
 

When can gravity path-entangle two spatially superposed masses?

Chiara Marletto and Vlatko Vedral
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom;

Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2,
Singapore 117543, Singapore;

Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore;
and ISI Foundation, Institute for Scientific Interchange, Via Chisola 5, 10126 Torino, Italy

(Received 11 April 2018; published 1 August 2018)

An experimental test of quantum effects in gravity has recently been proposed, where the gravitational
field’s ability to entangle two masses is used as a witness of its quantum nature. Here, we discuss what
existing models for coupled matter and gravity predict for this experiment. Collapse-type models, and also
quantum field theory in curved spacetime, as well as various induced gravities, do not predict entanglement
generation; they would, therefore, be ruled out as fundamental descriptions of gravity if entanglement were
observed. Instead, local linearized quantum gravity models predict that the masses can become entangled.
We analyze the mechanism by which entanglement is established in such models, modeling a gravity-
assisted two-qubit gate.
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Witnessing quantum effects in the gravitational field has
traditionally been considered extremely hard, due to the
weakness of the gravitational interaction. For instance,
there have been claims that detecting a graviton is practi-
cally impossible [1,2]. The predictions from various models
of quantum gravity, therefore, would be unobservable, thus
making the quantization of the gravitational field itself
questionable.
Recently, a different type of test has been introduced [3,4],

which is not affected by such difficulties. Instead of
measuring directly quanta of the gravitational field, the
proposal is to test whether the gravitational field can
entangle twomasses each in a superposition of two different
locations. The logic is that if gravity can generate entangle-
ment between the twomasses, then it must be quantum. By a
system “being quantum” hereinafter we shall mean that in
order to describe it one needs at least two variables that do
not commute with one another. This is an indirect test,
because the quantum features of the field are detected by
measuring observables of two test masses only (rather than,
for instance, detecting gravitons or fluctuations of space-
time). In the experiment, each mass is put into a super-
position of two paths, e.g., via an interferometer. If the
interferometers are close enough, the state of each mass can
be significantly modified by interacting gravitationally with
the other mass. According to how matter couples to gravity
(see below for a discussion), different outcomes may occur.
However, if at the output of the interferometers the two
masses are entangled, one can conclude, via the argument
in [3], that the gravitational field mediating entanglement
must itself be quantum. That argument does not assume any

specific dynamics [3], but it assumes that there is no
instantaneous action at a distance between the two masses.
As noted in [5], observing entanglement would confirm
some type of nonclassicality in the field, in the form of there
being at least two noncommuting variables, but it would not
guarantee that the field is a fully fledged quantum system.
For example, one of the two noncommuting variables might
be not physically observable. With the advent of general
relativity, the gravitational field has been understood as a
spacetime metric. The proposed experiment tests therefore
whether spacetime metric can be quantum, i.e., whether it
can exist in quantum superpositions.
There are, at present, a number of proposed models for

coupling matter with gravity. In this paper, we analyze
which predictions they provide for the experiment in
question. We restrict attention to three cases: the linearized
canonical approaches [6], collapse-type models [7–9], and
semiclassical gravity [10,11].
From our analysis, it emerges that the experiment, if

entanglement were observed, would rule out collapse
models and also all approaches that take the semiclassical
description of gravity to be fundamental. This is because in
such models the gravitational field is classical—it only has
one observable, thus it would not be capable of entangling
the masses. (It would still be possible, however, to regard
the semiclassical approaches as viable approximative
descriptions, in certain regimes). Linear quantum gravity
(to which all the canonical approaches would have to
reduce) would, on the other hand, be confirmed. Thus this
experiment differs from previous experiments that couple a
quantum system to gravity, such the COW and related
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experiments [12,13], which are compatible with the gravi-
tational field being classical. Using linearized quantum
gravity, we also explain how the entanglement between the
two masses is generated, by using the gravitational field as
a third system that acts as a mediator between the two. We
shall discuss specifically the amount of entanglement
between the masses and the field, as well as the entangle-
ment between the two masses.
Confining attention to the regime where Newtonian

contributions are dominant suffices to our analysis. In this
regime, the spacetime metric can be approximated by
ds2 ¼ −ð1 − 2ξðr; tÞ=c2Þdt2 þ dr2, where ξðr; tÞ may be
time-dependent and propagates at a finite speed. (This is
different from classical Newtonian gravity, where the
gravitational potential admits instantaneous action at a
distance and it is static). In this regime, the nonperturbative
approaches to quantum gravity, such as loop quantum
gravity [14] and string theory [15], agree with the pre-
dictions of the linearized approach; thus the proposed
experiment would test their prediction, too, in this regime.
We first recall the logic of the experiment. Consider two

equal masses Q1 and Q2 each in, say, two Mach-Zehnder
interferometers, each located horizontally in the Earth’s
gravitational field (so that both masses are approximately
subject to the same background field, which can therefore be
neglected for the purpose of computing phase differences).
Let one of the arms be indicated by 0 and the other by 1. Each
mass after the first beam splitter is in the state 1ffiffi

2
p ðj0i þ j1iÞ.

If one supposes that themasses on different paths interact via
the gravitational field, different things can happen according
to how matter and gravity couple. Broadly speaking, the
superpositions might undergo some collapse or not; and if
they do not, they may or may not become entangled.
We now consider the predictions from linear quantum

gravity. For clarity, we first analyze a two-qubit entangling
gate acting on the masses, where they interact separately
with the gravitational field, but not directly with one
another (thereby ruling out action at a distance). We shall
model this by requiring that the Hamiltonian does not
contain products of operators acting both onQ1 andQ2. We
shall refer from now on to quantized degrees of freedom
(d.o.f.) of the field that mediate the interaction with the
masses. These d.o.f. can be thought of as the longitudinal
and scalar d.o.f. that appear in the gauge of the Gupta-
Bleuler formalism, see [16].
We can model the gravitational field as a single quantum

harmonic oscillator. In linear quantum gravity, a and a† can
be interpreted as the bosonic annihilation and creation
operators for gravitons. The two masses can be initially
modeled as two qubits—whose z-component represents a
discretized position of each mass—in this case, one of the
two paths in an interferometer. Its eigenstates jai where
a ∈ f0; 1g represent the situation where the mass is on a
definite path a; while jabi describes the situation where the
first mass is on path a and the second on path b.

We shall now analyze how the relative phases in
the quantum superpositions of masses are established
thus inducing entanglement. First, the masses get entangled
to the field, then the phases are generated through a
generalized controlled-phase gate. Immediately after the
action of the first beam splitter, the state of the two masses
and the field is jϕ0i ¼ 1

2

P
a;b∈f0;1g jabijαi, where jαi ¼

e−
1
2
jαj2 expðαða† − aÞÞj0i is a coherent state representing the

spatial modes of gravity—possibly a continuum.
The two masses and the field then evolve into the state

jϕE1i ¼ U1jϕ0i ¼
1

2

X
a;b∈f0;1g

jabijαa;bi; ð1Þ

where U1 ≐
P

a;b∈f0;1g Pab ⊗ DðξabÞ and jαa;bi ¼
jαþ i

ffiffiffiffiffiffiffi
ξab

p i ¼ Dðξa;bÞjαi; we have defined the displace-
ment operator as Dðξa;bÞ ¼ exp ði ffiffiffiffiffiffiffi

ξa;b
p ða† − aÞÞ withffiffiffiffiffiffiffi

ξab
p

being a real-numbered shift that depends on the
coupling between the field and the masses, that brings
about the desired phase-shift ϕa;b at the end (see below for
more details). We have also defined the projectors Pab ¼
Pa ⊗ Pb, with P0;1 ¼ ðid�σzÞ

2
being the projector operator

for the location of each mass. We have also assumed that
establishing the entanglement between the field and
the masses takes place on time-scales much faster than
the process that transfers the phase ξa;b back from the
field to the masses, evolving their composite system to the
state jϕE2i ¼ U2jϕE1i ≈ 1

2

P
a;b∈f0;1g exp ðiϕa;bÞjabijαa;bi,

where U2 ¼ expðwða†aÞÞ, w is some real number with
the property that wξa;b ¼ ϕa;b, and, for the sake of this
simple illustration, we have assumed to be in the regime
where jαj is large and real (later, the full linearized model
will present the exact solution for any coherent state).
Finally, the interactionU†

1 between the field and the masses
brings the field back to its original state and the masses
remain entangled (to a degree depending on the phase):
1
2

P
a;b∈f0;1g exp ðiϕa;bÞjabijαi.

The key fact is that the above process relies on two
complementary observables of the field, because the observ-
ables 1

2i ða − a†Þ and a†a are needed to generate the unitaries
U1 andU2. The entanglement between the field and masses
can be quantified by the reduced entropy of the masses.
Since the field and the masses are weakly entangled, a good
approximation of the reduced entropy is the linear entropy
SL ¼ 1 − Trðρ2Qi

Þ, where ρQi
is the reduced state of massQi.

Themagnitude of the reduced entropy is given by oneminus
the overlap between the two gravitational states squared as
in: 1 − jhαabjαij2 ¼ 1 − exp ð−ξabÞ ≈ ξab. This quantity
could be very small compared to one, while still generate
the desired entanglement between the two masses.
Assuming the regime where the Newtonian contribution
only is relevant, one has: ϕab ¼ wαab ¼ Gm2

ℏdab
Δt ¼

ð m
mP
Þ2 c

dab
Δt, where Δt is the interaction time between the
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two masses, mP is Planck’s mass, G is the gravitational
constant, anddab is the distance between the positiona of the
first mass and position b of the second mass. One can
identify αab ¼ ð m

mP
Þ2. The entanglement between a spatially

superposed mass and the gravitational field (if, indeed, it is
quantum)would then offer anotherwayof understanding the
Planck mass. Namely, if we really want a spatially super-
posed mass to entangle appreciably to the surrounding
gravitational field, according to the above formula, we need
to engage masses on the order of and larger than the Planck
mass. The full linearizedmodel, to be presented below, leads
to the same conclusion.
Supposing that only the closer arms of the interferom-

eters (labeled as 1) interact, the only phase present in the
state of the masses before they enter their respective final
beam splitter is ϕ11. In each of the interferometers, the
probability for the mass to emerge on path 0 is p0 ¼
1
2
ð1þ cos2 ϕ11

2
Þ (and p1 ¼ 1 − p0). When the two masses

are maximally entangled we have p0 ¼ p1 ¼ 1
2
. This

happens when ϕ11 ¼ π. On the other hand, when the
two masses are not entangled, they separately undergo
an ordinary interference: that happens when ϕ11 ¼ 2nπ. In
that case, each mass emerges on path 0 of the interferom-
eter. For a fixed mass, by varying the arms’ distance or their
length, it is in principle possible to interpolate between
those two cases, thus demonstrating entanglement. To
confirm entanglement, one would require to measure
two complementary observables on each interferometer.
For example, consider the maximally entangled state
j0ijþi þ j1ij−i. If we measure the path of the first particle
(the effective Pauli Z measurement), the second mass
interferes with either the plus or the minus phase (i.e., it
is in an eigenstate of the Pauli X). If, on the other hand, the
second mass is first measured in X, there is no interference
of the first mass (meaning that X1 and X2) are not
correlated. Therefore, the observable X1Z2 þ Z1X2 will
suffice to witness entanglement.
We now compute the phases in the proposed experiment

using the full linearized Hamiltonian, whose evolution can
be approximated in discrete steps by the gate model
presented above. This is obtained from the general linear-
ized Hamiltonian, [2]: HG

int ¼ − 1
2
hμνTμν, where Tμν is the

stress-energy tensor and hμν is the perturbation of the metric
tensor gμν away from the flat (Minkowski) spacetime. The
quantized gravitational field is then written in terms of
the graviton creation and annihilation operators aðk; σÞ,
a†ðk; σÞ, as

hμν ∝
X
σ

Z
d3kffiffiffiffiffiffi
ωk

p faðk; σÞϵμνðk; σÞeikλxλ þ H:c:g; ð2Þ

where ϵμν is the polarization tensor, σ indicates two
nonvanishing gravitational polarizations, while ωk and k
represent the frequency and wave number of the mode,

respectively (we are using the Einstein’s convention of
summation).
In our experiment, the masses are nonrelativistic and the

stress-energy tensor would simplify to T00 ¼ m. We can
also consider, for simplicity, a single polarization and a
discrete sum over the relevant gravitational quantum
modes. The total Hamiltonian involving two masses and
the gravitational field is, therefore,

H ¼ mc2ðb†1b1 þ b†2b2Þ þ
X
k

ℏωka
†
kak

−
X

k;n∈f1;2g
ℏgkb

†
nbnðakeikxn þ a†ke

−ikxnÞ; ð3Þ

where the first two terms are the free Hamiltonians of the
masses and the field, respectively. We assume that the
gravitation-matter coupling constant is given by gk ¼
mc

ffiffiffiffiffiffiffiffi
2πG
ℏωkV

q
, where V is the relevant volume of quantization

(which will not feature in the relevant observables).
The evolution of two masses of value m at positions x1
and x2 interacting with the initial gravitational vacuum
state can be solved exactly: eiHtjmijmij0i ¼
expfℏP

k VðkÞtgjmijmijPk
g
ωk
ðe−ikx1 þ eikx2Þi, where

VðkÞ ¼ g2k
2ωk

ð1þ 2 cosð−ikðx2 − x1ÞÞÞ.
When acting on the initially superposed state, this

generates entanglement between the two masses by imple-
menting the controlled-phase gate U2U1 described in the
previous section. Note that only the position-dependent part
of VðkÞ contribute to the phase difference. The continuum
version of the position-dependent part of VðkÞ, obtained by
replacing the sum over k by an integral, is

Re

�
V
Z

dk
4πGm2

ℏk2V
e−ikðx1−x2Þ

�
¼ Gm2

ℏðx2 − x1Þ
; ð4Þ

which gives us the same phase as described in the
gate model.
We can assume that the interaction between the masses

and the field is ‘elastic’, i.e., when the two masses are
brought back to their original state, where each one of their
positions is sharp, the field goes back to the original state,
and it is unentangled with the masses. However, even if the
interaction were not perfectly elastic, since the entangle-
ment between the field and the masses is very small (for
masses below Planck mass), as computed earlier, the state
of the two masses is approximately not entangled with the
field at the end, thus leaving the field approximately
unchanged. The same result can be obtained with the usual
Lagrangian formulation of quantum field theory, where the
interaction is established via the exchange of a single
graviton between the two masses and the field.
Observing entanglement would on the other hand refute

all those theories which regard a semiclassical description
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of gravity as fundamental, [10,11]. In these theories, the
background spacetime is classical, but the back-action of
the masses prepared in some quantum state on the field
can be taken into account as an average of the energy-
momentum tensor in the quantum state of the masses.
The Einstein’s equation reads: Rμν − 1

2
Rgμν ¼ 8πGhTμνi,

where Rμν is the Ricci tensor; R is its trace; and gμν is the
metric tensor.
These theories provide powerful predictions such as the

Unruh effect and the Hawking radiation, [11]. Yet, they
cannot adequately describe quantum effects in gravity at
the fundamental level, as already pointed out in [17]. This is
because they resort to a field which is classical—in the
sense that it has no pair of noncommuting observables. The
field strength at each point is determined by an average of
the stress-energy tensor in the quantum state of the masses.
In the situation of our experiment, each mass would,
therefore, be affected by the average of the gravitational
field generated by the other superposed mass. Supposing
each mass is initially in an equally-weighted superposition
of the two possible locations, each mass would experience
the potential generated by the other mass m positioned at a
distance which is the average of the position of the other
mass in its quantum state. Assuming once more that only
the gravitational interaction affects the branch correspond-
ing to the arm of the interferometer closer to the other
(labeled by 1), the state of the mass would become
1ffiffi
2

p ðj0i þ eiϕm j1iÞ, where ϕm ¼ G m2t
ℏdm

where dm ¼ d1þd2
2

,

and d1 and d2 are, respectively, the distances of path 1 of
one interferometer from paths 0 and 1 of the other.
Likewise, by symmetry, for the other mass. Thus the phase
acquired would be a local phase, which cannot generate
entanglement between the masses. Each mass would be
undergoing a separate, COW-type experiment: the state of
the two masses would be at any time a product state.
Semiclassical theories would, therefore, be refuted as
fundamental descriptions of gravity by observing entan-
glement in the proposed experiment. The same prediction
of no entanglement would be reached by models that resort
the (nonequivalent) procedure of averaging the linearized
quantum gravity Hamiltonian in the quantum state of the
two masses. This would also provide only local phases
(albeit different from the former case).
The other class of theories that would be ruled out by

witnessing entanglement are collapse-type models predict-
ing a collapse of the mass wave function at the experiment’s
scales[7–9], i.e., an irreversible transition to a state where
the position is sharp. Consider for example the decoherence

time a mass of 10−12 kg superposed across two different
locations, approximately 10−4 m apart, (the spatial extent
of each interferometer). According to Penrose’s collapse
models, [8], this time is of the order t ¼ ℏ

Gm2

d

≈ 10−13s, well

below 10−6 s, required for our experiment. There is a subtle
difference between collapse occurring, and decoherence
happening while an interference experiment is taking place.
For example, in neutron interferometry, a neutron spin
couples to neighboring spins and affects their state. Since
the neutron is in a superposition of two spatial locations,
the neighboring spins are entangled with the spatial states
of the neutron. However, when the two arms of the
interferometer are recombined to measure the interference
the two environmental states effectively become the same.
This is why, despite the neutron having been entangled with
environmental spins inside the interferometer, interference
is still observable. A massive superposition can also
become entangled with the gravitational field, as explained,
and still evolve coherently. This decoherence could be
discriminated from the genuine collapse. We can also
discriminate de-phasing due to gravity from the gravita-
tionally induced collapse, because the former would
permit generating entanglement, but the latter would not.
However, we cannot discriminate gravitationally induced
spontaneous emission (still a fully quantum effect due to
the vacuum state of the gravitational field) from a collapse,
as in both cases interference would not occur.
Finally, another approach [18,19] treats gravity as an

induced field by the quantum vacuum fluctuations of all
other fields. According to this logic, gravity is not a
fundamental force and, therefore, does not need to be
quantized. This approach, treating the gravitational field as
classical, are not able to account for entanglement gen-
eration in our experiment. Still, it may be possible that
entanglement generation is caused by other quantum fields,
leading to an effective gravitational phase. This remains an
open question.
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