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In this article, we establish the notion of classical Yangian symmetry for planar N ¼ 4 supersymmetric
Yang-Mills theory and for related planar gauge theories. After revisiting Yangian invariance for the
equations of motion, we describe how the bilocal generators act on the action of the model such that the
latter becomes exactly invariant. In particular, we elaborate on the relevance of the planar limit and how to
act nonlinearly with bilocal generators on the cyclic action.
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I. INTRODUCTION

Integrability of planarN ¼4 supersymmetric Yang-Mills
(sYM) theory, its dual string theory on AdS5 × S5 and
several other AdS/CFT dual pairs of models has proven
to be extremely powerful feature in computing various
quantities at weak, strong, and even intermediate coupling
strength; see Ref. [1] for reviews of the subject. However,
despite the many successes related to planar integrability,
a rigorous and unified notion of this feature is still missing.
In particular, such a notion would be highly desirable
toward finding a proof for planar integrability and thus
toward firmly establishing a solid foundation for the results
alluded to above.
In this regard, the world sheet theory of AdS5 × S5

strings at strong ’t Hooft coupling is in rather good shape
because there exist well-established notions for integra-
bility in such two-dimensional field theories. Most impor-
tantly, it was shown (see also the historical accounts by
Polchinski [2]) that the structures of integrability can be
formulated in terms of a family of flat connections [3].
However, the nonultralocality of the algebra of world
sheet currents poses some difficulty, see Ref. [4], and
the quantization of these algebraic structures has several
unresolved issues.
The exploration of integrable structures in planar N ¼ 4

sYM took a different path: various remarkable features

were discovered in the investigation of particular observ-
ables. On a case-by-case basis, these discoveries led to
the application, refinement, and development of several
integrability-based methods to compute these quantities
much more efficiently than by ordinary field theory
methods. Some of these features and methods directly
matched known integrable structures; for example, the
spectral problem of local operators at the leading one-loop
order was related to an integrable spin chain [5], and the
Bethe ansatz could be applied to the computation of the
spectrum in various interesting limits.
Integrability of a physics model goes hand in hand with

an enhancement of its ordinary symmetry algebra by a
large amount of hidden symmetries. A unifying structure
of the integrability-related features of planar N ¼ 4 sYM
turned out to be the Yangian algebra Y½psuð2; 2j4Þ� [6]
based on the superconformal algebra psuð2; 2j4Þ of the
model. The Yangian Y½g� is an infinite-dimensional
quantum algebra based on a (finite-dimensional) Lie
(super)algebra g [7]. Yangian algebras underlie large
classes of integrable models where the Lie algebra g
usually describes the ordinary symmetries of the model.
The latter is spanned by the so-called level-zero generators
JA, A ¼ 1;…; dim g, and the Yangian algebra enhances it
by the level-one generators ĴA, A ¼ 1;…; dim g, which
form a similar set as the JA. Importantly, the level-one
generators act in a certain bilocal fashion, and as nonlocal
transformations, they are not easily identified as sym-
metries and are therefore hidden from a standard analysis.
Beyond these, the Yangian contains infinitely many other
generators at higher levels which will not be of concern in
this work.
The Yangian algebra has been observed and applied for

various observables, but in most cases, some caveats
which prevent the action of the Yangian algebra from
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being considered a proper invariance exist. In the case of
the spectral problem of local operators, the spin chain
Hamiltonian almost commutes with the Yangian algebra
[6]. However, the cyclic boundary conditions represent
an obstacle here because the Yangian generators typi-
cally map cyclic physical states to noncyclic states which
have no proper meaning in the field theory context.
Furthermore, at higher loops, some issues related to gauge
symmetry which obscure the closure of the algebra have
been observed in Ref. [8]. The S-matrix describing the
scattering of magnon excitations of the spin chain was
shown to have exact Yangian symmetry [9], even at finite
coupling strength, but this symmetry is merely based on a
psuð2j2Þ × psuð2j2Þ subalgebra of psuð2; 2j4Þ or, more
precisely, an extension thereof. Also, color-ordered
scattering amplitudes of ordinary particles of the four-
dimensional gauge theory have been shown to display
Yangian invariance [10] which can be understood as an
interplay between ordinary and dual conformal symmetry
[11]. Unfortunately, also, here an exact and complete
invariance is spoiled, this time by the presence of infrared
divergences due to the scattering of massless particles. The
divergences have been regularized in many different ways
in order to arrive at suitable results, see, e.g., Ref. [12];
however, such regularizations obscure invariances and
thus make it much less clear in what sense the Yangian
algebra can be regarded as a symmetry or how to prove a
corresponding statement in general. Nevertheless, Yangian
symmetry has proven useful in constructions of scattering
amplitudes; see, e.g., Ref. [13]. A similar picture arises
from the study of null polygonal Wilson loops which are
T-dual to scattering amplitudes [14]. The main difference
with respect to scattering amplitudes is that the divergen-
ces arising from the cusps between lightlike segments of
the polygon are associated to the ultraviolet rather than
the infrared regime, and are thus potentially easier to
address. Yangian symmetry also plays a role in the
construction of many other observables such as correlation
functions and form factors of local operators. However,
here, the corresponding world sheet topology of the
observables is a clear obstruction for Yangian invariance.
Yangian invariance without any of the above restrictions
has only been observed for expectation values of smooth,
nonintersecting Maldacena-Wilson loops with disk top-
ology [15,16] (even though the analysis is limited to one
loop so far).
Altogether, these results demonstrate that the Yangian

algebra appears to be some kind of symmetry of planar
N ¼ 4 sYM, but it is not evident in what sense this
statement can be made precise. They also show that the
symmetry is restricted to finite objects with the world sheet
topology of a disk which are necessarily symmetric under
ordinary superconformal symmetry. A relevant object with
this set of features is the (unrenormalized, single-trace)
action of N ¼ 4 sYM itself. Showing invariance of the

action could in fact be considered as a proof that the theory
is symmetric under the Yangian algebra. Unfortunately, it
was unclear how to show invariance largely because it was
not understood precisely how to act with a Yangian
generator on the action and how to make sense of the
planar limit and, eventually, of quantum effects.
In Ref. [17], we have laid the foundations for our work to

establish the Yangian algebra Y½psuð2; 2j4Þ� as a sym-
metry of planar N ¼ 4 sYM by proposing that it is a
symmetry of the equations of motion in a strong sense. In
this article, we provide a more detailed account of our
construction and present explicitly in what precise way the
action is classically invariant under the Yangian algebra.
The fact that the model possesses a very nontrivial extended
symmetry algebra and at the same time is apparently
exactly integrable can hardly be a coincidence given the
usual relationship between these two features. It should be
evident that Yangian symmetry is a way to formally express
the integrability of planar N ¼ 4 sYM. Hence, we may
declare integrability of a planar gauge theory model to be
the presence of Yangian symmetry (or some other alike
symmetry algebra).1

To lend further credibility to our claim, we will treat
N ¼ 6 supersymmetric Chern-Simons theory, also known
as ABJ(M) theory [18], as the second main example of a
gauge field theory known to be integrable in the planar limit
following Refs. [19]. Here, the Yangian Y½ospð6j4Þ� has
been established as a symmetry of color-ordered scattering
amplitudes [20]. We will show that the action of this model
is indeed invariant under a Yangian symmetry, and thus
our proposed definition of integrability matches with the
expectation. In order to convince ourselves of the non-
triviality of Yangian symmetry—after all, it might in
principle be a feature of a broad range of models—we
will furthermore consider pure supersymmetric Yang-Mills
theories with N < 4 supersymmetries. These sample field
theories can be addressed straightforwardly within our
framework, and there is no indication that they become
integrable in the planar limit. In line with this expectation,
we will show that these models do not possess Yangian
symmetry in the planar limit.
The present work is structured as follows. In Sec. II, we

introduce N ¼ 4 sYM along with its superconformal
symmetry, and by doing that, we outline the notation used
in this work. We then review the results of our previous
paper [17] on this subject in Sec. III with a much more
detailed account of our constructions and further explan-
ations and discussions. In Sec. IV, we convert these results
to a statement on the invariance of the action which not only

1As there is no formal definition of integrability applicable to
this case, it is evidently impossible to prove that Yangian
invariance of the action implies integrability (or the converse
statement). We can merely argue why it makes sense to identify
the two features.
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serves a definition of Yangian symmetry of the model but
can also be viewed as an exact notion of integrability.
In Secs. V and VI, we consider ABJ(M) theory and pure
N < 4 sYM theory serving as two sample planar gauge
theories for which we can test our proposal. Indeed, we find
that Yangian invariance of the action coincides with our
expectations on planar integrability of thesemodels. Finally,
we conclude in Sec. VII, and we present a list of open issues
regarding integrability within the AdS/CFT correspondence
that can be addressed with our framework. The Appendices
contain a complete account of the superconformal algebra
psuð2; 2j4Þ and its nonlinear representation on the fields
(Appendix A) as well as the enhancement to the Yangian
algebra (Appendix B).

II. N = 4 sYM AND SUPERCONFORMAL
SYMMETRY

We start by introducing N ¼ 4 sYM, the corresponding
superconformal algebra, and how the algebra acts as a
symmetry of our model. In particular, we shall discuss the
latter point at length by presenting several different notions
of “symmetry.” They will later serve as the foundation for
our formulation of Yangian symmetry in this model.

A. N = 4 supersymmetric Yang-Mills theory

The fields of N ¼ 4 sYM consist of a gauge potential A
with associated field strength F, four Dirac fermionsΨ, and
six real scalars Φ. All matter fields transform in the adjoint
representation of the gauge group which we assume to be
UðNcÞ. We will thus express all (real) fields as Nc × Nc
(Hermitian) matrices, and sequences of fields correspond to
matrix products.
As we will be mainly interested in aspects of the

classical field theory model related to psuð2; 2j4Þ super-
conformal symmetry, it makes sense to use a notation
where all vector indices are expressed as bispinors. In
our convention, Latin indices a; b;… ¼ 1, 2, 3, 4 denote
suð4Þ internal spinors, and undotted/dotted Greek indices
α; β;… ¼ 1; 2= _α; _β;… ¼ 1; 2 correspond to left/right chi-
ral slð2;CÞ spacetime spinors. The coordinates x are
given by a Hermitian 2 × 2 matrix, and they carry the
index structure xβ _α with the reality condition ðxα_γÞ† ¼
xγ _α. The corresponding partial derivatives ∂ _αβ are defined

such that ∂ _αβxδ_γ ¼ δ_γ_αδ
δ
β. We shall refrain from implicitly

raising or lowering spinor indices. Instead, we will
explicitly contract indices with the help of the totally
antisymmetric symbols εαγ and ε _α_γ as well as εabcd (all
these symbols equal þ1 when the upper or the lower
indices are in proper order).
In this notation, the fields of N ¼ 4 sYM all carry two

spinor indices of various kinds,

Φac; Φ̄ac;Ψa
γ; Ψ̄ _αc; A _αγ; Fαγ; F̄ _α_γ: ð2:1Þ

Here, the bar denotes the Hermitian conjugate of the
unbarred field.2 Importantly, the two scalar fields Φ and
Φ̄ are related by the reality condition

Φ̄ab ¼
1

2
εabcdΦcd ⟺ Φab ¼ 1

2
εabcdΦ̄cd: ð2:2Þ

The gauge-covariant derivative ∇ of some matter field Z
and of the gauge potential A itself is defined as3

∇ _αβZ ≔ ∂ _αβZ þ i½A _αβ; Z�;
∇ _αβA_γδ ≔ ∂ _αβA_γδ − ∂ _γδA _αβ þ i½A _αβ; A_γδ�: ð2:3Þ

Note that the latter definition of ∇A as the associated field
strength F is merely a convenient notational assignment,
whichwill later allow us towrite some expressions in amore
uniform fashion. In the spinor notation,we can split this field
strength into chiral and antichiral components F and F̄,

∇ _αβA_γδ ¼ ε _α_γFβδ þ εβδF _α_γ: ð2:4Þ
The Lagrangian is tightly constrained by supersymmetry

and possesses two marginal couplings, the Yang-Mills
coupling constant gYM as well as the topological angle
θ; we shall not be interested in the latter, and the former can
be expressed as an overall factor of the Lagrangian, which
we will also drop. The Lagrangian reads

L ¼ −
1

2
εαϵεγκtrðFαγFϵκÞ −

1

2
ε _α_ϵε_γ _κtrðF̄ _α_γF̄_ϵ_κÞ

þ iε_κ _αεβγtrðΨ̄_κd∇ _αβΨd
γÞ −

1

4
ε _α_γεβδtrð∇ _αβΦ̄ef∇_γδΦefÞ

þ i
2
εαγtrðΦ̄effΨe

α;Ψf
γgÞ þ

i
2
ε _α_γtrðΦeffΨ̄ _αe; Ψ̄_γfgÞ

þ 1

16
trð½Φ̄ab; Φ̄ef�½Φab;Φef�Þ: ð2:5Þ

The equations of motion are obtained by varying the action
with respect to the fields of the theory. To this end, we
introduce the notation Z̆ for the variational derivative of the
action with respect to a generic field Z,4

Z̆ ≔
δS
δZ

: ð2:6Þ

2All fields are spinor matrices, and Hermitian conjugation is
meant to act on the indices of the fields as well such that their
order is reversed. Furthermore, Hermitian conjugation raises or
lowers internal suð4Þ indices and exchanges undotted with dotted
slð2;CÞ indices. Effectively, we have ðΦacÞ† ¼ Φ̄ca ¼ −Φ̄ac,
ðΨa

γÞ† ¼ Ψ̄_γa and ðFαγÞ† ¼ F̄_γ _α ¼ F̄ _α_γ . In practice, we will not
need these relations.

3It is useful to remember the commutator of covariant
derivatives ½∇ _αβ;∇_γδ�Z ¼ i½∇ _αβA_γδ; Z�.

4Variational derivatives are defined by δZðyÞ=δZðxÞ ¼
δ4ðx − yÞ. In this case, the delta-function eliminates the integral
over spacetime within the action.
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More concretely, the set of all variations Z̆ reads

Φ̆lk ¼ ε _α_γεβδ∇ _αβ∇_γδΦ̄kl −
1

2
½Φ̄ab; ½Φab; Φ̄kl��

þ i
2
εklghε

αγfΨg
α;Ψh

γg þ iε _α_γfΨ̄ _αk; Ψ̄_γlg;
˘̄Ψl_κ ¼ iε_κ _αεβγ∇ _αβΨl

γ − iε_κ _α½Φle; Ψ̄ _αe�;
Ψ̆λ

k ¼ iελβε _α_γ∇ _αβΨ̄_γk − iελβ½Φ̄ke;Ψe
β�;

Ăλ_κ ¼ ελβε_κ_ϵ
�
−εαγ∇_ϵαFγβ − ε _α_γ∇ _αβF̄_γ _ϵ

−
i
2
½Φ̄ac;∇_ϵβΦac� − fΨa

β; Ψ̄_ϵag
�
: ð2:7Þ

With this notation, the equations of motion can be concisely
written as fZ̆ ¼ 0g. Moreover, the Bianchi identity for the
field strength relates the derivatives of the chiral compo-
nents (with the opposite sign with respect to Ă)

εαγ∇_ϵαFγβ ¼ ε _α_γ∇ _αβF̄_γ_ϵ: ð2:8Þ

B. Superconformal algebra

The superconformal algebra psuð2; 2j4Þ is spanned by
the following generators: the slð2;CÞ Lorentz generators
Lα

γ and L̄ _α
_γ , the translations P _αβ, the conformal boosts Kβ _α,

the dilatation D, the internal suð4Þ symmetry generators
Ra

b, the supersymmetries Qaβ and Q̄ _α
b, and the super-

conformal boosts Sβa and S̄b _α.
In this article, we mainly consider a gauge-covariant

representation of the superconformal symmetries J ∈
psuð2; 2j4Þ on the fundamental fields Z ∈ fA;Φ;Ψ; Ψ̄g
of our model.5 The representation of the translation gen-
erators P on a generic field Z reads

P _αβ · Z ¼ i∇ _αβZ: ð2:9Þ
Note that in our representation, shifts are generated by the
covariant derivative ∇ rather than by a plain partial
derivative ∂.6 As usual, the gauge potential Z ¼ A is a
somewhat special case because it is not gauge covariant in

contradistinction to the matter fields. Notwithstanding, the
above rule also explicitly applies to Z ¼ A, which is
mapped to the (gauge-covariant) field strength ∇A accord-
ing to the definition (2.3). Lorentz rotations of the fields are
generated by the rule

Lβ
δ · Z ¼ −ixβ _α∇ _αδZ þ i

2
δβδx

κ _α∇ _ακZ þ ðLspinÞβδ · Z;

L̄ _α
_γ · Z ¼ −ixβ _α∇_γβZ þ i

2
δ _α_γx

β_κ∇_κβZ þ ðL̄spinÞ _α _γ · Z;
ð2:10Þ

where Lspin and L̄spin denote the spin contribution of the
operator which acts nontrivially only on the spacetime
indices of spinor fields

ðLspinÞβδ ·Ψc
ϵ ¼ −iδβϵΨc

δ þ
i
2
δβδΨc

ϵ;

ðL̄spinÞ _α _γ · Ψ̄_ϵd ¼ −iδ _α_ϵ Ψ̄_γd þ
i
2
δ _α_γ Ψ̄_ϵd: ð2:11Þ

Note that in particular there is no spin action on the gauge
field even though it carries spacetime indices. Likewise, the
dilatation generator D is represented on a generic field Z by
a universal rule,

D · Z ¼ −ixβ _α∇ _αβZ − iΔZZ; ð2:12Þ

with the coefficients ΔΦ ¼ 1, ΔΨ ¼ ΔΨ̄ ¼ 3=2, and
ΔA ¼ 0. Here, the case Z ¼ A is special because ΔA ¼ 0
does not match the mass dimension 1 of the gauge
potential. This curiosity is related to the fact that our
representation also involves a gauge transformation, as we
shall discuss below.7 The representation of the super-
charges reads

Qaβ ·Φcd ¼ δcaΨd
β − δdaΨc

β;

Qaβ · Φ̄cd ¼ εacdeΨe
β;

Qaβ · A_γδ ¼ −iεβδΨ̄_γa;

Qaβ ·Ψc
δ ¼ −2δcaFβδ þ iεβδ½Φce; Φ̄ae�;

Qaβ · Ψ̄_γd ¼ 2i∇_γβΦ̄ad: ð2:13Þ

We present the representation of the remaining super-
conformal generators explicitly in Appendix A.
This representation of the superconformal algebra closes

on shell up to field-dependent gauge transformations. For
example, it is easy to confirm that

5Note that the representation on fields acts by replacing each
fundamental field with a transformed field. It does not act on the
coordinates, i.e., J · x ¼ 0 for all generators J, and correspond-
ingly it does not act on partial derivatives ∂ either. Consequently,
it does not act on functions of the coordinates which are
independent of the fundamental fields, such as, e.g., the param-
eter fields for gauge transformations (unless the latter are defined
in terms of the fundamental fields).

6The difference between a plain and a covariant representation
amounts to a gauge transformation generated by the gauge field
contracted to the Killing vector of the symmetry. However, this
requires a full superspace formulation where all components
(in particular the ones along the fermionic directions) of the
gauge field and Killing vectors exist. Therefore, a formulation in
components must remain covariant to some extent.

7The assignment is perfectly consistent; for example, one can
convince oneself that the commutation relation ½D;P� ¼ −iP holds
for all fieldsZ includingZ ¼ A. To that end, it is important to realize
that the second generator will also act on the gauge potentials A
hidden within covariant derivatives ∇. Furthermore, for the gauge-
covariant field strength, one finds ΔF ¼ 2 as expected.
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½P _αβ; P_γδ� · Z ¼ −iG½∇ _αβA_γδ� · Z;
½Qaβ; P_γδ� · Z ¼ iεβδG½Ψ̄_γa� · Z;

fQaβ;Qcδg · Z ¼ 2iεβδG½Φ̄ac� · Z; ð2:14Þ

where G½X� generates a gauge transformation with the
gauge parameter field X as follows:

G½X� · Z ¼ ½X; Z�; G½X� · A _αβ ¼ i∇ _αβX: ð2:15Þ

The appearance of a gauge transformation in the algebra is
not surprising given the fact the we use covariant rather
than partial derivatives to generate shifts; namely, one can
view the difference between ∇ and ∂ as a (field-dependent)
gauge transformation iG½A�.8,9
The advantage of this representation is that covariant

quantities remain manifestly covariant. The price to pay,
however, is that the relations of the original algebra
psuð2; 2j4Þ are not manifest—to recover them, the ideal
generated by gauge transformations must be quotiented
out. The related complications are minor for the super-
conformal algebra, but they introduce considerable diffi-
culty in considering the algebraic relations for the Yangian
algebra, as will be discussed in Ref. [21].

C. Notions of symmetry

In the following, we shall discuss three notions
of symmetry of a model: invariance of the action as
well as a strong and a weak version of invariance of the
equations of motion. They will serve as a starting point
for our discussion of Yangian symmetry of planar
N ¼ 4 sYM which has several complications that can
be avoided by some of the notions. We will consider
some generator J ∈ psuð2; 2j4Þ in the context of N ¼ 4
sYM, but the following arguments will be rather
general and apply to generic local symmetries of a field
theory.
Invariance of the action.—Typically, a symmetry J of a

model is understood as an invariance of the action S,

J · S ¼ 0: ð2:16Þ

This statement is strong because it implies important
structures and relationships for a field theory. For instance,
one can derive conserved currents and charges by means of
Noether’s theorem. Moreover, in a quantum field theory,
the Ward-Takahashi identities imply a large set of relation-
ships between various correlation functions. For the case of
N ¼ 4 sYM, invariance of the action (2.5) can be checked
directly using the representations of J such as (2.9),
(2.12), (2.13).
One can also perform one step of evaluating the

symmetry representation on the action and write the above
symmetry statement (2.16) in terms of the combination
Z̆ ¼ δS=δZ expressing the equation of motion as

J · S ¼ ðJ · ZIÞ δS
δZI ¼ ðJ · ZIÞZ̆I ¼ 0: ð2:17Þ

Here, the field index I refers to all dependencies of all fields
including the gauge degrees of freedom as well as the full
coordinate dependence.10 As such, it is evident that the
statement must hold off shell for it becomes trivial when the
equations of motion Z̆ ¼ 0 are imposed. In other words, a
symmetry implies that (2.17) holds without making use of
the equations of motion.
Strong invariance of the equations of motion.—An

analogous statement can be obtained by considering the
variation of (2.17) with respect to a generic field ZK ,

J · ZI δ2S
δZIδZK þ δðJ · ZIÞ

δZK

δS
δZI ¼ 0: ð2:18Þ

This statement can readily be expressed in a more concise
form as

J · Z̆K ¼ −
δðJ · ZIÞ
δZK Z̆I: ð2:19Þ

It now has an open field index K, which means that it is
localized at some point x of spacetime and that there is one
statement for each component of each fundamental field. In
the case of a gauge theory, the statement is no longer gauge
invariant but rather gauge covariant. Here, the open gauge
indices imply an Nc × Nc matrix of relationships. This
statement dictates how the equation of motion on the lhs
transforms under the symmetry J. Importantly, the state-
ment is still valid off shell. Arguably, it is as powerful as the
invariance of the action (2.16) because the variation toward
(2.19) merely discards a constant term from the statement
which plays an insignificant role for almost all purposes.

8Incidentally, the relationship ∇Z ¼ ∂Z þ iG½A� · Z not only
provides the standard covariant derivative on covariant fields Z,
but for Z ¼ A, it also yields precisely the non-Abelian field
strength as defined in (2.3).

9In a full superspace formulation of a supersymmetric gauge
theory, one could choose to remove the gauge transformations by
subtracting from each generator J a gauge transformation G½ξ · A�
sourced by the superspace gauge field contracted to the Killing
vector ξ associated to J. In a component formulation, this is
not possible due to the lack of superspace coordinates and
components.

10Due to the implicit integration over all space, one can expect
that partial integration is necessary to confirm the statement.
Analogously, one should take cyclicity of the trace over the gauge
degrees of freedom into account.
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We shall therefore denote (2.19) as strong invariance
of the equations of motion. Again, verification of this
statement for N ¼ 4 sYM is straightforward using the
concrete equations of motion (2.7) and the representations
of J.
Weak invariance of the equations of motion.—We can

now apply the equations of motion Z̆ ¼ 0 to the statement
(2.19) in order to remove the rhs,

J · Z̆K ≈ 0: ð2:20Þ

Note that, even though the lhs contains Z̆, it does not
vanish automatically because of the variation within J
which hits Z̆ before the equations of motion are imposed.
By construction, this statement is only valid on shell,
which is expressed by the symbol ≈ here and in the
following. Both relationships (2.19) and (2.20) state that
the variation of the equations of motion is proportional to
the equations of motion. In other words, they imply that
symmetries map solutions to solutions. Nevertheless, the
second version of the statement is clearly weaker because
it does not predict the specific linear combinations on the
rhs. We therefore call (2.20) weak invariance of the
equations of motion.
Let us now reason in the opposite direction and ask

ourselves the following question: suppose we have a
transformation J such that (2.20) holds; to what extent
can we consider J a symmetry of the theory? When can we
promote this transformation to a symmetry of the action of
the theory? The following example shows that (2.20) can
hardly be considered a sufficient condition for a symmetry.
Weak invariance of the equations of motion is only a
necessary condition. We propose that the strong version
(2.19) is a sufficient condition for J to be a symmetry of
the action.
Example.—Let us now demonstrate that the strong

invariance condition (2.19) indeed allows one to differ-
entiate which invariance of the equations of motion stems
from a true symmetry of the action. To this end, consider a
simple example, the free complex scalar field ϕ defined by
the following action:

S ¼
Z

dxd ϕ̄ ∂2ϕ: ð2:21Þ

The equations of motion following from (2.21) are the
wave equations

˘̄ϕ ¼ ∂2ϕ ¼ 0; ϕ̆ ¼ ∂2ϕ̄ ¼ 0: ð2:22Þ

The above equations of motion are weakly invariant as in
(2.20) under a global complex rescaling of the fields

ϕ ↦ eρþiθϕ; ϕ̄ ↦ eρ−iθϕ̄; ð2:23Þ

with ρ and θ real parameters. However, the above trans-
formation leaves the action invariant (2.16) only for pure
rotations ρ ¼ 0.
Can we observe the distinction of ρ and θ on the level of

equations of motion, using only the strong invariance
formula (2.19)? Let us introduce the generators of the
infinitesimal form of the above transformations, separating
the complex rotation R and scaling S,

R · ϕ ¼ iθϕ; R · ϕ̄ ¼ −iθϕ̄; ð2:24Þ

S · ϕ ¼ ρϕ; S · ϕ̄ ¼ ρϕ̄: ð2:25Þ
It is then a simple exercise to see that R indeed satisfies
(2.19), whereas for S, one finds (2.19) with the opposite
sign on the rhs. Hence, as claimed, Eq. (2.19) allows us to
verify whether a given symmetry of the equations of motion
is also a symmetry of the action.

III. YANGIAN SYMMETRY OF THE
EQUATIONS OF MOTION

In this section, we will review and elaborate on our
results of Ref. [17] on Yangian symmetry of the equations
of motion of N ¼ 4 sYM. The goal of that paper was to
establish classical Yangian symmetry of planarN ¼4 sYM
theory and thus to establish a clear notion of integrability
for this model which can later be carried over to quantum
field theory.
The Yangian algebra is an extension of psuð2; 2j4Þ

superconformal symmetry, and the discussion of Yangian
symmetry can follow along same lines as in the previous
section. However, there are also several features that
distinguish the Yangian algebra and its representation on
fields from the more basic superconformal symmetry:

(i) Yangian symmetry alias integrability ought to hold
only in the planar limit; nonplanar terms are ex-
pected to violate the symmetry. However, there is no
evident notion for the planar part of the action; the
planar limit is largely related to the composition of
Feynman diagrams. How should one realize the
planar limit in the context of Yangian symmetry?

(ii) The Yangian is a quantum algebra rather than
a Lie algebra. As such, there is a large number of
presentations which are equivalent for physical
purposes. Furthermore, most of the algebraic rela-
tions comprise many terms and thus require a lot of
patience and attention to verify.

(iii) Yangian representations are typically nonlocal. Non-
local symmetries are harder to detect, and they may
not be accessible with conventional tools of field
theory. In particular, Noether’s theorem does not
apply, at least not directly, and also the notion of
quantum anomalies is obscure. In fact, nonlocality
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does not refer to spacetime in our case, but rather to
color space. This again calls for unconventional
methods and ideas.

(iv) A related issue is cyclicity violation. The action of
N ¼ 4 sYM is cyclic due to the trace in color space.
Yangian representations respect cyclicity only under
very special conditions. We have to formulate these
conditions and make sure that they are satisfied.

(v) Symmetry representations in interacting field theo-
ries are often nonlinear in the fields.11 It is largely
unknown whether Yangian algebras possess such
nonlinear representations.

(vi) A related issue is gauge symmetry. Gauge symmetry
inevitably leads to interacting field theories with
nonlinear representations. The Yangian representa-
tion should be compatible with gauge symmetry
such that the unphysical degrees of freedom do not
interfere with the symmetry. Moreover, gauge sym-
metries have to be fixed in the process of quantiza-
tion such that the gauge field propagator can be
defined. The process of gauge fixing can potentially
violate Yangian symmetry.

Many of these features and in particular their interplay
complicate the investigation of Yangian symmetry. We will
therefore start with a thorough discussion of the algebra and
more elementary considerations of symmetry before we
move on to the two kinds of invariances of the equations of
motion. The treatment of the equations of motion will be
manifestly gauge covariant, which provides some structural
constraints on the novel terms that we shall encounter.
Eventually, we will address Yangian invariance of the
action in the next section where all of the complications
come into play.

A. Algebra and representations

Given a semisimple Lie algebra12 g, the associated
Yangian algebra Y½g� is an infinite-dimensional quantum
algebra generated by two sets of generators JA and ĴA with
A ¼ 1;…; dimðgÞ [22]. The so-called level-zero generators
JA generate the universal enveloping algebra U½g� of the
underlying Lie algebra g, and they obey the commutation
relations

½JA; JB� ¼ ifABCJC ð3:1Þ

with fABC the structure constants of g. The level-one
generators ĴA transform in the adjoint representation of g,

½JA; ĴB� ¼ ifABCĴ
C; ð3:2Þ

and they obey the so-called Serre relation at level two,

½ĴA; ½ĴB; JC�� þ cyclic ¼ fADEfBFHfCGLfDFGJðEJHJLÞ:

ð3:3Þ

Here, adjoint indices are raised and lowered with the
Killing form kAB.

13 All the higher-level generators are
given as polynomials in the level-zero and level-one
generators subject to the above commutation relations.
The Yangian Y½g� is actually a Hopf algebra, and as

such, it possesses a coalgebra structure Δ ∶Y → Y ⊗ Y
defined by

ΔĴA ¼ ĴA ⊗ 1þ 1 ⊗ ĴA þ fABCJB ⊗ JC: ð3:4Þ

The coproduct is coassociative and compatible with the
algebra product in a certain sense. These features allow one
to use the coproduct for the definition of tensor product
representations. The (n − 1)-fold iterated coproduct of J
and Ĵ acting on n tensor factors reads

Δn−1JA ¼
Xn
k¼1

JAk ; Δn−1ĴA ¼
Xn
k¼1

ĴAk þ fABC
X

1≤k<l≤n
JBk J

C
l :

ð3:5Þ

Here, JAk indicates the action of the generator JA on the kth
factor or site of the tensor product (with a trivial action on the
other sites). The above coproduct of J is how one would
conventionally define a tensor product representation for the
Lie algebra g. It acts on all sites in the same fashion, and
therefore the ordering of the sites plays no role. The
coproduct of a level-one generator Ĵ consists of a local partP

kĴk analogous to the level-zero coproduct and of a bilocal
contribution

P
j<kJj ⊗ Jk. This latter bilocal term does

depend on the ordering of the sites of the tensor product;
in other words, the coproduct is noncocommutative.
As we have seen, the coproduct makes us deal with

several generators of g at the same time requiring the use of
adjoint indices A;B;… and structure constants f. A
convenient abbreviation to avoid indices is Sweedler’s
notation: here, one denotes by Jð1Þ and Jð2Þ the level-zero
generators in the first and second factors, respectively, of

11In the field theory context, nonlinearity of a representation
refers to nonlinearity in fields. Importantly, such a representation
acts linearly on polynomials of fields, thus displaying linearity as
one of its elementary properties.

12The discussion and notation will assume an ordinary Lie
algebra generated by bosonic operators J. The generalization
to superalgebras is straightforward by inserting appropriate
signs; we will write out these signs only when we discuss
specific generators of the superalgebra g ¼ psuð2; 2j4Þ and their
representations.

13The Killing form in the simple Lie superalgebra psuð2; 2j4Þ
vanishes, but the algebra nevertheless possesses an invariant
bilinear form k0AB that is used to raise and lower adjoint indices.
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the coproduct of some level-one generator Ĵ ¼ ĴA with an
implicit sum over all combinations,14

Jð1Þ ⊗ Jð2Þ ≔ fABCJB ⊗ JC ¼ −Jð2Þ ⊗ Jð1Þ: ð3:6Þ

The above coproduct rule can thus be expressed more
concisely as

ΔĴ ¼ Ĵ ⊗ 1þ 1 ⊗ Ĵþ Jð1Þ ⊗ Jð2Þ: ð3:7Þ

Our analysis of Yangian symmetry can furthermore be
simplified by the fact that only a single level-one generator
along with the level-zero generators is sufficient to generate
the whole Yangian algebra; all other level-one generators
follow from the adjoint property (3.2), and the higher-level
ones follow from the Serre relation (3.3). We are thus free
to choose a particular generator for which the resulting
expressions simplify as much as possible. Arguably, this is
the level-one momentum P̂, which is also known as the dual
conformal generator. Its coproduct reads (including all
appropriate signs due to fermionic terms)15

ΔP̂ _αβ ¼ P̂ _αβ ⊗ 1þ 1⊗ P̂ _αβ

−Lγ
β ∧ P _αγ − L̄_γ

_α ∧ P_γβ −D ∧ P _αβ −
i
2
Qcβ ∧ Q̄ _α

c;

ð3:8Þ

where the antisymmetric tensor product ∧ of any two
objects X and Y is defined as

X ∧ Y ≔ X ⊗ Y − ð−1ÞjXjjYjY ⊗ X: ð3:9Þ

Note that the action of P̂ conveniently only needs the
dilatation D next to the super Poincaré generators L, L̄,
Q, Q̄, and P. All of their representations are reasonably
simple compared to the representations of the supercon-
formal boosts S, S̄, and K. In fact, we will encounter further
simplifications due to the choice of P̂ later on. Expressions
for the coproducts of the level-one generators Ĵ with
J ∈ fQ; Q̄;Rg as well as the level-one bonus symmetry
B̂ introduced in Ref. [23] can be found in Appendix B.

B. Issues

The major complication in considering Yangian sym-
metry within an (interacting) field theory is that symmetry
representations are often nonlinear. By definition, the
representation is still a linear map between observables;

here, nonlinearity refers to the fact that a single field can be
mapped to a product of fields. In a gauge theory, the
covariant derivative is a major source of nonlinearity; see,
e.g., Eqs. (2.9) and (2.12). Furthermore, the representation
of supersymmetry (2.13) contains nonlinear terms which
are not due to covariant derivatives.
The issue is that the concept of nonlinear representa-

tions is in competition with the definition of tensor
product representations via the coproduct: in a linear
representation, each field corresponds to a single tensor
factor. The representation acts on fields one to one, thus
preserving the structure of the tensor product. For non-
linear symmetries, the representation changes the number
of fields and consequently the structure of the tensor
product; see Ref. [24] for a discussion and construction
of some aspects of nonlinear representations. In fact, the
representation does not split into subrepresentations
with a definite number of fields, but there is only the
indecomposable representation on polynomials of the
fields. For the local action of level-zero generators,
this complication is minor, and one can still view the
full representation as the sum of representations on
component fields. Conversely, the construction of the
bilocal action for the level-one generators is less evident,
cf. some comments in Ref. [25]. Here, the action of the
first constituent generator Jð1Þ changes the tensor product
on which the second constituent generator Jð2Þ is sup-
posed to act. This mainly refers to the precise definition
of the bounds in the double sum in (3.5) given that n is
not well defined anymore. For example, it is conceivable
that Jð2Þ acts on the output of Jð1Þ corresponding to an
overlapping action. This leaves some ambiguity for the
precise definition of a nonlinear level-one representation.
Unfortunately, this becomes a rather serious issue when
taking gauge symmetry into account; for instance,
the covariant derivative consists of a partial derivative
and a gauge potential, and as such, it relates terms of a
different number of constituent fields. In that sense, the
nonlinear terms of the Yangian representations must be
chosen delicately such that they will not violate gauge
symmetry.
Wewill thus need representations which are analogous to

the actions defined in (3.5). In particular, they should
reduce to the ordinary coproduct rule (3.5) when restricting
to linear terms. To that end, it will make sense to distinguish
the local and bilocal contribution in the level-one repre-
sentation and write

Ĵ ¼ Ĵloc þ Ĵbiloc where Ĵbiloc ≔ Jð1Þ ⊗ Jð2Þ: ð3:10Þ

Here, the tensor product symbol ⊗ should be interpreted
such that the first factor acts on a field which is to the left of
the field on which the second factor acts. Formally, we
define the tensor product acting on a sequence of fields by
the rule

14In fact, we exclude the trivial appearance of the level-one
generator, so that Jð1Þ ⊗ Jð2Þ describes a sum of pairs of level-zero
generators.

15The overall factor of the bilocal terms depends on the
coefficient of the invariant form kAB, and it thus varies with
conventions.
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ðJð1Þ ⊗ Jð2ÞÞ · ð� � �ZI � � �ZJ � � �Þ
≔ …þ � � � ðJð1Þ · ZIÞ � � � ðJð2Þ · ZJÞ � � � þ…; ð3:11Þ

where the dots on the rhs represent further terms due to
pairwise contractions with the omitted fields in the
sequence. The local part Ĵloc will just act on all fields
homogeneously. Note that any overlapping contributions
that could be part of some alternative definition of a bilocal
action can and should be interpreted as local contributions.
The other main complication is that representations of the

Yangian algebra tend to be incompatible with the boundary
conditions imposed by the physical system at hand; con-
sequently, the Yangian canmerely be considered a symmetry
of the bulk rather than of the system as awhole. Nevertheless,
for planar N ¼ 4 sYM, our aim is to show exact Yangian
invariance of the action. The color trace within the action
imposes periodic boundary conditions on the above tensor
product. Moreover, the trace projects to states which are
invariant under cyclic permutations; the physical information
within the action is cyclic. However, the representations of
the Yangian generically do not respect cyclicity.
To understand the violations of cyclicity, let us consider a

cyclic state in a tensor product ofn sites. TheYangian algebra
acts on this state by the (linear) representation (3.5). To that
end, we need to define an ordering of the sites within the
tensor product. The adjacency relationship of the sites
defines a local ordering, which is, however, globally incon-
sistent due to the periodic identification. In order to define an
ordering, we need to choose a base point where to “cut open”
the cycle. Let Ĵðk;nþk−1Þ denote the action of Ĵ on the range of
sites from k throughnþ k − 1 (modulon), i.e., wherewe cut
between sites k − 1 and k. We then have that

ĴAð1;nÞ − ĴAðk;nþk−1Þ ¼ 2fABCJBð1;k−1ÞJ
C
ðk;nÞ: ð3:12Þ

Here, Jðj;kÞ denotes the representation of the level-zero
generator on sites j through k. In a generic situation, the
rhs is not zero, and therefore the resulting state is not cyclic.
Likewise, the action of Ĵ will typically depend on the
particular cyclic representative on which it acts. This means
that there is no universal answer to the Yangian representa-
tion on cyclic states, and it makes no sense to ask whether or
not any such state is Yangian invariant.
Gladly, the above difference can be rewritten as [10]

ĴAð1;nÞ − ĴAðk;nþk−1Þ ¼ −ifABCfBCDJDð1;k−1Þ þ 2fABCJBð1;k−1ÞJ
C:

ð3:13Þ
The first term on the rhs contains the combination
fABCfBCD which is proportional to the dual Coxeter
number of the underlying Lie algebra g. For the N ¼ 4
superconformal algebra psuð2; 2j4Þ, this number is 0, and
therefore the term does not contribute. The second term is a
product of two level-zero representations. The level-zero

generator JC acts on the complete state and annihilates it if
is invariant. In other words, the level-one representation of
a Yangian with vanishing dual Coxeter number respects
cyclicity for those states which are invariant under the level-
zero symmetry. In principle, this is an ideal starting point
for considering Yangian invariance of the action of planar
N ¼ 4 sYM because these two prerequisites are satisfied.
Unfortunately, the argument about cyclicity is based on

linear representations. For nonlinear representations, one
may suspect something equivalent to hold, but it is unclear
how to set up the representation precisely and how to show
cyclicity in this case. The major challenge is thus to
properly define nonlinear representations of level-one
generators and to learn how to work with them. In this
situation, proving invariance of the action turns out to be a
rather difficult task, and we shall at first consider the
invariance of the equations of motion in order to gain a
better understanding of nonlinear representations.

C. Weak invariance of the equations of motion

We start by considering the weak notion of a symmetry
of the equations of motion (2.20): given a generator J and
its action on the fields Z, it must leave the equation of
motion Z̆ ¼ 0 invariant,

J · Z̆ ≈ 0: ð3:14Þ

For the Yangian level-one generators Ĵ, the nontrivial
coproduct poses two problems: first, if we want to act
with Ĵbiloc on the equations of motion, we have to fix an
ordering prescription for each term that appears; second, we
need to specify how Ĵloc acts on a single field.
Gladly, we can impose a “natural” ordering for the fields

within the equations of motion for Yang-Mills theories with
a UðNcÞ gauge group. All the fields in N ¼ 4 sYM can be
treated as Nc × Nc matrices, and the (noncommutative)
matrix product provides the ordering within a monomial of
the fields. The equations of motion inherit this matrix
structure supposing that all structure constants of the gauge
group are written in terms of commutators of the fields.
This is also where the large-Nc limit comes into play: the
possibility to write arbitrary (adjoint) combinations of the
fields in terms of matrix polynomials requires a UðNcÞ
gauge group with correspondingly large Nc.

16 Note that

16For matrix products of Nc fields or more, there are certain
identities of polynomials related to antisymmetrization which
eventually introduce some ambiguity for the ordering of fields.
Arguably, this ambiguity does not apply to the equations of
motion when Nc > 3 (at least). Nevertheless, we will later want to
establish Yangian symmetry for arbitrary correlators of the fields,
in which case an arbitrarily large Nc will be necessary. Of course,
there is the option to reverse-engineer the ordering rule such that
the level-one generators are directly represented on fields con-
tracted by structure constants (as long as Nc is sufficiently large);
however, any such rule will be rather messy and cumbersome.
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’t Hooft’s (double) line notation for adjoint fields, which is
prominently used in the discussion of the planar limit,
directly depicts our ordering prescription.
For what concerns the single-field action Ĵloc, we will fix

it by first computing the bilocal action of Ĵbiloc ¼ Jð1Þ ⊗ Jð2Þ
on some equations of motion, which is completely deter-
mined by the conformal representation. We shall then
require that the local terms eliminate all remaining terms,

½Ĵbiloc þ Ĵloc� · Z̆ ≈ 0: ð3:15Þ

The fact that suitable local terms can be found will be a first
test for Yangian symmetry. Subsequently, we will consider
the other equations of motion. Yangian symmetry will pass
a more elaborate test if the same local terms compensate the
remainders from the bilocal action for all equations of
motion.
In the following, we will focus on the level-one

momentum generator Ĵ ¼ P̂ of which the bilocal action
is determined by the coproduct in (3.8). We will first
compute the action of this bilocal term on the Dirac
equation (2.7)

˘̄Ψl_κ ¼ iε_κ _αεβγ∇ _αβΨl
γ − iε_κ _α½Φle; Ψ̄ _αe� ≈ 0: ð3:16Þ

We act on the latter with the coproduct (3.8) by means of
the tensor product action (3.11) using the superconformal
representation (2.9), (2.12), and (2.13), to obtain17

P̂ _αβ;biloc ·
˘̄Ψd_γ ¼ iε_γ_ϵf∇_ϵβΦdf; Ψ̄ _αfg þ iε_γ _ϵfΦdf;∇ _αβΨ̄_ϵfg

þ iδ_γ_αf½Φdf; Φ̄ef�;Ψe
βg: ð3:17Þ

This expression does not vanish on shell on its own.
However, we can make an ansatz for a single-field action
P̂ · Z based on all terms with appropriate quantum numbers
and symmetries and add their contribution to the overall
action of P̂. By choosing the coefficients of the ansatz as

P̂ _αβ ·Φcd ≔ 0;

P̂ _αβ ·Ψc
δ ≔ −εβδfΦce; Ψ̄ _αeg;

P̂ _αβ · Ψ̄_γd ≔ −ε _α_γfΦ̄de;Ψe
γg;

P̂ _αβ · A_γδ ≔
i
4
ε _α_γεβδfΦef; Φ̄efg; ð3:18Þ

we get that

P̂ _αβ ·
˘̄Ψd_γ ¼ −δ_γ_αεβϵfΦdf; Ψ̆ϵ

fg ≈ 0: ð3:19Þ

This shows that P̂ _αβ is a weak symmetry of the Dirac
equation of N ¼ 4 sYM.
One comment on the structure (3.18) of the single-

field action is in order: it may appear unconventional
as it is formulated in terms of anticommutators in
places where commutators are usually expected.
However, this configuration is actually natural consid-
ering the action of a level-one Yangian generator Ĵbiloc
on a commutator,

fABCðJB ⊗ JCÞ · ½ZI; ZJ�
¼ fABCðJB · ZI JC · ZJ − JB · ZJ JC · ZIÞ
¼ fABCfJB · ZI; JC · ZJg: ð3:20Þ

This means that level-one generators typically map
commutators to anticommutators.
With the above single-field action of (3.18), it is now

possible to show that all the equations of motion of
N ¼ 4 sYM are weakly invariant under P̂:

P̂ _αβ ·
˘̄Ψd_γ ¼ −δ_γ_αεβϵfΦdf; Ψ̆ϵ

fg;
P̂ _αβ · Ψ̆δ

c ¼ −δδβε _α_ϵfΦ̄cf;
˘̄Ψf_ϵg;

P̂ _αβ · Φ̆dc ¼ −iε _α_κεβλfΦ̄cd; Ă
λ_κg þ 5

2
εcdefε _α_κ½Ψe

β;
˘̄Ψf _κ�

þ 5

2
εβλ½Ψ̄ _αc; Ψ̆λ

d� −
5

2
εβλ½Ψ̄ _αd; Ψ̆λ

c�;

P̂ _αβ · Ă
δ_γ ¼ −

i
2
δ_γ_αδ

δ
βfΦef; Φ̆efg

−
5i
2
δ_γ_α½Ψe

β; Ψ̆δ
e� þ

i
2
δ_γ_αδ

δ
β½Ψe

λ; Ψ̆λ
e�

−
5i
2
δδβ½Ψ̄ _αe;

˘̄Ψe_γ� þ i
2
δ_γ_αδ

δ
β½Ψ̄_κe;

˘̄Ψe_κ�: ð3:21Þ

Moreover, we have verified explicitly that they are
weakly invariant under the level-one generators Ĵ with
J ∈ fQ; Q̄;Rg as well as the level-one bonus symmetry B̂
which extends the Yangian of psuð2; 2j4Þ. This also fixes
the single-field actions of these generators, and we present
our results in Appendix B.
Up to some issues with respect to the closure of the

Yangian algebra onto gauge transformations, to be dis-
cussed in Ref. [21], we conclude that the Yangian of
psuð2; 2j4Þ is a weak symmetry of the classical planar
equations of motion of N ¼ 4 sYM. As previously dis-
cussed, this represents a necessary condition for Yangian
symmetry in planarN ¼ 4 sYM. It is reassuring to see that
it is met, and we can continue with the construction of a
sufficient condition.

D. Strong invariance of the equations of motion

Next, we would like to promote the above results to a
strong invariance of the equations of motion. As we argued

17Note that all explicit x-dependence originating from the
generators L, L̄, and D cancels out exactly. This convenient
feature is related to the fact that P̂ commutes with P in the
Yangian algebra.
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in Sec. II C, this would amount to an honest statement of
Yangian symmetry in classical planar N ¼ 4 sYM. To that
end, we need an expression which predicts the exact form
of the lhs of J · Z̆ ≈ 0 as a linear combination of the Z̆
(which are 0 on shell).
Let us start from the ordinary superconformal symmetry.

As we have already shown, the invariance of the action
under the generators J of psuð2; 2j4Þ implies an off-shell
relationship for the equations of motion of (2.19):

J · Z̆K ¼ −Z̆I
δðJ · ZIÞ
δZK : ð3:22Þ

On the rhs of this equality, we have a sum of terms Z̆ of
which the coefficients are completely determined by the
superconformal representation on the fields. Note that the
sequence of fields for the term on the rhs takes a particular
form which is not completely evident from the above
expression. It can be inferred from the color structure which
provides the correct adjacency information due to contrac-
tion of the field indices I and K. In particular, the
contraction of indices I implies taking a color trace. Let
us explain it by means of an example: suppose J · ZI ¼
ZLZMZN yields some cubic combination of fields; the term
on the rhs would take the form

Z̆I
δðJ · ZIÞ
δZK ¼ δLKZ

MZNZ̆I þ δMK Z
NZ̆IZL þ δNKZ̆IZLZM:

ð3:23Þ

It is straightforward to generalize this expression to any
number of fields.
We can now ask ourselves if we can find an analogous

expression for level-one Yangian generators: an off-shell
relationship for the action of Ĵ on Z̆K , the right-hand side of
which is a sum of Z̆I with coefficients completely deter-
mined by the action of the generators on the fields of the
theory. With some inspiration from the expected structures
related to level-one symmetry, we find that the answer is
positive, and this novel relationship reads

Ĵ · Z̆K¼−Z̆I
δðĴ ·ZIÞ
δZK þ Z̆I

�
Jð1Þ∧ δ

δZK

�
·ðJð2Þ ·ZIÞ: ð3:24Þ

The antisymmetric tensor product ∧ was defined in (3.9),
and it acts in analogy to (3.11). The insertion of the new
field Z̆I, however, follows different rules based on the color
structure associated to the indices I and K in analogy to
(3.23). For example, assume that Jð2Þ · ZI ¼ ZLZMZN again
is a cubic combination of fields. Then, the bilocal term in
(3.24) expands to

Z̆I

�
Jð1Þ ∧ δ

δZK

�
· ðJð2Þ · ZIÞ

¼ −δLK½ðJð1Þ · ZMÞZNZ̆I þ ZMðJð1Þ · ZNÞZ̆I�
þ δMK ½ZNZ̆IðJð1Þ · ZLÞ − ðJð1Þ · ZNÞZ̆IZL�
þ δNK ½Z̆IðJð1Þ · ZLÞZM þ Z̆IZLðJð1Þ · ZMÞ�: ð3:25Þ

Note that the color trace implied by the contraction of I is
cut open by the operator δ=δZK, so that Z̆I can appear in the
middle of the resulting polynomial. This expression also
generalizes to any number of fields, and it can be nonzero
only if Jð2Þ · ZI consists of (at least) two fields. In other
words, the bilocal term in (3.24) only sees the nonlinear
contributions of Jð2Þ.
First, we shall show that the above relationship holds for

the Dirac equation in N ¼ 4 sYM. The lhs of (3.24) has
been computed in (3.19). We need to show that it matches
with the combination of terms on the rhs of (3.24). The first
term involves a variation of P̂ · ZI by Ψ̄. The only single-field
action (3.18) containing a field Ψ̄ is the one for ZI ¼ Ψ.
Thus, we can set ZI toΨf

ϵ in the first term. The second term
turns out to yield no contribution for a combination of
reasons. First of all, Jð2Þ · ZI must yield an expression
nonlinear in the fields. One option is Jð2Þ ¼ Q, Q̄ acting
on ZI ¼ Ψ, Ψ̄, which, however, never produces any terms
containingZK ¼ Ψ̄. Another option is Jð2Þ ¼ L, L̄, D, but all
nonlinear terms have an explicit x-dependence which will
eventually cancel against other terms. It remains to check
Jð2Þ ¼ P. It must act on ZI ¼ Ψ̄ if the result is to contain
ZK ¼ Ψ̄. The only other field is ZJ ¼ A (within∇Ψ̄), which
can be acted upon by Jð1Þ ¼ L, L̄, D.However, all these terms
are explicitly x-dependent, and as such, they are needed to
cancel against other terms. Hence, the second term does not
contribute, and we are left with

P̂ _αβ ·
˘̄Ψd_γ ¼ −tr

�
Ψ̆ϵ

f
δðP̂ _αβ ·Ψf

ϵÞ
δΨ̄_γd

�

¼ εβϵtr

�
Ψ̆ϵ

f
δfΦfg; Ψ̄ _αgg

δΨ̄_γd

�

¼ εβϵtr

�
fΨ̆ϵ

f;Φfgg δΨ̄ _αg

δΨ̄_γd

�

¼ δ_γ_αεβϵfΨ̆ϵ
f;Φfdg ¼ δ_γ_αεϵβfΦdf; Ψ̆ϵ

fg: ð3:26Þ

This agrees precisely with (3.19). We have also verified that
the relation (3.24) holds exactly for all equations of motion
of N ¼ 4 sYM and for the level-one generators Ĵ with
J ∈ fP;Q; Q̄;R;Bg; i.e., it correctly reproduces the rhs of all
terms in (3.21) and corresponding relations for the other
generators.
Next, let us now explain the meaning of the two terms

appearing on the rhs in (3.24). The first of them is a direct
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counterpart of the one from the level-zero formula (3.22).
The other term should be viewed a result of the nontrivial
coproduct of the level-one generators (3.7). Interestingly,
the action of the two constituent operators Jð1Þ and Jð2Þ is
overlapping, as Jð1Þ acts purely on the output of Jð2Þ. Wewill
thus call this contribution the overlapping term. Note that
the overlapping term is a purely nonlinear effect.18

To conclude this discussion, we would like to emphasize
that, unlike its level-zero counterpart (3.22), the level-one
formula (3.24) for the invariance of the equations of motion
has not been derived from first principles. We have merely
verified that it holds exactly for all equations of motion of
N ¼ 4 sYM and for several level-one generators Ĵ. In other
words, we have derived a strong form of invariance of the
equations of motion for level-one generators. This invari-
ance amounts to a set of nontrivial off-shell identities which
hold in classical planar N ¼ 4 sYM. Such identities are
hard to get a hold of, and independently of how we obtained
them and of their precise form, they clearly indicate a
(hidden) property of classical planar N ¼ 4 sYM which is
equivalent to a global symmetry.

IV. YANGIAN INVARIANCE OF THE ACTION

We would now like to address Yangian invariance of the
action. Our starting point is the strong invariance of the
equations of motion (3.24) which we claimed to be a valid
statement of symmetry. In the following, we will rearrange
the terms in the relationship such that they take the form of
a Yangian invariance of the action

Ĵ · S ¼ 0: ð4:1Þ

The goal is to find a precise formulation of this statement
that holds for planar N ¼ 4 sYM.

A. Notation

In order to perform the rearrangements, we will need a
concise notation for the various terms that arise. First of all,
we decompose all objectswith respect to the number of fields
that they contain. The action of N ¼ 4 sYM has quadratic,
cubic, and quartic terms, and the superconformal represen-
tation has terms which preserve the number of fields as well
as terms that increase the number of fields by one unit,19

S ¼ 1

2
S½2� þ

1

3
S½3� þ

1

4
S½4�; J ¼ J½0� þ J½1�: ð4:2Þ

We choose a particular level-one generator which minimizes
the nonlinear terms, such as the level-one momentum Ĵ ¼ P̂;
see alsoAppendixA for further calculational simplifications.
The relevant local and bilocal terms in Ĵ ¼ Ĵloc þ Ĵbiloc then
expand as follows20:

Ĵloc ¼ Ĵloc;½1�;

Ĵbiloc ¼ Jð1Þ½0� ⊗ Jð2Þ½0� þ Jð1Þ½1� ⊗ Jð2Þ½0� þ Jð1Þ½0� ⊗ Jð2Þ½1� : ð4:3Þ

Next, we need to write out somewhat more explicitly
how the representations act on the individual fields in the
action. The action is a polynomial in the fields of which the
ordering matters. The contribution J½0� to the representation
maps one field to one, and it is natural to denote the action
on the field at site k by J½0�;k.

21 For the higher contributions
J½m�, m > 0, which map one field to mþ 1 fields, the
situation is not as evident; see Ref. [24] for discussions of
this matter in a similar context. Here, we make the choice
that J½m�;k acts on the field at site k and replaces it by an
appropriate sequence of mþ 1 fields. Consequently, the
fields at sites 1;…; k − 1 are mapped to themselves,
whereas the fields at sites kþ 1; kþ 2;… are shifted by
m steps to sites kþmþ 1; kþmþ 2;…, e.g.,

J½1�;3ðZI
1

ZJ
2

ZK
3

ZL
4

ZM
5

Þ ≔ ZI
1

ZJ
2

ðJ½1�ZKÞ
3;4

ZL
5

ZM
6

: ð4:4Þ

The change of length has a relevant implication on the
commutation of two operators J and J0. It is evident that two
one-to-one operators acting on two different sites commute.
For operators which change the length, their insertion
points have to be adjusted as follows:

J½l�;jJ0½m�;k ¼ J0½m�;kþlJ½l�;j if j < k: ð4:5Þ

Cyclicity.—All the terms in the action are gauge invariant
by means of a trace. The trace establishes a neighboring
relationship between the last and the first site, i.e., periodic
boundary conditions. Moreover, the trace is cyclic; i.e., it is
invariant under cyclic shifts. In order to deal with periodic
boundary conditions, we introduce U as the operator that
performs a cyclic shift by one site to the left; e.g., it shifts

18This is in agreement with the fact the overlapping contri-
bution from two linear operators Jð1Þ and Jð2Þ essentially boils
down to their commutator. The latter is equivalent to a local term
and could therefore be absorbed into the definition of the local
part of the bilocal operator.

19We define the expansion coefficients O½n� of traced poly-
nomials O of the fields with an explicit symmetry factor of 1=n.
Conversely, there is no symmetry factor for the expansion
coefficients X ½n� and J½n� of open polynomials X and operators
J, respectively. Even though these different assignments may be
confusing at times, they will avoid many combinatorial factors.

20Even though there is in principle a bilocal term which adds a
field at both insertion points, this term will not contribute in
practice.

21To avoid excessive clutter, wemay suppress the symbol ·when
an operator acts on a specific field.
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the second site to the first and the first site to the last.
Cyclicity of a traced operator O is then expressed as

UO ¼ O or expanded UO½n� ¼ O½n�: ð4:6Þ

Note that we will also work with polynomials O in the
fields which are periodic but not cyclic. The cyclic shift
operator shifts the insertion of an operator J according to
the rule

J½m�;kUO½n� ¼
(
UJ½m�;kþ1O½n� for k ≠ n;

Umþ1J½m�;1O½n� for k ¼ n:
ð4:7Þ

It it worth emphasizing that a term of the form UkJ½m�;1 with
k ≤ m never appears on the rhs of (4.7). Such a term cannot
be written with the shift U residing to the right of J; the shift
must remain to the left of J. This is because the term has a
form which is not covered by J½m�;k alone and which is
different from (4.4). In this term, the output of J½m� extends
past the last site of the polynomial and continues periodi-
cally to the first site or beyond. An example analogous to
(4.4) could be written as

UJ½1�;1ðZI
1

ZJ
2

ZK
3

ZL
4

ZM
5

Þ≔ ðJ½1�ZIÞ
6;1

ZJ
2

ZK
3

ZL
4

ZM
5

¼ ðJ½1�ZIÞ2
1

ZJ
2

ZK
3

ZL
4

ZM
5

ðJ½1�ZIÞ1
6

;

ð4:8Þ

where ðJ½m�ZÞj denotes the jth site of the output of J½m� on Z
(with an implicit sum over all m-tuples of fields in the
polynomial J½m�Z similarly to Sweedler’s notation).

B. Level zero

Equipped with this notation, we will first address the
superconformal symmetry of the action. This will provide
us with some identities that we shall need later when we
consider Yangian symmetry.22 First, we decompose the
statement J · S ¼ 0 by the number of fields, and we obtain
the following set of four statements:

1

2
J½0� · S½2� ¼

1

3
J½0� · S½3� þ

1

2
J½1� · S½2�

¼ 1

4
J½0� · S½4� þ

1

3
J½1� · S½3�

¼ 1

4
J½1� · S½4� ¼ 0: ð4:9Þ

When making the fields explicit, the first statement reads

1

2
J½0�;1S½2� þ

1

2
J½0�;2S½2� ¼ 0: ð4:10Þ

Using cyclicity of the trace, we may as well write this even
more concisely as J½0�;1S½2� ≃ 0 where the symbol ≃ denotes
equality up to cyclic permutations. The cubic relationship
following from superconformal symmetry reads

1

3
J½0�;1S½3� þ

1

3
J½0�;2S½3� þ

1

3
J½0�;3S½3� þ

1

2
J½1�;1S½2�

þ 1

2
J½1�;2S½2� ≃ 0: ð4:11Þ

This relationship can be rewritten in two alternative ways
using cyclicity. Collecting terms, we arrive at the simpler
form J½0�;1S½3� þ J½1�;1S½2� ≃ 0. However, we can also write
the relationship in a manifestly cyclic fashion as

1

3
J½0�;1S½3� þ

1

3
J½0�;2S½3� þ

1

3
J½0�;3S½3� þ

1

3
J½1�;2S½2�

þ 1

3
UJ½1�;1S½2� þ

1

3
J½1�;1S½2� ¼ 0: ð4:12Þ

Here, it is necessary to use the cyclic shift operator U for
one term to distribute the sequence of fields resulting from
J½1� over the last and first sites.
It is also useful to consider the strong invariance of the

equations of motion (3.22). For any ZK specifying the
equation of motion, it yields a relationship consisting of a
polynomial of fields. In order to handle the identities for all
fields ZK at the same time, we prepend this field to the
relationship polynomial and sum over all fields,

Y ≔ ZK

�
ðJ · ZIÞ δ2S

δZIδZK þ δðJ · ZIÞ
δZK

δS
δZI

�
¼ 0: ð4:13Þ

In this definition, we explicitly do not take the color trace
such that the above field ZK will always reside at site 1 of
the polynomial by construction. The expansion

P
nY½n� of

the open polynomial Y in the number n of fields takes the
form

22We would like to remind the reader of a general issue with
respect to homogeneous nonlinear representations acting on
periodic objects. On the one hand, the periodic shift operator
U classifies periodic objects according to the eigenvalue e2πin=L
where n ¼ 0;…; L − 1. On the other hand, the nonlinear repre-
sentation changes the length L of the object. Now, the spectra of
U for different lengths L are largely distinct; the only eigenvalue
which is present for all lengths is 1, corresponding to cyclic
objects. Therefore, nonlinear representation can be homo-
geneous, i.e., commute with the shift operator U, only on the
subspace of cyclic objects. In other words, the periodic object on
which they act must be cyclic, and the representation must be
constructed such that the result is cyclic as well.
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Y ¼
X
n

Y½n�;

Y½n� ¼
Xn−2
m¼0

Xn−m
j¼2

J½m�;jS½n−m� þ
Xn−2
m¼0

Xmþ1

j¼1

Uj−1J½m�;1S½n−m�:

ð4:14Þ

Here, the symmetry factors 1=ðn −mÞ for S½n−m� in (4.2)
have been cancelled by varying the component of the
(cyclic) action S½n−m� consisting of n −m fields by ZK.23

Note that the statements 1
2
Y½2� ¼ 0 and 1

3
Y½3� ¼ 0 are

precisely the above (4.10) and (4.12), respectively. In fact,
the expression Y is cyclic; by rewriting the first term using
(4.7) such that J½m� will always act on site 1, we can make
cyclicity manifest,

Y½n� ¼
Xn−2
m¼0

Xn
j¼1

Uj−1J½m�;1S½n−m�: ð4:15Þ

Therefore, we lose no information by identifying terms by
cyclic permutations, and we find a more concise statement,

Y½n� ≃ n
Xn−2
m¼0

J½m�;1S½n−m� ≃ 0: ð4:16Þ

To wrap this discussion up, we can rewrite the above
definition (4.13) as

Y ¼ ZK δðJ · SÞ
δZK : ð4:17Þ

As the operation ZKðδ=δZKÞ just counts the number of
fields, it is not surprising that the symmetry variation of the
action expands precisely to the coefficients Y½n�,

J · S ¼
X
n

1

n
Y½n�: ð4:18Þ

Therefore, the above transformations are a bit of a detour in
this case, but they will help us find a corresponding
expression Ĵ · S for the level-one Yangian generators Ĵ
acting on the action S.

C. Level one

We would now like to construct a suitable level-one
Yangian representation on the action, Ĵ · S, such that
invariance amounts to Ĵ · S ¼ 0. We will approach this
construction by expanding in the number of fields,

Ĵ · S ¼
X
n

1

n
ðĴ · SÞ½n�; ð4:19Þ

where the prefactors 1=n account for cyclic symmetry.
We will start with the simplest cases at n ¼ 2, 3 and later
address arbitrary lengths. Before doing so, we derive some
more identities which are needed to transform the
expressions.
Commuting constituents.—Consider the commutator

H ≔
1

2
½Jð1Þ; Jð2Þ�; ð4:20Þ

which we can expand in fields as usual as H ¼ H½0� þ H½1�
with

H½m�;k ¼
Xm
l¼0

Xl

j¼0

Jð1Þ½m−l�;kþjJ
ð2Þ
½l�;k: ð4:21Þ

The leading term H½0� contains the combination
fABCfBCD, which is proportional to the dual Coxeter
number of the level-zero algebra. The dual Coxeter
number for our superconformal algebra psuð2; 2j4Þ is
zero, and consequently the linear term vanishes, H½0� ¼ 0.
The nonlinear term H½1� is also zero for N ¼ 4 sYM by
explicit computation. One can relate this finding to the
G-identity for N ¼ 4 sYM found in Ref. [16]. Altogether,
the constituent operators of the bilocal level-one generator
commute (when summed over all pairs as implied by
Sweedler’s notation),

H ¼ 0: ð4:22Þ

Two fields.—Next, we address level-one Yangian sym-
metry. The starting point is the strong invariance statement
(3.24) of the equations of motion which we have already
shown to hold. We will treat it analogously to the strong
invariance of the equation of motion at level zero (3.24):
we prepend the field that selects the equation of motion to
the relationship polynomial and denote the resulting
expression by

Ŷ ≔ ZK

�
Ĵ · Z̆K þ Z̆I

δðĴ · ZIÞ
δZK

− Z̆I

�
Jð1Þ ∧ δ

δZK

�
· ðJð2Þ · ZIÞ

�
¼ 0: ð4:23Þ

It can be expanded in fields leading to some additional
identities of a similar kind as (4.10), (4.12)

Ŷ ¼
X
n

Ŷ½n�: ð4:24Þ

23We assume that δS=δZK pulls one of the n −m fields and
moves the empty spot within the polynomial to site 1. The
subsequent variation δ=δZI pulls another field (but not from the
empty site 1) and replaces it by J · ZI.
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However, the relationship Ŷ½2� ¼ 0 at the level of two
fields is empty; the first nontrivial relationship is at three
fields.
What are the implications of Yangian symmetry at two

fields? We use the fact that the combination Y½2� in (4.15) is
exactly zero24 and apply another generator J to it to obtain a
new relationship:

Jð1Þ½0�;1Y
ð2Þ
½2� ¼ Jð1Þ½0�;1J

ð2Þ
½0�;1S½2� þ Jð1Þ½0�;1J

ð2Þ
½0�;2S½2� ¼ 0: ð4:25Þ

The first term has the form H½0�;1S½2�, and therefore it
vanishes by (4.22). The second term is the bilocal part of
the level-one representation on the quadratic part of the
action. Furthermore, there is no linear contribution to the
local part of the level-one representation. Altogether,
Eq. (4.25) boils down to the statement

Ĵ½0� · S½2� ¼ ðJð1Þ½0� ⊗ Jð2Þ½0� Þ · S½2� ¼ 0: ð4:26Þ

In other words, the level-one symmetry of the action at
quadratic order in the fields is a plain consequence of level-
zero symmetry and the vanishing of the dual Coxeter
number. This agrees with the fact that the equations of
motions are trivially invariant at linear order.

Three fields.—The strong invariance relationship (3.24)
at three fields reads Ŷ½3� ¼ 0 with

Ŷ½3� ≔ Ĵ½1�;2S½2� þ UĴ½1�;1S½2� þ Ĵ½1�;1S½2�

þ Jð1Þ½0�;2J
ð2Þ
½0�;3S½3� − Jð2Þ½0�;2J

ð1Þ
½1�;1S½2� þ UJð2Þ½0�;1J

ð1Þ
½1�;1S½2�:

ð4:27Þ

We would now like to reformulate this combination such
that it looks more like the cubic term in the expansion of
Ĵ · S. To that end, let us first address the cyclicity of Ŷ½3�.
The first three terms are manifestly cyclic; the latter three
are not. We therefore look at the violation of cyclicity,

ðU − 1ÞŶ½3� ¼ −Jð1Þ½0�;2Y
ð2Þ
½3� − UJð1Þ½1�;1Y

ð2Þ
½2� þ H½0�;2S½3�

þ UH½1�;1S½2�: ð4:28Þ

Here, we have made use of the algebraic identities (4.5) and
(4.7) and the implicit antisymmetry in Sweedler’s notation
(3.6). All remaining terms could then be collected in the
combinations Y (4.15) and H (4.21), which are zero as
discussed above. Therefore, the relationship Ŷ½3� ¼ 0 is

effectively cyclic; all the noncyclic contributions to the
relationship are zero for lesser reasons than Yangian
symmetry. It also allows us to compare modulo cyclic
identifications (≃) without losing relevant information,

Ŷ½3� ≃ 3Ĵ½1�;1S½2� þ Jð1Þ½0�;2J
ð2Þ
½0�;3S½3� − Jð2Þ½0�;2J

ð1Þ
½1�;1S½2�

þ Jð2Þ½0�;1J
ð1Þ
½1�;1S½2�: ð4:29Þ

Let us now turn to the reformulation. Due to the effective
cyclicity of Ŷ½3�, it is reasonable to define ðĴ · SÞ½3� to be
proportional to it. To figure out the factor of proportionality,
we will compare the terms in (4.29) to some canonical
terms in ðĴ · SÞ½3�. The first term in (4.29) is equivalent to
the local part of the level-one representation on S½2�,

Ĵloc;½1� · S½2�∶≃ 2Ĵ½1�;1S½2�; ð4:30Þ

while the second term in (4.29) is equivalent to the bilocal
part on S½3�,

Ĵbiloc;½0� · S½3� ≔ Jð1Þ½0�;1J
ð2Þ
½0�;2S½3� þ Jð1Þ½0�;1J

ð2Þ
½0�;3S½3� þ Jð1Þ½0�;2J

ð2Þ
½0�;3S½3�

≃ Jð1Þ½0�;1J
ð2Þ
½0�;2S½3�: ð4:31Þ

The remaining two terms in (4.29) have a special form; one
may interpret them as a nonlinear bilocal contribution
where both legs overlap. Such terms are not provided by the
usual coproduct rule for tensor product representations, but
our nonlinear representation is not exactly a tensor product,
and hence it is conceivable to have them,

Ĵo’lap;½1� · S½2�∶≃
2

3
Jð1Þ½0�;2J

ð2Þ
½1�;1S½2� −

2

3
Jð1Þ½0�;1J

ð2Þ
½1�;1S½2�: ð4:32Þ

The (insignificant) prefactors in this definition were chosen
to agree with a desirable form of expression further below.
Finally, we notice that Ŷ½3� does not contain the standard
bilocal contribution to the representation on S½2�. However,
this term is zero modulo cyclic identifications,

Jð1Þ½1�;1J
ð2Þ
½0�;2S½2� þ Jð1Þ½0�;1J

ð2Þ
½1�;2S½2� ≃ 0: ð4:33Þ

Altogether, we derive an invariance statement for the
action at cubic order in the fields,

1

3
ðĴ ·SÞ½3�∶≃

1

2
Ĵloc;½1� ·S½2� þ

1

3
Ĵbiloc;½0� ·S½3� þ

1

2
Ĵo’lap;½1� ·S½2�

≃
1

3
Ŷ½3� ≃ 0: ð4:34Þ

Note that the prefactors of all terms agree with the
symmetry factors 1=m of the S½m� which is acted

24Importantly, the relationship Y½2� ¼ 0 holds without assuming
the equation of motion to hold or without applying cyclic
permutations.
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upon.25 We have verified explicitly that (4.34) holds for the
level-one momentum Ĵ ¼ P̂.
Nonlinear level-one invariance.—Now, let us turn to a

general number of fields n in order to understand the
precise structure of the unconventional terms. The combi-
nation Ŷ½n� of the strong invariance condition (3.24) can be
written in our present notation as

Ŷ½n� ¼
Xn−2
m¼0

Xn−m
j¼2

Ĵ½m�;jS½n−m� þ
Xn−2
m¼0

Xmþ1

j¼1

Uj−1Ĵ½m�;1S½n−m�

þ
Xn−2
m¼0

Xm
l¼0

Xn−m−1

j¼2

Xn−m
k¼jþ1

Jð1Þ½l�;jJ
ð2Þ
½m−l�;kS½n−m�

þ
Xn−2
m¼0

Xm
l¼0

Xl

j¼1

Xlþ1

k¼jþ1

ðUj−1Jð1Þ½m−l�;k − Uk−1þm−lJð1Þ½m−l�;jÞ

× Jð2Þ½l�;1S½n−m�: ð4:35Þ

Using the same identities as at the level of three fields, we
find that violations of cyclicity are given by terms con-
taining Y and H,

ðU − 1ÞŶ½n� ¼
Xn−2
m¼0

ð1þ Umþ1Þ½Jð1Þ½m�;1Y
ð2Þ
½n−m� − H½m�;1S½n−m��:

ð4:36Þ

This means that Ŷ is in fact cyclic provided that the action
is invariant under level zero and that the combined
generator H defined in (4.20) is zero. We may thus interpret
the statement Ŷ ¼ 0 as level-one invariance of the action.
To bring this statement somewhat closer to the expected

form of Ĵ · S, we introduce a modified combination Ŷ0 with
some convenient extra terms which are zero due to
Y ¼ H ¼ 0:

Ŷ0
½n� ≔ Ŷ½n� þ

Xn−2
m¼0

½Jð1Þ½m�;1Y
ð2Þ
½n−m� þ H½m�;1S½n−m��

¼
Xn−2
m¼0

Xn
j¼1

Uj−1Ĵ½m�;1S½n−m�

þ
Xn−2
m¼0

Xm
l¼0

Xn−mþl

k¼lþ2

Xk
j¼lþ2

Uj−1Jð1Þ½m−l�;kJ
ð2Þ
½l�;1S½n−m�

þ
Xn−2
m¼0

Xm
l¼0

Xlþ1

k¼1

� Xm−lþk

j¼2

−
Xmþ1

j¼kþ1

�
Uj−1Jð1Þ½m−l�;kJ

ð2Þ
½l�;1S½n−m�:

ð4:37Þ

The terms in the first line of the result represent the local
terms of the level-one representation. The terms in the
second line are clearly bilocal with two nonoverlapping
insertions. The terms in the third line take a similar form as
the bilocal terms, but here the insertion of Jð1Þ is within the
range of Jð2Þ, and thus their actions overlap.26

Some comments regarding the bilocal and overlapping
terms are in order: even through the prefactors for all terms
in (4.37) are 1, those of the nonlinear bilocal terms appear
somewhat unnatural; when compared to their linear coun-
terparts, they are off by a factor of ðn −mÞ=n. On the one
hand, this may be worrisome in view of gauge symmetry
because such relative factors could easily upset the com-
position of covariant derivatives and thus spoil this essential
symmetry. On the other hand, such factors can be com-
pensated by the relative length of the objects and thus by
the multiplicity of operator insertions. Moreover, the over-
lapping terms have no analog in the conventional level-one
representation based on the coproduct rule.
How can we make sense of this behavior? Clearly, the

novel nonlinear representation of level-one symmetry on
cyclic polynomials can have new features, which do not
need to follow the coproduct rule strictly. What matters is
that the above form follows by elementary transformations
from the strong invariance relationship (3.24). The latter
holds in planar N ¼ 4 sYM for the level-one momentum
Ĵ ¼ P̂. It therefore makes sense to view Ŷ0

½n� ¼ 0 as given by
(4.37) as the definition of the nonlinear level-one invariance
of the action. Whether or not it has the expected from, it
certainly does describe a nontrivial relationship of planar
N ¼ 4 sYM. In any case, the structures in (4.37) clearly
deserve further theoretical scrutiny.
Cyclic level-one representation.—As the expression

(4.37) is effectively cyclic, we may furthermore identify
terms related by cyclic permutation. This yields a simpler
expression:

Ŷ0
½n� ≃

Xn−2
m¼0

nĴ½m�;1S½n−m�

þ
Xn−2
m¼0

Xm
l¼0

Xn−mþ2lþ1

k¼1

�
k − l −

1

2
nþ 1

2
m − 1

�

× Jð1Þ½m−l�;kJ
ð2Þ
½l�;1S½n−m�: ð4:38Þ

Note that all bilocal terms could be combined in a uniform
expression. Here, the first and the last lþ 1 terms labeled
by k¼1;…;lþ1 and k¼n−mþlþ1;…;n−mþ2lþ1
represent overlapping bilocal terms, whereas the insertions

25For the novel overlapping terms, this is a choice which was
used to fix the perviously chosen prefactors in its definition
(4.32).

26Consequently, the combination of both insertions is effec-
tively local; nevertheless, we will still associate them to the
bilocal part due to their structural similarity.
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do not overlap in the remaining middle range k ¼
lþ 2;…; n −mþ l.
Since invariance of the action can and should be

expressed modulo the cyclicity of the trace, we may write
the symmetry statement as

Ĵ · S ≃ 0 with Ĵ · S∶≃
X
n

1

n
Ŷ0

½n�: ð4:39Þ

This form is a complete expression for level-one invariance
of the action including all standard and nonstandard terms.
We have verified explicitly by computer algebra that it holds
for planar N ¼ 4 sYM for the level-one generators Ĵ with
J ∈ fP;Q; Q̄;R;Bg. Unfortunately, the calculations produce
hundreds of intermediate terms which are subject to cyclic
identifications and integrations by parts. Only the invariance
under the level-one bonus symmetry B̂ has a reasonably
simple structure, and we shall show it explicitly below.
As such, we have not yet fully established that the

extended symmetries generate a Yangian algebra; wewould
need to show that the adjoint property (3.2) as well as the
Serre relation (3.3) hold. A complication, to be addressed
in Ref. [21], is that the algebra is mixed with gauge
transformations of a novel kind. Independently of which
algebraic relations the symmetry generators obey, they
give rise to novel relations for planar N ¼ 4 sYM.27

Level-one bonus symmetry.—In order to show invariance
of the action under the level-one bonus symmetry B̂ intro-
duced in Ref. [23], see also Ref. [26], we first introduce the
additional algebraic structures; see Appendix A and B for
further details. The coproduct depends only on the odd
level-zero generators

ΔB̂ ¼ B̂ ⊗ 1þ 1 ⊗ B̂ −
1

4
Sαb ∧ Qbα −

1

4
S̄b _α ∧ Q̄ _α

b;

ð4:40Þ

and the single-field action is trivial,

B̂ · Z ¼ 0: ð4:41Þ
Moreover, the representation of the superconformal boosts
S and S̄ are almost completely given in terms of the
supersymmetries Q̄ and Q, respectively,

Sαb ∼ ixα_ϵQ̄_ϵ
b þ S0αb; S̄a _γ ∼ −ixβ_γQaβ þ S̄0a _γ: ð4:42Þ

Both of the additional operators S0 and S̄0 act nontrivially
only on a single type of field,

S0αb ·Ψc
δ ¼ −2δαδΦbc; S̄0a _γ · Ψ̄_ϵd ¼ 2δ_γ_ϵΦ̄ad: ð4:43Þ

Based on these relationships, we can in fact show that
almost all contributions to the invariance condition are
trivially zero. First of all, by combining (4.40) and (4.42),
one can observe that the x-dependent terms due to S̄ ∧ Q̄
and S ∧ Q mutually cancel irrespectively of what they
act on. Therefore, the only nonzero contributions to the
invariance condition can originate from the x-independent
operators S0 and S̄0 as well as when S and S̄ act on a partial
derivative which subsequently removes the x-dependence,

Sαb ·ð∂ _γδZÞ¼ i∂ _γδðxα_ϵQ̄_ϵ
b ·ZÞþ∂ _γδðS0αb ·ZÞ

¼ ixα_ϵ∂ _γδðQ̄_ϵ
b ·ZÞþ∂ _γδðS0αb ·ZÞþ iδαδQ̄_γ

b ·Z;

S̄a _γ ·ð∂ _ϵδZÞ¼−ixβ_γ∂ _ϵδðQaβ ·ZÞþ∂ _ϵδðS̄0a _γ ·ZÞ− iδ_γ_ϵQaδ ·Z:

ð4:44Þ

First, we consider overlapping terms in the action of B̂;
overlapping terms require the first level-zero generator to act
nonlinearly. However, all nonlinear contributions from the
odd generators act on fermions only, and they produce two
bosons without derivatives. When acting further on the
result, all x-dependent contributions must cancel by the
above arguments, and as we have seen, bosons without
derivatives cannot generate x-independent terms. Moreover,
extra terms cannot be generated from the action of the first
generator because S0 and S̄0 are purely linear and any partial
derivatives acting on the original field can be pulled out from
the calculation. Hence, there are no overlapping terms.
Analogously, the single-field action of B̂ is zero.
Let us now consider the various terms in the action: the

quadratic terms S½2� can only contribute via overlapping
terms, and therefore they are all trivially invariant on their
own. Furthermore, all the quartic terms S½4� are purely
bosonic, and they do not involve partial derivatives. Since
the operators S0 and S̄0 act on fermions only, and the absence
of partial derivatives prevents the generation of further
x-independent terms, also all terms in S½4� are invariant
on their own. It remains to consider the cubic terms S½3�.
By elementary transformations, we can summarize the

(nonlinear) action (4.38) on the cubic terms asX
n

Ŷ0
½n� ≃ Jð1Þ1 Jð2Þ2 S½3�

≃ −
1

4
ðSαbÞ1ðQbαÞ2S½3� −

1

4
ðQbαÞ1ðSαbÞ2S½3�

−
1

4
ðS̄b _αÞ1ðQ̄ _α

bÞ2S½3� −
1

4
ðQ̄ _α

bÞ1ðS̄b _αÞ2S½3�:

ð4:45Þ

27By construction, these symmetries form some algebra. If it is
not of Yangian kind, it will inevitably be much larger than that.
So, the default assumption is that the algebra is as small as
possible, and thus of Yangian kind. Nevertheless, it intrinsically
interesting to understand the actual symmetry algebra and its
relations in detail.

YANGIAN SYMMETRY FOR THE ACTION OF PLANAR … PHYS. REV. D 98, 046006 (2018)

046006-17



Effectively, only x-independent terms can potentially con-
tribute, and therefore we need to consider only two types of
terms from this expression: the generators S and S̄ can act
on a derivative ∂Z in such a way that the derivative
eliminates the x-dependence from the action of S and S̄.
Alternatively, S and S̄ can act on fermions and yield terms
via the extra operators S and S̄. Curiously, the cubic terms
in the action (2.5) split into two corresponding classes,
namely terms with fermions and terms with derivatives,

L½3� ¼ −iε _α_γεβδε_ϵ_κεζλtrð½A_κλ; ∂ _αβA_ϵζ�A_γδÞ

−
i
2
ε _α_γεβδtrð½Φef; ∂ _αβΦ̄ef�A_γδÞ

þ ε_κ _αεβγtrðfΨd
γ; Ψ̄_κdgA _αβÞ

þ i
2
εαγtrðfΨe

α;Ψf
γgΦ̄efÞ

þ i
2
ε _α_γtrðfΨ̄ _αe; Ψ̄_γfgΦefÞ: ð4:46Þ

Let us first consider the fermionic terms on the second
line on which S and S̄ can effectively act only via the extra
operators S0 and S̄0. By considering the types which can
potentially be generated along with the parity-reversing
nature of the level-one generators, we find terms of the
types

εαγtrð½Ψe
α;Ψf

γ�Φ̄efÞ; εαγtrðfΦ̄ef;ΦefgFαγÞ;
ε _α_γtrð½Ψ̄ _αe;Ψ̄_γf�ΦefÞ; ε _α_γtrðfΦ̄ef;ΦefgF̄ _α_γÞ;
trðfΦ̄ef;Φdeg½Φ̄db;Φbf�Þ; ε _α_γεβδtrðfA _αβ;Φ̄efg½A_γδ;Φef�Þ;

ð4:47Þ

as well as

ε _α_γεβδtrð∂ _γδfΦ̄ef;ΦefgA _αβÞ: ð4:48Þ

Now, the former six terms are trivially zero because they all
involve simultaneous symmetrization and antisymmetriza-
tion of indices. Only the last term is nonzero. It can only be
generated from the term fΨ; Ψ̄gA in the action, and the
contributions read

1

12
ε_κ _αεβγtrðfS0ϵfΨd

γ;QfϵΨ̄_κdgA _αβþfS̄0f _ϵΨ̄_κd;Q̄_ϵ
fΨd

γgA _αβÞ:
ð4:49Þ

However, by explicit computation, the two terms cancel
precisely.
By similar arguments as above, the purely bosonic cubic

terms of the action can yield terms of the kinds

εαγtrð½Ψe
α;Ψf

γ�Φ̄efÞ; ε _α_γtrð½Ψ̄ _αe; Ψ̄_γf�ΦefÞ;
ε_κ _αεβγtrð½Ψd

γ; Ψ̄_κd�A _αβÞ: ð4:50Þ

As before, the former two terms have incompatible sym-
metrizations and are zero. Only the last term is nonzero. By
acting on the term ½Φ; ∂Φ�A, we find

−
i
24

ε _α_γεβδtrð½∂ _αβðSκgΦ̄efÞ;QgκΦef�A_γδ

þ ½∂ _αβS̄g _κΦef; Q̄_κ
gΦ̄ef�A_γδÞ; ð4:51Þ

which evaluates to

−
1

2
ε _α_γεβδtrð½Ψf

β; Ψ̄ _αf�A_γδÞ: ð4:52Þ

Conversely, the action on the term ½A; ∂A�A yields

i
12

ε _α_γεβδε_ϵ_κεζλtrð½∂ _αβSηgA_ϵζ;QgηA_γδ�A_κλ

þ ½∂ _αβS̄g _ηA_ϵζ; Q̄_η
gA_γδ�A_κλÞ

−
i
12

ε _α_γεβδε_ϵ_κεζλtrð½∂ _ϵζSηgA _αβ;QgηA_γδ�A_κλ

þ ½∂ _ϵζS̄g _ηA _αβ; Q̄_η
gA_γδ�A_κλÞ; ð4:53Þ

which amounts to

1

2
ε _α_γεβδtrð½Ψf

β; Ψ̄ _αf�A_γδÞ: ð4:54Þ

Therefore, both remaining contributions cancel, and alto-
gether, this proves that the bonus level-one Yangian
generator B̂ is a symmetry of planar N ¼ 4 sYM.

V. N = 6 SUPERSYMMETRIC
CHERN-SIMONS THEORY

Now that we have established an extended symmetry
related to planar integrability of classical N ¼ 4 sYM
theory, we should consider further gauge theories where
planar integrability has been observed. The main example
of a supposedly integrable gauge theory in the planar
limit which is substantially different from N ¼ 4 sYM is
ABJ(M) theory. This model is a superconformal field
theory in three dimensions with an AdS/CFT dual string
theory, it appears to be integrable in the planar limit, and its
observables display Yangian symmetry.
ABJ(M) theory will serve as a crucial testing ground for

our proposal; if our definition of integrability in the form of
Yangian symmetry is correct, we should be able to show
that its holds also for this theory.
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A. Action

ABJ(M) theory is a N ¼ 6 supersymmetric Chern-
Simons theory with gauge group UðMÞ × UðNÞ. The vector
multiplet is coupled to two scalar multiplets ðΦ;ΨÞ and
ðΦ̄; Ψ̄Þ, transforming in the ðM; N̄Þ and ðM̄; NÞ represen-
tations of the gauge group, respectively.
As for N ¼ 4 sYM, we use a spinor-matrix notation xαβ

to denote the coordinates of three-dimensional spacetime
where α; β;… ¼ 1, 2 denote slð2;RÞ spacetime spinor
indices. The coordinate matrices are symmetric xαβ ¼ xβα

and real. The corresponding partial derivatives ∂αβ ¼ ∂βα

are normalized by the rule ∂αβxγδ ¼ δγαδδβ þ δδαδ
γ
β. Further-

more, Latin letters a; b;… ¼ 1, 2, 3, 4 denote suð4Þ
internal indices.
For simplicity, we introduce two gauge fields Aαβ and

Ãαβ, one for each UðKÞ component of the gauge group. The
fields of the theory can be represented as matrices: the field
Aαβ (Ãαβ) is a Hermitian M ×M (N × N) matrix, and the

fields Φa and Ψαb (Φ̄a and Ψ̄α
b) are complex M × N

(N ×M) matrices; any sequence of fields is to be under-
stood as the appropriate matrix product.
The gauge-covariant derivatives act on a covariant

M × N field Z (N ×M field Z̄) as

∇αβZ ≔ ∂αβZ þ iAαβZ − iZÃαβ;

∇αβZ̄ ≔ ∂αβZ̄ þ iÃαβZ̄ − iZ̄Aαβ; ð5:1Þ

and we define the field strengths as for N ¼ 4 sYM,

∇αβAγδ ≔ ∂αβAγδ − ∂γδAαβ þ i½Aαβ; Aγδ�;
∇αβÃγδ ≔ ∂αβÃγδ − ∂γδÃαβ þ i½Ãαβ; Ãγδ�: ð5:2Þ

The action of the theory is completely fixed by supersym-
metry, and its Lagrangian reads

L ¼ εβγεδϵεκαtr

�
−
1

4
Aαβ∂γδAϵκ −

i
6
AαβAγδAϵκ þ

1

4
Ãαβ∂γδÃϵκ þ

i
6
ÃαβÃγδÃϵκ

�

þ iεαβεγδtr

�
Ψ̄α

e∇βγΨδe þ
1

2
εαγεβδ∇αβΦ̄e∇γδΦe

�
þ εϵκtrðiεabcdΦ̄aΨϵbΦ̄cΨκd − iεabcdΦaΨ̄ϵ

bΦcΨ̄κ
dÞ

þ εϵκtrð−iΦaΦ̄aΨϵbΨ̄κ
b þ iΦ̄aΦaΨ̄ϵ

bΨκb þ 2iΦaΦ̄bΨϵaΨ̄κ
b − 2iΦ̄aΦbΨ̄ϵ

aΨκbÞ

þ tr

�
1

3
ΦaΦ̄aΦbΦ̄bΦcΦ̄c þ

1

3
ΦaΦ̄bΦbΦ̄cΦcΦ̄a þ

4

3
ΦaΦ̄bΦcΦ̄aΦbΦ̄c − 2ΦaΦ̄bΦcΦ̄cΦbΦ̄a

�
: ð5:3Þ

B. Symmetries

As already stated, ABJ(M) theory is a superconformal theory; the algebra of superconformal transformations is28

ospð6j4Þ. The action of the Poincaré and dilatation generators reads

Pαβ · Z ¼ i∇αβZ;

Lα
β · Z ¼ −ixαϵ∇ϵβZ þ i

2
δαβx

δϵ∇δϵZ þ ðLspinÞαβ · Z;

D · Z ¼ −
i
2
xαβ∇αβZ − iΔZZ; ð5:4Þ

where the conformal dimensions are ΔΦ ¼ 1=2, ΔΨ ¼ 1, ΔA ¼ 0, and where the spin operator Lspin acts nontrivially only
on the spinor fields Zα ∈ fΨαc; Ψ̄α

cg,

ðLspinÞαβ · Zγ ¼ −iδαγZβ þ
i
2
δαβZγ: ð5:5Þ

The supersymmetry charges transform in the six-dimensional real irreducible representation of the internal algebra suð4Þ.
They act as

28The maximal even subalgebra is spð4Þ × soð6Þ, where spð4Þ ¼ soð2; 3Þ is the conformal algebra in three dimensions, and soð6Þ is
the R-symmetry algebra.
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Qϵab ·Φc ¼ 2δcāΨϵb̄;

Qϵab · Φ̄c ¼ εabcdΨ̄ϵ
d;

Qϵab ·Ψκc ¼ iεabcd∇ϵκΦd þ εϵκεabcdð−iΦdΦ̄fΦf þ iΦfΦ̄fΦdÞ − 2iεϵκεabdfΦdΦ̄cΦf;

Qϵab · Ψ̄δ
c ¼ 2iδcā∇ϵδΦ̄b̄ þ 4iεϵδΦ̄āΦcΦ̄b̄ þ 2iεϵδδcāΦ̄b̄ΦfΦ̄f − 2iεϵδδcāΦ̄fΦfΦ̄b̄;

Qϵab · Aγδ ¼ −4iεϵγ̄Ψδ̄āΦ̄b̄ − 2iεϵγ̄εabfgΦfΨ̄δ̄
g;

Qϵab · Ãγδ ¼ 4iεϵγ̄Φ̄āΨδ̄b̄ þ 2iεϵγ̄εabfgΨ̄δ̄
fΦg: ð5:6Þ

Here and in the following, we use a shorthand notation Xᾱγ̄ ≔ 1
2
Xαγ � 1

2
Xγα for the symmetrization of indices, where the

sign is determined by the manifest symmetries on the defining lhs of the equation.

C. Yangian invariance

In order to check the classical Yangian invariance of ABJ(M) theory, we can proceed the same way we did for N ¼ 4
sYM: we start from the simplest equation of motion, we act on it with the bilocal part of a level-one Yangian generator, we
fix the single-field action, and then we check that the relationship of (3.24) is satisfied.
The most convenient choice for the level-one generator of Y½ospð6j4Þ� is again P̂αβ. The bilocal part of the coproduct reads

ðP̂αβÞbiloc ¼ Pγᾱ ∧ Lγ
β̄ þ Pαβ ∧ Dþ i

8
εcdefQαcd ∧ Qβef: ð5:7Þ

Furthermore, we choose the simplest of the equations of motion, the Dirac equation ˘̄Ψ ¼ 0 with

˘̄Ψα
b ¼ εαϵðiεγδ∇ϵγΨδb þ 2iεbcdfΦcΨ̄ϵ

dΦfÞ þ εαϵðiΨϵbΦ̄cΦc − 2iΨϵcΦ̄bΦc − iΦcΦ̄cΨϵb þ 2iΦcΦ̄bΨϵcÞ: ð5:8Þ
We find that the Dirac equation is weakly invariant under the above level-one momentum generator with the following unique
choice of single-field action:

P̂αβ ·Φa ¼ 0;

P̂αβ · Φ̄a ¼ 0;

P̂αβ ·Ψγd ¼ εᾱγð−Ψβ̄dΦ̄eΦe þ 2Ψβ̄eΦ̄dΦe −ΦeΦ̄eΨβ̄d þ 2ΦeΦ̄dΨβ̄eÞ;
P̂αβ · Ψ̄γ

d ¼ εᾱγðΨ̄β̄
dΦeΦ̄e − 2Ψ̄β̄

eΦdΦ̄e þ Φ̄eΦeΨ̄β̄
d − 2Φ̄eΦdΨ̄β̄

eÞ;
P̂αβ · Aγδ ¼ iεᾱγ̄∇β̄δ̄ðΦeΦ̄eÞ þ εᾱγ̄εβ̄δ̄ð−2iΦeΦ̄fΦfΦ̄e þ εκλΨκeΨ̄λ

eÞ;
P̂αβ · Ãγδ ¼ −iεᾱγ̄∇β̄δ̄ðΦ̄eΦeÞ þ εᾱγ̄εβ̄δ̄ð−2iΦ̄eΦfΦ̄fΦe − εκλΨ̄κ

eΨλeÞ: ð5:9Þ
More concretely, we find that the following equality holds:

P̂αβ ·
˘̄Ψγ

d ¼ εᾱϵ

�
−
1

2
δγ
β̄
ĂϵκΨκd −

5

2
ĂϵγΨβ̄d þ

1

2
δγ
β̄
Ψκd

˘̃A
ϵκ þ 5

2
Ψβ̄d

˘̃A
ϵγ
�

þ εᾱϵδ
γ
β̄
ð2 ˘̄Ψϵ

fΦ̄dΦf − ˘̄Ψϵ
dΦ̄fΦf þ 2ΦfΦ̄d

˘̄Ψϵ
f −ΦfΦ̄f

˘̄Ψϵ
dÞ: ð5:10Þ

Here, Ă and ˘̃A denote the variations of the action with respect to the gauge fields,

Ăαβ ¼ εᾱγεβ̄δ
�
1

2
εϵκ∇γϵAδκ þ iΦe∇γδΦ̄e − i∇γδΦeΦ̄e − 2iΨγeΨ̄δ

e

�
;

˘̃A
αβ ¼ εᾱγεβ̄δ

�
−
1

2
εϵκ∇γϵÃδκ þ iΦ̄e∇γδΦe − i∇γδΦ̄eΦe − 2iΨ̄γ

eΨδe

�
; ð5:11Þ

and they vanish on shell as does ˘̄Ψ so that the Dirac equation is weakly invariant. Moreover, we have verified that the rhs of
(5.10) matches exactly the rhs of (3.24), and we have performed this check for all the equations of motion of ABJ(M) theory.
Therefore, the equations of motion display Yangian symmetry in a strong sense. Finally, have shown by computer algebra that
the ABJ(M) action is invariant in the sense of (4.39). Therefore, classical planar ABJ(M) theory has Yangian symmetry.
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VI. PURE N < 4 sYM

In this section, we would like to address a possible
concern that our results discussed above, especially the
formula (3.24), are a mere result of level-zero (super-
conformal) and gauge symmetries of the theories. If that
were the case, our work would not provide any criterion for
establishing Yangian symmetry of physical models. As we
will now demonstrate, this is fortunately not the case and,
for formula (3.24) to hold, increased symmetry is indeed
required.
To this end, let us consider a pure sYM theory but keep

N arbitrary. The action is again given by

L ¼ −
1

2
εαϵεγκtrðFαγFϵκÞ −

1

2
ε _α_ϵε_γ _κtrðF̄ _α_γF̄_ϵ_κÞ

þ iε_κ _αεβγtrðΨ̄_κd∇ _αβΨd
γÞ −

1

4
ε _α_γεβδtrð∇ _αβΦ̄ef∇_γδΦefÞ

þ i
2
εαγtrðΦ̄effΨe

α;Ψf
γgÞ þ

i
2
ε _α_γtrðΦeffΨ̄ _αe; Ψ̄_γfgÞ

þ 1

16
trð½Φ̄ab;Φef�½Φab; Φ̄ef�Þ: ð6:1Þ

The action (6.1) looks exactly like (2.5) ofN ¼4 sYM. The
only difference is the range of indices a;b;…¼1;…;N ,
where N ≤ 4. As the reality condition (2.2) exists only for
N ¼ 4, the scalar potential is written here in a different
form, valid also forN ≠ 4. Moreover, forN ¼ 1, the scalar
fields do not exist at all, which here is implicitly taken care
of by the antisymmetry of their indices, Φab ¼ −Φba ¼
Φ11 ¼ 0. The symmetry algebra of (6.1) is psuð2; 2jN Þ,
and for any N ≥ 0, its Yangian exists. What we want to
demonstrate is that Y½psuð2; 2jN Þ� is a symmetry of the
theory only for the special value N ¼ 4. To that end, it is
already enough to show that for other values ofN the weak
invariance of the equations of motion does not hold,
as its failure will assure that none of the (aforementioned)
stronger criteria stand either.
We thus can repeat the computation from Sec. III C

keepingN arbitrary. The action of all the generators carries
over from Secs. II and III [see Eqs. (2.13) and (3.18) for
supersymmetry and local Yangian action, respectively], of
course up to the restricted range of indices mentioned above
(e.g., the local action of P̂ vanishes completely forN ¼ 1).
For general N ≥ 1, we act with P̂ on the Dirac equation of
motion,29

˘̄Ψl_κ ¼ iε_κ _αεβγ∇ _αβΨl
γ − iε_κ _α½Φle; Ψ̄ _αe�: ð6:2Þ

On shell, we are left with a term of the form

P̂ _αβ ·
˘̄Ψd_γ ≈ ð4 −N Þε_γ _κfF̄ _α_κ;Ψd

βg: ð6:3Þ

Even though we have the principal freedom to adjust the
local action of P̂ to the caseN < 4, it is easy to see that this
cannot remove the residual term; in order to cancel the
term, one would need extra contributions of the form
P̂A ∼ F̄ or P̂Ψ ∼∇Ψ. However, these would merely pro-
duce commutators ½F̄;Ψ� rather than the desired anticom-
mutator fF̄;Ψg.
Thus, we see that the value N ¼ 4 is special as it

warrants the cancellation of the residual term and the on-
shell invariance of the equations of motion ofN ¼ 4 sYM.
More importantly, we observe that superconformal and
gauge symmetries by themselves are not sufficient to
warrant our results presented in the preceding sections,
and indeed Yangian invariance of a theory is a nontrivial
statement.

VII. CONCLUSIONS AND OUTLOOK

In this work, we have elaborated upon the results of our
previous paper [17] by spelling out in detail the different
kinds of planar invariance conditions for the equations of
motion of N ¼ 4 supersymmetric Yang-Mills theory and
ABJ(M) theory under a Yangian algebra. Subsequently, we
have reformulated the strong version of this invariance as
an invariance of the action and proved explicitly that this
invariance holds indeed. This not only shows that these two
classical gauge theory models possess Yangian symmetry
in the planar limit, but it may also be viewed as a formal
definition for their integrability.
A follow-up work [21] will address Yangian invariance

of field correlators at tree level: for a field theory with some
set of symmetries, one should expect correlation functions
of the fields to obey a corresponding set of Ward-Takahashi
identities reflecting these symmetries. An important aspect
in the computation of correlators within a gauge theory is
gauge fixing. It will be shown how Yangian symmetry can
be made compatible with Faddeev-Popov gauge fixing and
the additional fermionic symmetry it gives rise to symmetry
and how to formulate Slavnov-Taylor identities for Yangian
symmetry which properly take into account the effects of
gauge fixing. To that end, the algebraic relations of the
Yangian need to be studied in detail because they are
intertwined with gauge transformations which are hence-
forth deformed by the gauge fixing procedure. A curious
side effect is that this will amount to an extension of the
gauge algebra by bilocal and nonlocal gauge symmetries.
Our works lay the foundations for many directions of

further study. Most importantly, firm contact should be
made with corresponding symmetry structures of the world
sheet theory for strings on AdS5 × S5. By the AdS/CFT
correspondence, such structures should exist, but quantum
effects on both sides, potentially including quantum
anomalies, may play a significant role for a precise
matching; see Ref. [27] for considerations on the string
theory side. For example, the algebraic complications due

29ForN ¼ 0, the absence of fermionic fieldsΨ requires a more
elaborate consideration of the Yang-Mills equations.
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to nonultralocality of the string theory sigma model [28]
may well have a counterpart in the Yangian algebra for
gauge theory.
Another obvious question is which other models beyond

N ¼ 4 sYM and ABJ(M) theory enjoy a Yangian (or
related) symmetry in the planar limit. There are several
deformations and orbifolds of N ¼ 4 sYM which are
apparently integrable [29] and which should therefore
possess an extended symmetry. This has been shown
explicitly for the beta-deformation in Ref. [30]. The
simplistic fishnet theory [31] represents a particular con-
traction limit of an integrable deformation; however, due to
the nonvanishing Coxeter number of the level-zero sym-
metry, some adjustments to our treatment will be inevitable
(see Ref. [32]). Furthermore, massive deformations of
supersymmetric Chern-Simons theories [33] have an inter-
esting nonconformal supersymmetry algebra [34] on which
a Yangian algebra could in principle be established. One
may also wonder whether and how the partial integrability
of N < 4 sYM theories within certain sectors, see
Ref. [35], can be formulated in analogy to our framework.
Yangian symmetry could also prove helpful in construct-

ing gauge theory models which are predicted by the
AdS=CFT correspondence but remain to be formulated.
Such models include two-dimensional gauge theories as
duals of the integrable string theories on AdS3×S3×S3×S1

and AdS3 × S3 × T4, a q-deformation of N ¼ 4 sYM
as a dual of the eta/kappa-deformation of string theory
on AdS5 × S5 (where the Yangian symmetry would be
deformed to a quantum affine group), as well as the
infamous six-dimensional N ¼ ð2; 0Þ theory which is
intrinsically nonperturbative.
Another direction for research is to firmly derive the

applications of integrability to various observables from our
framework of Yangian symmetry. For example, the Bethe
equations for the spectrum of one-loop anomalous dimen-
sions follow directly from the well-established Bethe ansatz
framework for quantum integrable spin chains in connec-
tion to (conventional) quantum algebra. More interestingly,
the methods developed for the spectrum at higher loops and
at finite coupling should have a formal justification in
Yangian symmetry of the model (potentially after imple-
menting quantum corrections). Along the same lines, it will
be useful to understand the origin of the extended psuð2j2Þ
Yangian for the magnon scattering picture including the
various master, boost, and secret symmetries. Similarly,
symmetries and techniques for other observables such as
Wilson loops, scattering amplitudes, correlation functions
of local operators, and form factors might be traced back to
Yangian symmetry.
Further open questions beyond generalizations and

applications include the following. How does one general-
ize Yangian symmetry to a superspace formulation of
N ¼ 4 sYM (either in a light-cone superspace [36] or in
a full superspace [16])? Does the (somewhat nonlocal)

Yangian symmetry have some associated Noether charges?
What is the role of the Casimir operators (central elements)
of the Yangian algebra? Can they be applied to a wider class
of observables?
Finally, our framework for Yangian symmetry raises

several questions of a mathematical nature. First and
foremost, does the Yangian algebra actually close; i.e.,
do the Serre relations hold, and how does one formulate the
closure precisely? How does one construct the single-field
action of the level-one generators abstractly? Does it follow
from some fundamental principles beyond the consistency
requirements employed to derive it here?
Last but not least, in what sense is the proposed action of

the Yangian generators a representation, in particular when
acting on cyclic states such as a the action functional?
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APPENDIX A: N = 4 SUPERCONFORMAL
SYMMETRY

In this Appendix, we summarize the N ¼ 4 super-
conformal algebra psuð2; 2j4Þ and its representation on
the fields.
Algebra.—The supersymmetry algebra is spanned by the

supersymmetry generators Qaγ and Q̄ _α
c and the momentum

generator P _αγ. The special conformal generators are given
by two fermionic generators Sαc and J½S̄�a _γ and the bosonic
generator Kα_γ. Furthermore, the superconformal algebra
includes the Lorentz and internal rotation generators Lα

γ ,
L̄ _α

_γ , and Ra
c (whose trace over the indices of which

vanishes) and the dilatation generator D. Finally, we will
also need gauge transformations to discuss the gauge-
covariant representations. These are generated by G½X�
where the field X serves as the gauge parameter matrix.
Although we do not explicitly refer to real algebras,

a suitable set of reality conditions for N ¼ 4 sYM is
given by

ðP _αγÞ† ¼ P_γα;

ðKα_γÞ† ¼ Kγ _α;

ðQaγÞ† ¼ Q̄_γ
a;

ðSαcÞ† ¼ S̄c _α; ðA1Þ

as well as
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ðLα
γÞ† ¼ L̄ _α

_γ;

ðRa
cÞ† ¼ Rc

a;

D† ¼ D;

G½X�† ¼ G½X†�: ðA2Þ

The below representations will be unitary with respect to
these reality conditions.
In the following, we will list the most relevant algebra

relations. The Lorentz and internal algebra relations take
the form

½Lα
β;Lγ

δ� ¼ iðδγβLα
δ − δαδL

γ
βÞ þ G½…�;

½L̄ _α
_β; L̄

_γ
_δ� ¼ iðδ_γ_βL̄ _α

_δ − δ _α_δ L̄
_γ
_βÞ þ G½…�;

½Ra
b;Rc

d� ¼ iðδcbRa
d − δadR

c
bÞ: ðA3Þ

Here, the Lorentz algebra relations involve gauge trans-
formations G½…�, where the omitted gauge parameter is a
term of the form xx∇A representing the field strength
contracted with the Killing spinors of the two rotations. We
do not present the long list of algebra relations with the
remaining generators, as these can easily be inferred as
the transformations of spinor indices compatible with the
above relations.
The algebra of the scaling generator D measures the

scaling dimension ΔJ of the other generators J,

½D; J� ¼ −iΔJJþ G½…�; ðA4Þ
with the dimensions

ΔL ¼ΔL̄ ¼ΔR ¼ΔD¼ 0;

ΔQ ¼ΔQ̄¼−ΔS ¼−ΔS̄ ¼
1

2
;

ΔP ¼−ΔK ¼ 1: ðA5Þ
The remaining purely bosonic conformal algebra relations
read

½P _αβ; P_γδ� ¼ −iG½∇ _αβA_γδ�;
½P _αβ;Kγ_ϵ� ¼ iδ_ϵ_αL

γ
β þ iδγβL̄

_ϵ
_α þ iδβγ δ_ϵ_αDþ G½…�;

½Kβ _α;Kγ_ϵ� ¼ G½…�: ðA6Þ
Again, these relations may involve some gauge transforma-
tion G½…� in addition to the pure conformal generators.
The nontrivial relations of the fermionic generators

read

fQbα; Q̄_γ
dg ¼ 2δdbP_γα;

fSαb; S̄c _ϵg ¼ 2δbcKα_ϵ:

fQaβ; Sγdg ¼ 2iδγβR
d
a − 2iδdaLγ

β − iδdaδ
γ
βD;

fQ̄ _α
b; S̄c _ϵg ¼ 2iδ_ϵ_αR

b
c þ 2iδbcL̄_ϵ

_α þ iδbcδ_ϵ_αD; ðA7Þ

while the nontrivial mixed relations read

½P _αβ; Sγe� ¼ δγβQ̄ _α
e − ε _α_κG½xγ _κΨe

β�;
½P _αβ; S̄c _ϵ� ¼ −δ_ϵ_αQcβ þ εβδG½xδ_ϵΨ̄ _αc�;
½Kα_γ;Qdϵ� ¼ −δαϵ S̄d _γ þ G½…�;
½Kα_γ; Q̄_ϵ

d� ¼ δ_γ_ϵS
αd þ G½…�: ðA8Þ

The remaining relations involving the fermionic gener-
ators are trivial modulo gauge transformations,

½P _αβ;Qdγ� ¼ iεβγG½Ψ̄ _αd�;
½P _αβQ̄_γ

d� ¼ iε _α_γG½Ψd
β�;

fQbα;Qdγg ¼ 2iεαγG½Φ̄bd�;
fQ̄ _α

b; Q̄_γ
dg ¼ 2iε _α_γG½Φbd�;

fQbα; S̄d _γg ¼ G½…�;
fQ̄ _α

b; Sγdg ¼ G½…�;
fS̄b _α; S̄d _γg ¼ G½…�;
fSbα; Sγdg ¼ G½…�;
½S̄b _α;Kδ_γ� ¼ G½…�;
½Sbα;Kδ_γ� ¼ G½…�: ðA9Þ

The relations involving the fermionic generators typically
hold only on shell, i.e., modulo the equations of motion.
Representation.—The representation of the supersym-

metries on the fields reads

Qaβ ·Φcd ¼ δcaΨd
β − δdaΨc

β;

Qaβ · Φ̄cd ¼ εacdeΨe
β;

Qaβ · A_γδ ¼ −iεβδΨ̄_γa;

Qaβ ·Ψc
δ ¼ −2δcaFβδ þ iεβδ½Φce; Φ̄ae�;

Qaβ · Ψ̄_γd ¼ 2i∇_γβΦ̄ad;

Q̄ _α
b · Φ̄cd ¼ δbcΨ̄ _αd − δbdΨ̄ _αc;

Q̄ _α
b ·Φcd ¼ εbcdeΨ̄ _αe;

Q̄ _α
b · A_γδ ¼ −iε _α_γΨb

δ;

Q̄ _α
b · Ψ̄_γd ¼ −2δbdF̄ _α_γ − iε _α_γ½Φbe; Φ̄de�;

Q̄ _α
b ·Ψc

δ ¼ 2i∇ _αδΦbc: ðA10Þ

The standard rules (2.9) and (2.12) for the representation of
the momentum and dilatation generators read explicitly
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P _αβ ·Φcd ¼ i∇ _αβΦcd;

P _αβ ·Ψc
δ ¼ i∇ _αβΨc

δ;

P _αβ · Ψ̄_γd ¼ i∇ _αβΨ̄_γd;

P _αβ · A_γδ ¼ i∇ _αβA_γδ;

D ·Φcd ¼ −ixβ _α∇ _αβΦcd − iΦcd;

D ·Ψc
δ ¼ −ixβ _α∇ _αβΨc

δ −
3

2
iΨc

δ;

D · Ψ̄_γd ¼ −ixβ _α∇ _αβΨ̄_γd −
3

2
iΨ̄_γd;

D · A_γδ ¼ −ixβ _α∇ _αβA_γδ: ðA11Þ
For the Lorentz generators, one finds30

Lβ
δ ·Φce ¼ −ixβ _α∇ _αδΦce þ i

2
δβδx

κ _α∇ _ακΦce;

Lβ
δ · Ψc

ϵ ¼ −ixβ _α∇ _αδΨc
ϵ þ

i
2
δβδx

κ _α∇ _ακΨc
ϵ

− iδβϵΨc
δ þ

i
2
δβδΨc

ϵ;

Lβ
δ · Ψ̄_γe ¼ −ixβ _α∇ _αδΨ̄_γe þ

i
2
δβδx

κ _α∇ _ακΨ̄_γe;

Lβ
δ · A_γϵ ¼ −ixβ _α∇ _αδA_γϵ þ

i
2
δβδx

κ _α∇ _ακA_γϵ; ðA12Þ

and analogously for the conjugate Lorentz generators,

L̄ _α
_γ ·Φed ¼ −ixβ _α∇_γβΦed þ i

2
δ _α_γx

β_κ∇_κβΦed;

L̄ _α
_γ · Ψe

δ ¼ −ixβ _α∇_γβΨe
δ þ

i
2
δ _α_γx

β_κ∇_κβΨe
δ;

L̄ _α
_γ · Ψ̄_ϵd ¼ −ixβ _α∇_γβΨ̄_ϵd þ

i
2
δ _α_γx

β_κ∇_κβΨ̄_ϵd

− iδ _α_ϵ Ψ̄_γd þ
i
2
δ _α_γ Ψ̄_ϵd;

L̄ _α
_γ · A_ϵδ ¼ −ixβ _α∇_γβA_ϵδ þ

i
2
δ _α_γx

β_κ∇_κβA_ϵδ; ðA13Þ

as well as for the internal rotation generators,

Ra
b ·Φcd ¼ iδcbΦad þ iδcbΦad −

i
2
δabΦcd;

Ra
b · Ψc

δ ¼ iδcbΨa
δ −

i
4
δabΨc

δ;

Ra
b · Ψ̄_γd ¼ −iδadΨ̄_γb −

i
4
δabΨ̄_γd;

Ra
b · A_γδ ¼ 0: ðA14Þ

The representation of the special superconformal gener-
ators can be summarized as

Sαb ·Φcd ¼ ixα_ϵQ̄_ϵ
b ·Φcd;

Sαb · Ψc
δ ¼ ixα_ϵQ̄_ϵ

bΨc
δ − 2δαδΦbc;

Sαb · Ψ̄_γd ¼ ixα_ϵQ̄_ϵ
bΨ̄_γd;

Sαb · A_γδ ¼ ixα_ϵQ̄_ϵ
bA_ϵδ;

S̄a _γ ·Φed ¼ −ixβ_γQaβ ·Φed;

S̄a _γ · Ψe
δ ¼ −ixβ_γQaβ ·Ψe

δ;

S̄a _γ · Ψ̄_ϵd ¼ −ixβ_γQaβ · Ψ̄_ϵd þ 2δ_γ_ϵΦ̄ad;

S̄a _γ · A_ϵδ ¼ −ixβ_γQaβ · A_ϵδ; ðA15Þ
whereas the one of the special conformal generators takes
the explicit form

Kα_γ ·Φed ¼ ixα_κxβ_γ∇β_κΦed þ ixα_γΦed;

Kα_γ · Ψe
δ ¼ ixα_κxβ_γ∇β_κΨe

δ þ ixα_γΨe
δ þ iδαδx

κ_γΨe
κ;

Kα_γ · Ψ̄_ϵd ¼ ixα_κxβ_γ∇β_κΨ̄_ϵd þ ixα_γΨ̄_ϵd þ iδ_γ_ϵx
α_κΨ̄_κd;

Kα_γ · A_ϵδ ¼ ixα_κxβ_γ∇β_κA_γδ: ðA16Þ
Finally, the representation of a gauge transformation by the
field X is defined by

G½X� ·Φcd ¼ ½X;Φcd�;
G½X� · Ψc

δ ¼ ½X;Ψc
δ�;

G½X� · Ψ̄_γd ¼ ½X; Ψ̄_γd�;
G½X� · A_γδ ¼ i∇_γδX: ðA17Þ

Extension.—When discussing the level-one momentum
generator P̂, it turns out useful to superficially extend the
level-zero algebra by an operator B. This operator does not
represent a symmetry of the action; nor does its action
describe a proper representation of some algebra. We
simply define its action as

B ·Φcd ¼ 0;

B ·Ψc
δ ¼ −

i
2
Ψc

δ;

B · Ψ̄_γd ¼ þ i
2
Ψ̄_γd;

B · A_γδ ¼ 0: ðA18Þ
Furthermore, we define two 2 × 2 matrices of operators
L0 and L̄0 and a 4 × 4 matrix of operators R0 as the
combinations of Lorentz and internal rotations, scale
transformations, and B

L0β
δ ≔ Lβ

δ þ
1

2
δβδðDþ BÞ;

L̄0 _α
_γ ≔ L̄ _α

_γ þ
1

2
δ _α_γ ðD − BÞ;

R0a
c ≔ Ra

c þ
1

2
δacB: ðA19Þ

30In analogy to the curious assignment ΔA ¼ 0 for scaling
transformations, the spacetime indices of the gauge field A are not
transformed explicitly.
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These operators have a reasonably simpler action on the
fields of N ¼ 4 sYM than the corresponding Lorentz
generators L,

L0β
δ ·Φce ¼ −ixβ _α∇ _αδΦce −

i
2
δβδΦce;

L0β
δ ·Ψc

ϵ ¼ −ixβ _α∇ _αδΨc
ϵ −

i
2
δβδΨc

ϵ − iδβϵΨc
δ;

L0β
δ · Ψ̄_γe ¼ −ixβ _α∇ _αδΨ̄_γe −

i
2
δβδΨ̄_γe;

L0β
δ · A_γϵ ¼ −ixβ _α∇ _αδA_γϵ; ðA20Þ

the conjugate Lorentz generator L̄,

L̄0 _α
_γ ·Φed ¼ −ixβ _α∇_γβΦed −

i
2
δ _α_γΦed

L̄0 _α
_γ ·Ψe

δ ¼ −ixβ _α∇_γβΨe
δ −

i
2
δ _α_γΨe

δ;

L̄0 _α
_γ · Ψ̄_ϵd ¼ −ixβ _α∇_γβΨ̄_ϵd −

i
2
δ _α_γ Ψ̄_ϵd − iδ _α_ϵ Ψ̄_γd;

L̄0 _α
_γ · A_ϵδ ¼ −ixβ _α∇_γδA_ϵδ; ðA21Þ

as well as the internal rotation generators R,

R0a
b ·Φcd ¼ iδcbΦad þ iδcbΦad −

i
2
δabΦcd;

R0a
b ·Ψc

δ ¼ iδcbΨa
δ −

i
2
δabΨc

δ;

R0a
b · Ψ̄_γd ¼ −iδadΨ̄_γb þ

i
2
δabΨ̄_γd;

R0a
b · A_γδ ¼ 0: ðA22Þ

Moreover, several terms of the coproduct of level-one
generators naturally combine using L0, L̄0, and R0; see
Appendix B.

APPENDIX B: LEVEL-ONE GENERATORS

In this Appendix, we will give explicit expressions
for the coproducts as well as single-field actions of the
level-one Yangian generators

P̂ _αβ; Q̂aβ;
ˆ̄Q _α

b; R̂a
b; and B̂: ðB1Þ

These are the level-one generators which commute with the
ordinary momentum P (up to gauge artifacts), and hence
their single-field action can be expected to have no explicit
dependence on the position x.
Level-one momentum.—The level-one momentum P̂ has

the following single-field action:

P̂ _αβ ·Φcd ≔ 0;

P̂ _αβ ·Ψc
δ ≔ −εβδfΦce; Ψ̄ _αeg;

P̂ _αβ · Ψ̄_γd ≔ −ε _α_γfΦ̄de;Ψe
γg;

P̂ _αβ · A_γδ ≔
i
4
ε _α_γεβδfΦef; Φ̄efg: ðB2Þ

The coproduct reads

ΔP̂ _αβ ¼ P̂ _αβ ⊗ 1þ 1 ⊗ P̂ _αβ þ P _αγ ∧ Lγ
β þ P_γβ ∧ L̄_γ

_α

þ P _αβ ∧ D −
i
2
Qcβ ∧ Q̄ _α

c

¼ P̂ _αβ ⊗ 1þ 1 ⊗ P̂ _αβ − L0γ
β ∧ P _αγ

− L̄0 _γ
_α ∧ P_γβ −

i
2
Qcβ ∧ Q̄ _α

c: ðB3Þ

The expression on the second line uses the operators defined
in Appendix A which superficially depend on the extra
generator B. The benefit of this expression is that in explicit
calculations it avoids the generation of several intermediate
terms which would be cancelled by other terms.
Level-one supersymmetry.—The level-one supersymme-

tries Q̂ and ˆ̄Q have a nontrivial single-field action only on
one of the fermionic fields:

Q̂aβ · Ψc
δ ¼ −

1

2
δcaεβδfΦef; Φ̄efg;

^̄Q _α
b · Ψ̄_γd ¼ −

1

2
δbdε _α_γfΦef; Φ̄efg: ðB4Þ

The single-field action on all the remaining fields Z of the
theory is

Q̂aβ · Z ¼ 0; ˆ̄Q _α
b · Z ¼ 0: ðB5Þ

The coproduct for Q̂ is now

ΔQ̂aβ ¼ Q̂aβ ⊗ 1þ 1 ⊗ Q̂aβ þ Qaγ ∧ Lγ
β þ

1

2
Qaβ ∧ D

− iP_γβ ∧ S̄a _γ − Qcβ ∧ Rc
a

¼ Q̂aβ ⊗ 1þ 1 ⊗ Q̂aβ þ Qaγ ∧ L0γ
β − iP_γβ ∧ S̄a _γ

− Qcβ ∧ R0c
a; ðB6Þ

and the corresponding expression for ˆ̄Q reads

Δ ˆ̄Q _α
b ¼ ˆ̄Q _α

b ⊗ 1þ 1 ⊗ ˆ̄Q _α
b þ Q̄_γ

b ∧ L̄_γ
_α þ

1

2
Q̄ _α

b ∧ D

þ iP _αγ ∧ Sγb þ Q̄ _α
c ∧ Rb

c

¼ ˆ̄Q _α
b ⊗ 1þ 1 ⊗ ˆ̄Q _α

b þ Q̄_γ
b ∧ L̄0 _γ

_α þ iP _αγ ∧ Sγb

þ Q̄ _α
c ∧ R0b

c: ðB7Þ

Level-one internal rotations.—The generator R̂a
b has a

trivial single-field action,
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R̂a
b · Z ¼ 0: ðB8Þ

Heuristically, this is easy to understand; the generator R̂
carries zero mass dimension, so its action on a field Z
should have the same mass dimension as Z, i.e., 1 for
bosonic fields or 3=2 for fermionic fields. Furthermore, the
action should have no explicit position dependence as
argued above. Together, this implies that the result can only
be a single field. However, the parity-inverting property of
the level-one generators requires having at least two fields
in the result.
The following coproduct thus defines this symmetry

completely:

ΔR̂a
b ¼ R̂a

b ⊗ 1þ 1 ⊗ R̂a
b þ Ra

c ∧ Rc
b

−
1

2
Sγa ∧ Qbγ −

1

2
S̄b _γ ∧ Q̄_γ

a þ 1

8
δabS

γd ∧ Qdγ

þ 1

8
δabS̄d

_γ ∧ Q̄_γ
d: ðB9Þ

Level-one bonus symmetry.—For the same reasons as for
R̂, the level-one bonus symmetry B̂ has a trivial single-field
action,

B̂ · Z ¼ 0: ðB10Þ

The coproduct reads

ΔB̂¼ B̂⊗ 1þ1⊗ B̂−
1

4
S̄b _α ∧ Q̄ _α

b−
1

4
Sαb ∧Qbα: ðB11Þ

In fact, we can now define a modified level-one internal
rotation operator,

R̂0a
b ≔ R̂a

b þ
1

2
δabB̂; ðB12Þ

the trace of which is 2B̂. This generator has a slightly
simplified coproduct as compared to R̂:

ΔR̂0a
b ¼ R̂0a

b ⊗ 1þ 1 ⊗ R̂0a
b þ Ra

c ∧ Rc
b

−
1

2
Sγa ∧ Qbγ −

1

2
S̄b _γ ∧ Q̄_γ

a: ðB13Þ
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