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We revisit the issue of the geometrical separability of the Hilbert space of physical states on lattice
Abelian theories in the context of entanglement entropy. We discuss the conditions under which vectors in
the Hilbert space, as well as the gauge-invariant algebra, admit a tensor product decomposition with a
geometrical interpretation. With the exception of pure gauge lattices with periodic boundary conditions
which contain topological degrees of freedom, we show that the Hilbert space is geometrically separable.
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I. INTRODUCTION

Entanglement entropy in quantum field theories has
received increased interest in the past few decades. It
has been shown that in many cases it satisfies an area
law, prompting questions of how it might be related to the
Bekenstein-Hawking black hole entropy, which also sat-
isfies an area law. Unfortunately, entanglement entropy is
also UV divergent, thus requiring the use of a cutoff. Lattice
field theory is naturally equipped with such a cutoff,
making it a good fit for performing entanglement entropy
calculations. Except that, while matter fields on the lattice
are perfectly localized on lattice vertices, gauge fields are
represented by links connecting vertices, which, by defi-
nition, have a spatial extent. To further complicate matters,
physically measurable quantities must satisfy gauge invari-
ance, and defining a physical entanglement entropy
requires the use of such gauge-invariant objects, whose
structure is even more complex. In particular, it is believed
that degrees of freedom (d.o.f.) in the physical Hilbert space
of gauge theories cannot be divided into geometric bipar-
titions without sacrificing gauge invariance. In this paper
we show precisely how this can be done in the case of
lattice gauge theories with Abelian groups, while focusing
on the particularly simple group Z2 for clarity.
In Sec. II, we give a technical overview of some of the

relevant literature and show the various issues surrounding
the geometric separability of the Hilbert space of Abelian
lattice gauge theories. Specifically, we show that two
inseparability proofs lead to severe consequences that
extend beyond gauge theories and can be equally applied
to scenarios that are otherwise thought to be geometrically
separable. We also show that there is no unique choice for
what we call d.o.f. and that the value of the entanglement
entropy can depend on that choice.

Section III shows how choices of d.o.f. can be related
using dualities and that imposing geometric symmetries on
the d.o.f. such that they can be interpreted as d.o.f. in a field
theory can narrow down the number of choices. Symmetry
arguments can then be applied to various scenarios to
obtain minimally constrained gauge-invariant choices
of d.o.f.
We proceed with a detailed analysis of the physical

Hilbert space in 2þ 1 dimensional Z2 gauge theories with
free boundary conditions in Sec. IV and their algebra in
Sec. V and show specific examples for a minimal, two-
plaquette lattice in Sec. VI. We also show how gauge-
invariant density matrices and partial traces can be
implemented on the physical Hilbert space, leading to a
gauge-invariant entanglement entropy. The work in
Secs. IV and V is subsequently used as a basis for the
analysis of other lattice configurations. Section VII ana-
lyzes 2þ 1 dimensional lattices with periodic boundary
conditions, which exhibit both a global constraint and
topological d.o.f. We show that maintaining lattice sym-
metries requires the inclusion of the global constraint in the
calculations of entanglement entropy. On the other hand,
topological d.o.f. cannot be factored in a pure gauge theory.
Lattices in 3þ 1 dimensions are studied Sec. VIII. They are
characterized by the existence of local constraints
of a geometrical nature which, again, must also be taken
into account if lattice symmetries are to be preserved.
Lattice theories that couple gauge fields to bulk matter
fields are discussed in Sec. IX. Coupling to matter
fields simplifies the Hilbert space since states can be
expressed as tensor products of independent electric states
on the links and independent matter states at the vertices.
Edge charges are addressed in Sec. X as a combination of
pure gauge theory in the bulk and matter-coupled theory on
the edges.
We conclude with some remarks on extensions to

other Abelian gauge groups and the limitations of this
analysis.*hategan@ucdavis.edu
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II. REVIEW OF RELEVANT LITERATURE

A survey of the literature [1–6] indicates that the
commonly held belief is that the physical Hilbert space
in pure Abelian gauge lattices is not geometrically sepa-
rable. In an early paper on the topic by Buividovich et al.
[1], it is stated that the physical Hilbert space in pure Z2

gauge lattices in 2þ 1 dimensions does not admit a
geometrical separation by assigning complementary sets
of gauge links to regions. It is then concluded that the
physical Hilbert space is not geometrically separable at all,
and that defining an entanglement entropy requires embed-
ding the Hilbert space in an extended space. The embed-
ding procedure then results in a contribution to the
entanglement entropy that is given by a Shannon term
of the probability distribution of d.o.f. on the boundary,
which is proportional to the area of the boundary. This is
taken as validation of the procedure, since it leads to an
entanglement entropy that has an area law for any gauge
theory, thus qualitatively matching the area law of black
hole entropy [7].
We illustrate briefly why the inseparability proof in [1] is

problematic. The proof goes as follows:

Assume a Hilbert space H̃ and a strict subspace of H̃
generated by the projection operator PC of a constraint
C,H0 ⊂ H̃,H0 ¼ PCH̃, and take a decomposition H̃ ¼
H̃A ⊗ H̃B with H̃A;B partially supporting the constraint
C. That is, there exist vectors Ψ̃c

A ∈ H̃A, Ψ̃c
B ∈ H̃B

such that PCΨ̃c
A;B ≠ Ψ̃c

A;B and there exist orthogonal
vectors Ψ̃0

A ∈ H̃A, Ψ̃0
B ∈ H̃B, Ψ̃0

A;B · Ψ̃c
A;B ¼ 0 such that

PCΨ̃0
A;B ¼ Ψ̃0

A;B. Now, assume that there exists a decom-
position H0 ¼ HA ⊗ HB such that HA ⊆ H̃A and
HB ⊆ H̃B. It follows that any vector in HA or HB

can be written as a vector in H̃A or H̃B, respectively.
Consider the states Ψ0 ¼ Ψ0

A ⊗ Ψ0
B ¼ Ψ̃0

A ⊗ Ψ̃0
B and

Ψ1 ¼ Ψ1
A ⊗ Ψ1

B ¼ Ψ̃c
A ⊗ Ψ̃1

B with PCΨ̃0
A ¼ Ψ̃0

A,
PCΨ̃0

B ¼ Ψ̃0
B, PCΨ̃c

A ≠ Ψ̃c
A, Ψ̃0

B ≠ Ψ̃1
B. Then, the

C-invariant subspace H0 must also contain the
vector Ψ2 ¼ Ψ1

A ⊗ Ψ0
B ¼ Ψ̃c

A ⊗ Ψ̃0
B. However, PCΨ2 ¼

PCΨ̃c
A ⊗ PCΨ̃0

B ¼ PCΨ̃c
A ⊗ Ψ̃0

B ≠ Ψ2. In other words,
Ψ2 does not satisfy the constraint therefore we arrive at
a contradiction.

A simpler but somewhat inaccurate illustration of the
problem is shown in Fig. 1.
The assumptions of the existence of the vectors satisfy-

ing the various relations above can be satisfied in lattice
gauge theory. For example, Ψ0

A;B can be states with
no electric excitations while Ψc

A can be an open part of
a closed electric string. There remains one assumption,
H0 ¼ HA ⊗ HB, HA ⊆ H̃A, HB ⊆ H̃B, which must be
false. It must be noted, however, that this is not the same
assumption asH0 ¼ HA ⊗ HB. Should this distinction not

be made, one might be led to believe that no Hilbert space
H is separable, since one can always find some H� ⊃ H
and some constraint C� with PC�H� ¼ H such that the
conditions in the proof are satisfied. There is, perhaps,
some truth to this idea in that constraints can make the
notions of d.o.f. and locality ambiguous. One could write
H̃¼HA ⊗HB ⊗H⊥, where H⊥ is the space of all vectors
orthogonal to the constrained spaceH⊥ ¼ kerPC, and then
attempt to factorize H⊥¼ ¼ H⊥A ⊗ H⊥B such that
H̃A;B ¼ HA;B ⊗ H⊥A;B. This requires a meaningful assign-
ment of the d.o.f. inH⊥A;B, which is not always possible: in
the example in Fig. 1,H⊥ is one-dimensional. This is likely
the essence of the dilemma. Even when both the physical
H0 and unphysical H̃ spaces can be factored, a decom-
position of the form H̃ ¼ ðHA ⊗ H⊥AÞ ⊗ ðHB ⊗ H⊥BÞ
with dimðH⊥AÞ ¼ dimðH⊥BÞ or dimðH⊥AÞ= dimðHAÞ ¼
dimðH⊥BÞ= dimðHBÞ may not exist.
Casini et al. [2] expand on the work in [1] by looking at

the problem from an algebraic perspective. They conclude
that expressing a constrained Hilbert space as a product
space depends on the method in which one associates a
region of space with an algebra of operators. In principle, a
factorization of a Hilbert space H ¼ HA ⊗ HB is associ-
ated with a factorizable algebra A ¼ AA ⊗ AB such
that OA;BΨB;A ¼ ΨB;A; OA;B ∈ AA;B;ΨA;B ∈ HA;B. That
is, operators OA;B have the form OA ¼ ÕA ⊗ 1B and
OB ¼ 1A ⊗ ÕB, where 1A;B act trivially on their respective
subspaces. A necessary and sufficient condition for the
above factorization to exist is AA ∩ ðAAÞ0 ¼ 1, where
ðAAÞ0 is the set of all operators in A that commute with
all operators in AA. The intersection AA ∩ ðAAÞ0 is the
“center” of the algebra AA. It is then claimed that lattice
gauge theories do not admit local algebras with trivial
center and therefore no factorization. The reasoning is:

Consider, again, the earlier Hilbert space H̃ and a
constrained subspace PCH̃ ¼ H0. There exist operators
Tc that act trivially on H0 but not on H̃. That is,
∃ Ψ̃ ∈ H̃ such that TcΨ̃ ≠ Ψ̃ and ∀Ψ ∈ H0; TcΨ ¼ Ψ.

FIG. 1. Separability of nontrivial subspaces. The full Hilbert
space H̃ is a 3-dimensional Cartesian space. The constrained
space H0 (shaded) is a 2-dimensional space. It is impossible to
express both û and v̂ as vectors in any simple bipartition
of fx̂; ŷ; ẑg.
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There is an algebra A associated with H0. Assume that
there exists a factorization of A ¼ AA ⊗ AB and that
there exists a Tc ¼ AB with A ∈ AA, B ∈ AB, and
B ≠ 1B. The operator B commutes with all operators
inAA by the factorization assumption. Then, since Tc ¼
1AB on H0, we can write A† ¼ A†1AB ¼ A†Tc ¼
A†AB ¼ B. Given A† ∈ AA then also B ∈ AA. Hence
B ∈ AA ∩ ðAAÞ0 ≠ 1 and the subalgebra AA is not a
factor, which contradicts the factorization assumption.

Perhaps the bigger problem would be that we are led to
the conclusion that, in a bosonic theory, either the canonical
conjugate to A† is not in AA or that it commutes with A†.
That is unless A†ΨA ¼ ΨA, ∀ΨA ∈ HA, in which case A†

is a trivial operator on HA and it has no conjugate. The
contradictions disappear if, from Tc ¼ 1 ¼ AB, one con-
cludes that A† ≡ B and that Tc ¼ ð1A ⊗ B†Þð1A ⊗ BÞ on
the constrained subspace H0.
Imposing the requirement of a separable algebra, while

sufficient, may not be necessary. Consider a two-spin
system with the constraint σ1zσ2z ¼ 1. In other words, the
Hilbert space is restricted to wave functions that satisfy
σ1zσ

2
z jΨi ¼ jΨi. By applying the constraint equation to a

general state, we find that jΨi ¼ αj↑↑i þ βj↓↓i. This
implies that we are not free to individually manipulate
the spins, and the algebra associated with this Hilbert space
isA ¼ f1; σ1z ¼ σ2z ; σ1xσ2x; ½σ1z ; σ1xσ2x�g. Nonetheless, this can
represent a legitimate Bell-type experiment, where two
spatially separated observers can measure spin correlations
and the following entanglement entropy:

SA ¼ −α2 log α2 − β2 log β2: ð1Þ

This setup can be seen as either an entangled state or a
single spin, depending on whether σ1z and σ2z are interpreted
as distinct operators that measure the same quantity or
distinct labels on the same operator. The distinction,
however, is not algebraic. Instead, it hinges on whether
independent physical measurements can be performed
using measurement devices that have a clear spatial
separation. In a field theory where the separation is near
the scale cutoff, the notion of a clear separation disappears.
Furthermore, this is precisely a Hilbert space that exhibits a
gaugelike symmetry. To see this, we switch to the trans-
verse basis using j�i ¼ ðj↑i � j↓iÞ= ffiffiffi

2
p

and rewrite the
state in the new basis:

jΨi ¼ αþ β

2
ðjþþi þ j−−iÞ − α − β

2
ðjþ−i þ j−þiÞ; ð2Þ

which is a state that is invariant under global transforma-
tions j�i → j∓i.
It can be noted that the algebra A is already

invariant under this particular symmetry, so no additional
information on the algebra can come from imposing

invariance under this symmetry. We could simply stop
here noting that the value of SA in Eq. (1) is precisely the
classical Shannon entropy term found in [1,6] and that this
choice corresponds to a separable constrained space H̃.
However, as Casini et al. note in [2], SA would not be the
same when gauge fixing is involved. We can remove
the redundancy in Eq. (2) by selecting a particular point
in the orbit to get:

jΨi ¼ αþ β

2
jþþi − α − β

2
jþ−i

¼ jþi ⊗
�
αþ β

2
jþi − α − β

2
j−i

�
; ð3Þ

which is a separable state with SA ¼ 0 and corresponds to
an entanglement entropy calculated on the unconstrained
space H0. This is consistent with the idea that our Hilbert
space contains a single d.o.f.
We could, therefore, adopt the view that a d.o.f. is the

smallest entity that can be both measured and manipulated
independently [8] while respecting required symmetries.
Unfortunately, this too can fail to result in an unambiguous
entanglement entropy when multiple choices of basis have
equally good geometrical interpretations. Consider the
case of four spin d.o.f., one global constraint of the formQ

iσ
i
z ¼ 1, and the state

jΨi ¼ 1ffiffiffi
2

p ðj↑1↑2↑3↑4i þ j↓1↑2↓3↑4iÞ: ð4Þ

The space can be divided by assigning the first two spins
to a region and the other two to its complement. If we
consider spin 1 as redundant, the unconstrained state reads:

jΨ0i ¼ 1ffiffiffi
2

p j↑2i ⊗ ðj↑3↑4i þ j↓3↑4iÞ: ð5Þ

Being a separable state, the entanglement entropy is zero.
However, choosing spin 4 as redundant, we get:

jΨ00i ¼ 1ffiffiffi
2

p ðj↑1↑2i ⊗ j↑3i þ j↓1↑2i ⊗ j↓3iÞ; ð6Þ

and the entanglement entropy is now log 2. In one
dimension, there is a simple solution to the problem which
involves a change of basis to eigenstates of products of
neighboring σz operators. This solution preserves homo-
geneity of the d.o.f. In two dimensions such a solution does
not exist. The resulting ambiguity of SA is endemic to
spaces with global constraints in all but a few cases and
stems from the lack of a unique way of meaningfully
assigning coordinates to the unconstrained d.o.f. that
preserve various qualities that one would expect from
a field theory. As we will show in Sec. IV, certain theories
admit duals with unconstrained d.o.f. that can be
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interpreted as local field theories while others may not
(Sec. VIII).
We end this introduction by mentioning a concern

introduced by Donnelly in [6]: edge states in gauge theories
[9]. This is based on earlier work by Witten [10] and
Lowenstein and Swieca [11]. Lattice theories with edge
states are special in that they are part of a class of theories
that do not fully preserve the homogeneity of d.o.f. from the
outset.

III. DEGREES OF FREEDOM AND DUALITIES

We have seen that entanglement can depend on the
precise definition of what a d.o.f. is and that there is
generally no unique choice of d.o.f. The ambiguity is not
necessarily specific to gauge theories, but to spaces with
constraints. We will attempt to address two questions. One
is whether there exist gauge-invariant d.o.f. that can be
deemed as defining a discretized field theory, and the
second is whether there exists a set of assumptions that can
lead to an unambiguous entanglement entropy when con-
straints are present.
In general, choices of d.o.f. are related by dualities.

Given a field theory defined on a discrete lattice with
discrete Abelian group valued d.o.f., there exist dualities
that preserve the type and number of unconstrained d.o.f. A
way of constructing such dualities consists of finding a
basis in the Hilbert space of the theory, a set of distinct
operators Ôi, one for each d.o.f., that are simultaneously
diagonalized by the basis states, and then selecting some set
of operators from the group generated by Ôi under
multiplication to define the new d.o.f. For a theory with
constraints, we ask the question of whether we can find
suitable dualities that have no constrained d.o.f.
Consider a simple example: a 2-d quantum Ising lattice

with d.o.f. on the vertices and a global constraint. The
Hilbert space has Nd:o:f: ¼ ½ðLx þ aÞðLy þ aÞ=a2 − 1� Z2

d.o.f., where a is the lattice spatial dimension. The þa
part can be seen as a matter of convention. One can
enlarge the lattice by a=2 on all sides (L0

i ¼ Li þ a) and
consider the d.o.f. to be associated with the centers
of plaquettes of the enlarged lattice and then write
Nd:o:f: ¼ N0

xN0
y − 1, with N0

i ¼ L0
i=a. We can also write

Nd:o:f: ¼ ðNx þ 1ÞðNy þ 1Þ − 1 ¼ NxNy þ ðNx þ NyÞ.
This suggests that our theory could have a dual with NxNy

bulk d.o.f. and Nx þ Ny edge d.o.f. To see that this duality
exists, we follow the geometry suggested by the d.o.f.
decomposition and associate with the center of every pla-
quette a d.o.f. defined by the following operator identities:

σ̃z
□
ðxþ 1=2; yþ 1=2Þ ¼ σzðx; yÞσzðxþ 1; yÞσzðx; yþ 1Þ

× σzðxþ 1; yþ 1Þ; ð7Þ

where we switched to lattice units a ¼ 1. Similarly for edge
d.o.f.:

σ̃zEx
ðxþ 1=2Þ ¼ σzðx; 0Þσzðxþ 1; 0Þ

σ̃zEy
ðyþ 1=2Þ ¼ σzð0; yÞσzð0; yþ 1Þ: ð8Þ

The algebra generated by all σ̃z
□
and σ̃zEd

will contain all
products σzðx1; y1Þσzðx2; y2Þ, which are all simultaneously
invariant under a global spin flip. The dual theory does not
contain the global constraint, and it may seem that we
should prefer the dual in calculations where geometric
ambiguities in the choice of basis are relevant. The problem
with the dual, however, is that the standard nearest-
neighbor terms in the Hamiltonian are nonlocal. To see
this, consider the term σzðx0; y0Þσzðx0; y0 þ 1Þ. In terms of
dual d.o.f., it takes the form:

σzðx0; y0Þσzðx0; y0 þ 1Þ

¼ σ̃zEy
ðy0 þ 1=2Þ

Yx0−1

x¼0

σ̃z
□
ðxþ 1=2; y0 þ 1=2Þ: ð9Þ

Imposing a locality condition on the action would exclude
the above duality from consideration. We note, however, that
the dual has the exact same physics content and the same
algebra as the initial theory. The choice of one or the other is
a matter of preference, and this preference must be informed
by other considerations. It may then be desirable to consider
other geometric symmetries that should be satisfied by a
duality, such as homogeneity of the d.o.f., (discrete) isotropy,
parity transformations, boundary conditions, as well as the
preservation of the lattice spacing unit. For example, in two
dimensions, only square lattices satisfy the 4-fold isotropy
condition. This restricts the number of unconstrained d.o.f.
that can be represented on a square lattice with open
boundary conditions (see Fig. 2):

Nd
d:o:f: ¼ ðCþ 4PÞNd

plaq þ VNd
vert þ LNd

links þ ENd
edge links

¼ ðCþ 4Pþ 2Lþ VÞNd
xNd

y

þ ðLþ 2Eþ VÞðNd
x þ Nd

yÞ þ V; ð10Þ

withC, P, V, L, E ∈ N being the number of d.o.f. associated
with, respectively, the center of plaquettes, the off-center of

FIG. 2. Possible arrangements of d.o.f. on a square lattice.
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plaquettes, vertices, links, and edge links (and/or edge
vertices). One can then check numerically that for a 2-d
Ising model with a global symmetry there is no satisfactory
duality by finding the intersection of sets of solutions
fðC;P; V; L; EÞg to the equation Nd

d:o:f: ¼ Nd:o:f: ¼
N0

xN0
y − 1 for various N0

x and N0
y which are sizes in the

original model. In particular, one can verify that Nd:o:f: ¼
2 × 2 − 1 ¼ 3 has no solution except the trivial C ¼ 3
solution which places all d.o.f. at the center of one plaquette.
The existence of solutions to the above equation does not
necessarily imply that a suitable duality exists, but the
absence of solutions implies the nonexistence of an uncon-
strained duality satisfying the geometric symmetries.
It follows that eliminating constraints can, in certain

cases, lead to theories that do not have a suitable inter-
pretation as local field theories. In such cases it would seem
that we must either accept the constraints as physical or
give up locality or other symmetries.

IV. GAUGE-INVARIANT STATES
IN PURE Z2 GAUGE LATTICES

We proceed with an analysis of the physical Hilbert
space in Z2 pure gauge lattices in 2þ 1 spatial dimensions
with free boundary conditions and a temporal gauge, and
consider a time slice with all links in the spatial dimensions.
This is the basic setup used in [1] and it is a natural choice
for a Hamiltonian lattice theory [12,13]. When working
with a Wilsonian theory, one must also consider plaquettes
with a time component which correspond to the electric
components of the electromagnetic tensor. The two
are related, in the continuum limit, by E2

i ¼ F2
i0 ≈

ð1=a4Þð1 − ReUi0Þ. The inclusion of electric plaquettes
in the Wilsonian theory will be discussed as a particular
case of a three-dimensional time slice in Sec. VIII. For the
Hamiltonian version of the theory, throughout the paper, we
will assume the following Hamiltonian:

H ¼
X

x;μ

LμðxÞ − λ
X

x;μ;ν

UμðxÞUνðxÞUμðxþ ν̂ÞUνðxþ μ̂Þ;

ð11Þ

where the first sum is taken over all the links and the second
is taken over all the plaquettes. This corresponds to the
following Wilson action:

S ¼ −λ
X

x;μ;ν

UμðxÞUνðxÞUμðxþ ν̂ÞUνðxþ μ̂Þ: ð12Þ

Consider a lattice with Z2 links and the standard Z2

algebra of operators acting on the links:

Ujui ¼ ujui ð13Þ

Ljui ¼ j − ui; ð14Þ

with u ∈ fþ1;−1g (or, for consistency with spin systems,
u ∈ f↑;↓g), and the commutation relations:

½UμðxÞ; UνðyÞ� ¼ 0 ð15Þ

½LμðxÞ; LνðyÞ� ¼ 0 ð16Þ

½UμðxÞ; LνðyÞ� ¼ 0; x ≠ y ∨ μ ≠ ν ð17Þ

½UμðxÞ; LμðxÞ� ≠ 0: ð18Þ

Gauge transformations are operators parametrized by
group elements associated with each vertex which trans-
form links as follows:

uμðxÞ → gðxÞuμðxÞg†ðxþ μ̂Þ; ð19Þ

where gðxÞ and gðxþ μ̂Þ represent the vertices associated
with the endpoints of link uμðxÞ. In the Z2 case, uμðxÞ is
flipped if exactly one of gðxÞ and gðxþ μ̂Þ are −1.
An arbitrary gauge transformation acts on an arbitrary

link polynomial as follows:

uμ1ðx1Þuμ2ðx2Þ…uμnðxnÞ
→ gðx1Þuμ1ðx1Þg†ðx1 þ μ̂1Þgðx2Þuμ2ðx2Þg†ðx2 þ μ̂2Þ…
× gðxnÞuμnðxnÞg†ðxn þ μ̂nÞ: ð20Þ

This polynomial is gauge invariant only if all of the
gauge terms cancel out, which can only happen for closed
paths (Wilson loops), products of closed paths (for Abelian
groups), or a constant. The smallest Wilson loop is the one
that goes around a single plaquette.
This implies that we can use Wilson loop functionals to

construct functionals Ψ½UμðxÞ� ¼
P

ckWk½UμðxÞ� that
result in gauge-invariant states:

jΨi ¼
X

uμðxÞ¼�1

Ψ½UμðxÞ�⨂
μ;x

juμðxÞi

¼
X

uμðxÞ¼�1

X

k

ckWk½UμðxÞ�⨂
μ;x

juμðxÞi; ð21Þ

where Wk½UμðxÞ� are any subset of the Wilson loop
polynomials, including the identity. These states are gauge
invariant because they assign the same coefficients to all
microstates ⨂μ;xjuμðxÞi related by gauge transformations.
For a single plaquette, the gauge transformations can be

seen explicitly in Fig. 3. Since there are 24 ¼ 16 total link
states and eight distinct gauge transformations, there are
exactly two physical states per plaquette. A gauge trans-
formation on a Z2 lattice will always flip an even number
(including none) of links in any given plaquette.
Consequently, a convenient basis for physical states is
obtained by dividing the kinematic (link) states into states
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with even/odd number of up-type links per plaquette. These
states are eigenstates of plaquette operators:

UμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ: ð22Þ
In two dimensions, we can drop the tensor indices and

use U□ðxÞ≡U12ðxÞ. The states can be constructed using
products of the operators

U↑
□
ðxÞ≡ 1ffiffiffi

2
p ð1þ U□ðxÞÞ ð23Þ

U↓
□
ðxÞ≡ 1ffiffiffi

2
p ð1 −U□ðxÞÞ; ð24Þ

by applying them to the weak coupling ground state:

j0i ¼ C
X

uμðxÞ¼�1

⨂
μ;x

juμðxÞi; ð25Þ

where C is a normalization constant. Specifically, for a
single plaquette, we have that

j↑□i¼U↑
□
j0i

¼ 1

2
ffiffiffi
2

p ½j↑↑↑↑iþj↓↓↑↑iþ���þj↓↓↓↓i�ðeven#of↑Þ

ð26Þ
j↓□i¼U↓

□
j0i

¼ 1

2
ffiffiffi
2

p ½j↓↑↑↑iþj↑↓↑↑iþ���þj↓↓↓↑i�ðodd#of↑Þ:

ð27Þ
As expected,

U□j↑□i ¼ U□U
↑
□
j0i ¼ U□

1ffiffiffi
2

p ð1þ U□Þj0i

¼ 1ffiffiffi
2

p ðU□ þ 1Þj0i ¼ j↑□i ð28Þ

U□j↓□i ¼ U□U
↓
□
j0i ¼ U□

1ffiffiffi
2

p ð1 −U□Þj0i

¼ 1ffiffiffi
2

p ðU□ − 1Þj0i ¼ −j↓□i; ð29Þ

since U2
□
¼ 1 for Z2.

A physical state on a full lattice can be expressed as a
linear combination of basis states which are products of
operators U�

□
for each plaquette:

jeλi ¼
Y

x

Uλx
□
ðxÞj0i ð30Þ

jΨi ¼
X

λ

cλjeλi; ð31Þ

where λ ¼ ðλxjλx ∈ f↓;↑gÞ are M-dimensional vectors
that index the basis vectors of the physical states, M is
the number of plaquettes, and cλ are coefficients satisfyingP

c2λ ¼ 1. The basis states are orthonormal:

heλjeλ0 i ¼ h0j
Y

x

Uλx
□
ðxÞUλ0x

□
ðxÞj0i ¼

Y

x

δλx;λ0x ; ð32Þ

and therefore we can write:

cλ ¼ heλjΨi: ð33Þ
The orthogonality is apparent for two reasons. First, any

product of the form U↑
□
ðxÞU↓

□
ðxÞ ¼ ð1 −U2

□
ðxÞÞ=2 is

zero, since U2
□
ðxÞ ¼ 1. Therefore, λx must equal λ0x for

all x in order to get a nonzero result. Second, if all λx ¼ λ0x,
then the left-hand side of (32) reduces to:

h0j
Y

x

ð1� U□ðxÞÞj0i ¼ h0j0i þ h0j
X

fðU□ðxÞÞj0i;

ð34Þ

where fðU□ðxÞÞ are various terms that contain at least one
link operator. Such terms vanish, since they are antisym-
metric with respect to j0i. In order to obtain a reduced
density matrix, we can divide the set of plaquettes into two
regions, A and Ā, and write λ ¼ ðχx; χ̄x̄0jx ∈ A; x̄ ∈ ĀÞ ¼
χ ⊕ χ̄ , such that λx ¼ χx if x ∈ A and λx̄ ¼ χ̄x̄ if x̄ ∈ Ā. We
can then write

jΨi ¼
X

χ ;χ̄

cχ⊗χ̄ jeχ⊗χ̄ i≡
X

χ ;χ̄

cχ ;χ̄ jeχ ;χ̄ i: ð35Þ

The density matrix is then:

ρ½λ; λ0� ¼ ρ½χ ; χ̄ ; χ 0; χ̄ 0� ¼ cχ ;χ̄cχ 0;χ̄ 0 : ð36Þ

Consequently, the resulting reduced density matrix,
ρA, is:

ρA½χ ; χ 0� ¼
X

χ̄

cχ ;χ̄cχ 0;χ̄ : ð37Þ

The entanglement entropy [7] is then:

SA ¼ trρA ln ρA: ð38Þ

The above representation of states is gauge invariant and
the density matrix ρ is written explicitly in terms of vectors
in the gauge-invariant subspace. It follows that SA is gauge
invariant.

FIG. 3. Gauge transformations on a Z2 plaquette. The gauge
transformations happen at the marked vertices. The solid links are
links that are affected by the gauge transformation. Transforma-
tions in the same column are equivalent.
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One can also consider the transverse (or “electric”) basis,
which is the basis in which link operators, L, are diagonal:

Ljli ¼ ljli: ð39Þ
Specifically, in terms of link basis vectors:

Ljþi ¼ Lj↑i þ Lj↓i ¼ j↓i þ j↑i ¼ jþi ð40Þ

Lj−i ¼ Lj↑i − Lj↓i ¼ j↓i − j↑i ¼ −j−i: ð41Þ

This basis is particularly useful due to its convenient and
suggestive diagrammatic representation, which we will
employ later. A gauge transformation at a lattice vertex
v is a product of link operators connected to that vertex and
acting on a four link state as follows:

Lv;vþx̂Lv;vþŷLv−x̂;vLv−ŷ;vjlv;vþx̂lv;vþŷlv−x̂;vlv−ŷ;vi
¼ lv;vþx̂lv;vþŷlv−x̂;vlv−ŷ;vjlv;vþx̂lv;vþŷlv−x̂;vlv−ŷ;vi: ð42Þ
Gauge invariant states must, therefore, satisfy

lv;vþx̂lv;vþŷlv−x̂;vlv−ŷ;v ¼ 1. This can be interpreted as a
conservation law that ensures that an even number of j−i
links are connected to every vertex. It can be seen that the
resulting gauge-invariant states take the form of linear
combinations of closed loops of links in the j−i state. States
can be manipulated using plaquette operators starting from
j0i, which, in the electric basis, is equal to ⊗ jþi:

jepi ¼
Y

x

ðU□ðxÞÞpx j0i ð43Þ

jΨi ¼
X

p

cpjepi; ð44Þ

where p ¼ ðpxjpx ∈ f0; 1gÞ. Unsurprisingly, we recover
the same structure as before [see Eq. (30)] and, consequently,
the same dimensionality for the physical Hilbert space.
From a physical standpoint, the Hilbert space discussed

in this section can either be seen as the space of closed
electric loops or the space of magnetic fluxes going through
plaquettes. From the magnetic perspective, it would seem
natural that fluxes through extended areas are equal to the
sum of individual fluxes through the elementary geometric
constructs covered by that area.

V. THE ALGEBRA OF GAUGE-INVARIANT
OPERATORS IN 2-D Z2 GAUGE LATTICES

There exists a duality between 2-d gauge theories and spin
chains [14], which was identified initially by Frank Wegner
in [15]. We will summarize the relevant parts here.
As seen previously, Wilson loops are gauge invariant. An

algebra is generated by the plaquette operators,U□ðxÞ. This
completes the algebra of gauge-invariant operators that can
be generated exclusively from link variables UμðxÞ. The
remaining gauge-invariant operators are derived from the
link-flip operatorsLμðxÞ. From the commutation relations in

Eq. (18), we see that all LμðxÞ commute with each other.
Since gauge transformations are a subalgebra of the algebra
generated by link-flip operators, it follows that all LμðxÞ
commute with gauge transformations and are, therefore,
gauge invariant. Consequently, the full algebra of gauge-
invariant operators is generated by all U□ðxÞ and all LμðxÞ.
Returning to the duality, the correspondence is:

Gauge theory Spin chain Comments

Plaquette Spin d.o.f.

U□ðxÞ σzðxÞ …
Lμðxþ μ̂⊥Þ σxðxÞσxðxþ μ̂⊥Þ LμðxÞ not at the edge,

μ̂ · μ̂⊥ ¼ 0

Ledge
μ ðxÞ σxðxÞ Ledge

μ ðxÞ at the edge of
the lattice

There is no immediately obvious equivalent between
LμðxÞ operators and the bulk σxðxÞ operators. They can be
constructed by observing that:

σxðxþ μ̂⊥Þ ¼ σxðxÞσxðxÞσxðxþ μ̂⊥Þ
¼ Ledge

μ ðxÞLμðxþ μ̂⊥Þ; ð45Þ
where μ̂ · μ̂⊥ ¼ 0. This can be generalized for arbitrary
plaquettes (see Fig. 4):

L□ðxÞ≡ σxðxÞ
¼ Ledge

μ0 ðx0ÞLμ1ðx0 þ μ̂0⊥Þ
× Lμ2ðx0 þ μ̂0⊥ þ μ̂1⊥Þ � � �LμnðxÞ: ð46Þ

Given a region A, the algebra generated by the operators
U□ðxÞ, L□ðxÞ for x ∈ A is a factor (an algebra with a trivial
center).
Furthermore, the operators U□ðxÞ and L□ðxÞ are invari-

ant under maximal tree gauge fixing. This type of gauge
fixing involves setting a certain set of links to a fixed value
and only considering the remaining ones dynamic. This can
be done as long as the fixed links do not form any loops
(see, e.g., [16]; also Fig. 5). The fixed links are typically set

FIG. 4. Construction of one of the possible plaquette-flip
operators. The operator acts on the shaded plaquette and is
composed of LμðxÞ operators acting on links that are shown in
thick red, lines.
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to the state j↑i ¼ jþi þ j−i and the corresponding LμðxÞ
operator is removed from the algebra, since its inclusion
would be at odds with the link being fixed. Because no
loops of fixed links are allowed, we are guaranteed to have
at least one dynamic edge link, and we are also guaranteed
that a path such as the one shown in Fig. 4 exists between a
dynamic edge link and every plaquette. This, in turn,
implies that all L□ðxÞ operators will exist in the algebra,
but no particular LμðxÞ operator is guaranteed to be there.
We can also check what happens to the Hamiltonian

from Eq. (11):

H ¼
X

x;μ

LμðxÞ − λ
X

x

U□ðxÞ

¼
X

n:n:

L□ðxÞL□ðyÞ þ
X

edge

L□ðxÞ − λ
X

x

U□ðxÞ; ð47Þ

where the sums over x are to be understood as sums over all
links or all plaquettes, respectively. The dual Hamiltonian is
local, gauge invariant, and well defined for all choices of
maximal tree gauge fixing conditions. With the exception
of the edge terms, the dual is a quantum transverse Ising
model. This dual represents the solution with C ¼ 1 in
Eq. (10). The duality also underlines the problem with the
inseparability proof in [1]. If the observable theory con-
sisted of an unconstrained spin network with Hilbert space
H0, we would have no problem constructing a geometrical
bipartition of the spin d.o.f. However, we can also construct
a “reverse” Wegner dual gauge theory with a Hilbert space
H̃. On H̃ there would be no bipartition of links supporting
states inH0, but we should not use that to conclude thatH0

is geometrically inseparable.
The idea floated previously of links being removed from

the algebra under maximal tree gauge fixing deserves some
more attention. If we adopt a temporal gauge and also gauge-
fix a particular time slice t0 using a maximal tree, we are
generally prevented from also fixing links in any subsequent
time slice [12]. The Hamiltonian will necessarily contain all
link operators in the kinetic term. The link operators are then
objects that relate link states at t0 with link states at other
times, and a gauge fixing at t0 remains associated with the
absence of the ability to modify the state of certain links at t0.
Without a temporal gauge, one is free to use the exact same

maximal tree of fixed links at all time slices. We can,
therefore, completely remove the terms involving nondy-
namical links from the Hamiltonian. This issue is entirely
hidden in the dual Hamiltonian in Eq. (47).
An alternative treatment to the entanglement entropy of

Abelian lattice gauge theory based on the duality to spin
systems can be found in [17].

VI. THE TWO-PLAQUETTE LATTICE

The simplest two-dimensional pure gauge lattice setup is a
two-plaquette Z2 lattice (Fig. 6). It will be used to illustrate
some of the issues presented in the previous section.
The basic gauge-invariant operators are:

UL
□
¼ U1U2U3U7 ð48Þ

UR
□
¼ U4U5U6U7 ð49Þ

Li; i ∈ f1;…; 7g: ð50Þ
The induced constraints are:

L1 ¼ L2 ¼ L3 ≡ LL
□

ð51Þ

L4 ¼ L5 ¼ L6 ≡ LR
□

ð52Þ

L7 ¼ L2L5 ¼ LL
□
LR
□
: ð53Þ

The remaining gauge-invariant operators can be obtained
from UL;R

□
and LL;R

□
. In particular, we can define:

U↑fL;Rg
□

¼ 1ffiffiffi
2

p ð1þUfL;Rg
□

Þ ð54Þ

U↓fL;Rg
□

¼ 1ffiffiffi
2

p ð1 −UfL;Rg
□

Þ; ð55Þ

which can be used to construct the magnetic basis:

j↓□↓□i ¼ U↓L
□
U↓R

□
j0i ð56Þ

j↓□↑□i ¼ U↓L
□
U↑R

□
j0i ð57Þ

j↑□↓□i ¼ U↑L
□
U↓R

□
j0i ð58Þ

j↑□↑□i ¼ U↑L
□
U↑R

□
j0i: ð59Þ

FIG. 5. Example of maximal tree gauge fixing in a simple
gauge lattice. The thick links are fixed.

FIG. 6. A simple two-plaquette lattice.
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If we switch to the electric basis, we can express the
tensor product structure in a less abstract fashion through
diagrams in which links in the j−i state are emphasized.
The single plaquette states are

while the two-plaquette states are

, , ,
. It is probably noteworthy that

This is because
the only gauge-invariant operators that can change electric
states are operators in the algebra of Wilson loops. If
we start with , then

As pointed out in [2], certain subalgebras are not factors.
In particular, if we chose to divide links into regions and
considered the algebras of gauge-invariant operators that
can be constructed from the operators acting on links in
each region, we would encounter algebras such as A1 ¼
f1; L1; L2; L3g which satisfies A1 ∩ ðA1Þ0 ¼ A1 ≠ 1.
Alternatively the algebra of links including the entire left
loop would be A2 ¼ f1; L1; L2; L3; L7; UL

□
g, for which

we would find that fL4; L5; L6g ⊂ ðA2Þ00, so A2 also
generates the electric operators in the right loop and
ðA2Þ0 ∩ ðA2Þ00 ≠ 1. Neither of the examples are specific
to gauge theories. In a two spin system, A1 ¼ f1; σ1xg
also satisfies A1 ∩ ðA1Þ0 ¼ A1, whereas, for A2 ¼
f1; σ1x; σ1xσ2x; σ1zg, we would necessarily find that σ2x ∈
ðA2Þ0 ∩ ðA2Þ00.
It may be interesting to compare the entanglement

entropy in the magnetic, electric, and kinematic spaces.
We can simplify the lattice further by doing a partial gauge
fixing (see Fig. 7). There is a single gauge transformation
remaining, which, in the magnetic basis, flips all the
remaining free links. Analyzing an arbitrary state can be
somewhat unpalatable, so we stick to states of the form
jΨi ¼ αj↓□↓□i þ βj↑□↑□i, with α2 þ β2 ¼ 1. The entan-
glement entropy is:

Smag
A ¼ −α2 logα2 − β2 log β2; ð60Þ

and it can vary between zero (for α ¼ 0 or β ¼ 0) and log 2
(for α ¼ β ¼ 0.5). The kinematic state is:

jΨi ¼ αffiffiffi
2

p ½j↑3↓7↑4i þ j↓3↑7↓4i�

þ βffiffiffi
2

p ½j↑3↑7↑4i þ j↓3↓7↓4i�: ð61Þ

The reduced density matrix obtained by tracing over
links 7 and 4 is:

ρ7;4¼
α2

2
j↑3ih↑3jþ

α2

2
j↓3ih↓3jþ

β2

2
j↑3ih↑3jþ

β2

2
j↓3ih↓3j

ð62Þ

¼ 1

2
j↑3ih↑3j þ

1

2
j↓3ih↓3j: ð63Þ

The resulting entanglement entropy is now SkinA ¼ log 2,
independent of α and β. This value is not gauge
invariant since fixing, e.g., link 7 to j↑7i yields
jΨi¼αj↓3↑7↓4iþβj↑3↑7↑4i, and we recover the value
of Smag

A .
In the electric basis, after the gauge fixing employed

above, the basis vectors are

, ,

,

The state jΨi is:

jΨi ¼ αþ β

2
½jþ3þ7þ4i þ j−3þ7−4i�

−
ðα − βÞ

2
½jþ3−7−4i þ j−3−7þ4i�: ð64Þ

The electric vectors correspond to states with electric
fluxes conserved at the shared lattice site. The state
expressed in the electric basis has the same form
as the kinematic state and one can conclude that
SelecA ¼ log 2. In the electric picture, one would attribute
the entanglement entropy to the constraints on the electric
d.o.f. Once again, if we were to fully fix the gauge and
remove one of the links li from the state, the entanglement
entropy of the projected state would take the same value as
Smag
A . The exact choice of i is not relevant for the state in

this example.

VII. PERIODIC BOUNDARY CONDITIONS

The introduction of periodic boundary conditions in the
spatial direction is associated with two new phenomena.
One is:

Y

x

U□ðxÞ ¼ 1; ð65ÞFIG. 7. Partial gauge fixing on the simple lattice. The dotted
links are set to 1.
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since every link operatorUμðxÞ appears exactly twice in the
product. The second is the addition of two new independent
topological d.o.f., associated with loops that wind around
the two spatial dimensions.
The global constraint in Eq. (65) is a manifestation of the

magnetic Gauss’s law, which holds that the net magnetic
flux through a closed surface is zero. Once again, we can
consider the possibility of an unconstrained duality. In the
spirit of Eq. (10), for a 2-d lattice with periodic boundary
conditions:

Nd
d:o:f: ¼ ðCþ 4PÞNd

plaq þ VNd
vert þ LNd

links: ð66Þ

We can notice that in a lattice with periodic boundary
conditions in both x and y directions, we have Nd

links ¼
2Nd

plaq ¼ 2Nd
vert. We can then write:

Nd
d:o:f: ¼ ðCþ 4Pþ V þ 2LÞNd

plaq: ð67Þ
To see that there is no homogeneous and 4-fold

isotropic unconstrained dual lattice with periodic boundary
conditions that can support a suitable duality, we can start
with a lattice with dimensions Nx ¼ 2p, Ny ¼ 2q. Without
the global constraint, there would be precisely one
physical d.o.f. per plaquette. However, the presence of
the global constraint reduces the number of physical d.o.f.
by one, leading to Nd:o:f: ¼ NxNy − 1 ¼ 2pþq − 1. Nd:o:f:.
is a Mersenne number, and some p and q would lead to
Nd:o:f:. being prime. The only solutions to Nd:o:f: ¼ Nd

d:o:f:
in Eq. (67) are Nd

plaq ¼ 1 and Nd
plaq ¼ Nd

xNd
y ¼ Nd:o:f:. The

first solution corresponds to a zero-dimensional geometry,
while the second implies either that Nd

x ¼ 1 or that Nd
y ¼ 1,

which are one-dimensional geometries.
The global constraint cannot, therefore, be eliminated

without severely spoiling the geometry. However, using the
plaquette basis, we can still work in a gauge-invariant
space. As before [see Eq. (30)], we express a state as a
linear combination of basis vectors for some set X of
independent plaquettes:

jeλi ¼
Y

x∈X
Uλx

□
ðxÞj0i: ð68Þ

We can subsequently extract the coefficients of a gauge-
invariant state on the constrained space using products of
U□ operators over all plaquettes:

heλ;λ0 jeλ0 i ¼ h0jUλ0
□
ðx0Þ

Y

x∈X
Uλx

□
ðxÞ

Y

x0∈X

Uλx0
□
ðx0Þj0i; ð69Þ

where x0 represents the remaining plaquette (x0 ∉ XÞ.
Since Uλx

□
ðxÞ satisfy Uλx

□
ðxÞUλ0x

□
ðxÞ ¼ 2δλx;λ0xU

λx
□
ðxÞ and

we have:

he0λ0;λ0
0
jeλi ¼ δλ;λ0 h0jUλ0

0

□
ðx0Þ

Y

x∈X
Uλx

□
ðxÞj0i

¼ 1

2
δλ;λ0 h0j1þ

Y

x

pðλ0xÞU□ðxÞ þ � � � j0i

¼ 1

2
δλ;λ0δ

�
1þ

Y

x

pðλ0xÞ
�
; ð70Þ

where pð↑Þ ¼ 1 and pð↓Þ ¼ −1, and the ellipsis
stands for terms that are antisymmetric with respect to
j0i. When the constraint is satisfied, there is an even
number of plaquettes in the j↓i state and the product over
pðλxÞ is equal to 1 leading to he0λ0;ξjeλi ¼ 1. Conversely,
when the constraint is not satisfied, the product over
pðλxÞ is −1 and the dot product vanishes. The constrained
space density matrix corresponding to some state jΨi is
then:

ρ½λ; λ0; λ0; λ00� ¼ hΨjeλ0;λ0
0
iheλ;λ0 jΨi: ð71Þ

One can then divide d.o.f. using λ ⊕ λ0 ¼ χ ⊕ χ̄ and
proceed as in Eqs. (35)–(37).
With no edge links in the original Hamiltonian [see

Eq. (11)], the plaquette basis Hamiltonian would take the
form:

H ¼
X

x;μ

LμðxÞ − λ
X

x

U□ðxÞ

¼
X

n:n:

L□ðxÞL□ðyÞ − λ
X

x

U□ðxÞ; ð72Þ

which is the transverse Ising model. In the λ → 0 limit,
there is no magnetic term, and the entanglement entropy is
SA ¼ log 2 and topological. In the λ → ∞ limit, the
plaquettes are polarized and SA ¼ 0.
We now return to the topological d.o.f. The topology

induced by imposing periodic boundary conditions on the
two-dimensional lattice is that of a torus. The two non-
plaquette d.o.f. are related to the magnetic flux through the
inside and center of the torus [see Fig. 8(a)]. There is no
preferential choice for the generating algebra of the
topological d.o.f. and the different choices can be related
using plaquette operators. However, given such a choice,
there exist two classes of bipartitions based on whether
exactly one region contains both topological loops
[Fig. 8(d)] or not [Figs. 8(b) and 8(c)]. In the former case,
at least one of the topological loops cannot be expressed as
a nontrivial tensor product. To the extent that one is
comfortable with the idea of separating what appears to
be an atomic d.o.f., the problem can be alleviated by
enlarging the Hilbert space (see, e.g., [6]) or, as will be
shown in Sec. IX, by coupling to matter fields.
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One encounters a similar situation when imposing
periodic boundary conditions in a single direction leading
to a cylindrical topology. The global constraint is not
present, but a topological d.o.f. remains. It is associated
with the magnetic flux through the cylinder.

VIII. 3 + 1 DIMENSIONS

The three-dimensional case is characterized by the
existence of a local magnetic Gauss constraint of a similar
nature as the one in Eq. (65):

Y

C

U□μνðxÞ ¼ 1; ð73Þ

where C represents the faces of an elementary cube. The
constraint is not a gauge constraint since it cannot be
eliminated by gauge fixing. For example, a maximal tree
gauge fixing on a single cube would result in five remaining
dynamic links as shown in Fig. 9, and Eq. (73) would
still hold.
To look at the space of unconstrained d.o.f. we can find a

subset of plaquettes such that no closed surfaces are
formed, a procedure reminiscent of the maximal tree gauge
fixing procedure. One such subset is shown in Fig. 10.
A count of the number of d.o.f. yields Nd:o:f: ¼
2NxNyNz þ NxNy þ NyNz þ NzNx, where Ni is the num-
ber of plaquettes in direction i. Consequently, a dual with
unconstrained d.o.f. would necessarily be both anisotropic
and would have nonlocal terms in the action. The density
matrix can be written in terms of the constrained but gauge-
invariant d.o.f. as it was done in the previous section. The
Hamiltonian takes the following form:

H ¼
X

x;μ

Y

i∈STðx;μÞ
Li
□
− λ

X

x

U□ðxÞ; ð74Þ

where STðx; μÞ (the “staple”) is the set of all plaquettes that
contain the link LμðxÞ.
As it was mentioned earlier, in a Wilsonian 2þ 1

dimensional theory, a time slice would include plaquettes
with a time component, making it a restricted form of a
three dimensional space in which no closed surfaces would
exist, corresponding to only the bottom layer in Fig. 10.
The resulting physical Hilbert space would remain
unconstrained.

IX. COUPLING TO MATTER FIELDS

Matter fields in lattice theories are associated with d.o.f.
that live on the vertices of the lattice. They transform under
a gauge transformation as:

ϕðxÞ → gðxÞϕðxÞ: ð75Þ

This implies a new set of gauge-invariant quantities:

ϕ†ðxÞϕðxÞ → ϕ†ðxÞg†ðxÞgðxÞϕðxÞ ¼ ϕ†ðxÞϕðxÞ: ð76Þ

Additionally, since end points of gauge links transform
in the same way as matter fields, we can also identify
products of the following form as gauge invariant:

ϕ†ðx1Þuμ1ðx1Þ…uμn−1ðxn−1ÞϕðxnÞ
→ ϕ†ðx1Þg†ðx1Þgðx1Þuμ1ðx1Þg†ðx1 þ μ̂1Þ…
× gðxn−2Þuμn−1ðxn−1Þg†ðxn−1 þ μ̂n−1ÞgðxnÞϕðxnÞ; ð77Þ

(a) (b) (c) (d)

FIG. 8. Topological d.o.f. on a torus (a) and various bipartition choices (b), (c), (d). Bipartition boundaries are shown as dashed lines.

FIG. 9. Maximal tree gauge fixing on an elementary cube. The
dotted links are fixed.

FIG. 10. Example of unconstrained Hilbert space in three-
dimensional time slices. The d.o.f. on the red/shaded plaquettes
can be expressed in terms of other d.o.f.
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provided that xi þ μ̂i ¼ xiþ1. In other words, Wilson lines
multiplied with matter fields at the ends are gauge-invariant
quantities. We can employ a slight redefinition of the fields
in order to separate d.o.f. into gauge-dependent and gauge-
independent quantities:

ϕðxÞ ¼ jϕðxÞjvðxÞ ¼ ϕ̃ðxÞvðxÞ; ð78Þ

with vðxÞ being gauge group valued. The fields ϕ̃ðxÞ now
transform trivially under a gauge transformation. Using the
vðxÞ fields, which inherit the transformation properties of
ϕðxÞ, we can introduce gauge-invariant d.o.f. associated
with individual links:

ũμðxÞ ¼ v†ðxÞuμðxÞvðxþ μ̂Þ: ð79Þ

When a product of ũμðxÞ variables is taken over a closed
loop, the vðxÞ fields cancel and we obtain:

Y

ðx;μÞ∈C
ũμðxÞ ¼

Y

ðx;μÞ∈C
uμðxÞ: ð80Þ

The operators that are diagonalized by the vectors jvðxÞi
and juðxÞi generate part of the gauge-invariant algebra
through products of the following form:

ŨμðxÞ ¼ V†ðxÞUμðxÞVðxþ μ̂Þ; ð81Þ

where VðxÞjvðxÞi ¼ vðxÞjvðxÞi and UμðxÞjuμðxÞi¼
uμðxÞjuμðxÞi. The remaining gauge-invariant operators
are KðxÞ and LμðxÞ, which are conjugates to VðxÞ and
UμðxÞ, respectively. Together with ŨμðxÞ and the algebra of
the fields Φ̃ðxÞ, they generate the full gauge-invariant
algebra.
As we did in the case of pure gauge theories, we can

explicitly see the form of the states in the electric basis by
applying products of ŨμðxÞ operators to the vacuum
j0i ¼ P

vðxÞ;uμðxÞ⨂xjvðxÞi⨂x;μjuμðxÞi. Specifically, for a
Z2 gauge group, the gauge-invariant states can be visual-
ized as the set of all superpositions of nonoverlapping
arbitrary length strings. The constraint corresponding to
gauge invariance dictates that each vertex must be in the j−i
state iff there is an odd number of j−i links connected to it.
This can be seen by looking at how a gauge transformation
acts on the state of a vertex and the links connected to it in
the electric basis:

Gjkðx0Þi⊗⨂
x;μ

jlμðxÞi¼Kðx0Þ
Y

x;μ

LμðxÞjkðx0Þi⊗⨂
x;μ

jlμðxÞi

¼ kðx0Þ
Y

x;μ

lμðxÞjkðx0Þi⊗⨂
x;μ

jlμðxÞi;

ð82Þ

where jki and jlii are eigenstates of K and Li with
eigenvalues k and li, respectively, and x, μ represent links
that have one endpoint at x0. The requirement that the
gauge transformation be the identity for physical states
implies that k

Q
ili ¼ 1 or k ¼ Q

ili. Some example gauge-
invariant electric states in small two dimensional lattices are
shown in Fig. 11.
The unconstrained gauge part of the algebra, Ag, is

generated by the LμðxÞ and ŨμðxÞ operators which act on
the Hilbert space of gauge invariant link states Hg. To get
the full unconstrained gauge-invariant algebra, one adds the
algebra of the fields Φ̃,AΦ̃. The choice of d.o.f. on the links
and vertices corresponds to L ¼ 1, V ¼ 1 in Eq. (10). The
commutation relations of the operators in Ag can be
inferred from the commutation relations of the non
gauge-invariant operators:

½LμðxÞ; LνðyÞ� ¼ 0

½ŨμðxÞ; ŨνðyÞ� ¼ 0

½LμðxÞ; ŨνðyÞ� ¼ V†ðyÞ½LμðxÞ; UνðyÞ�Vðyþ ν̂Þ: ð83Þ

The last commutator is zero if ½LμðxÞ; UνðyÞ� ¼ 0, which
is true if x ≠ y orμ ≠ ν. As in the puregauge case, the electric
basis on the full lattice can be built using ŨμðxÞ operators and
the ground state satisfying LμðxÞj0i ¼ j0i, ∀ x, μ:

jeλi ¼
Y

x;μ

Ũ
λx;μ
μ ðxÞj0i; ð84Þ

where λx;μ ∈ f0; 1g. A basis for the full gauge-invariant
Hilbert space of the theory would then be formed by
tensor products of vectors jeλi and basis vectors in the
Hilbert space of the fields Φ̃, allowing us to write
H0 ¼ Hg ⊗ HΦ̃ ¼ ðHg;A ⊗ HΦ̃;AÞ ⊗ ðHg;B ⊗ HΦ̃;BÞ.

X. SURFACE CHARGES

The case of a theory with surface charges is a special case
of coupling to matter fields where matter fields are only
defined on the boundaries of a lattice. We allow for both
dynamic and nondynamic surface charges, but restrict
ourselves to Z2 gauges and two dimensions for simplicity.
We can employ the basis used in the previous section where
we decouple the gauge portion from the matter fields. In the
electric basis, the gauge-invariant states take the form of
loops and strings that open on boundaries. We are con-
cerned with whether strings can be expressed as tensor

FIG. 11. Example electric states on simple matter and gauge
lattices with a Z2 gauge group. The dotted links/vertices are in the
jþi state, while the thick/filled links/vertices are in the j−i state.
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products of vectors in bipartitions of plaquettes. We use the
diagrammatic representation of states since it provides a
more clear picture.
There are two nontrivial situations: bipartitions in which

both regions share some of the lattice boundary and
bipartitions in which one region is entirely in the bulk
of the lattice. In the first case, we seek a tensor product for
strings that cross the boundary between regions once, while
in the second, we are concerned with open strings that cross
the bulk region. The two cases are not exhaustive but
illustrate the Hilbert space factorization where it is less
obvious.
Before proceeding, we note that all open strings along

curves Cb with links in the bulk can be created by acting on
the vacuum with products of gauge-invariant link operators
on the edge Ũi, i ∈ Ce to create a closed curve with Cb and
then acting on the result with all plaquette operators in the
surface enclosed by the curve Ce ∪ Cb. For example:

ð85Þ

For more clarity, we can express operators in a dia-
grammatic form:

ð86Þ

ð87Þ

leading to

ð88Þ

The space of bulk strings exhibits a global symmetry due
to the fact that one can close bulk strings using edge strings
in two ways. This symmetry is associated with the con-
straint

Q
i∈Cedge

Ũi ¼
Q

xŨ□ðxÞ, where Cedge is the set of

links on the edge of the lattice. The constraint can be
rewritten as

Q
i∈C1

e
Ũi

Q
x∈VŨ□ðxÞ ¼

Q
i∈C2

e
Ũi

Q
x∈V̄ Ũ□ðxÞ,

with C1
e ∪ C2

e ¼ Cedge. Symmetries prevent us from remov-
ing this constraint. The tensor product structure arises
naturally from the bulk plaquette algebra and the edge
gauge-invariant link algebra resulting in identities of the
following form:

ð89Þ

with

ð90Þ

ð91Þ

and

ð92Þ

with

ð93Þ

ð94Þ

XI. CONCLUDING REMARKS

The use of the Z2 group throughout the paper was
motivated by its simplicity and the fact that it enables a
useful diagrammatic notation for states. We expect the
extension to other Abelian groups to be relatively
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straightforward. In a Uð1Þ theory, in the link basis jeiϕi
states take the form of periodic functions, whereas electric
states are discrete (see e.g., [18]) and represented by the
Fourier modes of the link basis states. The gauge-invariant
algebra is generated by loop operators U□ðxÞ; U�

□
ðxÞ,

electric operators L ¼ −i∂=∂ϕ with electric eigenstates
jqi ¼ R

eiqϕjeiϕi such that Ljqi ¼ qjqi, and link rotation
operators Lθjeiϕi ¼ jeiðϕþθÞi such that Lθjqi ¼ eiθqjqi.
The requirement of gauge invariance at a vertex in the
electric basis then reads:

jq1q2q3q4i ¼ Gjq1q2q3q4i
¼ Lθ

1L
θ
2L

−θ
3 L−θ

4 jq1q2q3q4i
¼ eiθðq1þq2−q3−q4Þjq1q2q3q4i; ð95Þ

which must be satisfied for all θ, implying
q1 þ q2 − q3 − q4 ¼ 0. In other words, the electric fluxes
are conserved at vertices. Similar to the Z2 theory, such

states can be created by acting on the vacuum with no
electric fluxes with operatorsU□ðxÞwhich raise the electric
flux around a plaquette by one and U�

□
ðxÞ which lower it.

The case of 3þ 1 dimensional theories with periodic
boundary conditions is absent. It is a straightforward
extension of Secs. VII and VIII. Similarly, the Wilsonian
3þ 1 dimensional theory was left out.
The analysis performed in this paper is only valid for

discretized spaces. As shown in [19], the entanglement
entropy is UV divergent. Furthermore, as Witten argues in
[20], Hilbert spaces supported on geometries dense in some
connected space may not be separable precisely because the
UV divergence of the entanglement entropy is a universal
feature not tied to a particular state.
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