂μΦ∂μΦ

�
; ð2:7Þ

where G2 ¼ G4=V2 is the dimensionless Newton constant

in two dimensions. A Weyl transformation gμν ¼ Φgð2Þμν

absorbs the kinetic term for the dilatonΦ in the Ricci scalar
giving

S ¼ 1

16πG2

Z
d2x

ffiffiffiffiffiffi
−g

p �
Φ2R − 2ΛΦ −

Q2
m

2Φ3

�

≡ 1

16πG2

Z
d2x

ffiffiffiffiffiffi
−g

p ðΦ2R −UðΦÞÞ: ð2:8Þ

The equations of motion from this action are

UðΦÞ ¼ 2ΛΦþ Q2
m

2Φ3
; R −

∂U
∂Φ2

¼ 0;

gμν∇2Φ2 −∇μ∇νΦ2 þ gμν
2

UðΦÞ ¼ 0: ð2:9Þ

This two-dimensional dilaton-gravity theory admits AdS2
as a solution with a constant dilaton. This constant dilaton,
AdS2 solution is just the near-horizon AdS2 geometry of
the extremal magnetic black brane in four dimensions
(which asymptotically, as r → ∞, is AdS4).
The purpose of this section was to simply illustrate that

the original theory with the gauge field is equivalent to a
dilaton-gravity theory with an appropriate dilaton potential:
this will be a recurrent theme. A simple toy model
capturing many features of two-dimensional dilaton gravity
is the Jackiw-Teitelboim theory [27,28]. In the discussion
above, we have not been careful with length-scales: in the
next section for the relativistic electric brane, we will
reinstate various scales.

A. Relativistic electric black brane,
reduction to two dimensions

The electric black brane solution to (2.1), (2.2), is

ds2 ¼ −
r2fðrÞ
R2

dt2 þ R2

r2fðrÞ dr
2 þ r2

R2
ðdx2 þ dy2Þ;

fðrÞ ¼ 1 −
�
r0
r

�
3

þQ2
e

r4

�
1 −

r
r0

�
;

At ¼
Qe

2
ffiffiffiffiffiffiffiffiffi
πG4

p
Rr0

�
1 −

r0
r

�
; Frt ¼

Qe

2
ffiffiffiffiffiffiffiffiffi
πG4

p
R
1

r2
:

ð2:10Þ

The gauge field At vanishes at the horizon. The charge
parameter Qe is related to the chemical potential μ and the
charge density σ of the black brane as

Qe

2
ffiffiffiffiffiffiffiffiffi
πG4

p
Rr0

¼ μ; σ ¼ μ
r0
R2

¼ Qe

2
ffiffiffiffiffiffiffiffiffi
πG4

p
R3

: ð2:11Þ

Reinstating the dimensionless gauge coupling e2 in μ and σ
as μ → μ

e and σ → σe and using (2.11), we recover the
expressions for the gauge field, field strength and the
thermal factor in terms of r0, μ, σ as given in Sec. 4. 2. 1 in
[15]. Note that in (2.10) the charge parameter Qe has
dimensions of charge times length-squared, and the gauge
field At has mass dimension one. In the extremal limit, the
temperature vanishes giving

T ¼ 3r0
4πR2

�
1 −

Q2
e

3r40

�
¼ 0 ⇒ Q2

e ¼ 3r40: ð2:12Þ

The near-horizon geometry of the electric black brane
becomes AdS2 ×R2,

ds2 ¼ −
r20
R2

fðrÞdt2 þ R2

r20fðrÞ
dr2 þ r20

R2
ðdx2 þ dy2Þ;

fðrÞjr→r0 ≃
6

r20
ðr − r0Þ2; ð2:13Þ

as in the magnetic case. The Bekenstein-Hawking entropy
is the horizon area in Planck units

SBH ¼ r20
R2

V2

4G4

¼ Qe=
ffiffiffi
3

p

R2

V2

4G4

: ð2:14Þ

With V2 ¼
R
dxdy the area, this is finite entropy density for

noncompact branes.
It is worth noting that asymptotically, these branes (2.10)

give rise to an AdS4 geometry, with scale R. In the near-
horizon region, we obtain an AdS2 throat with scale

Rffiffi
6

p : this

is a well-defined AdS2 throat in the regime r−r0
R ≫ 1 and

r−r0
r0

≪ 1. The AdS2 region is well-separated from the
boundary of the AdS4 geometry at r ∼ rC ≫ r0 if

r−r0
rc

≪ 1.
Compactifying the two spatial dimensions xi as T2 and

dimensionally reducing with the metric ansatz (2.6) reduces
the action (2.1) for the electric black brane solution to

S ¼
Z

d2x
ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q �
1

16πG2

ðΦ2Rð2Þ − 2ΛΦ2 þ 2∂μΦ∂μΦÞ

−
V2Φ2

4
FμνFμν

�
; ð2:15Þ

and we have suppressed a total derivative term which
cancels with a corresponding term arising from the dimen-
sional reduction of the Gibbons-Hawking boundary term
(more on this later). Performing a Weyl transformation

gμν ¼ Φgð2Þμν to absorb the kinetic term for the dilaton Φ2 in
the Ricci scalar, we get

AdS2 DILATON GRAVITY FROM REDUCTIONS OF … PHYS. REV. D 98, 046012 (2018)

046012-3



S ¼
Z

d2x
ffiffiffiffiffiffi
−g

p �
1

16πG2

ðΦ2R − 2ΛΦÞ − V2Φ3

4
FμνFμν

�
:

ð2:16Þ

The Maxwell equations for the gauge field are

∂μð
ffiffiffiffiffiffi
−g

p
Φ3FμνÞ ¼ 0: ð2:17Þ

The two components b ¼ t, r of (2.17), i.e.,
∂tð ffiffiffiffiffiffi−gp Φ3FtrÞ ¼ 0 ¼ ∂rð ffiffiffiffiffiffi−gp Φ3FtrÞ, imply

ffiffiffiffiffiffi
−g

p
Φ3Ftr ¼ const: ð2:18Þ

Using the gauge field solution in (2.10) to fix this constant
as Qe

2
ffiffiffiffiffiffi
πG4

p
R3, we get

Fμν ¼ Qe

2
ffiffiffiffiffiffiffiffiffi
πG4

p
R3

1ffiffiffiffiffiffi−gp Φ3
εμν; ð2:19Þ

where εμν is defined as εtr ¼ 1 ¼ −εrt and εμν ¼ gμρgνσερσ.

Substituting FμνFμν ¼ −Q2
e

2πG4R6Φ6 and FμρF
ρ
ν ¼ −Q2

e

4πG4R6Φ6 gμν
in Eq. (A1), we get

gμν∇2Φ2 −∇μ∇νΦ2 þ gμν
2

�
2ΛΦþ 2Q2

e

R6Φ3

�
¼ 0;

R −
Λ
Φ
þ 3Q2

e

R6Φ5
¼ 0: ð2:20Þ

These field equations can be obtained by varying the
following equivalent action

S ¼ 1

16πG2

Z
d2x

ffiffiffiffiffiffi
−g

p �
Φ2R − 2ΛΦ −

2Q2
e

R6Φ3

�

≡ 1

16πG2

Z
d2x

ffiffiffiffiffiffi
−g

p ðΦ2R −UðΦÞÞ; ð2:21Þ

This equivalent action is obtained by substituting the
solution for Fμν (in terms of the dilaton Φ2) in the action
(2.16) and changing the sign of the F2 term which contains
a minus sign for electric branes alone, arising from gtt
(a similar treatment appears also in, e.g., [5]). Note that this
is also consistent with and expected from electric-magnetic
duality Qe → Qm;Qm → −Qe, which would suggest that
the effective dilaton potential for magnetic branes (2.8) is
unchanged in going to electric branes. Now for instance the
second equation in (2.20) becomes R − ∂U

∂Φ2 ¼ 0. The
constant dilaton, AdS2 solution to the equations (2.20),
consistent with the T2 compactification of the near-horizon
geometry in (2.13), is

ds2 ¼ L2

�
−

r20
L4R2

ðr − r0Þ2dt2 þ
dr2

ðr − r0Þ2
�
;

Φ ¼ r0
R
; L2 ¼ Rr0

6
; Q2

e ¼ 3r40; ð2:22Þ

with L the AdS2 scale. Changing the radial coordinate to
ρ ¼ R2

6ðr−r0Þ, we write the metric in conformal gauge

ds2 ¼ e2ωð−dt2 þ dρ2Þ ¼ e2ωð−dxþdx−Þ; e2ω ¼ L2

ρ2
;

ð2:23Þ

where the light-cone coordinates are x� ¼ t� ρ. To see
that (2.21) admits the above AdS2 solution, we compute ∂U

∂Φ2

for the above solution, which gives

∂U
∂Φ2

¼ −
12

Rr0
¼ −

2

L2
⇒ R ¼ ∂U

∂Φ2
¼ −

2

L2
; ð2:24Þ

using (2.20) for the Ricci scalar. This constant dilaton,
AdS2 solution (2.22) is just the compactification of the
near-horizon AdS2 geometry of the four-dimensional
extremal electric black brane.

1. Perturbations about the constant dilaton,
AdS2 background

The four-dimensional theory has a large spectrum of
tensor, vector and scalar perturbations, which upon reduc-
tion to two dimensions give a corresponding spectrum:
we will discuss this briefly later, in Sec. III B 3. In this
section, we focus on perturbations to only those fields that
have nontrivial background profiles in the effective two-
dimensional dilaton-gravity theory; thus, we turn on
perturbations to the metric and the dilaton,

Φ ¼ Φb þ ϕðxþ; x−Þ; ω ¼ ωb þ Ωðxþ; x−Þ; ð2:25Þ

whereΦb and ωb denote the background (2.22). We expand
the action (2.21) (in conformal gauge) about this back-
ground up to quadratic order to get

S ¼ 1

16πG2

Z
d2x

�
4Φ2∂þ∂−ω −

e2ω

2
UðΦÞ

�

≡ S0 þ S1 þ S2; ð2:26Þ

where

S0 ¼
1

16πG2

Z
d2x

�
4Φ2

b∂þ∂−ωb −
e2ωb

2
UðΦbÞ

�
ð2:27Þ

is the background action and S1 is linear in perturbations
and vanishes by equations of motion. S2 is quadratic in
perturbations given by
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S2 ¼
1

16πG2

Z
d2x

×

�
4r20
3L2

ϕ∂þ∂−Ωþ 1

ðxþ − x−Þ2
�
8r20
3L2

Ωϕ − 16ϕ2

��
:

ð2:28Þ

Varying this action, we get the linearized equations of
motion for the perturbations,

∂þ∂−ϕþ 2

ðxþ − x−Þ2 ϕ ¼ 0;

∂þ∂−Ωþ 1

ðxþ − x−Þ2
�
2Ω −

24L2

r20
ϕ

�
¼ 0: ð2:29Þ

These equations are consistent at linear order with the
“constraint” equations for the þþ and −− components of
the Einstein equation in (2.20). From these linearized
equations, we see that the dilaton fluctuation ϕ is decoupled
from the metric fluctuationΩ. Solving the equation for ϕ in
(2.29), we get

ϕ ¼ aþ btþ cðt2 − ρ2Þ
ρ

; ð2:30Þ

where a, b, c are independent constants. Substituting the
solution (2.30) for ϕ in the equation for Ω in (2.29), we can
solve for the metric perturbation Ω, which implies that the
AdS2 metric gets corrected at the same order as the dilaton.
The on-shell (boundary) action obtained then by using the
linearized field equations in (2.28) gives terms at quadratic
order in the perturbations,

S2 ¼
1

16πG2

Z
dt

ffiffiffiffiffiffi
−γ

p
nμ
�
2r20
3L2

ðΩ∂μϕ − ϕ∂μΩÞ
�
; ð2:31Þ

where nμ is the outward unit normal to the boundary.

2. The Schwarzian effective action

In this section, we switch to Euclidean time τ ¼ it. The
Gibbons-Hawking boundary term in the two-dimensional
theory arises from the reduction of the corresponding
term in the higher-dimensional theory. The Gibbons-
Hawking term on the three-dimensional boundary of the
four-dimensional theories described by the Euclidean form
of the action (2.1) is

S4dGH ¼ −
1

8πG4

Z
d3x

ffiffiffiffiffiffiffi
γð3Þ

q
Kð4Þ; ð2:32Þ

where the extrinsic curvature is defined as Kð4Þ
AB ¼

1
2
ð∇AnB þ∇BnAÞ, nA being the outward unit normal

to the three-dimensional boundary. Using the ansatz
(2.6) for the T2-compactification, dimensionally reducing

and performing the Weyl transformation of the two-

dimensional metric gμν ¼ Φgð2Þμν , the Gibbons-Hawking
term reduces to1

S4dGH ¼ −
1

16πG2

Z
dτ

ffiffiffi
γ

p �
2Φ2K þ 3

2
nμ∂μΦ2

�
: ð2:33Þ

The Ricci scalar term in the bulk four-dimensional
Euclidean action upon dimensional reduction and after
the Weyl transformation becomes

−
ffiffiffiffiffiffiffi
gð4Þ

q
Rð4Þ ¼ −

ffiffiffi
g

p �
Φ2R −

3

2
∇2Φ2

�
: ð2:34Þ

Note also that
ffiffiffiffiffiffiffi
gð4Þ

p
¼

ffiffiffiffiffiffiffi
gð2Þ

p
Φ2 and Φ2 ¼ gxx. We write

the total derivative term (the second term) in (2.34) as a
boundary term

−
1

16πG2

Z
d2x

ffiffiffi
g

p �
−
3

2
∇2Φ2

�

¼ 1

16πG2

Z
dτ

ffiffiffi
γ

p �
3

2
nμ∂μΦ2

�
: ð2:35Þ

We see that this boundary term which comes from the
dimensional reduction of the bulk action in four dimen-
sions cancels the second term in (2.33), thereby giving
the Gibbons-Hawking term on the boundary of the two-
dimensional theory as

SGH ¼ −
1

8πG2

Z
dτ

ffiffiffi
γ

p
Φ2K: ð2:36Þ

Expanding the Gibbons-Hawking term in the perturbations
(2.25) and adding it to the Euclidean form of S2 (which is
SE2 ¼ −iS2, with t ¼ −iτ in S2), the leading term in the total
boundary action Ibdy ¼ SE2 þ SGH arises at linear order in
the dilaton perturbation (with subleading terms at quadratic
order). To illustrate this in greater detail, it is important that
we define the dilaton perturbation in (2.25) in a physically
appropriate manner. Since the background value Φb is
constant, it is sensible to define the dilaton perturbation as

Φ ¼ Φbð1þ ϕ̃Þ; Φb ¼
r0
R

⇒ ϕ̃ ¼ Φ −Φb

Φb
≪ 1:

ð2:37Þ

Thus, with this redefinition, the perturbation is reasonable
since it automatically satisfies ϕ̃ ≪ 1. In terms of the
dilaton background value Φb, the entropy (2.14) is simply

1We have Kð4Þ ¼ γð3ÞABKð4Þ
AB ¼ γð3ÞττKð4Þ

ττ þ 2γð3ÞxxKð4Þ
xx ,

with Kð4Þ
xx ¼ −Γr

xxnr ¼ 1
2
nr∂rΦ2 ¼ 1

2
nμ∂μΦ2 becomes Kð4Þ ¼

Kð2Þ þΦ−2nμ∂μΦ2. Then (2.32) gives (2.33) after the Weyl
transformation.
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SBH ¼ Φ2
bV2

4G4

¼ Φ2
b

4G2

: ð2:38Þ

This gives

Sð1ÞGH ¼ −
2Φ2

b

8πG2

Z
dτ

ffiffiffi
γ

p
ϕ̃K → −

Φ2
b

4πG2

Z
duϕrðuÞfτðuÞ; ug:

ð2:39Þ

In evaluating the last term, we take the boundary of AdS2 as
a slightly deformed curve ðτðuÞ; ρðuÞÞ parametrized by the
boundary coordinate u, and define ϕ̃ ¼ ϕrðuÞ

ϵ , as discussed
in [2] (reviewed in [11]). Now using the outward unit
normal nμ to the boundary, we expand the extrinsic

curvature. Expanding Sð1ÞGH then leads to a Schwarzian
derivative action SchðτðuÞ; uÞ ¼ fτðuÞ; ug ¼ τ000

τ0 −
3
2
ðτ00τ0 Þ2.

The integral above pertains only to AdS2 does not contain
any further scales besides the AdS2 scale L which also
appears in the extrinsic curvature giving the Schwarzian
(also

ffiffiffi
γ

p ¼ L
ϵ). The various length scales in the original

extremal brane have been absorbed into the AdS2 scale L.
Now we note that the coefficient of the Schwarzian is in
fact proportional to the entropy (2.38) of the compactified
extremal black brane with V2 finite (the dependence on Φb
is expected since it controls the transverse area). Since the
entropy captures the number of microstates of the unper-
turbed background, this is akin to a central charge of the
effective theory. Similar comments appear in [10] (see also
[19], the Schwarzian arising in some cases from the
conformal anomaly).
It is worth noting that the coefficient in the Schwarzian

term above is proportional to the extremal entropy after the
reasonable definition of the perturbation as (2.37) by
scaling out Φb: apart from this, the Schwarzian term here
is as in [2]. As discussed there, we note that the perturbation
makes this nearly AdS2 and contributes to the near-
extremal entropy via the Schwarzian. This can be obtained
as in the analysis there by a transformation τðuÞ ¼ tan τ̃ðuÞ

2

which gives Sð1ÞGH ¼ − Φ2
b

4πG2
ϕ̄r

R
duðfτ̃ðuÞ; ug þ 1

2
τ̃02Þ, treat-

ing ϕ̄r as constant. Solutions with τ̃ ¼ 2π
β u have τ̃ ∼ τ̃ þ 2π,

giving the action Sð1ÞGH ¼ −2π2 Φ2
b

4πG2
ϕ̄rT ¼ − logZ, giving

the near-extremal correction to the entropy ΔS ¼
4π

Φ2
b

4G2
ϕ̄rT (which, being linear in temperature, can also

be seen to be the specific heat): this again is proportional to
the background entropy with the perturbation defined
as (2.37).
The remaining terms in the expansion of SGH and SE2 are

all quadratic in perturbations and, thus, subleading com-

pared to Sð1ÞGH. See also, e.g., [19,22,24,25], for AdS2
backgrounds obtained from reductions of higher-dimen-
sional theories (see also [26]). In particular, there are

parallels with some of the analysis on the reduction of
near extremal black holes in [25].
Overall, expanding in the perturbations ϕ̃;Ω, we have

I ¼ SE þ SGH ¼ I0 þ I1 þ I2 þ � � �, with

I0 ¼ −
Φ2

b

16πG2

�Z
d2x

ffiffiffi
g

p
Rþ 2

Z
bndry

ffiffiffi
γ

p
K

�
ð2:40Þ

is the background Euclidean action [see (2.27)]: it can be
checked that UðΦbÞ ¼ 0. The action I0 is a topological

term and gives the extremal entropy SBH ¼ Φ2
b

4G2
after

regulating this as a near-extremal background.2 The linear
terms are contained in

I1¼−
2Φ2

b

16πG2

Z
d2x

ffiffiffi
g

p
ϕ̃

�
R−

∂U
∂Φ2

�
−

2Φ2
b

8πG2

Z
bndry

ffiffiffi
γ

p
ϕ̃K;

ð2:41Þ

with ∂U
∂Φ2 jΦb

¼ − 2
L2, which is the Jackiw-Teitelboim theory

[27,28], which serves as a simple model for AdS2 physics
(with parallels with the SYK model). The bulk term
vanishes by the ϕ̃ equation giving the fixed background
AdS2 geometry, while the boundary term gives the
Schwarzian as explained above. The analysis here of the
higher-dimensional realization serves to recover the back-
ground entropy as expected and reveal the various sub-
leading terms beyond the Jackiw-Teitelboim theory
emerging from reduction: I2 is second order in perturba-
tions, from SE2 [see (2.31)] and the second-order terms in
the expansion of SGH,

2Here the Euclidean time periodicity, large for a small near-
extremal temperature, precisely cancels the small regularized
change in the extremal horizon. In more detail, expanding fðrÞ
in (2.10) about extremality, we have fðrÞ ≃ 6ðr−r0Þ

r2
0

ðr − r0 þ
r0
6
ð3 − Q2

r4
0

ÞÞ≡ 6
r2
0

ðr − r00 − δ
2
Þðr − r00 þ δ

2
Þ, where δ ¼ r0

6
ð3 − Q2

r4
0

Þ
and r00 ¼ r0 − δ

2
. Then the nearly AdS2 throat acquires a small

horizon with metric ds2 ∼ 9δ2

R4 ρ2dτ2 þ dρ2 near the origin: the

Euclidean time periodicity then is Δτ ¼ β ¼ 2πR2

3δ consistent

with (2.12). The horizon contribution to the action gives I0 ¼
− Φ2

b
16πG2

Δτ δ
2
ð12R2Þ≡ −βF and thereby the background extremal

entropy SBH ¼ −I0. The boundary terms in the action above
cancel: to elaborate, we have the AdS2 metric ds2 ¼
L2

ρ2
ðdτ2 þ dρ2Þ. The boundary at ρ ¼ ϵ has outward unit normal

nρ ¼ − L
ρ. The extrinsic curvature defined as Kμν ¼ 1

2
ð∇μnν þ

∇νnμÞ gives Kττ ¼ −Γρ
ττnρ ¼ L

ρ2
and K ¼ γττKττ ¼ 1

L. Then the

terms at the boundary cancel as − Φ2
b

16πG2
ðR dτ L2dρ

ρ2
jhrznϵ ð− 2

L2Þ þ
2
R
dτ L

ϵ ð− 1
LÞÞ.
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I2 ¼ −
1

16πG2

Z
dτ

ffiffiffi
γ

p �
2r20
3L2

ΦbnρðΩ∂ρϕ̃ − ϕ̃∂ρΩÞ

þ 2Φ2
bðϕ̃2K − 2ϕ̃e−ωb∂ρΩÞ

�
; ð2:42Þ

expanding in conformal gauge.

III. CHARGED HYPERSCALING VIOLATING
LIFSHITZ BLACK BRANES

Over the last several years, nonrelativistic generaliza-
tions of holography have been investigated extensively:
see, e.g., [15] for a review of various aspects. A particular
family of interesting theories comprises the so-called
hyperscaling violating Lifshitz (hvLif) theories, which
are conformal to Lifshitz theories. These arise as solutions
to Einstein-Maxwell-scalar theories, the Uð1Þ gauge field
and dilaton scalar necessary to support the nonrelativistic
background. For the most part, we regard these as effective

gravity theories: in certain cases these can be shown to arise
from gauge/string realizations (see, e.g., [29]).
These nonrelativistic black branes are uncharged. A

minimal way to construct charged black branes is to
add an additional Uð1Þ gauge field, which serves to
supply charge to the black brane: see, e.g., [16–18].
For these latter charged black branes, there exist extremal
limits where the near-horizon geometry takes the form
AdS2 × X, and contains an AdS2 throat. Compactifying
the transverse space now allows us to study the extremal
limits of these theories in the context of a two-dimensional
dilaton gravity theory with additional matter, notably the
scalar descending from higher dimensions as well as
gauge fields.3

A. Four-dimensional charged hvLif black brane

Consider Einstein-Maxwell-scalar theory with a further
Uð1Þ gauge field, with action [17]

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q �
1

16πG4

�
Rð4Þ −

1

2
∂MΨ∂MΨþ VðΨÞ − Z1

4
F1MNFMN

1

�
−
Z2

4
F2MNFMN

2

�
; ð3:1Þ

where the scalar field dependent couplings and the scalar potential are

Z1 ¼ eλ1Ψ; Z2 ¼ eλ2Ψ; VðΨÞ ¼ V0eγΨ: ð3:2Þ

The field equations following from the above action are

Rð4Þ
MN −

1

2
∂MΨ∂NΨþ gMN

V
2
−
Z1

2

�
F1MPF1N

P −
gMN

4
ðF1Þ2

�
− 8πG4Z2

�
F2MPF2N

P −
gMN

4
ðF2Þ2

�
¼ 0;

1ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

p ∂M

� ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q
∂MΨ

�
þ γV −

λ1Z1

4
F1MNFMN

1 − 4πG4λ2Z2F2MNFMN
2 ¼ 0;

∂M

� ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q
Z1FMN

1

�
¼ 0; ∂M

� ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q
Z2FMN

2

�
¼ 0: ð3:3Þ

The charged hvLif black brane solution to these equations is

ds2 ¼
�

r
rhv

�
−θ
�
−
r2zfðrÞ
R2z dt2 þ R2

r2fðrÞ dr
2 þ r2

R2
ðdx2 þ dy2Þ

�
;

fðrÞ ¼ 1 −
�
r0
r

�
2þz−θ

þ Q2

r2ð1þz−θÞ

�
1 −

�
r
r0

�
z−θ

�
;

F1rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þð2þ z − θÞ

p
e−

λ1Ψ0
2 r2hvR

θ−z−4r1þz−θ;

F2rt ¼
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2 − θÞðz − θÞp

e−
λ2Ψ0
2

4
ffiffiffiffiffiffiffiffiffi
πG4

p Rz−θ−2r−zþθþ1
hv r−ð1þz−θÞ;

eΨ ¼ eΨ0

�
rhvr
R2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2−θÞð2z−2−θÞ

p
; ð3:4Þ

3Note that in the AdS=CMT literature, these theories are referred to Einstein-Maxwell-dilaton theories: we here use Einstein-
Maxwell-scalar since the two-dimensional dilaton Φ here is distinct from the hvLif scalar Ψ.
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being explicit with length scales, and

V0 ¼
ð2þ z − θÞð1þ z − θÞe−γΨ0

R2−2θr2θhv
; γ ¼ θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2 − θÞð2z − 2 − θÞp ;

λ1 ¼
−4þ θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2 − θÞð2z − 2 − θÞp ; λ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z − 2 − θ

2 − θ

r
: ð3:5Þ

Here rhv is the hyperscaling violating scale arising in the
conformal factor in the metric, and the charge parameter Q
has dimensions of r1þz−θ: this is equivalent to absorbing
factors of rhv; R into Q. For z¼1, θ¼0, this scaling coin-
cides with that for the relativistic black brane in Sec. II A.
In these charged hyperscaling violating Lifshitz black

brane solutions to the action (3.1), the gauge field A1 and
the scalar field Ψ source the hyperscaling violating Lifshitz
background while the gauge field A2 giving charge to the
black brane, as mentioned above. This action (3.1) has also
been defined by absorbing the Newton constant into the
definition of the hyperscaling violating gauge field A1 and
scalar Ψ (which, thus, makes A1 and Ψ dimensionless)
while retaining the gauge field A2 in F2 as having mass
dimension one. Thus, the field strength F2rt in (3.4) has
mass dimension two, as for the relativistic brane.
The null energy conditions for the metric follow from the

asymptotic hvLif geometry [15] and are given by

ðz − 1Þð2þ z − θÞ ≥ 0; ð2 − θÞð2ðz − 1Þ − θÞ ≥ 0:

ð3:6Þ

In addition, we require the gauge field A2t to vanish at the
boundary (r → ∞) so that the theory does not ruin the
hvLif boundary conditions we have assumed: this is
equivalent to assuming that these charged black branes
represent finite temperature charged states in the boundary
hvLif theory. The background profile A2t ∼ 1 − ðr0r Þz−θ then
implies that

z − θ ≥ 0: ð3:7Þ

These conditions together constrain the range of z, θ for
these extremal nonrelativistic black brane backgrounds,

which will be important in the discussion of perturbations
later. Specifically:

(i) First, the last condition (3.7) is specific to the
charged case: using this, the first of the null energy
conditions (3.6) implies that z ≥ 1.

(ii) From the second of the conditions (3.6), we have
either 2 − θ ≥ 0; 2z − 2 − θ ≥ 0, or 2 − θ < 0;
2z − 2 − θ < 0. Considering the second possibility,
we obtain z ≥ θ ≥ 2, but this implies 2z − 2 − θ ¼
z − 2þ z − θ > 0, which is a contradiction. This
forces 2 − θ ≥ 0; 2z − 2 − θ ≥ 0.

Overall, this gives the conditions

z ≥ 1; 2z − 2 − θ ≥ 0; 2 − θ ≥ 0; ð3:8Þ

for the regime of validity of the z, θ exponents of the
charged hvLif background above. For the special case of
z ¼ 1, the NEC becomes ð2 − θÞð−θÞ ≥ 0, which forces
θ ≤ 0 by (3.8).
The relativistic limit of this charged hvLif black brane

gives the relativistic electric black brane discussed pre-
viously in Sec. II A. From the constraint (3.8), we see that
the correct relativistic limit is to take first θ ¼ 0 and then
z ¼ 1. In this limit, we get

γ ¼ 0; λ1 → −∞; λ2 ¼ 0; V0 ¼ 6=R2; Ψ ¼ Ψ0:

ð3:9Þ

With this the Einstein-Maxwell-scalar action (3.1) reduces
to the Einstein-Maxwell action (2.1), where F2 and V0 in
(3.1) are identified with F and −2Λ in (2.1).

1. Extremality and attractors

In the extremal limit,

T ¼ ð2þ z − θÞrz0
4πRzþ1

�
1 −

ðz − θÞQ2r−2ð1þz−θÞ
0

ð2þ z − θÞ
�

¼ 0 ⇒ Q2 ¼ ð2þ z − θÞ
ðz − θÞ r2ð1þz−θÞ

0 ; ð3:10Þ

and the near-horizon geometry becomes AdS2 ×R2,

ds2 ¼
�
r0
rhv

�
−θ
�
−
r2z0 fðrÞ
R2z dt2 þ R2

r20fðrÞ
dr2 þ r20

R2
ðdx2 þ dy2Þ

�
;

fðrÞjr→r0 ≃
ð2þ z − θÞð1þ z − θÞ

r20
ðr − r0Þ2; ð3:11Þ
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the AdS2 scale being Rð r0rhvÞ−θ=2. The Bekenstein-Hawking entropy is the horizon area in Planck units

SBH ¼
�
r20
R2

��
r0
rhv

�
−θ V2

4G4

¼
�

z − θ

2þ z − θ

� 2−θ
2ð1þz−θÞ rθhvV2

4G4

Qð2−θÞ=ð1þz−θÞ

R2
; ð3:12Þ

where V2 ¼
R
dxdy is the transverse area of the brane. For

z ¼ 1, θ ¼ 0, this coincides with the relativistic brane.
It is worth noting that the full metric in (3.4) is

asymptotically of hvLif form, for r ≫ r0. The boundary
of the theory could be taken as r ∼ rhv; i.e., the theory flows
to hvLif below this scale, in some bigger phase diagram.
The AdS2 throat, well-defined if r−r0

r0
≪ 1 and r−r0

R ≫ 1, is
well separated from the asymptotic hvLif region if r−r0rhv

≪ 1

and the AdS2 scale satisfies Rð r0rhvÞ−θ=2 ≪ rhv, i.e.,

R ≪ rhvð r0rhvÞθ=2. Note that this is not vacuous since r0 ≪
rhv so that r0

rhv
≪ 1 is a small factor.

Along the lines of the attractor mechanism discussion in
[13], we would like to convert this theory to a dilatonic

gravity theory in four dimensions with a potential (and no
gauge fields). Towards this end, we integrate Maxwell’s
equations in (3.3) and use the solutions for field strengths in
(3.4) to get

Ftr
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þð2þ z − θÞp

e
λ1Ψ0
2 rθ−2hv R1−θffiffiffiffiffiffi−gp

eλ1Ψ
;

Ftr
2 ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2 − θÞðz − θÞp

e
λ2Ψ0
2 rz−1hv

4
ffiffiffiffiffiffiffiffiffi
πG4

p
R2zþ1−θ ffiffiffiffiffiffi−gp

eλ2Ψ
: ð3:13Þ

Substituting (3.13) in (3.3), we obtain equations of motion
for the metric and the scalar field Ψ, which can be derived
from the following equivalent action

S ¼ 1

16πG4

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ΨÞ2 − VeffðΨÞ

�
;

VeffðΨÞ ¼ −
ð2þ z − θÞð1þ z − θÞ

R2−2θr2θhv
eγðΨ−Ψ0Þ

þ 1

g2xx

�ðz − 1Þð2þ z − θÞr2θ−4hv R2−2θ

eλ1ðΨ−Ψ0Þ þ ð2 − θÞðz − θÞQ2r2z−2hv R−4z−2þ2θ

eλ2ðΨ−Ψ0Þ

�
: ð3:14Þ

The explicit scales show that the potential term-by-term has mass dimension two. This equivalent action is obtained by
substituting the solutions for Ftr

1 and Ftr
2 in the action (3.1) and changing the signs of F2

1, F
2
2 terms, as earlier. At the critical

point (extremality),

gxx ¼
�
r0
rhv

�
−θ
�
r0
R

�
2

; eΨ ¼ eΨ0

�
rhvr0
R2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2−θÞð2z−2−θÞ

p
; Q2 ¼ ð2þ z − θÞ

ðz − θÞ r2ð1þz−θÞ
0 ; ð3:15Þ

the first and second derivatives of Veff [(A2), (A3)] are

∂Veff

∂Ψ
				
ext

¼ 0;
∂2Veff

∂Ψ2

				
ext

¼ 4ðz − 1Þð2þ z − θÞð1þ z − θÞ
2z − 2 − θ

rθ0
rθhvR

2
> 0; ð3:16Þ

which imply that the extremal point is stable for all values
of z, θ allowed by the conditions (3.8). It is worth
mentioning that for z ¼ 1 and θ nonzero, these and all
higher derivatives of Veff in fact vanish [see (A5)]: thus,
we obtain no insight into the stability of these attractors
in this case and we will not discuss this subcase in what
follows.

B. Dimensional reduction to two dimensions

Compactifying the two spatial dimensions, xi as T2, we
dimensionally reduce with the metric ansatz (2.6), taking

the lower dimensional fields gð2Þμν ;Φ;Ψ; A1; A2, to be T2-
independent: then the action (3.1) reduces to (A6).

Performing a Weyl transformation, gμν ¼ Φgð2Þμν to absorb
the kinetic term for the dilaton Φ in the Ricci scalar, the
two-dimensional action (A6) becomes

S ¼
Z

d2x
ffiffiffiffiffiffi
−g

p �
1

16πG2

�
Φ2R −

Φ2

2
∂μΨ∂μΨ

þ VΦ −
Φ3

4
Z1F1μνF

μν
1

�
−
V2Φ3

4
Z2F2μνF

μν
2

�
: ð3:17Þ
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We only retain fields with nontrivial background profiles:
more general comments appear later. The Maxwell equa-
tions for the gauge fields are

∂μð
ffiffiffiffiffiffi
−g

p
Φ3Z1F

μν
1 Þ ¼ 0; ∂μð

ffiffiffiffiffiffi
−g

p
Φ3Z2F

μν
2 Þ ¼ 0:

ð3:18Þ

Integrating and using F1rt; F2rt from (3.4) to fix the
integration constants gives

Fμν
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þð2þ z − θÞp

e
λ1Ψ0
2 rθ−2hv R1−θffiffiffiffiffiffi−gp

Z1Φ3
εμν;

Fμν
2 ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2 − θÞðz − θÞp

e
λ2Ψ0
2 rz−1hv

4
ffiffiffiffiffiffiffiffiffi
πG4

p
R2zþ1−θ ffiffiffiffiffiffi−gp

Z2Φ3
εμν; ð3:19Þ

where εμν satisfies εtr ¼ 1 ¼ −εrt and εμν ¼ gμρgνσερσ . We
substitute the solutions (3.19) in the remaining field
equations obtained by varying the action (3.17) [i.e.,
Eq. (A7)] to obtain

gμν∇2Φ2 −∇μ∇νΦ2 þ gμν
2

�
Φ2

2
ð∂ΨÞ2 þU

�

−
Φ2

2
∂μΨ∂νΨ ¼ 0;

R −
1

2
ð∂ΨÞ2 − ∂U

∂ðΦ2Þ ¼ 0;

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
Φ2∂μΨÞ − ∂U

∂Ψ ¼ 0; ð3:20Þ

where UðΦ;ΨÞ is an effective interaction potential. These
equations can then be obtained from the following equiv-
alent action

S ¼ 1

16πG2

Z
d2x

ffiffiffiffiffiffi
−g

p �
Φ2R −

Φ2

2
ð∂ΨÞ2 − UðΦ;ΨÞ

�
;

UðΦ;ΨÞ ¼ −
ð2þ z − θÞð1þ z − θÞ

R2−2θr2θhv
eγðΨ−Ψ0ÞΦ

þ 1

Φ3

�ðz − 1Þð2þ z − θÞr2θ−4hv R2−2θ

eλ1ðΨ−Ψ0Þ þ ð2 − θÞðz − θÞQ2r2z−2hv R−4z−2þ2θ

eλ2ðΨ−Ψ0Þ

�
; ð3:21Þ

where V0, γ, λ1, λ2 are given in (3.5). This equivalent action
is obtained by substituting the solutions for Fμν

1 , F
μν
2 in terms

of the dilaton Φ2 and the scalar Ψ in the action (3.17) and
changing the signs of F2

1, F
2
2 terms, as discussed in the case

for relativistic electric black brane, Sec. II A. Also note that
the relativistic electric black brane is a special case of the
dilaton-gravity-matter theory, considered here, for θ ¼ 0 and
z ¼ 1.
We note that the scalar Ψ that descends from the

hyperscaling violating scalar in higher dimensions is not
minimally coupled in the two-dimensional theory. The
potential UðΦ;ΨÞ contains nontrivial interactions between

the dilaton Φ and the hvLif scalar Ψ. Thus, the small
fluctuation spectrum of the dilaton and Ψ are coupled, and
one might worry about the stability of the two-dimensional
attractor. This is reminiscent of multifield inflation
models, where one scalar field provides a slow-roll phase
while another scalar provides a waterfall phase, ending
inflation. In the current context, stability would require
that no tachyonic modes arise from the interaction
induced by UðΦ;ΨÞ between Φ and Ψ. We will address
this soon.
The field equations (3.20) admit a constant dilaton, AdS2

solution as

ds2 ¼ L2

�
−

r2z−3θ0

R2zr−3θhv L4
ðr − r0Þ2dt2 þ

dr2

ðr − r0Þ2
�
; L2 ≡ Rr

1−3θ
2

0 r
3θ
2

hv

ð2þ z − θÞð1þ z − θÞ ;

Φ2 ¼
�
r0
rhv

�
−θ
�
r0
R

�
2

; eΨ ¼ eΨ0

�
rhvr0
R2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2−θÞð2z−2−θÞ

p
;

Q2 ¼ ð2þ z − θÞ
ðz − θÞ r2ð1þz−θÞ

0 : ð3:22Þ

Let us choose conformal gauge by doing a coordinate transformation,

ρ ¼ Rzþ1r1−z0

ð2þ z − θÞð1þ z − θÞ
1

ðr − r0Þ
: ð3:23Þ
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In the conformal gauge, the AdS2 metric in (3.22) can be written as

ds2 ¼ e2ωð−dt2 þ dρ2Þ ¼ e2ωð−dxþdx−Þ; e2ω ¼ L2

ρ2
; ð3:24Þ

where the light-cone coordinates are x� ¼ t� ρ and L is the radius of AdS2. To see that (3.21) admits the above AdS2
solution, we compute ∂U

∂Φ2 for the above solution, which gives

∂U
∂Φ2

¼ −2
ð2þ z − θÞð1þ z − θÞ

Rr
1−3θ

2

0 r
3θ
2

hv

¼ −
2

L2
: ð3:25Þ

From (3.20) for Ψ ¼ constant [from (3.22)], we get the Ricci scalar as

R ¼ ∂U
∂Φ2

¼ −
2

L2
: ð3:26Þ

1. Perturbations about AdS2

As before, we turn on perturbations to fields with background profiles, i.e., to the metric, the dilaton Φ, and the scalar
field Ψ,

Φ ¼ Φb þ ϕðxþ; x−Þ; ω ¼ ωb þΩðxþ; x−Þ; Ψ ¼ Ψb þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z − 2 − θ

p
ψðxþ; x−Þ; ð3:27Þ

where Φb, ωb, and Ψb denote the (3.22) background solution. Expanding the action (3.21) (in conformal gauge) about this
background gives

S ¼ 1

16πG2

Z
d2x

�
4Φ2∂þ∂−ωþΦ2∂þΨ∂−Ψ −

e2ω

2
UðΦ;ΨÞ

�
≡ S0 þ S1 þ S2; ð3:28Þ

where

S0 ¼
1

16πG2

Z
d2x

�
4Φ2

b∂þ∂−ωb þΦ2
b∂þΨb∂−Ψb −

e2ωb

2
UðΦb;ΨbÞ

�
ð3:29Þ

is the background action and S1 vanishes by the equations of motion. S2 is quadratic in perturbations and is given by

S2 ¼
1

16πG2

Z
d2x

r2−2θ0 r2θhv
L2ð2þ z − θÞð1þ z − θÞ

�
8ϕ∂þ∂−Ωþ 16

ðxþ − x−Þ2 ϕΩ

þ r2−2θ0 r2θhv
L2ð2þ z − θÞð1þ z − θÞ

�
ð2z − 2 − θÞ∂þψ∂−ψ −

4ðz − 1Þ
ðxþ − x−Þ2 ψ

2

�

þ 1

ðxþ − x−Þ2
�
−
16L2ð2þ z − θÞð1þ z − θÞ

r2−2θ0 r2θhv
ϕ2 þ 8θffiffiffiffiffiffiffiffiffiffiffiffiffiffið2 − θÞp ψϕ

��
: ð3:30Þ

Varying this action, we get the linearized equations of motion for the perturbations,

∂þ∂−ϕþ 2

ðxþ − x−Þ2 ϕ ¼ 0;

ð2z − 2 − θÞ∂þ∂−ψ þ 1

ðxþ − x−Þ2
�
4ðz − 1Þψ −

L2ð2þ z − θÞð1þ z − θÞ
r2−2θ0 r2θhv

4θffiffiffiffiffiffiffiffiffiffiffiffiffiffið2 − θÞp ϕ

�
¼ 0;

∂þ∂−Ωþ 1

ðxþ − x−Þ2
�
2Ω −

4L2ð2þ z − θÞð1þ z − θÞ
r2−2θ0 r2θhv

ϕþ θffiffiffiffiffiffiffiffiffiffiffiffiffiffið2 − θÞp ψ

�
¼ 0: ð3:31Þ
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These equations are consistent at linear order with the
“constraint” equations for the �� components of the
Einstein equation in (3.20): see Appendix, Eq. (A8)–
(A10). We see that the equation for ψ is coupled to ϕ as
well: defining a new field ζ,

ζ ¼ ψ −
2ffiffiffiffiffiffiffiffiffiffiffi
2 − θ

p L2ð2þ z − θÞð1þ z − θÞ
r2−2θ0 r2θhv

ϕ; ð3:32Þ

decouples the equations for ζ and ϕ, which now
become

∂þ∂−ϕþ 2

ðxþ − x−Þ2 ϕ ¼ 0;

ð2z − 2 − θÞ∂þ∂−ζ þ 2ðz − 1Þ 2

ðxþ − x−Þ2 ζ ¼ 0;

∂þ∂−Ωþ 1

ðxþ − x−Þ2
�
2Ωþ 2ð3θ − 4Þ

ð2 − θÞ
L2ð2þ z − θÞð1þ z − θÞ

r2−2θ0 r2θhv
ϕþ θffiffiffiffiffiffiffiffiffiffiffiffiffiffið2 − θÞp ζ

�
¼ 0: ð3:33Þ

In this form, the perturbations ϕ and ζ are equivalent
to scalars with positive mass propagating in a perturbed
AdS2 background, with equation of motion 1ffiffiffiffi−gp ∂μ×

ð ffiffiffiffiffiffi−gp
gμν∂νϕÞ −m2ϕ ¼ 0: in conformal gauge this is

∂þ∂−ϕþ m2L2

ðxþ−x−Þ2 ϕ ¼ 0. Let us look at a few special

cases here:
(i) For z ¼ 1, θ ¼ 0, we have seen that this system

reduces to the relativistic brane case studied
earlier (2.29), and the Ψ scalar (the nonrelativistic
scalar in higher dimensions) can be then seen to
decouple from the system: in particular, the terms
containing ψ-perturbations vanish in the action
(3.30) for quadratic perturbations. This is expected
from the fact that the original action for the higher-
dimensional nonrelativistic theory reduces to the
relativistic brane theory as z → 1; θ → 0, as dis-
cussed after (3.1). In effect, we have defined the ψ
perturbation in (3.27) so that the relativistic brane
limit arises smoothly, and the Ψ scalar freezes out.
This is also reflected in the linearized equations for
perturbations.

(ii) For θ ¼ 0 and z > 1, both ϕ and ζ have positive
mass term coefficients, and further ζ decouples
entirely from the Ω equation. This means that in
fact any linear combination of the fields Aϕþ Bζ
also in fact has a positive mass term coefficient in its
linearized fluctuation equation, as can be seen by
taking that linear combination of the two equations
∂þ∂−ðAϕþ BζÞ þ 2

ðxþ−x−Þ2 ðAϕþ BζÞ ¼ 0. The lin-

ear fluctuation analysis, thus, suggests that the
attractor point is in fact perfectly stable for small
fluctuations.

(iii) For θ ≠ 0 and z ¼ 1, we see that the ζ field is a
massless mode and further it does not decouple
from the Ω equation. This suggests that the linear
stability analysis is insufficient to determine sta-
bility of the attractor point. However, in this case,
there is a more basic concern: looking back at the

higher-dimensional system (3.16), we see that in

fact ∂2Veff∂Ψ2 ¼ 0 in this case [in fact, all derivatives
vanish, (A5)], so that the higher-dimensional
theory is also not manifestly a stable attractor.
Thus, the relevance of the two-dimensional theory
is less clear in this case.

(iv) For generic z, θ values satisfying the energy con-
ditions (3.6), (3.7), (3.8), we see that the mass term
coefficients for both ϕ and ζ perturbations are
positive. Now a generic linear combination of the
fields Aϕþ Bζ satisfies

∂þ∂−ðAϕþ ð2z − 2 − θÞBζÞ

þ 2

ðxþ − x−Þ2 ðAϕþ ð2z − 2 − θÞBζÞ

¼ −
2

ðxþ − x−Þ2 θBζ: ð3:34Þ

This is akin to a scalar field Aϕþ ð2z − 2 − θÞBζ
with positive mass, driven by the source field ζ.
Since ζ is also a positive mass scalar, small fluctua-
tions do not contain any unstable modes growing in
time. Thus, the general perturbation also is stable. To
elaborate a bit further, imagine long-wavelength
modes of ϕ; ζ which are spatially uniform, i.e.,
ϕ ¼ ϕðtÞ; ζ ¼ ζðtÞ. Now the linearized equations
are of the form ϕ̈þm2

ϕϕ ¼ 0; ζ̈ þm2
ζζ ¼ 0, so that

these fields are effectively decoupled harmonic
oscillators. Then the general field is a driven
oscillator, with the driving force itself executing
small oscillations: so there are no unstable modes
growing in time. It is important to note that the
positivity of the mass term coefficients and the
stability they imply stems from the energy condi-
tions and asymptotic boundary conditions, which
force z > 1 and 2z − 2 − θ > 0 for generic z,
θ values.
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It is worth noting that, for fixed ζ, the relative
sizes of the dilaton ϕ and hvLif scalar ψ perturba-
tions are ψ

ϕ ∼
L2

r2
0

ð r0rhvÞ2θ ≪ L2

r2
0

for θ > 0 since r0
rhv

≪ 1.

It is worth comparing this analysis with that for the
higher-dimensional theory discussed earlier in (3.14),
(3.16): the scalar Ψ has a canonical kinetic term and the
equation governing small fluctuations of Ψ about the
attractor point acquires a mass term from ∂2U

∂Ψ2, whose
positivity dictates the stability of the attractor point. For
a theory with two scalars ϕ1;ϕ2 with canonical kinetic
terms, the stability of the linearized fluctuations can
again be studied by studying the second derivative

matrix of the potential Uðϕ1;ϕ2Þ or the Hessian
½ ∂2U
∂ϕi∂ϕj

�. Positivity of the Hessian then translates to

stability of the attractor extremum. In the present case,
however, the effective action is (3.21), and the kinetic
terms for Φ, Ψ are not canonical; thus, the naive
Hessian analysis to study the stability of UðΦ;ΨÞ about
the attractor point is not valid. Instead, we must analyze
perturbations about the attractor point, which are gov-
erned by the above equations. From these equations, we
see that the mass terms for the decoupled fields ζ and ϕ
are positive.
In terms of ϕ and ζ, the quadratic action becomes

S2 ¼
1

16πG2

Z
d2x

r2−2θ0 r2θhv
L2ð2þ z − θÞð1þ z − θÞ

�
8ϕ∂þ∂−Ωþ 16

ðxþ − x−Þ2 ϕΩ

þ r2−2θ0 r2θhv
L2ð2þ z − θÞð1þ z − θÞ

�
ð2z − 2 − θÞ∂þζ∂−ζ −

4ðz − 1Þ
ðxþ − x−Þ2 ζ

2

�

þ L2ð2þ z − θÞð1þ z − θÞ
r2−2θ0 r2θhv

�
4ð2z − 2 − θÞ

ð2 − θÞ ∂þϕ∂−ϕ −
16ðzþ 1 − 2θÞ

ð2 − θÞðxþ − x−Þ2 ϕ
2

�

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z − 2 − θ

2 − θ

r
ð∂þζ∂−ϕþ ∂−ζ∂þϕÞ −

8ð2z − 2 − θÞffiffiffiffiffiffiffiffiffiffiffi
2 − θ

p ζϕ

ðxþ − x−Þ2
�
: ð3:35Þ

It can be checked that varying this action leads to the linearized equations written in terms of ϕ; ζ above.

2. The Schwarzian

In this section, we switch to Euclidean time τ ¼ it. From the linearized equations (3.31), we see that the dilaton
fluctuation ϕ is decoupled from the metric and scalar fluctuationsΩ and ψ , as in the case of the relativistic brane. So solving
the equation for ϕ [i.e., the Euclidean form of (3.31)] gives, as before,

ϕ ¼ aþ bτ þ cðτ2 þ ρ2Þ
ρ

; ð3:36Þ

where a, b, c are independent constants. Substituting ϕ in the equation for ψ in (3.31), we can solve for the scalar
perturbation ψ . Using these solutions for ϕ and ψ in the equation forΩ in (3.31), we can solve for the metric perturbationΩ.
We see that the AdS2 metric gets corrected at the same order as the dilaton and the scalar field. The Euclidean on-shell
(boundary) action obtained by using linearized field equations in (3.35) and changing to Euclidean time τ ¼ it is

SE2 ¼ −
1

16πG2

Z
dτ

ffiffiffi
γ

p
nμ

r2−2θ0 r2θhv
L2ð2þ z − θÞð1þ z − θÞ

�
4ðΩ∂μϕ − ϕ∂μΩÞ

−
ð2z − 2 − θÞffiffiffiffiffiffiffiffiffiffiffi

2 − θ
p ðϕ∂μζ þ ζ∂μϕÞ −

L2ð2þ z − θÞð1þ z − θÞ
r2−2θ0 r2θhv

2ð2z − 2 − θÞ
ð2 − θÞ ϕ∂μϕ

−
r2−2θ0 r2θhv

L2ð2þ z − θÞð1þ z − θÞ ð2z − 2 − θÞζ∂μζ

�
: ð3:37Þ

The discussion of the Gibbons-Hawking term is very
similar to that in Sec. II A 2, so we will not be detailed.
The Gibbons-Hawking boundary term for the Euclidean
form of the bulk action (3.21) is

SGH ¼ −
1

8πG2

Z
dτ

ffiffiffi
γ

p
Φ2K; ð3:38Þ

arising as discussed in the case of the relativistic electric
brane earlier. As in Sec. II A 2, we now redefine the dilaton
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perturbation after rescaling the background value Φb out,
so that the perturbation satisfies Φ−Φb

Φb
≡ ϕ̃ ≪ 1. A similar

redefinition is appropriate for the hvLif scalarΨ as well (we
have, however, retained the perturbations in (3.27) without
this rescaling simply with a view to not cluttering the
resulting expressions). Then the perturbation, the back-
ground value (3.22) and the entropy (3.12) are

Φ ¼ Φbð1þ ϕ̃Þ; Φ2
b ¼

�
r0
rhv

�
−θ
�
r0
R

�
2

;

SBH ¼ Φ2
bV2

4G4

¼ Φ2
b

4G2

: ð3:39Þ

This gives

Sð1ÞGH ¼ −
2Φ2

b

8πG2

Z
dτ

ffiffiffi
γ

p
ϕ̃K → −

Φ2
b

4πG2

Z
duϕrðuÞfτðuÞ; ug:

ð3:40Þ

In evaluating the last term, we take the boundary of AdS2 as
a slightly deformed curve ðτðuÞ; ρðuÞÞ parametrized by the
boundary coordinate u, as discussed in [2] (reviewed in
[11]), and expand the extrinsic curvature using the outward

unit normal nμ to the boundary. Expanding Sð1ÞGH leads to the
action above, which contains the Schwarzian derivative
SchðτðuÞ; uÞ ¼ fτðuÞ; ug ¼ τ000

τ0 −
3
2
ðτ00τ0 Þ2. The integral above

pertains simply to the AdS2 scale L, into which the various
length scales in the nonrelativistic theory have been
absorbed. We have also, as before, defined ϕ̃ ¼ ϕrðuÞ

ϵ

and
ffiffiffi
γ

p ¼ L
ϵ.

As for the relativistic brane, Sec. II A 2 and (2.39), we
note that the coefficient of the Schwarzian effective action
is proportional to the entropy (3.12) and (3.39) of the
compactified black brane, with V2 finite. As in Sec. II A 2,
this coefficient as the entropy arises after making the
reasonable definition of the dilaton perturbation as in
(3.39), scaling out the background Φb. The entropy now
contains only Φb, which controls the transverse area. Since
the entropy captures the number of microstates of the
unperturbed background, this is akin to a central charge.
This is the leading term in the total boundary action

Ibdy ¼ SE2 þ SGH. The remaining terms in the expansion of
SGH and SE2 are all quadratic in perturbations and, hence, are

subleading compared to Sð1ÞGH which contains the dilaton
perturbation alone at linear order, as for the relativistic
brane discussed earlier. This universal behavior is in accord
with the general arguments in, e.g., [2].
Thus, overall, expanding in the perturbations ϕ̃,Ω, ψ , we

have I ¼ SE þ SGH ¼ I0 þ I1 þ I2 þ � � �, where

I0 ¼ −
Φ2

b

16πG2

�Z
d2x

ffiffiffi
g

p
Rþ 2

Z
bndry

ffiffiffi
γ

p
K

�
ð3:41Þ

is the background action [see (3.29)]: here, Ψb is constant
and it can be checked that UðΦb;ΨbÞ ¼ 0. This is a
topological term and gives the extremal entropy, very
similar to the detailed discussion for the relativistic brane
in Sec. II A 2. The linear terms are contained in

I1 ¼ −
2Φ2

b

16πG2

Z
d2x

ffiffiffi
g

p
ϕ̃

�
R −

∂U
∂Φ2

−
1

2
ð∂ΨbÞ2

�

−
2Φ2

b

8πG2

Z
bndry

ffiffiffi
γ

p
ϕ̃K

−
1

16πG2

Z
d2x

ffiffiffi
g

p �
−
Φ2

b

2
∂μΨb∂μψ − ψ

∂U
∂Ψ

�
:

ð3:42Þ

On the AdS2 background with a constant dilaton Φb and a
constant hvLif scalar field Ψb, we get ∂U

∂Φ2 jðΦb;ΨbÞ ¼ − 2
L2

and the second line in the expression for I1 above vanishes
by the Ψ equation in (3.20). Thus, I1 reduces to

I1 ¼ −
2Φ2

b

16πG2

Z
d2x

ffiffiffi
g

p
ϕ̃

�
Rþ 2

L2

�
−

2Φ2
b

8πG2

Z
bndry

ffiffiffi
γ

p
ϕ̃K;

ð3:43Þ

which is the Jackiw-Teitelboim theory. The fluctuations of
the scalar Ψ now propagate on the fixed AdS2 background
at this order. However, we see, as in Sec. II A 2, that there
are various subleading terms at quadratic order ((3.37) and
from the Gibbons-Hawking term, see (2.42), as well as
possible counterterms), containing the perturbations to the
dilaton Φ, metric and scalar Ψ, which all mix (at the same
order as the metric): the fluctuation spectrum is stable for
physically sensible theories satisfying the energy condi-
tions as we have seen. These encode information about the
regularization of the AdS2 theory by the particular higher-
dimensional hvLif theory.

3. More general perturbations

In the above analysis, we have restricted ourselves to the
dimensional reduction of perturbations to only those com-
ponents of fields (metric, gauge fields, scalar) which have
nontrivial background values in the higher-dimensional
theory. More generally, considering the dimensional reduc-
tion of perturbations to all the components of all the fields
(some of which have trivial background values) gives

hMN → hμν; hμi; hij;

Að1;2Þ
M → Að1;2Þ

μ ; Að1;2Þ
i ; ϕ → ϕ; ð3:44Þ

i.e., tensor, vector, and scalar perturbations in the two-
dimensional theory (note that the two-dimensional dilaton
is gxx). For instance this includes the shear perturbation hxy
in the higher-dimensional theory as well the spatial
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components of the gauge fields A1i, A2i for i ¼ x, y which
reduce respectively to a nonminimally coupled scalar

(h ¼ gð4Þxxhxy) and minimally coupled scalars A1i ¼ χð1Þi ,

A2i ¼ χð2Þi in the two-dimensional theory. The terms in the
full two-dimensional action which govern these perturba-
tions are

S ¼ 1

16πG

Z
d2x

ffiffiffiffiffiffi
−g

p

×

�
� � � −Φ2

2
ð∂hÞ2 − eλ1Ψ

2
ð∂χð1Þi Þ2 − eλ2Ψ

2
ð∂χð2Þi Þ2

�
:

ð3:45Þ

The terms involving hxy arise from the higher-dimensional
Ricci scalar and so contain the overall dilaton factor Φ2

under reduction to two dimensions. The linearized equa-
tions for hxy in the higher-dimensional theory in, e.g., [31]
can be dimensionally reduced to two dimensions: at
zero momentum, this is consistent with the Kaluza-Klein
ansatz for reduction and the action above. Expanding
these terms around the background AdS2, the leading
contributions from these terms appear at quadratic order
in perturbations

S2 ¼
1

16πG

Z
d2x

ffiffiffiffiffiffi
−g

p

×

�
� � � −Φ2

b

2
ð∂hÞ2 − eλ1Ψb

2
ð∂χð1Þi Þ2 − eλ2Ψb

2
ð∂χð2Þi Þ2

�
:

ð3:46Þ

These are subleading compared to Sð1ÞGH and, thus, do not
contribute to the Schwarzian.

IV. ON A NULL REDUCTION OF THE
CHARGED AdS5 BLACK BRANE

In [29] (see also [32]), it was argued that the null
reduction of AdS plane waves, highly boosted limits of
uncharged black branes, gives rise to hvLif theories with
certain specific z, θ exponents. The lower-dimensional
hvLif gauge field and scalar arise as the KK gauge field and
scalar under xþ-reduction. One might imagine that con-
sidering such a null reduction of the charged relativistic
black brane might be interesting along these lines. In this
section, we describe an attempt to obtain the charged hvLif
black branes here by a null xþ-reduction of the charged
relativistic black brane in one higher dimension.
Unfortunately this turns out to be close, but not quite on
the nose: while the charge electric gauge field upstairs does
give rise to an electric field in the lower-dimensional theory,
it also leads to an additional background scalar profile. It
would be interesting to understand if this can be refined
further.

The action for a charged AdS5 black brane [15] is4

S ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p �
R − 2Λ −

2κ2

e2
F2

4

�
: ð4:1Þ

The charged AdS5 black brane metric is

ds2 ¼ L2

r2

�
−fðrÞdt2 þ dr2

fðrÞ þ dx21 þ dx22 þ dx23

�
; ð4:2Þ

fðrÞ ¼ 1 −
�
1þ r20μ

2

γ2

�
1 −

r2

r20

���
r
r0

�
4

; γ2 ¼ 3e2L2

2κ2
;

ð4:3Þ

where the horizon is at r ¼ r0 and the boundary at r → 0.
The gauge field At, charge density ρ and temperature are

At ¼ μ

�
1 −

�
r
r0

�
2
�
; ρ ¼ 2L

e2r20
μ;

T ¼ 1

4πr0

�
4 − 2

r20μ
2

γ2

�
: ð4:4Þ

Transforming to light-cone coordinates, x� ¼ t�x3ffiffi
2

p and

performing a boost x� → λ�x�, the metric becomes

ds2 ¼ L2

r2

�
−fðrÞ

�
λdxþ þ λ−1dx−ffiffiffi

2
p

�
2

þ
�
λdxþ − λ−1dx−ffiffiffi

2
p

�
2

þ dr2

fðrÞ þ dx21 þ dx22

�
:

ð4:5Þ

Completing squares in dxþ, we get

ds2 ¼ −
2L2r20fðrÞ

λ2r6ð1þ r2
0
μ2

γ2
ð1 − r2

r2
0

ÞÞ
ðdx−Þ2

þ L2

r2

�
dr2

fðrÞ þ dx21 þ dx22

�

þ L2λ2r2

2r40

�
1þ r20μ

2

γ2

�
1 −

r2

r20

��
ðdxþ þA−dx−Þ2;

ð4:6Þ

A− ¼
−1þ r4

2r4
0

ð1þ r2
0
μ2

γ2
ð1 − r2

r2
0

ÞÞ
λ2r4

2r4
0

ð1þ r2
0
μ2

γ2
ð1 − r2

r2
0

ÞÞ
: ð4:7Þ

The first line in (4.6) after incorporating the conformal
factor from xþ-reduction leads approximately to the

4In this section, r → 0 is the boundary.
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four-dimensional hvLif metric with z ¼ 3, θ ¼ 1, in the
vicinity of r → 0 and r → r0. The KK-gauge field becomes
the F1 gauge field in the lower-dimensional theory: its form
becomes that of F1rt only in the vicinity of the horizon
r → r0, giving A1− ≡ A1t ∼ − 1

ðλ2=r4
0
Þr4 þ 1

λ2
, where we hold

λ2

r4
0

fixed which preserves the first term (while the second

term dies). This reduction to hvLif is exact if μ ¼ 0,
as in [29] for zero temperature (and [31,32] for finite
temperature).
Likewise, the At ≡ A2t gauge field giving charge

becomes in the lower-dimensional theory

A2þ ¼ λA2t; A2− ¼ 1

λ
A2t → A4d

2t : ð4:8Þ

Scaling the chemical potential as μ → μ
λ ¼ fixed, we obtain

precisely the gauge field profile for A2t; however, A2þ
survives as a scalar background in the lower-dimensional
theory.
It can also be seen that the relativistic brane action (2.1)

gives rise upon xþ reduction to the hvLif action (3.1), up to
the extra scalar arising from A2þ. It would be interesting
look for refinements of the discussion here, towards
decoupling this extra scalar.

V. DISCUSSION

We have studied dilaton-gravity theories in two dimen-
sions obtained by dimensional reduction of certain
families of extremal charged hyperscaling violating
Lifshitz black branes in Einstein-Maxwell-scalar theories
with an extra gauge field in four dimensions. We have
argued that the near-horizon AdS2 backgrounds here can
be obtained in equivalent theories of two-dimensional
dilaton-gravity with an extra scalar, descending from the
higher-dimensional scalar, and an interaction potential
with the dilaton. A simple subcase is the relativistic black
brane with z ¼ 1, θ ¼ 0 (which has no extra scalar),
which we have analyzed in detail. Studying linearized
fluctuations of the metric, dilaton, and extra scalar about
these AdS2 backgrounds suggests stability of the attractor
background generically. This is correlated with the
requirements imposed by the energy conditions on these
backgrounds. From the study of small fluctuations, we
have seen that the leading corrections to AdS2 arise at
linear order in the dilaton perturbation resulting in a
Schwarzian derivative effective action from the Gibbons-
Hawking term, and Jackiw-Teitelboim theory at leading
order. We have also seen that the coefficient of the
Schwarzian derivative term, (2.39), (3.40), is proportional
to the entropy of the (compactified) extremal black
branes after defining the perturbations by scaling out
the background values (2.37), (3.39): this being the
number of microstates of the unperturbed background
is, thus, akin to a central charge. The background entropy

arises automatically as a topological term from the
compactification. There are, of course, various subleading
terms in the action at quadratic order which mix at the
same order as the metric: these encode information
on the higher-dimensional realization of these AdS2 back-
grounds.
We have explored certain classes of such extremal

backgrounds: it would be interesting to understand the
space of such AdS2 theories in a more systematic manner.
One might imagine that the parameters in these theories, for
instance the dynamical exponents, are reflected in the
spectrum of correlation functions, thus distinguishing the
specific ultraviolet regularization of the AdS2 regimes. This
requires better understanding of the subleading terms
beyond the Schwarzian, which in turn requires a systematic
treatment of counterterms and holographic renormalization.
We hope to explore these further.
From the point of view of the dual theories, it would

seem that the present two-dimensional backgrounds are
dual to one-dimensional theories arising from T2 compac-
tifications of the dual field theories. It would be interesting
to understand these better, in part towards possibly explor-
ing parallels with the SYK models [8,9], discussed more
recently in, e.g., [2,10,33,34] and related SYK/tensor
models (see, e.g., [35]).
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APPENDIX: SOME DETAILS

Relativistic electric black brane: The Einstein equation
and the dilaton equation from the action (2.16) are

gμν∇2Φ2 −∇μ∇νΦ2 þ gμν
2

�
2ΛΦþ 16πG2V2Φ3FμνFμν

4

�

−
16πG2V2Φ3

2
FμρFν

ρ ¼ 0;

R −
Λ
Φ
− ð6πG2ÞV2ΦFμνFμν ¼ 0: ðA1Þ
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1. Charged hvLif black brane

Effective scalar potential in four-dimensional hvLif black brane and its derivatives: The first and second derivatives of
the effective scalar potential in four-dimensional charged hvLif black brane are

∂Veff

∂Ψ ¼ −
γð2þ z − θÞð1þ z − θÞeγðΨ−Ψ0Þ

R2−2θr2θhv

−
1

g2xx

�
λ1ðz − 1Þð2þ z − θÞr2θ−4hv R2−2θ

eλ1ðΨ−Ψ0Þ þ λ2ð2 − θÞðz − θÞQ2r2z−2hv R−4z−2þ2θ

eλ2ðΨ−Ψ0Þ

�
; ðA2Þ

∂2Veff

∂Ψ2
¼ −

γ2ð2þ z − θÞð1þ z − θÞeγðΨ−Ψ0Þ

R2−2θr2θhv

þ 1

g2xx

�
λ21ðz − 1Þð2þ z − θÞr2θ−4hv R2−2θ

eλ1ðΨ−Ψ0Þ þ λ22ð2 − θÞðz − θÞQ2r2z−2hv R−4z−2þ2θ

eλ2ðΨ−Ψ0Þ

�
: ðA3Þ

Differentiating Veff n times, we get

∂nVeff

∂Ψn ¼ −
γnð2þ z − θÞð1þ z − θÞeγðΨ−Ψ0Þ

R2−2θr2θhv

þ ð−Þn
g2xx

�
λn1ðz − 1Þð2þ z − θÞr2θ−4hv R2−2θ

eλ1ðΨ−Ψ0Þ þ λn2ð2 − θÞðz − θÞQ2r2z−2hv R−4z−2þ2θ

eλ2ðΨ−Ψ0Þ

�
; ðA4Þ

which at the extremal point becomes

∂nVeff

∂Ψn ¼ rθ0ð2þ z − θÞ
rθhvR

2

�
−θnð1þ z − θÞ þ ð−Þnðθ − 4Þnðz − 1Þ

ð2 − θÞn2ð2z − 2 − θÞn2 þ ð−Þnð2z − 2 − θÞn2ð2 − θÞ
ð2 − θÞn2

�
: ðA5Þ

At z ¼ 1, θ ≠ 0, we see that ∂nVeff∂Ψn ¼ 0∀n at the extremal point.
Dimensional reduction to two dimensions: The two-dimensional action obtained by reducing (3.1) on T2 is (retaining

only fields with background profiles)

S ¼
Z

d2x
ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q �
1

16πG2

�
Φ2Rð2Þ þ 2∂μΦ∂μΦ −

Φ2

2
∂μΨ∂μΨþ VΦ2

−
Φ2

4
Z1F1μνF

μν
1

�
−
V2Φ2

4
Z2F2μνF

μν
2

�
; ðA6Þ

Equations of motion from two-dimensional action (3.17): The equations of motion obtained by varying the action (3.17)
are

gμν∇2Φ2 −∇μ∇νΦ2 þ gμν
2

�
Φ2

2
ð∂ΨÞ2 − VΦþΦ3

4
ðZ1ðF1Þ2 þ 16πG2V2Z2ðF2Þ2Þ

�

−
Φ2

2
∂μΨ∂νΨ −

Φ3

2
ðZ1F1μρF

ρ
1ν þ 16πG2V2Z2F2μρF

ρ
2νÞ ¼ 0;

R −
1

2
ð∂ΨÞ2 þ V

2Φ
−
3

8
ΦðZ1ðF1Þ2 þ 16πG2V2Z2ðF2Þ2Þ ¼ 0;

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
Φ2∂μΨÞ þ γVΦ −

Φ3

4
ðλ1Z1ðF1Þ2 þ λ216πG2V2Z2ðF2Þ2Þ ¼ 0: ðA7Þ

The equations of motion (3.20) in conformal gauge and in light-cone coordinates are
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−e2ω∂�ðe−2ω∂�Φ2Þ −Φ2

2
∂�Ψ∂�Ψ ¼ 0;

∂þ∂−Φ2 −
e2ω

4
U ¼ 0;

4∂þ∂−ωþ ∂þΨ∂−Ψ −
e2ω

2

∂U
∂ðΦ2Þ ¼ 0;

∂þðΦ2∂−ΨÞ þ ∂−ðΦ2∂þΨÞ þ
e2ω

2

∂U
∂Ψ ¼ 0: ðA8Þ

Expanding the constraint equations in the first line of (A8)
to linear order in perturbations (3.27) gives

∂�∂�ϕ� 2

ðxþ − x−Þ ∂�ϕ ¼ 0; ðA9Þ

the other terms vanishing at linear order. To see that
these linearized constraint equations are consistent with
the linearized equations (3.31), we differentiate the þþ
constraint equation with respect to x− to get

∂þð∂þ∂−ϕÞ þ
2

ðxþ − x−Þ ∂þ∂−ϕþ 2

ðxþ − x−Þ2 ∂þϕ ¼ 0;

ðA10Þ

which is satisfied after using the equation for ϕ in
(3.31). Similarly differentiating the −− constraint equa-
tion with respect to xþ, we can show that the resulting
equation is satisfied upon substituting the equation for ϕ
in (3.31).
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