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We study nontopological Q-ball solutions of the (3þ 1)-dimensional Friedberg-Lee-Sirlin two-
component model. The limiting case of the vanishing potential term yields an example of hairy Q-balls,
which possess a long-range massless real field. We discuss the properties of these stationary field
configurations and determine their domain of existence. Considering the Friedberg-Lee-Sirlin model, we
present numerical evidence for the existence of spinning axially symmetric Q-balls with different parity. A
solution of this type exists also in the limiting case of vanishing scalar potential. We find that the hairy Q-
balls are classically stable for all range of values of angular frequency.
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I. INTRODUCTION

Q-balls are stationary nontopological solitons,
which may exist in a model with complex scalar fields.
Configurations of this type were introduced in 1976 by
Friedberg et al. in the two-component model with sym-
metry breaking potential [1]; a few years later, Coleman
found another realization of Q-balls considering a single
complex scalar field in a model with a nonrenormalizable
self-interaction potential [2]. In both cases, the global phase
invariance of the scalar field is associated with a conserved
Uð1Þ Noether charge Q; the Q-balls correspond to sta-
tionary points of the total energy functional for a given
value of the charge.
Q-balls attracted a lot of attention because it was

suggested that such configuration may contribute to various
scenarios of the evolution of the early Universe [3–5]. The
Q-balls also can occur in the minimal supersymmetric
generalization of the Standard Model, in which one finds
leptonic and baryonic Q-balls related with conservation of
lepton and baryon number, respectively [6]. Further, it was
argued that these Q-balls may play an essential role in
baryogenesis via the Affleck-Dine mechanism [7]; they
also were considered as candidates for dark matter [8]. Q-
balls may exist in a wide variety of physical systems.
Solutions of that type were constructed in Abelian gauge
models with local Uð1Þ symmetry [9,10], in non-Abelian
gauge theories [1,11,12] and other models. An interesting
realization of the Q-balls exists in condensed matter

systems in which they appear in the Bose-Einstein con-
densate [13] or in the superfluid 3He-B [14].
Spherically symmetric Q-balls exist only within a certain

angular frequency range, which is determined by the
explicit structure of the potential. Notably, in the
Friedberg-Lee-Sirlin model, which describes dynamics of
a real self-interacting scalar field, coupled to a complex
scalar field, the lower critical frequency is zero. Typically,
there are two branches of Q-ball solutions, which are
represented by two curves of the dependencies of the
energy of the configuration on its charge [1]. Solutions are
stable along the lower branch,when theirmass is smaller than
the mass of free charged quanta of scalar excitations. In the
simplest case, the Q-balls are spherically symmetric; how-
ever, there are generalized spinning axially symmetric
solutions with nonzero angular momentum [15,16]. The
energy density of these spinning Q-balls is of toroidal shape.
There are some important differences between the Q-ball

solutions of the Coleman model [2] with a single complex
field and sextic potential and the corresponding solutions of
the renormalizable Friedberg-Lee-Sirlin model [1]. An
interesting feature of Q-balls in the Friedberg-Lee-Sirlin
model is that in 3þ 1 dimensions these localized configu-
rations with finite energy may also exist in the limiting case
of vanishing scalar potential [17]. It was pointed out that
in such a limit the Q-balls are stabilized by the gradient
terms in the energy functional. Further, the corresponding
real scalar component becomes massless; it possesses a
Coulomb-like asymptotic tail.
However, Ref. [17] contains only qualitative discussion

of the corresponding solutions; they were not constructed
explicitly; further, the authors do not study the frequency
dependence of these solitons and their stability.
The main purpose of this work is to construct explicit

examples of stationary solutions of the Friedberg-Lee-Sirlin
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model in the limit of vanishing potential that have not been
studied so far, fully investigate properties of these Q-balls,
and determine their domains of existence. We also consider
spinning configurations with nonzero angular momentum
with both even and odd parity and address the issue of
classical stability of these solutions.

II. SPHERICALLY SYMMETRIC SOLUTIONS

The 3þ 1-dimensional Friedberg-Lee-Sirlin model
describes a real self-interacting scalar field ξ, coupled to
a complex scalar field ϕ,

L ¼ ð∂μξÞ2 þ j∂μϕj2 −m2ξ2jϕj2 −UðξÞ; ð1Þ

where m is the coupling constant. The potential of the real
scalar field is

UðξÞ ¼ μ2ð1 − ξ2Þ2; ð2Þ

thus, ξ → 1 in the vacuum, and the complex field ϕ
becomes massive due to the coupling with its real partner.

Thus, the parameters μ andm correspond to the mass of the
real and complex components, respectively.
Similar to the Coleman model with a nonrenormalizable

sextic potential [2], themodel (1) is invariant under theglobal
Uð1Þ transformations of the complex field ϕ → ϕeiα. The
Noether current, associated with this symmetry, is

jμ ¼ iðϕ∂μϕ
� − ϕ�∂μϕÞ; ∂μjμ ¼ 0; ð3Þ

and the conserved charge is

Q ¼ i
Z

d3xðϕ∂tϕ
� − ϕ�∂tϕÞ: ð4Þ

First, we consider the usual spherically symmetric para-
metrization of the fields

ξ ¼ XðrÞ; ϕ ¼ YðrÞeiωt; ð5Þ

where XðrÞ and YðrÞ are real functions of radial variable
and ω is the frequency of stationary rotation.
Substitution of this ansatz into the stationary energy

functional gives

E ¼
Z

d3xT0
0 ¼ 4π

Z
∞

0

drr2
��

dX
dr

�
2

þ
�
dY
dr

�
2

þ ω2Y2 þ μ2ð1 − X2Þ2 þm2Y2X2

�
; ð6Þ

and the charge of the spherically symmetric Q-ball is

Q ¼ 8πω

Z
∞

0

drr2Y2: ð7Þ

The field equations of the model become

d2X
dr2

þ 2

r
dX
dr

þ 2μ2Xð1 − X2Þ −m2XY2 ¼ 0;

d2Y
dr2

þ 2

r
dY
dr

þ ω2Y −m2X2Y ¼ 0: ð8Þ

Like other Q-ball dynamical equations [1,15,18–20], this
system effectively describes a unit mass pseudoparticle
moving in the two-dimensional plane parametrized by the
“coordinates” XðrÞ, YðrÞ and “time” r, in direction Y in the
effective potential

Ueff ¼ ω2Y2 − μ2ð1 − X2Þ2 −m2Y2X2: ð9Þ

A nontopological soliton solution may exist when the
trivial configuration X ¼ Y ¼ 0 corresponds to a local
maximum of the effective potential. This restriction corre-
sponds to the upper bound on the angular frequency
ωþ ¼ m; the Q-ball continuously approaches perturbative
solutions as ω approaches this critical value [1]. Thus, the

upper bound of the angular frequency of the Q-ball
corresponds to the mass of the complex component m,
and the localized soliton configuration with finite energy
may exist as its real component XðrÞ becomes massless
[17]. Hereafter, for the sake of convenience, we fix m ¼ 1,
without loss of generality. Note that, unlike the Q-balls in
the nonrenormalizable model with a single complex field
and sextic potential [2], there is no lower bound on the
frequency, and the solutions of the model (1) exist for all
nonzero values of the angular frequency ω. As ω decreases,
the characteristic size of the configuration is increasing.
The vacuum boundary conditions on the spacial infinity

are X → 1, Y → 0 as r → ∞, and the condition of
regularity at the origin is

dX
dr

¼ dY
dr

¼ 0; as r → 0:

Imposing the boundary conditions, we can find numerical
solutions of the system of coupled ordinary differential
equations (8). In our calculations, we used the usual
shooting algorithm, based on Dormand-Prince eighth-order
method with an adaptive step size. The relative errors of
calculations are lower than 10−10.
In Fig. 1, we displayed the corresponding solutions at

m ¼ 1 and μ2 ¼ 0.25. The parameter μ yields the mass of
the excitations of the real component X; it approaches the
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FIG. 1. The profiles of the field components of the Friedberg-Lee-SirlinQ-ball configuration are plotted as functions of the compact radial
variable x ¼ r=ð1þ rÞ for some set of values of angular frequency ω at m ¼ 1 and μ2 ¼ 0.25 (upper plots) and μ2 ¼ 0 (bottom plots).

FIG. 2. The energy and the charge of the spherically symmetric Q-balls are shown in units of 16π as functions of the angular frequency
ω at m ¼ 1, μ2 ¼ 0.25 (left), and μ2 ¼ 0 (right).
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vacuum asymptotic value as X ∼ 1 − e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r. Setting

μ ¼ 0 changes the asymptotic behavior; in such a case, the
real massless field XðrÞ decays as [17]

XðrÞ ∼ 1 −
C
r
þOðr−2Þ as r → ∞: ð10Þ

This is a long-range Coulomb asymptotic with a scalar
charge C; see Fig. 1, bottom plots.
The charge and the energy of the Q-balls are given by (6)

and (7), respectively. As the mass of the real component
remains nonzero, the curves of dependency of both the
charge and the mass on the angular frequency exhibit the
typical two-branch behavior; see Fig. 2, left plot. At some
critical value of the frequency ωcr, the energy and the
charge of the configuration are taking minimal nonzero
values; they diverge as ω approaches the upper bound and
in the opposite limit as ω decreases to zero. A decrease of
the mass parameter μ for a fixed value of the frequency ω
yields a decrease of both the energy and the charge of the
Q-ball. Figure 3 exhibits the EðQÞ curves of the configu-
rations at μ2 ¼ 0.25 and in the massless case μ ¼ 0. In
Fig. 3, we also indicate the energy of Q free scalar quanta
E ¼ mQ; this is a straight line separating the stability
region, and the configuration is classically stable below
this line.
Indeed, for μ ≠ 0, there are two branches of EðQÞ curves

with a sharp cusp at ω ¼ ωcr (see Fig. 3, left plot). The
lower in energy branch corresponds to the values of the
frequency ω < ωcr, whereas the upper branch corresponds
to ω > ωcr. As the real component remains massive, the
configurations on the upper branch are unstable [1]. We
observe that a decrease of the mass parameter μ shifts the
critical value ωcr toward the upper limit ωþ.
The situation changes dramatically in the massless limit

μ ¼ 0. The stable branch extends all the way up to the

critical value ωþ ¼ m, and here both components of the
Q-ball approach the corresponding vacuum values, and
both the energy and the charge of the configuration tend to
zero; see Fig. 2. Thus, the hairy Q-balls with the long-range
real scalar component are classically stable for all range of
values of the angular frequency.
Note that the scalar charge C, which corresponds to the

Coulomb asymptotic tail of the hairy Q-ball (10), is not a
constant. The configuration is not rigid; its characteristic
size varies with the angular frequency ω. Indeed, numerical
calculations show that the value of the charge C mono-
tonically decreases, as ω increases; see Fig. 4. However, the
relation C ¼ ffiffiffiffiffiffiffiffiffi

Q=2
p

, which follows from some qualitative
arguments [17], holds only for large Q-balls, i.e., for small
values of the angular frequency ω.

FIG. 3. The energy of the spherically symmetric Q-balls is plotted as a function of the chargeQ atm ¼ 1, μ2 ¼ 0.25 (left), and μ2 ¼ 0
(right). The straight line E ¼ mQ indicates the boundary of the stability region.

FIG. 4. The scalar charge of the Q-balls with massless compo-
nent X is plotted as a function of the frequency ω.
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III. SPINNING SOLUTIONS

A generalization of the fundamental spherically sym-
metric Q-ball can be constructed when we consider spin-
ning axially symmetric configuration [15,16],

ξ ¼ Xðr; θÞ; ϕ ¼ Yðr; θÞeiðωtþnφÞ; ð11Þ

which generalizes the ansatz (5). Here, n ∈ Z is a rota-
tional quantum number; the angular momentum of the

stationary spinning Q-ball is classically quantized
as [15]

J¼
Z

d3xT0
φ¼4πnω

Z
∞

0

Z
π

0

drdθsinθr2Y2¼nQ: ð12Þ

The real functions Xðr; θÞ and Yðr; θÞ depend on the polar
angle θ and radial variable r. The energy of the configu-
ration then reads

E ¼ 2π

Z
π

0

Z
∞

0

sin θr2drdθ

�
X2
r þ Y2

r þ
X2
θ

r2
þ Y2

θ

r2
þ
�
ω2 þ n2

r2sin2θ

�
Y2 þ μ2ð1 − X2Þ2 þm2Y2X2

�
: ð13Þ

The corresponding field equations are

� ∂2

∂r2 þ
2

r
∂
∂rþ

1

r2
∂2

∂θ2 þ
cos θ
r2 sin θ

∂
∂θ þ 2μ2ð1 − X2Þ −m2Y2

�
X ¼ 0

� ∂2

∂r2 þ
2

r
∂
∂rþ

1

r2
∂2

∂θ2 þ
cos θ
r2 sin θ

∂
∂θ −m2X2 þ ω2 −

n2

r2sin2θ

�
Y ¼ 0: ð14Þ

Note that these equations are symmetric with respect to
reflections in the θ ¼ π=2 plane.
To find numerical solutions of these coupled partial

differential equations, we used the software package
CADSOL based on the Newton-Raphson algorithm [21].
The numerical calculations are mainly performed on an
equidistant grid in spherical coordinates r and θ. Typical
grids we used have sizes 70 × 60. As before, we map the
infinite interval of the variable r onto the compact radial
coordinate x ¼ r=r0

1þr=r0
∈ ½0∶1�. Here, r0 is a real scaling

constant, which typically is taken as r0 ¼ 4–6. For spinning
Q-balls, the component Yðr; θÞ must vanish at the origin,
both in the massive and in the massless cases. The
restriction of regularity also yields ∂rXðr; θÞ ¼ 0 as r → 0.
To secure the condition of regularity on the symmetry

axis, we impose there the boundary conditions

∂θXjθ¼0;π ¼ 0; Yjθ¼0;π ¼ 0: ð15Þ

The spinning Q-balls correspond to stationary points of
the action functional; they exist only for a restricted
frequency range. Previously, they were constructed only
for the model with a single complex field and sextic
potential [15,16,22]. A peculiar feature of these Q-balls
is that for a nonzero rotational quantum number n there are
two different solutions with even and odd parity. The
corresponding energy density distribution forms one or
more tori, respectively. Similar to the spherically symmetric
configuration with n ¼ 0, the spinning Q-balls exist for all

range of values of the angular frequency ω ∈ ½0; 1�. The
limit of small Q-balls corresponds to the ω approaching the
upper critical value, given by the mass of the complex
component; in the opposite limit of the small value of
angular frequencies, the spinning Q-ball rapidly expands.
We observe that, similar to the spinning Q-balls in the

single component model [15,16,22], for each value of
integer winding number n there are two types of solutions
possessing different parity, so-called parity-even and
parity-odd Q-balls. Indeed, the equations (14) in the
limiting case of ω2 ∼m2 (small Q-balls) can be linearized.
Then, the second of these equations is reduced to the
standard harmonic equation, and the solutions are associ-
ated with the usual spherical harmonics

Yn
l ðθ;φÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl − nÞ!
ðlþ nÞ!

s
Pn
l ðcos θÞeinφ:

Here, Pn
l ðcos θÞ are the associated Legendre polynomials of

degree l and order n. Thus, the spherically symmetric
fundamental Friedberg-Lee-Sirlin Q-ball corresponds to
the spherical harmonic Y0

0, and there are two spinning
configurations in the sector n ¼ 1, the parity-even solution
Y1
1 and parity-odd solution Y1

2, respectively. Further, this
observation suggests that the equations (14) also support
solutions that correspond to higher-energy angular excita-
tions of the fundamental Q-ball [19].
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In Figs. 6 and 7, we displayed the fields of the spinning
parity-even and parity-odd Q-balls, both in the massive and
massless cases. For parity-even solutions, the spinning
component Yðr; θÞ is maximal in the symmetry plane; as
μ ¼ 0, the massless component Xðr; θÞ is minimal at the
origin, and it decays asymptotically, according to (10) (see
Fig. 6, bottom left plot). If the mass of the Xðr; θÞ
component is nonzero, it decays exponentially, as is seen
in Fig. 6, upper left plot. We also observe that in the latter
case the minimum of this component is shifted to the x–y
plane. The energy density distributions of the rotating even-
parity Q-balls are torus shaped in both cases. However, as
the component Xðr; θÞ is massive, for the same value of the
frequency ω, both the energy and the amplitudes of the
fields are much larger.
Figure 5 exhibits the profiles of the corresponding

positive parity solutions in the symmetry plane θ ¼ π=2
atm ¼ 1, μ2 ¼ 0.25 and for μ ¼ 0 for some set of values of
the angular frequency ω.

The field components of the parity-odd n ¼ 1 Q-ball are
presented in Fig. 7. For these solutions, the spinning
component Yðr; θÞ vanishes in the equatorial plane, while
the real field Xðr; θÞ possess two minima, located sym-
metrically with respect to the x–y plane. The difference
between the massive and massless cases is that, as μ ¼ 0,
the field Xðr; θÞ decays asymptotically as ∼1=r. Further, in
such a case, the minima of this component are located on
the z axis; see Fig. 7, bottom left plot. The energy density
distribution of the parity-odd Q-balls has a double torus
structure. Note that as the real component Xðr; θÞ becomes
massless the characteristic size of the configuration grows,
and the tori are well separated from each other.
Considering the frequency dependence of rotating Q-

balls, we found that it is qualitatively the same as in the case
of the fundamental n ¼ 0 solutions; see Figs. 2 and 3.
In Fig. 8, left plot, we show the charge and the energy of

the parity-even Q-balls as functions of the angular fre-
quency ω. We observe that the solutions exist for all the

FIG. 5. The profiles of the field components of the spinning n ¼ 1 Q-balls with positive parity are plotted as functions of the compact
radial variable x ¼ r=r0

1þr=r0
at r0 ¼ 6, θ ¼ π=2 for some set of values of angular frequency ω at m ¼ 1 and μ2 ¼ 0.25 (upper plots) and

μ2 ¼ 0 (bottom plots).
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allowed range of values of ω restricted from above by the
mass of the complex field m ¼ 1. As ω approaches this
upper limit, the amplitude of both components is decreas-
ing. As the real component Xðr; θÞ remains massive, it
decays exponentially. In such a case, we observe the same
usual pattern as in the model with single component
complex field and a polynomial self-interaction potential
[15,16,22]. Both the energy and the charge of the configu-
ration of these Q-balls are minimal at some critical value
ωcr, and the curve EðQÞ shows the same cusp structure as
displayed in Fig. 3, left plot. Thus, there are two branches
of EðQÞ curves; the existence of two different solutions
with the same value of charge Q indicates that the more
energetic configurations on the upper branch are unstable.
The situation is different for the spinning Q-balls with

massless long-range component Xðr; θÞ. As for the spheri-
cally symmetric n ¼ 0 configurations, both the charge and
the energy monotonically depend on ω; see Fig. 3, right
plot. Thus, there is no critical frequency, and only one
branch of classically stable solutions exists for all the range
of values of ω. The scalar charge C of the spinning Q-balls
with massless hair also depends on the angular frequency.
Numerical calculations show that dependency of its value
per rotational quantum number n is identical with the
dependency of the scalar charge of the spherically sym-
metric hairy Q-ball displayed in Fig. 4.

IV. CONCLUSIONS

The objective of this work was to investigate properties
of new Q-ball solutions with long-range massless scalar
hair, the existence of which was conjectured in the pioneer-
ing study [17].
As the real scalar component of the Friedberg-Lee-Sirlin

Q-ball remains massive, these solutions exhibit the

same general pattern as the corresponding nontopological
solitons in the nonrenormalizable model with polynomial
potential. The solutions exist only in a finite frequency
range, which is restricted from above by the value of the
mass of the complex component. We also found that there
are spinning generalizations of the fundamental spherically
symmetric Friedberg-Lee-Sirlin Q-ball with both even and
odd parity. The large Q-balls correspond the small values of
the angular frequency; they tend to the corresponding states
of the perturbative spectrum as ω approaches the upper
limiting value.
However, this pattern drastically changes, as the potential

is vanishing. The vacuum expectation value of the real
massless scalar field still remains nonzero; this component
possesses a long-range Coulomb asymptotic tail. Such a
hairy Q-ball has an additional scalar charge C, which
corresponds to the weak long-range attractive interaction
between the solitons.On the other hand, there is a short-range
Yukawa interaction mediated by the complex component of
the Friedberg-Lee-Sirlin Q-ball. If the interacting Q-balls are
in phase, this interaction is attractive, while if they are out of
phase it is repulsive; thus, the resulting pattern of interaction
between the Q-balls is rather complicated.
We found that the branch structure of the hairy Q-balls is

different from the case in which the real component remains
massive. Notably, both the energy and the charge of the
configuration decreasesmonotonically asω increases. There
is no second unstable branch of solutions; the hairy Q-balls
with the long-range real scalar component are classically
stable within all the range of values of the angular frequency.
The work here should be taken further by considering

gauged spinning Q-balls with a massless real scalar compo-
nent; another interesting direction is to investigate properties
of self-gravitating spinning Q-balls without potential. We
hope we can address these issues in our future work.

FIG. 8. The energy and the charge of the spinning parity-even Q-balls are shown in units of 8π as functions of the angular frequency ω
at m ¼ 1, μ2 ¼ 0.25 (left), and μ2 ¼ 0 (right).
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