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We use the complexity equals action proposal to calculate the rate of complexity growth for field theories
that are the holographic duals of asymptotically flat spacetimes. To this aim, we evaluate the on-shell action
of asymptotically flat spacetime on the Wheeler-DeWitt patch. This results in the same expression as can be
found by taking the flat-space limit from the corresponding formula related to the asymptotically AdS
spacetimes. For the bulk dimensions that are greater than three, the rate of complexity growth at late times
approaches from above to Lloyd’s bound. However, for the three-dimensional bulks, this rate is a constant
and differs from Lloyd’s bound by a logarithmic term.
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I. INTRODUCTION

It was proposed in [1,2] that the holographic dual of
asymptotically flat spacetimes in dþ 1 dimensions is a
d-dimensional field theory that has Bondi-Metzner-Sachs
(BMS) symmetry. These field theories are known as
BMSFT. From the point of view of the bulk theory,
BMS symmetry is the asymptotic symmetry of the asymp-
totically flat spacetimes [3–7]. In three and four dimensions
these symmetries are infinite dimensional. In the one-
dimension lower boundary theory, this symmetry is given
by contraction of conformal symmetry. In this view, one
can study flat-space holography by starting from AdS=CFT
and taking the appropriate limit. The flat-space limit of the
bulk theory corresponds to the ultrarelativistic limit of the
boundary conformal field theory (CFT) [2].
SinceBMS symmetry is infinite dimensional, it is possible

to find the universal aspects of BMSFTs that are independent
of the action and details of the theory. In [8], a Cardy-like
formula has been proposed for BMSFT2. This formula gives
an estimation for the degeneracy of the states of this field
theory. The interesting point is that this formula yields the
entropy of three-dimensional flat space cosmology (FSC),
which is given by taking the flat space limit from the
Banados, Teitelboim and Zanelli (BTZ) black holes. The
universal structure of the correlation functions of BMSFT2

and BMSFT3 has been studied in [9–12]. The entanglement
entropy formula and also the holographic interpretation of

this formula in the context of flat/BMSFT have been studied
in [13–20]. In all of the above mentioned works, the
calculations that are done in asymptotically flat spacetimes
nicely fit to the results given by taking the ultrarelativistic
limit of CFTs. For an almost complete list of papers related to
the flat-space holography see the references of [21,22].
After the remarkable work of Ryu and Takayanagi [23]

(which proposes a holographic description for the entangle-
ment entropy of CFT in the context of AdS=CFT), it seems
that we can translate all of the information physics to the
gravitational counterpart by the virtue of holography. There
are other aspects of information physics that seem natural to
find their holographic picture. One of the most important
physical quantities in information physics is complexity (see
[24,25] for reviews). The complexitymeasures the number of
gates that are needed to achieve a desirable state from an
initial state. There are two different proposals for the holo-
graphic complexity. Here, we will focus on the complexity
equals action (CA) conjecture that was proposed in [26,27].
According to this proposal, the boundary complexity is given
by the bulk gravitational action that is evaluated on a region
of spacetime known as the Wheeler-DeWitt (WDW) path. It
is a portion of space-time bounded by null surfaces anchored
at the related time on the boundary. There is a different
proposal that relates the complexity to the volume of an
anchored region [28–31] [complexity equals volume (CV)
proposal]. Both of these conjectures have been proposed in
the context of AdS=CFT correspondence.
In this paper, we want to use the CA conjecture and

calculate the rate of complexity growth in BMSFT by using
flat-space holography. As mentioned above, an approach
for improving flat-space holography is given by taking
the flat-space limit from the AdS=CFT calculations.1
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1For the CV conjecture in d > 2, the flat-space limit was already
shown to work by Susskind (see [32]). Consequently, one may
expect that the CA conjecture admits a regular flat-space limit.
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The corresponding computation of the rate of complexity
growth in the context of AdS=CFT has been done in [33]
(see also [34–38]). Therein, the gravitational action is
evaluated in the background of eternal two-sided black
holes. It was assumed that these geometries are the holo-
graphic duals of thermofield double states in the boundary
theory [39].
The final answer of [33] for the rate of complexity

growth is given in terms of bulk parameters. It is not
difficult to take the flat-space limit from these results. One
can check that taking the flat-space limit from the results of
[33] yields the following expressions for the rate of
complexity growth2:

_C¼1

π

dI
dμ

¼1

π

�
2M−

rd−2M Ωd−1ðd−1Þ
16πGN

fðrMÞlog
−a2

fðrMÞ
�
; d≥3;

ð1:1Þ

_C ¼ 1

π

�
2M þM log

a2

8GNM

�
; d ¼ 2: ð1:2Þ

The parameters appearing in these formulas are
explained in Sec. III. According to flat/BMSFT correspon-
dence, Eq. (1.1) is the rate of complexity growth for
BMSFTd, d ≥ 3, and Eq. (1.2) is the same rate for
BMSFT2. Our goal in this paper is to directly calculate
both of these formulas by using the CA proposal in
asymptotically flat spacetimes. The background geometries
that we use in this paper are asymptotically flat two-sided
black holes in spacetime dimensions greater than three and
two-sided FSC in three dimensions. All of these geometries
are given by taking the flat-space limit from their corre-
sponding asymptotically AdS counterparts. The on-shell
action in the flat case is evaluated on a particular region of
spacetime, which is given by the intersection of two WDW
patches. The null surfaces bounding these patches are
anchored on the future or past null infinity. However, their
intersection points meet neither past nor future null infinity.
We show that despite the vanishing bulk term in the
on-shell action, the results (1.1) and (1.2) are deducible
from the boundary and joint terms.
The paper is organized as follows: In Sec. II we start

from preliminaries. Sections III and 4 include the main part
of our calculations, and we directly evaluate the rate of
complexity growth in BMSFTs by using flat space holog-
raphy in, respectively, d ≥ 3 and d ¼ 2 dimensions. The
last section is devoted to discussions.

II. PRELIMINARIES

In this section we use the flat-space holography to com-
pute the rate of complexity growth of BMSFT. We use the
CA proposal for BMSFT2 and BMSFT3, which requires
computation of the on-shell action for, respectively, three-
and four-dimensional asymptotically flat geometries. In this
paper we consider static solutions with line element

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
d−1; ð2:1Þ

where fðrÞ ¼ −8GNM for d ¼ 2, and for d ≥ 3 it is
given by

fðrÞ ¼ 1 −
ωd−2

rd−2
; M ¼ d − 1

16πGN
Ωd−1ω

d−2; ð2:2Þ

where M is the mass parameter and Ωd−1 is the volume of a
(d − 1)-dimensional unit sphere. It will prove convenient to
use ðu; r�Þ or ðv; r�Þ coordinates instead of ðt; rÞ where

r�ðrÞ ¼
Z

dr
fðrÞ ; v ¼ tþ r�; u ¼ t − r�: ð2:3Þ

v and u are, respectively, the advanced and retarded times,
and r� is the tortoise coordinate. It is important to note here
that at r ¼ rh where rh is the root of fðrÞ, r� gets its
minimum value,

r�ðrhÞ ¼ rmin ≃ −∞: ð2:4Þ

According to the proposal of [27], the complexity of dual
theory is given by the gravitational action evaluated on a
region of spacetime known as the WDW patch. The WDW
patch is given by the union of all the spatial slices anchored
at a given boundary time [40]. Here we use this definition
and impose it in the flat space. In the flat space, as it was
shown in Fig. 1, the WDW patch is the intersection of
spatial slices anchored at future or null infinity. It is clear
that the WDW patch in the flat scenario connects to the

FIG. 1. Initial time for d > 3. Gravitational action is evaluated
on the gray region.

2For obtaining (1.2) we have assumed that R ¼ L where L is
the anti–de Sitter (AdS) radius and R is the radius of the periodic
coordinate in the boundary geometry. Without this choice for the
parameter R, the flat space limit of (2.60) in [33] is not well
defined.
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infinity via the null geodesics and does not reach it. A
similar situation happens in the holographic description of
the BMSFT entanglement entropy where the minimal
surface does not reach the boundary and connects to it
via two null geodesics [16]. Thus our prescription is a
natural extension of the WDW patch definition and also is
consistent with the holographic description of the entan-
glement entropy in flat spacetimes.
In this paper we consider asymptotically flat geometries

which are given by taking the flat space limit from the
asymptotically AdS eternal two-sided black holes. Thus we
have right and left null infinities in the Penrose diagram of
these spacetimes. In order to control divergent terms we
need to restrict the WDW patch by using some cutoffs.
Therefore the boundary of space-time on which the on-shell
action must be computed consists of null surfaces besides
timelike ones and their joint points. A complete compu-
tation requires that we accompany boundary terms to the
bulk action. Hence we use the following generic action:

I ¼ 1

16πGN

Z
M

ddþ1x
ffiffiffiffiffiffi
−g

p
R

þ 1

8πGN

Z
B
dxd

ffiffiffiffiffiffi
jhj

p
K þ 1

8πGN

Z
Σ
dd−1x

ffiffiffi
σ

p
η

þ 1

8πGN

Z
B0
dxd

ffiffiffi
γ

p
κ þ 1

8πGN

Z
Σ
dd−1x

ffiffiffi
σ

p
a: ð2:5Þ

The first term is related to the volume of the WDW patch
and is vanishing in the flat scenario. The vanishing of the
bulk term in the on-shell action is the most important
technical difference between the AdS case and the flat case.
The second line of action belongs to the non-null

boundaries. The first term is known as the Gibbons-
Hawking-York (GHY) term in the spacelike and timelike
sector of the boundary. The GHY term guarantees a well-
defined variation principle with the Dirichlet boundary
term. The second term belongs to the joint term that is
evaluated at the intersection of two non-null hypersurfaces.
In the third line, we encounter null hypersurfaces. The

null boundary term gained some attention recently. The first
term is the counterpart of the GHY term in the null
boundary. This term can always be ignored by assuming
an affine null parameter. The second term evaluates joint
terms in the intersection of two hypersurfaces where at least
one of the hypersurfaces is null.
We use the instruction of [41] to evaluate terms of (2.5).

The boundary terms for null hypersurfaces were discussed
in several works [42,43]. The joint terms first introduced by
Hayward [44] for spacelike and timelike boundaries were
extended by [43] to the null hypersurfaces. It is notable that
neither the boundary terms nor the joint terms depends on
the cosmological constant. It is worth mentioning that in
the context of holographic renormalization the counter-
terms that cancel the divergent terms in the action are
related extremely to the existence of the cosmological

constant [45,46]. As [46] observed, local counterterms in
asymptotically AdS spacetimes become nonlocal in the
asymptotically flat spacetimes. To our knowledge, the
holographic renormalization of asymptotically flat space-
times is still an open problem.
Using (2.2) we can calculate the terms of (2.5). The null

boundary term vanishes because we can always choose a
null parameter to be affine, and then the null boundary
terms in (2.5) do not contribute to the on-shell action. It
remains the GHY term that has its contribution from the
timelike or the spacelike surfaces,

IspacelikeGHY ¼−
Z

dt
rd−1Ωd−1

16πGN

�
f0ðrÞþ2ðd−1Þ

r
fðrÞ

�����
r¼const

;

ð2:6Þ

Itimelike
GHY ¼

Z
dt

rd−1Ωd−1

16πGN

�
f0ðrÞ þ 2ðd − 1Þ

r
fðrÞ

�����
r¼const

:

ð2:7Þ

In our calculation in the rest of this paper, all of the joint
terms have at least one null part. Hence, it is adequate to
compute the last term of (2.5),

IspacelikeJ ¼ Ωd−1rd−1

16πGN
log jfðrÞj; ð2:8Þ

Itimelike
J ¼ −Ωd−1rd−1

16πGN
log jfðrÞj; ð2:9Þ

InullJ ¼ −Ωd−1rd−1

8πGN
SignðfðrÞÞ log a2

jfðrÞj ; ð2:10Þ

where all of the joint points are labeled by their second non-
null leg. The null joint term has an ambiguity due to the
normalization constant of the null vectors a. This ambiguity
is the same as the ambiguity in the AdS case [33] and
reveals the existence of the new length in BMSFT.

III. BMSFT COMPLEXITY GROWTH IN d ≥ 3

A. Initial time

The Penrose-Cartan diagram of the asymptotically flat
two sided black hole is depicted in Fig. 1. The region of
spacetime on which gravitational action is evaluated csome
cutoffs to the problem. The first type is a cutoff surface at
r� ¼ ϵ0, which takes place near two singularities. The
second type of cutoffs mentioned as UV cutoffs take place
at r� ¼ rmax near the position of the dual field theories. It is
clear from the Penrose-Cartan diagram that the intersection
of WDW patches (depicted by gray) never meets UV
cutoffs. This is another difference between the computation
of the complexity growth in the AdS holography and the
flat-space holography.
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The geometry of the Penrose diagram reveals that the
boundary times on the left-hand side are minus of the right-
hand side ones. We denote the times of relevant points in
the null infinities as

Iþ ⇒

�
β ¼ uþR ;

α ¼ vþL ;
I− ⇒

�
λ ¼ v−R;

σ ¼ u−L:
ð3:1Þ

From now on the indices � refer, respectively, to Iþ
and I−.
In order to compute the complexity growth, we need to

consider evolution of the gray region. Since we want to
compare our results with (1.1) which is given by taking the
flat-space limit from the AdS case, we assume that the
BMSFT on the right- and left-hand sides develop symmet-
rically. This requires a symmetric evolution of the advanced
and retarded coordinates on the different null infinities as

uþR ¼ −vþL ¼ μþ; v−R ¼ −u−L ¼ μ−: ð3:2Þ
There is a critical time when the gray region leaves the

cutoff near the past singularity. For the simplicity of
calculation and avoiding unnecessary shifts in the origin
of boundary times, we assume that this cross occurs at t ¼ 0.
The symmetric evolution guarantees that the last crossing
point remains permanently on t ¼ 0. The initial times are
those before this time. It is clear from the Penrose diagram
that for the symmetric evolution the initial and late times are,
respectively, given by μ� < μ�c and μ� > μ�c where

μþc ¼ −r�ðϵ0Þ: ð3:3Þ
All of the relevant points in the Penrose diagram

are collected in the next table:

In the calculation of [33] for the asymptotically AdS black
holes the complexity growth is evaluated in the time that is
given by adding left and right times. For the asymptotically
flat cases, besides left and right development, the lower and
upper sides of the WDW path can develop independently.
The origin of this difference is that the times of past and
future null infinities are given by advanced and retarded
times. In order to reproduce the results that are given by
taking the flat space limit, we have to consider symmetric
evolution on the future and past null infinities. Precisely, we

need to calculate the rate of complexity growth with respect
to μ where

μþ ¼ μ− þ χ; μþ þ μ− ¼ μ; ð3:4Þ
where χ is a constant. In the Appendix, we calculate the
nonsymmetric evolution by considering the μþ ¼ γμ− þ χ
case. The results of taking the flat space limit are given
when γ ¼ 1.
At this point, we have all of the requirements to evaluate

on-shell action (2.5) for the gray part of Fig. 1. There are six
different GHY terms and four different joint terms:

(i) Both of the surfaces at r� ¼ ϵ0 are spacelike. Using
(2.6) we find

IXWGHY ¼ −rd−1Ωd−1

16πGn

�
f0ðrÞ þ 2ðd − 1Þ

r
fðrÞ

�

× ðtðWÞ − tðXÞÞ; ð3:5Þ

IYZGHY ¼ −rd−1Ωd−1

16πGn

�
f0ðrÞ þ 2ðd − 1Þ

r
fðrÞ

�

× ðtðZÞ − tðYÞÞ: ð3:6Þ
Summing these two terms results in the contribution
of r� ¼ r�ðϵ0Þ surfaces,

IsingGHY ¼ rd−1Ωd−1

16πGn

�
f0ðrÞ þ 2ðd − 1Þ

r
fðrÞ

�

× ð4r�ðϵ0Þ þ 2μþ − 2μ−Þ: ð3:7Þ
Using (2.2) and (3.4) we have

dIsingGHY

dμ
¼ 0: ð3:8Þ

Thus, in the symmetric case, the GHY terms of the
near singularities cancel each other and are inde-
pendent of the boundary time.

(ii) Null joint terms take place at P and Q,

IPJ ¼ −Ωd−1rd−1P

8πGN
log

a2

jfðrPÞj
; ð3:9Þ

IQJ ¼ −Ωd−1rd−1Q

8πGN
log

a2

jfðrQÞj
: ð3:10Þ

Using r�P ¼ r�Q ¼ 0 and (2.3) we have drP
dμ ¼ drQ

dμ ¼ 0.
Therefore the time derivative of null-joint terms at
these points vanishes,

dInullJ

dμ
¼ 0: ð3:11Þ

(iii) There are four spacelike joint terms. All of these
joint terms take place near the singularities and are
independent of the boundary time

The points on Penrose-Cartan diagram in Fig. 1

Point’s name t r� Sign of fðrÞ
X r�ðϵ0Þ − μ− r�ðϵ0Þ −
W −r�ðϵ0Þ þ μ− r�ðϵ0Þ −
Y r�ðϵ0Þ þ μþ r�ðϵ0Þ −
Z −r�ðϵ0Þ − μþ r�ðϵ0Þ −
P −1

2
ðμþ þ μ−Þ 1

2
ðμ− − μþÞ þ

Q 1
2
ðμþ þ μ−Þ 1

2
ðμ− − μþÞ þ
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IXJ ¼ Ωd−1r�ðϵÞd−1
16πGN

log jfðr�ðϵÞÞj; ð3:12Þ

IWJ ¼ IYJ ¼ IZJ ¼ IXJ : ð3:13Þ

Putting all together we find

dI
dμ

¼ 0 ⇒ _C ¼ 0: ð3:14Þ

Hence the rate of complexity growth for the initial time
is zero.

B. Late time

For the late times that are after critical time (3.3), the
Penrose diagram is depicted in Fig. 2. Similar to the initial
time we want to calculate on-shell action in a region of
spacetime that is determined by the gray area in Fig. 2. This
region is still the intersection of four WDW patches with
UV and IR cutoffs. The distinct difference with the initial
time is that the cutoff surface at the past singularity does not
exist, and we have to consider the null joint term in the
action at a new point M:

(i) The only GHY term that contributes to our problem
takes place near the future singularity

IsingGHY ¼ Ωd−1dωd−2

16πGN
ðμ − χÞ: ð3:15Þ

(ii) The contribution of points P and Q is similar to the
initial time, and it is vanishing.

(iii) For the null joint term at point M we have

InullJ ðMÞ ¼ rd−1M Ωd−1

8πGN
log

���� a2

fðrMÞ
����: ð3:16Þ

It is assumed that tðMÞ ¼ 0 at this point, which
yields r�ðMÞ ¼ −μþ ¼ − μþχ

2
. The sign of fðrMÞ is

negative, and using (2.3) it is not hard to find

drM
dμ

¼ −
fðrMÞ
2

: ð3:17Þ

Using the previous equation we find

dInullJ ðMÞ
dμ

¼ rd−2M Ωd−1

16πGN

�
rMf0ðrMÞ

− ðd − 1ÞfðrMÞ log
−a2

fðrMÞ
�
: ð3:18Þ

Using (2.2) we have

dInullJ ðMÞ
dμ

¼ ðd− 2Þωd−2Ωd−1

16πGN

−
rd−2M Ωd−1

8πGN

�
ðd− 1ÞfðrMÞ log

−a2

fðrMÞ
�
:

ð3:19Þ

Using (3.15), the boundary contribution is given by

dIsingGHYðMÞ
dμ

¼ Ωd−1dωd−2

16πGN
: ð3:20Þ

Finally, the rate of complexity growth in the flat case
can be found by adding the last two terms (3.19) and
(3.20),

_C ¼ 1

π

dI
dμ

¼ 1

π

�
2M −

rd−2M Ωd−1ðd − 1Þ
16πGN

× fðrMÞ log
−a2

fðrMÞ
�
: ð3:21Þ

This is exactly (1.1), which is given by taking the
flat-space limit.

In the symmetric evolution rM is always less than the
horizon radius and −∞ < fðrMÞ < 0. Using this fact, we
find that _C given by (3.21) starts from −∞ and increases to
a maximum value that is greater than 2M=π but finally at
late times approaches 2M=π. In this view, the Lloyd’s
bound [47,48] is approached from above for all values of
parameter a.

1. Numerical results for the Schwarzschild black hole

In this subsection we present the numerical analysis of
the complexity growth for the four-dimensional
Schwarzschild metric.
The critical time in this case can be found through the

relations (2.2), (2.3), and (3.3),

μc ¼ −ω logðωÞ: ð3:22Þ

rM can be calculated using (2.3) where for d ¼ 3 we have
FIG. 2. Late time for d > 3. Gravitational action is evaluated on
the gray region.
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rM þ ω logðrM − ωÞ ¼ −
μþ χ

2
: ð3:23Þ

Using this equation we find rM as

rM ¼ ω

�
1þW

�
−1

ωe1þ
μþχ
2ω

��
; ð3:24Þ

whereW is the LambertW function. The rate of complexity
growth at late time can be read from (3.21) by putting
d ¼ 3,

_C ¼ 1

π

�
2M −

rM
2GN

fðrMÞ log
−a2

fðrMÞ
�
: ð3:25Þ

For a fixed value of horizon parameter ω but different
values of a the complexity growth with respect to the
boundary time is plotted in Fig. 3. For all values of the
parameters, the rate of the complexity growth at late time
approaches Lloyd’s bound [47,48] from above.

IV. BMSFT COMPLEXITY GROWTH IN d = 2

Asymptotically flat black hole solutions, which were
studied in the previous section, are given by taking the flat-
space limit from the asymptotically AdS black holes. In the
three-dimensional Einstein gravity, there is no black hole
solution [49]. The flat space limit of BTZ black holes are
three-dimensional cosmological spacetimes [50,51]. These
solutions, which are known as flat space cosmology (FSC),
have recently been studied in the context of flat-space
holography [8,52]. In this section, we find the exact
formula for the growth rate of the BMSFT complexity
in d ¼ 2.3 To do so, we apply the CA conjecture for the
nonrotating FSC given by

ds2 ¼ r̂2þdt2 −
dr2

r̂2þ
þ r2dϕ2; ð4:1Þ

M ¼ r̂2þ
8GN

; ð4:2Þ

where M is the mass parameter. For this metric the tortoise
coordinate is given by

r� ¼ −
r
r̂2þ

: ð4:3Þ

The Penrose-Cartan diagram of FSC has been shown in
Fig. 4. We note that all of the r ¼ const surfaces are
spacelike in FSC. Similar to the higher dimensional cases,
we impose a symmetric dynamic for the right- and left-
hand sides of the Penrose-Cartan diagram. The necessary
information for all of the relevant points in FSC are
collected in the following table:

The bulk action and also the boundary terms and the joint
terms are exactly the same as in (2.5). The definitions of the
initial and the late times are also the same as for higher
dimensional cases.

A. Initial time

The GHY term for the spacelike surfaces in the FSC
(4.1) are

FIG. 3. The rate of complexity growth for different a.

The points on Penrose-Cartan diagram of FSC space

Point name t r� Sign of fðrÞ
X r�ðϵ0Þ − μ− r�ðϵ0Þ −
W −r�ðϵ0Þ þ μ− r�ðϵ0Þ −
Y r�ðϵ0Þ þ μþ r�ðϵ0Þ −
Z −r�ðϵ0Þ − μþ r�ðϵ0Þ −

3As mentioned in Sec. I, for d > 2 the flat-space limit of the
complexity growth rate has already been discussed in the context
of the CV conjecture [32]. Consequently, this section is the most
original part of the paper where the details of the calculations are
quite different from those of the AdS case.
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IFSCGHY ¼
Z

r̂2þ
4GN

dt

����
r�¼const

: ð4:4Þ

For the surfaces near r� ¼ ϵ0 we have

IGHYðWXÞ ¼ r̂2þ
4GN

ðtðWÞ − tðXÞÞ; ð4:5Þ

IGHYðZYÞ ¼
r̂2þ
4GN

ðtðZÞ − tðYÞÞ: ð4:6Þ

Adding these two terms yields

IsingGHY ¼ r̂2þ
4GN

ð−4r�ðϵ0Þ þ 2μ− − 2μþÞ: ð4:7Þ

Hence for the symmetric evolution where μþ − μ− is fixed,
the rate of complexity growth for the initial time vanishes,

_CFSCinitial ¼ 0: ð4:8Þ

B. Late time

At the late time a new null joint term appears at the point
M (Fig. 5). At this point tðMÞ ¼ 0, r�ðMÞ ¼ −μþ, and the
sign of fðrMÞ is negative. Thus we have

dIJðMÞ
dμþ

¼ −
r̂2þ
8G

log

���� r̂þa
����: ð4:9Þ

Imposing the symmetric evolution,

μþ − μ− ¼ const; μþ þ μ− ¼ μ; ð4:10Þ

the complexity growth at the late time is found,

_C ¼ 1

π

dI
dμ

¼ 1

π

�
r̂2þ
4GN

þ r̂2þ
4GN

log

���� ar̂þ
����
�
: ð4:11Þ

We can rewrite (4.11) in terms of the FSC mass as

_C ¼ 1

π

�
2M þM log

a2

8GNM

�
: ð4:12Þ

It is a constant and differs from Lloyd’s bound by a
logarithmic term. This result is exactly the same as
(1.2), which is given by taking the flat space limit.
Similar to the higher dimensional cases, a is a new length
parameter in the field theory. However, if we demand that
Lloyd’s bound [47] is not violated, then amust be restricted
by a < r̂þ.

V. DISCUSSION

In this paper we calculate the rate of complexity growth
for BMSFTd. Our main goal is generalizing the CA
proposal for the flat/BMSFT correspondence. To do so,
we need to define a portion of spacetime in which the
gravitational action is evaluated. Since the final formulas
for the growth rate are simply given by taking the flat space
limit from the AdS=CFT calculation, we can check the
results of various potential regions. Our main achievement
in this paper is that the evaluation of the gravitational action
must be done on a region that is given by the intersection of
four WDW patches. The boundary of two of these patches
connects past singularity to the future one by crossing from
past null infinity. The boundary of other patches starts from
past null infinity and using future null infinity eventually
reaches to the future singularity. Using this portion of
spacetime we show that the rate of complexity growth is
zero for the initial times and for the late times is exactly the

FIG. 5. Late time for FSC. Gravitational action is evaluated on
the gray region.

FIG. 4. Initial time for FSC. Gravitational action is evaluated on
the gray region.
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same as what one finds by taking the flat-space limit from
the AdS=CFT calculation.
Despite CFT2, the rate of complexity growth is a

constant for the BMSFT2 and differs from Lloyd’s bound
[47] by a logarithmic term. In higher dimensions, this rate
is not a constant and approaches the Lloyd’s bound from
above. This result is similar to the higher dimensional
asymptotically AdS black holes and different from the
Lifshitz and the hyperscaling violating geometries that this
bound has violated [53]. This shows that although
BMSFTs are ultrarelativistic theories, they are more
similar to the relativistic theories than to the nonrelativistic
ones.
The idea presented in this paper for the definition of the

suggested spacetime region on which the gravitational
action is evaluated may help us to study the complexity
of formation [26,27,54] in the context of flat/BMSFT
correspondence. This is a potentional open problem that
could be addressed in future works.
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APPENDIX: NONSYMMETRIC EVOLUTIONS
IN PAST AND FUTURE NULL INFINITIES

In this appendix, we discuss the nonsymmetric scenario
when the boundary times on future and past null infinities
develop individually. We show the parameter that renders
nonsymmetricity by γ. Hence we define

μþ ¼ γμ− þ χ; μþ þ μ− ¼ μ; ðA1Þ

where χ is a constant. Using nonsymmetric parametriza-
tion, the rate of complexity growth is given by

_C ¼ 1

π

�
dI
dμ

�
¼ 1

π

�
γ

1þ γ

dI
dμþ

þ 1

1þ γ

dI
dμ−

�
: ðA2Þ

1. A1 Initial time

In this case the GHY terms near the singularities
change as

IsingGHY ¼ Ωd−1dωd−2

8πGN
ðμ− − μþÞ: ðA3Þ

Using the fact that rP ¼ rQ and also (3.9) and (3.10) the
null joint terms become

InullJ ¼ −
Ωd−1ðrPÞd−1

4πGN
log

a2

jfðrPÞj
: ðA4Þ

Using the definition of the tortoise coordinate (2.3), one
can find

drP
dμþ

¼ −fðrPÞ
2

;
drP
dμ−

¼ fðrPÞ
2

: ðA5Þ

Hence we find the rate of complexity growth for non-
symmetric boundary times as

_C ¼ 1

π

dI
dμ

¼ 1 − γ

1þ γ

1

π

�
4M þ Ωd−1ðd − 1Þrd−2P

8πGN

× fðrPÞ log
a2

fðrPÞ
�
: ðA6Þ

It is clear that for the symmetric case, i.e., γ ¼ 1, the growth
rate is zero.

2. A2 Late time

Now the boundary term near the future singularity
results in

IsingGHY ¼ Ωd−1dωd−2

8πGN
ðμ−Þ: ðA7Þ

The contribution of the joint terms at P and Q is similar to
the initial time where we have

InullJ ¼ −
Ωd−1rd−1P

4πGN
log

a2

jfðrPÞj
: ðA8Þ

The contribution of the null-joint term at point M is given
by (3.16). Using (2.3) it is not hard to find that for the
nonsymmetric case we have

drM
dμþ

¼ −fðrMÞ: ðA9Þ

Hence we find
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dInullJ ðMÞ
dμþ

¼ ðd − 2Þωd−2Ωd−1

8πGN

−
rd−2M Ωd−1

8πGN

�
ðd − 1ÞfðrMÞ log

−a2

fðrMÞ
�
:

ðA10Þ

Finally using (A2) we find the rate of complexity
growth as

_C ¼ 1

π

�
4M
1þ γ

−
rd−2M Ωd−1

8πGN

γ

1þ γ
ðd − 1ÞfðrMÞ log

−a2

fðrMÞ

þ 1 − γ

1þ γ

Ωd−1ðd − 1Þrd−2P

8πGN
fðrPÞ log

a2

fðrPÞ
�
: ðA11Þ

For γ ¼ 1 the result is exactly the same as the symmetric
case. Moreover, in the nonsymmetric case, the complexity
growth depends not only on rM but also on rP.
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