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We present the construction of a new family of coherent states for quantum theories of connections
obtained following the polymer quantization. The realization of these coherent states is based on the notion
of graph change, in particular the one induced by the quantum dynamics in Yang-Mills and gravity
quantum theories. Using a Fock-like canonical structure that we introduce, we derive the new coherent
states that we call the graph coherent states. These states take the form of an infinite superposition of basis
network states with different graphs. We further discuss the properties of such states and certain extensions
of the proposed construction.
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I. INTRODUCTION

The polymer quantization is a quantization procedure
developed in the context of background independent
approaches to quantum field theories. The idea of back-
ground independence arises from classical theories of
gravity, where it is understood that gravity is geometry
encoded in a metric. Carrying this notion to the quantum
realm requires giving up the standard Fock quantization,
and reformulating theories in terms of variables (holono-
mies) which do not rely on any specific background
geometry. The polymer quantization was first developed
for gravity and gauge theories [1–3], which eventually gave
rise to the loop quantum gravity approach [4–8]. The loop
quantum gravity program provides a framework where
gravity and the fields of the standard model are quantized in
a background independent fashion. The appellation poly-
mer quantization comes from the fact that the basic
quantum excitations of gravity and gauge fields manifest
as one dimensional excitations, that is polymerlike
excitations.
In the Hamiltonian formulation of background indepen-

dent theories, the dynamics is encoded in constraints. In
this context, the polymer quantization is a canonical
quantization where the constraints must be implemented
and solved in the quantum theory. Difficulties arise,
however, in the implementation and solving of the so-
called quantum scalar or Hamiltonian constraint. Beside the

ambiguities that are encountered in the implementation, the
usual difficulty in solving a quantum Hamiltonian con-
straint is related to the complexity of the action of the
Hamiltonian operator on the kinematical Hilbert space. In
fact, in the case of gravity and gauge theories, the full
kernel of the Hamiltonian operator, which would eventually
form the physical Hilbert space, is yet unknown. This
translates into several obstacles in the investigation and
understanding of the quantum dynamics as well as the
extraction of physical predictions from the theory. In such
situation, it seems that other methods such as approxima-
tion schemes, gauge fixing [9,10] or deparametrization
[11–16], provide more manageable frameworks, though not
complete, where certain quantum gravity aspects can be
studied.
There are several approximation schemes that one could

rely on. Namely, perturbative methods [17], semi-classical
analysis [18], coherent states [19–26], effective dynamics
for restricted sectors [27], or controlled truncations of the
quantum degrees of freedom (d.o.f.) [28–30]. Each of these
approaches contributed significantly in improving the
understanding of the dynamics and the symmetric sectors
in polymer quantum theories. Deparametrization on the
other hand allows to fully quantize a sector of the classical
phase space and obtain a quantum theory with a physical
Hilbert space and a physical Hamiltonian. The physical
Hamiltonian operator generates evolution with respect to a
matter clock, and the question of solving the constraint
equation is entirely avoided. Nevertheless it remains that
any physical prediction in a deparametrized theory relies on
the choice of interesting physical states. In the case where
the Hamiltonian operator is graph changing,1 one would
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1For readers unfamiliar with the concept, it is explained in
Sec. III.
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need states whose whatever desired properties do not
get spoiled by the graph changing character of the
Hamiltonian. It is within these perspectives that the work
exposed in the present article has been developed. The
subject of this article is the introduction of new coherent
states for polymer quantum theories of connections with
compact internal gauge group, which include gravity
and Yang-Mills fields. We call these new states graph
coherent states, as they exhibit a certain compatibility with
a particular graph change, and they take the form of a
superposition of basis states with different graphs.
The organization of the article is as follows: in the

second section, we present some preliminaries concerning
polymer quantum theories of connections and the dynamics
of gravity and Yang-Mills theories. Then, in the third
section, we develop our construction of graph coherent
states. We start with the general setup, then we detail the
construction in the simplest example of Maxwell theory,
and later we present the full and general construction. In the
fourth section, we discuss certain aspects of the construc-
tion and possible generalizations and interpretations.
Finally, we conclude with a summary and some outlooks.

II. PRELIMINARIES

A. Kinematics of quantum theories of connections

The polymer canonical quantization [3–8] of a connec-
tion theory in four spacetime dimensions with a compact
gauge group G leads to a kinematical Hilbert space

H ≔ L2ðAG; dμAL;GÞ; ð1Þ

that is the space of square integrable functions on the
configuration space AG of G connections with the
Ashtekar-Lewandowski measure μAL;G [31]. The space
H is isomorphic to the completion of the space of
cylindrical functions, on the space of G connections AG,
with respect to the inner product defined by the Ashtekar-
Lewandowski measure [5].
The space H admits a basis whose elements we call

G-colored networks (the spin networks in the case of
gravity). A G-colored network function is a function
labeled by a (cylindrical equivalence class of an oriented
embedded) graph Γ, a set of irreducible representations of
the group G (excluding the trivial representations) assigned
to the edges of Γ, and a set of G tensors assigned to the
vertices. The space H can be then decomposed as an
orthogonal sum,

H ¼ ⨁
Γ
HΓ; ð2Þ

where Γ ranges over all cylindrical equivalence classes of
nonoriented graphs [5], and HΓ is the Hilbert space
spanned by the G-colored networks with graph Γ.

As we mentioned in the introduction, since the
quantization is background independent, the canonical
dynamics of the theory is encoded in constraints. In
the context of connection theories there are three
constraints: the Gauss constraint imposing invariance
with respect to the local gauge group transformations,
the vector or spatial diffeomorphism constraint imposing
invariance with respect to spatial diffeomorphisms, and
the Hamiltonian constraint generating time gauge trans-
formations. The first two are implemented and solved in
the quantum theory through group averaging procedures
[3], while the later can be implemented as an operator,
but the quantum constraint equation it defines is difficult
to solve due to the complicated action of the
Hamiltonian operator on a G-colored network function.
In the context of Yang-Mills and Einstein gravity
theories, an aspect of this action is the graph change,
that is, given a G-colored network function, the
Hamiltonian operator maps this state to a superposition
of G-colored network functions with different graphs. In
the following, we expose the details of the Hamiltonian
operators in Yang-Mills and Einstein gravity theories,
and we focus on a specific proposal [32] which induces
a particular graph change. This particular graph change
is the one we use in the construction of the graph
coherent states in Sec. III.

B. The quantum dynamics of Yang-Mills
and Einstein gravity theories

In the case of Yang-Mills coupled to Einstein
gravity theories, the Hamiltonian constraint H takes the
form [33]

HðNÞ ≔
Z
Σ
d3xN

�
s

2kβ2

�
ϵijkEa

i E
b
jF

k
abffiffiffi

q
p þ ð1 − sβ2Þ ffiffiffi

q
p

R

�

þ qab
2g2

ffiffiffi
q

p ðEa
i E

b
i þ Ba

i B
b
i Þ
�
; ð3Þ

where Σ is the spacelike hypersurface, N is the lapse
function, s is the spacetime signature, κ ¼ 8πGN with GN
being Newton’s constant, β is the Immirzi-Barbero
parameter, E is the gravitational densitized triad con-
jugate to the Ashtekar-Barbero SUð2Þ connection A, F is
the curvature of A, q is the determinant of the three
metric qab on Σ, g is the coupling constant of the Yang-
Mills field, E is the electric field conjugate to the Yang-
Mills vector potential A, and Ba

i ¼ 1
2
ϵabcFi

bc with F being
the curvature of A.
The quantization of the Hamiltonian functional (3)

can be performed following a regularization procedure.
There are couple of established regularizations of the
Hamiltonian functional [32–37], one of the main
differences between them is the regularization of the
curvatures of the connections of gravity and Yang-Mills
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fields. In this work, we consider the regularization
proposed in [32,37], where the holonomy replacing
the curvature of the connection is taken along a closed
oriented loop at a vertex of a preexisting graph, which
does not overlap with any edge of that graph. We call
such loop a “special loop.” However, for the purposes of
the construction of the new states we are presenting
here, we modify slightly that regularization. More
precisely, in order to attach the loop in a diffeomor-
phism invariant fashion, one uses a prescription which
associates a special loop to each pair of edges [32,37].
We modify this prescription in the way that if two edges
eI and eJ belong to the same germ ½eI� at a vertex v,
then given a third independent edge eK , the special
loops associated to the pairs ðeIeKÞ and ðeJeKÞ are
diffeomorphically equivalent. This in particular implies
a change in the tangentiality conditions proposed in
[32,37], the new condition we choose simply states that
a special loop αIJ associated to a pair ðeIeJÞ at a vertex
v is tangent to the two edges eI and eJ up to the first
order only. The end point of this modification is that
the new prescription guarantees that the special loops
with the same orientation, and associated to pairs of
edges which belong to the same pair of germs, are all
diffeomorphically equivalent.
The Hamiltonian operator of [32] is defined not on

the kinematical Hilbert space H ≔ HG ⊗ HM, HG and
HM being the kinematical Hilbert spaces of gravity and
Yang-Mills field, respectively, [each defined as in (1)],
but on the vertex Hilbert space [38]. The vertex Hilbert
space Hvtx is the Hilbert space of partial solutions to the
vector constraints. Namely, given two subspaces HΓ

G ⊂
HG and HΓ

M ⊂ HM obtained from the decomposition
(2), the elements of Hvtx are obtained by averaging the
elements of each of the subspaces HΓ

G and HΓ
M with

respect to all smooth diffeomorphisms which act trivi-
ally in the set of vertices VertðΓÞ of the graph Γ. The
scalar product is naturally induced from the space H
through a rigging map [38]. The vertex Hilbert space
also decomposes into a tensor product of a gravity and
matter Hilbert spaces

Hvtx ¼ Hvtx
G ⊗ Hvtx

M ¼ ⨁
½Γ�;½Γ�

H½Γ�
G ⊗ H½Γ�

M; ð4Þ

where now ½Γ� and [Γ] stand for the equivalence classes
of graphs defined with respect to the action of all
smooth diffeomorphisms which act trivially in the sets
of vertices VertðΓÞ and VertðΓÞ, respectively. In what
follows we drop the brackets in the notation of those
classes.
The final expression of the Hamiltonian operator corre-

sponding to the functional (3) is given through its action on

a network function Ψ ¼ ψ
Γ
G ⊗ ψΓ

M ∈ HΓ
G ⊗ HΓ

M as

ĤðNÞΨ ¼
�X

v∈Γ
v∈Γ

NðvÞĤv
G þ NðvÞĤv

M

�
ψ
Γ
G ⊗ ψΓ

M; ð5Þ

where

Ĥv
G ≔ R̂ðPÞ þQGðvÞ

X
I;J;K

ϵIJKðTrðlÞN ½hαIJhsK ½h−1sK ; V̂ðPÞ��

þ TrðlÞN ½hαIJhsK ½h−1sK ; V̂ðPÞ��†Þ; ð6Þ

and

Ĥv
M ≔

1

2g2
X
I;J

Θ̂IΘ̂JðPi;IPi;J þQMðvÞXk;IXk;JÞ; ð7Þ

with

Xk;I ≔
X
K;L

ϵIKLðTrðlÞN ½τkhαKL � þ TrðlÞN ½τkhαKL
�†Þ: ð8Þ

The capital indices in the (ordered) sums run through all
the edges meeting at the vertices v and v, and TrN stands for
the normalized trace (TrN ½τiτj� ¼ δij). R̂ðPÞ and V̂ðPÞ are
the curvature [36] and volume [39] operators, respectively,
and they both depend only on the gravity fluxes P. Θ̂I
are gravitational operators [33] acting exclusively on the
space Hvtx

G . h and h are, respectively, gravity and Yang-
Mills holonomy operators chosen in fixed representations2

labeled by l and l. P are the Yang-Mills fluxes, QGðvÞ and
QMðvÞ are determined factors which partially depend
on the valence of the vertices, and finally ϵIJK ¼
sgnðdet½_eI; _eJ; _eK�Þ where _e stands for the tangent vector
of the edge e at the vertex v. In (6) and (8), we imposed a
choice of ordering of the basic operators, and a choice of
symmetrization of the summed terms using the adjoint
operators denoted by †, it is the adjoint action on the space
HΓA

v , and it is not to be confused with the adjoint element in
the group.
Due to the presence of the holonomy operators hα and

hα, the operators Ĥ
v
G and Ĥ

v
M are graph changing. Meaning

they map the graphs they act on to other graphs with a
different distribution of special loops at the vertices.
Schematically, their successive action on a given vertex
v of a graph Γ gives

2Since the construction of the Hamiltonian operator and its
properties, as well as the construction of the coherent states we
are presenting here do not depend on the specific choice of the
representations of those holonomies, the representations are left
arbitrary and are only assumed to be fixed.
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ð9Þ

Thanks to the fact that special loops associated to the same
pair of germs are diffeomorphically equivalent, the special
loops depicted on the fourth diagram on the right hand-side
of (9) are indistinguishable. They are indistinguishable in
the sense that no physical observable could distinguish
between special loops associated to the same pair of germs.
This is a key property that we use in our construction of the
graph coherent states.

III. GRAPH COHERENT STATES IN QUANTUM
THEORIES OF CONNECTIONS

In this section, we will present a method to construct a
family of coherent states in a generic Hilbert spaceHvtx of a
polymer quantum theory of connections with arbitrary
compact gauge groupG (e.g.,Hvtx

G orHvtx
M). These coherent

states are constructed such that they take the form of a
superposition of G-colored networks with different graphs.
Though inspired from a particular dynamics, the construc-
tion is purely kinematical in the sense that it is realized on
the Hilbert spaceHvtx independently of the dynamics of the
theory, and in principle it can be applied with a different
graph change as we discuss briefly in Sec. IV.
Our construction is based on the observation that the

action of the Hamiltonian, using the special loop regulari-
zation mentioned above, provides a decomposition of the
Hilbert space Hvtx into separable subspaces, which are
stable under the action of the Hamiltonian operator (5).
As we will see in detail later, the separability of these
subspaces induces an isomorphism between each of these
subspaces and the Hilbert space of a given finite number of
quantum harmonic oscillators. This isomorphism is a
crucial step in order to obtain the canonical structure that
we use to construct the graph coherent states. Given one of
these stable subspaces, one takes the colored graph3 of a
single arbitrary element of the G-colored network basis
spanning this space, and by removing all the special loops
in this colored graph, one obtains what we call the ancestor
graph. It then follows that the colored graphs of all the
elements of the G-colored network basis in this space can
be generated by attaching special loops at the vertices of
the ancestor graph. Hence one can label the stable sub-
spaces by the associated ancestor graphs fΓAg, i.e., colored
graphs with no special loops, and we denote them HΓA

.
We then have

Hvtx ¼ ⨁
ΓA

HΓA
: ð10Þ

Furthermore, considering the local nature of the attachment
of the special loops, i.e., it concerns each vertex of the
graph separately, one can focus the analysis on a single
vertex of a given ancestor graph, the generalization to the
full graph is then straightforward. In other words, once an
ancestor graph ΓA is fixed, the only d.o.f. left are the
numbers of loops associated to the pairs of germs at
each vertex, and the G tensors at the vertices. Hence we
can write

HΓA ≅ ⊗
v∈ΓA

HΓA

v ; ð11Þ

meaning that the spaceHΓA
for a given ΓA is isomorphic to

the tensor product of spacesHΓA

v each associated to a vertex
v of ΓA. The spaces HΓA

v are constructed as follows. Given
an ancestor graph ΓA, each pair of germs ð½eI�; ½eJ�Þ
meeting at a vertex v of ΓA defines two oriented wedges
ωv
IJ and ωv

JI . The graph of any colored network in HΓA
is

given by the ancestor graph ΓA and a number of special
loops associated to the oriented wedges of ΓA. The special
loops are oriented following the orientation of the oriented
wedges they are associated to [32,37]. Note, however, that
depending on the gauge group G, the chosen operator to
induce the graph change, and the graph ΓA, the states in
HΓA

which differ by the orientation of a special loop may
span the same subspaces of HΓA

, either because of a
specific relation between the operators creating the special
loops with opposite orientations, or because of the sym-
metries of the graph ΓA. For instance, in Maxwell theory
and in absence of symmetries of the graph, one can add
special loops at a wedge ωv

IJ by acting with the operator

TrðlÞN ½τkhαIJ �, present in the Hamiltonian operator (7).
Because the gauge group is Uð1Þ, we have that

TrðlÞN ½τkhαIJ � ¼ hðlÞαIJ ; ð12Þ

and since hðlÞαJI ¼ ðhðlÞαIJÞ−1, we conclude that the operators

TrðlÞN ½τkhαIJ � and TrðlÞN ½τkhαJI � are linearly independent.
Hence the oriented wedges ωv

IJ and ωv
JI are not equivalent,

and each pair of germs provides two independent oriented
wedges.

3Definition: a colored graph is a graph with irreducible
representations assigned to its edges.
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As we explain in Sec. III B, if the gauge group is SUð2Þ
and we choose the operator TrðlÞN ½τkhα� to induce the graph
change, then each pair of germs defines two equivalent
oriented wedges from the perspective of special loops. In
this case, it is enough to pick one orientation for the special
loops and drop the second one. When it is present, this
freedom in the choice of the independent wedge, associated
to a pair of germs, is absorbed into the freedom of choosing
a canonical structure associated to the pair of germs, we
particularly illustrate this fact in the example of (47).
We denote the set of all independent oriented wedges

(which from now on we call simply wedges) at a vertex v
byWv and its cardinality wv. To each vertex v we associate
the spaces fSΓA

v;ngn∈N, such that each SΓA

v;n is the space of
states which describe the distribution of n special loops at
v, i.e., the association of n special loops to the different
wedges of ΓA at v. Each space SΓA

v;n is spanned by an
orthonormal basis whose elements are labeled by wv
integers, which sum up to the total number n and
correspond to the numbers of special loops associated to
the wedges of ΓA at v. Then to each space SΓA

v;n is associated
a space IΓA

v;n of admissibleG tensors, those are theG tensors
which couple the holonomies meeting at the vertex v.
Finally, we define the space HΓA

v as

HΓA

v ≔ ⨁
∞

n¼0

HΓA

v;n ≔ ⨁
∞

n¼0

SΓA

v;n ⊗ IΓA

v;n: ð13Þ

It is then clear that the isomorphism in (11) holds.
Let us again point out that, thanks to the prescription of

special loops in the regularization procedure, the special
loops associated to a wedge of a graph are diffeomorph-
ically equivalent, and hence indistinguishable from the
perspective of physical observables.
For clarity we gradually develop the details of our

construction: we first start with the simplest example of
an Abelian gauge group, namely Maxwell theory. Then
we extend to the general case with arbitrary compact
gauge group.

A. Loop quantum Maxwell theory

In Maxwell theory the internal gauge group is Uð1Þ.
Having an abelian gauge group implies that the only d.o.f.
left to characterize the basis states in the Hilbert spaceHΓA

are the numbers of indistinguishable special loops asso-
ciated to the wedges of ΓA. Using the decomposition (11),
one then has

HΓA

v ≅ ⨁
∞

n¼0

SΓA

v;n: ð14Þ

Knowing the structure of the spaces SΓA

v;n, and using the
indistinguishableness property of the special loops, it

naturally follows that the space HΓA

v is isomorphic to the
space of a multidimensional (or a finite number of)
quantum harmonic oscillators, where to each wedge ωi ∈
Wv (i ∈ f1;…; wvg) of ΓA at v is associated a space F i of
a quantum harmonic oscillator,

HΓA

v ≅ ⊗
wv

i¼1
F i: ð15Þ

In this picture, a wedge with a certain number of special
loops corresponds to an energy level for a single quantum
harmonic oscillator.
Given the spaces F i, we introduce a canonical structure

on them through annihilation and creation operators
fai; a†i g satisfying

∀ ωi;ωj ∈ Wv; ½ai; aj� ¼ ½a†i ; a†j � ¼ 0; ½ai; a†j � ¼ δijI:

ð16Þ

The vacuum state in each F i is defined as

aij0ii ¼ 0; ð17Þ

and we take

aijnii ¼ ffiffiffiffi
ni

p jni − 1i; a†i jnii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p
jni þ 1i:

ð18Þ

From the perspective of the Hilbert spaceHΓA

v , the vacuum
state in each F i represents the wedge ωi with no special
loops, and the state jnii represents ωi with n special loops
attached to it.
We then define the (normalized) canonical coherent

states, i.e., eigenvectors of the annihilation operators:

∀ ωi ∈ Wv; aijzii ¼ zijzii;

jzii ¼ ezia
†
i−z̄iai j0ii ¼ e

−jzj2
2

X
ni

zniiffiffiffiffiffiffi
ni!

p jnii; zi ∈ C: ð19Þ

We call a state jzii a graph coherent wedge associated
to the wedge ωi. We then introduce the coherent states
fjZvig as

jZvi ≔ ⊗
wv

i¼1
jzii; Zv ≔ fzig ∈ Cwv ; ð20Þ

where each state jzii is a graph coherent wedge associated
to the wedge ωi. We call the states fjZvigZv∈Cwv graph
coherent vertices and they form an over-complete basis of
the spaceHΓA

v . By extension, through a tensor product over
the vertices of ΓA,
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jZΓAi ≔ ⊗
v∈ΓA

jZvi; ZΓA ∈ ⊗
v∈ΓA

Cwv ; ð21Þ

one obtains an over-complete basis of graph coherent
states fjZΓAig in the space HΓA

.
These graph coherent states are by construction coherent

with respect to the standard combinations of sum and
difference of the creation and annihilation operators. One
could however investigate further the coherence properties
of such states with respect to other operators of interest,
namely the operators involved in the Hamiltonian operator
Ĥv

M (7). We first start by expressing these operators in
terms of the annihilation and creation operators associated
to the wedges of the ancestor graph at a vertex v. Simple
calculations lead to the following identifications

PI ¼ jII; ð22Þ

TrðlÞN ½τhαKL
� ¼ hðlÞαKL ¼ a†

K̃ L̃
VK̃ L̃; ð23Þ

TrðlÞN ½τhαKL �† ¼ ½hðlÞαKL �† ¼ VK̃ L̃aK̃ L̃: ð24Þ

where each index I selects an edge I with color jI at the
vertex v of an arbitrary graph Γ with ΓA as ancestor graph,

and a pair of indices ðKLÞ selects a wedge ωKL of Γ at v. In
contrast, the tilded indices K̃, L̃ label the germs of the
ancestor graph ΓA at v, and the identification between K
and K̃ holds if and only if eK ∈ ½e�K̃ . The operator I is the
identity operator on the spaceHΓA

v and the operator VK̃ L̃ is
defined as

VK̃ L̃ ≔ ðN K̃ L̃ þ IÞ−1=2 ¼ ðaK̃ L̃a
†
K̃ L̃

Þ−1=2;

i:e: VK̃ L̃jniK̃ L̃ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jniK̃ L̃; ð25Þ

where N is the number operator. We remind the reader
again that the dagger symbol † in (24) stands for the adjoint
action on the space HΓA

v , and it is not to be confused
with the adjoint element in the group. Denoting by Ĥv;IJ

M
the operator

Ĥv;IJ
M ≔ PIPJ þQMðvÞXIXJ; ð26Þ

which is the part of the Yang-Mills Hamiltonian (7)
associated to a wedge of the graph Γ at the vertex v,
one obtains the following expression in terms of the new
operators

Ĥv;IJ
M ¼ jIjJI þQMðvÞ

X
M̃;Ñ;K̃;L̃

ϵĨ M̃ ÑϵJ̃ K̃ L̃ða†
M̃ Ñ

VM̃ Ñ þ VM̃ ÑaM̃ ÑÞða†K̃ L̃
VK̃ L̃ þ VK̃ L̃aK̃ L̃Þ; ð27Þ

such that the pair ðeIeJÞ belongs to the wedge ωĨ J̃.
Given the correspondence between the multiple operators in the expression of Ĥv;IJ

M and the canonical operators, we
easily check the coherence properties of the graph coherent states defined in (21). We explicitly compute the variance of
these operators, these are given as follows (for clarity we drop the indices labeling the vertices and wedges)

hðPIPJÞ2i − hPIPJi2 ¼ hðVaa†VÞ2i − hVaa†Vi2 ¼ 0 ð28Þ

hða†VVaÞ2i − ha†VVai2 ¼ e−jzj2ð1 − e−jzj2Þ ð29Þ

hðVaÞ2i − hVai2 ¼ z2e−jzj2
�X∞

n¼0

jzj2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ 2Þ!p − e−jzj2

�X∞
n¼0

jzj2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ 1Þ!p

�
2
�

ð30Þ

hða†VÞ2i − ha†Vi2 ¼ z̄2e−jzj2
�X∞

n¼0

jzj2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ 2Þ!p − e−jzj2

�X∞
n¼0

jzj2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ 1Þ!p

�
2
�
; ð31Þ

and we estimate their relative variance Δrð:Þ ≔ jhð:Þ2i=h:i2 − 1j, obtaining

ΔrðPIPJÞ ¼ 0; ΔrðVaa†VÞ ¼ 0; Δrða†VVaÞ ¼
1

ejzj2 − 1
⟶
jzj≫1

0; ð32Þ

and
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ΔrðVaÞ ¼ Δrða†VÞ ¼ 1 −
ejzj2

P∞
n¼0

jzj2nffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ2Þ!

p
�P∞

n¼0
jzj2nffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ1Þ!

p
�2

⟶
jzj≫1

0: ð33Þ

Additionally, we consider the operator

PĨ ≔
X
I∈Ĩ

jPIj; ð34Þ

where again Ĩ stands for a germ of the ancestor graph. This operator could be interpreted as the (absolute) flux in the
direction of the germ Ĩ. In terms of the canonical operators it becomes

PĨ ¼
X
I∈Ĩ

jII þ l
X
K̃

N Ĩ K̃ þN K̃ Ĩ ; ð35Þ

where I runs through the edges of the ancestor graph belonging to the germ Ĩ, and K̃ runs through the germs of the ancestor
graph meeting at the same vertex as Ĩ. The variance and the relative variance are estimated as

hP2
Ĩ
i − hPĨi2 ¼ l2

X
K̃

jzĨ K̃j2 þ jzK̃ Ĩj2; ΔrðPĨÞ⟶jzĨ K̃ j;jzK̃ Ĩ j≫1
0: ð36Þ

The point of considering the operator PĨ is to show in an
example that despite the fact that the canonical operators
are directly linked to specific holonomy operators, one
can construct operators depending only on fluxes and yet
recover certain coherence properties with respect to the
graph coherent states we introduced above. The reason why
such properties may arise is that an operator such as PĨ
describes a more global information about a given graph
than just a flux operator associated to a single edge. In the
case of PĨ , this global information is captured by the
abstract sum over the edges of the same germ, which
translates into the appearance of the number operators in
the expression of PĨ , and thus exhibiting coherence proper-
ties with respect to the graph coherent states. Note that such
abstract sums appear in operators which, for instance, are
obtained from the quantization of nonlocal (in space)
functionals on the classical phase space, and they usually
approximate the classical integrals over spacelike regions.
The Hamiltonian constraint and the volume of a spacelike
region are examples of such functionals, which are pro-
moted to operators with abstract sums over the vertices and
edges. This fact sets the graph coherent states as promising

states to probe the semi-classical properties of interesting
physical observables through superposition of graphs.
In the following we present the general construction

extending to arbitrary compact gauge group.

B. Graph coherent states (II): Beyond
Abelian gauge groups

The generalization of the above construction to a
connection theory with a non-Abelian compact gauge
group G translates to taking into account the nontrivial
G tensor spaces at the vertices of a colored graph. Namely,
one has to incorporate the spaces IΓA

v;n in the implementa-

tion of a canonical structure on the spacesHΓA ⊂ Hvtx, and
consequently in the definition of the graph coherent states.

1. Generalized annihilation and creation operators

Given a vertex v of an ancestor graph ΓA, we consider a
set of closed operators faigi∈Wv

on HΓA

v , each operator
associated to a wedge ωi at v, which satisfy

∀ i ∈ Wv; aiðHΓA

v;0Þ ¼ f0g and ∀ n ≥ 1; aiðHΓA

v;nÞ ⊂ HΓA

v;n−1: ð37Þ

In order for the set of operators faig and their adjoints fa†i g to form a canonical structure on the Hilbert spaceHΓA

v , that is

∀ i; j ∈ Wv; ½ai; aj� ¼ ½a†i ; a†j � ¼ 0; ½ai; aj†� ¼ δijIHΓA
v
; ð38Þ

one must have a stronger condition than (37), namely
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∀ i ∈ Wv; aiðHΓA

v;0Þ ¼ f0g and ∀ n ≥ 1; aiðHΓA

v;nÞ ¼ HΓA

v;n−1: ð39Þ

This implies that the operators a†i are injective maps on HΓA

v and, since the spaces HΓA

v;n are of different dimensions, we
have that

∀ i ∈ Wv; ∀ n ≥ 1; dim ðKer½ai� ∩ HΓA

v;nÞ ¼ dimðHΓA

v;nÞ − dimðHΓA

v;n−1Þ ≠ 0: ð40Þ

We now provide in what follows a method to obtain such canonical structure. For simplicity, we focus the analysis on two
wedges ω1 and ω2 at v, to each is associated a pair of operators fai; a†i gi¼1;2 satisfying (39). The construction is
straightforwardly extendable to an arbitrary number of wedges at the vertex. Each space HΓA

v;n (13) can be decomposed as

HΓA

v;n ¼ ⨁
n

n1¼0

⨁
n−n1

n2¼0

HΓA

v;n1;n2 : ð41Þ

where n1, n2 are the numbers of loops at the wedgeω1 andω2, respectively. Denoting the normalized elements ofHΓA

v;n1;n2 by

jιαn1;n2i, ιαn1;n2 ∈ IΓA

v;n1þn2 , it follows from (39) that

∀ n1; n2 ∈ N; ∀ ιαn1;n2 ∈ IΓA

v;n1þn2 ; ∃ !k1 ≤ n1; ∃ !k2 ≤ n2∶

ak11 jιαn1;n2i ≠ 0; ∀p1 > k1; a
p1

1 jιαn1;n2i ¼ 0;

ak22 jιαn1;n2i ≠ 0; ∀p2 > k2; a
p2

2 jιαn1;n2i ¼ 0: ð42Þ

We then denote our states as jιαn1;n2;m1;m2
i (m1 ≤ n1 and m2 ≤ n2) in order to encode the property (42), which is now

expressed as

∀ n1; n2 ∈ N; ∀m1 ≤ n1; ∀m2 ≤ n2; ∀ ιαn1;n2;m1;m2
∈ IΓA

v;n1þn2∶

an1−m1

1 jιαn1;n2;m1;m2
i ≠ 0; an1−m1þ1

1 jιαn1;n2;m1;m2
i ¼ 0;

an2−m2

2 jιαn1;n2;m1;m2
i ≠ 0; an2−m2þ1

2 jιαn1;n2;m1;m2
i ¼ 0: ð43Þ

In other words, m1 and m2 denote the number of loops, at the wedges ω1 and ω2, respectively, in the vacuum state from
which the state jιαn1;n2;m1;m2

i is obtained. We further discuss the notion of vacuum states in the part III B 2.
We then choose to define the operators fai; a†i g through their actions on the states jιαn1;n2;m1;m2

i as follows

∀ n1; n2 ∈ N; ∀m1 ≤ n1; ∀m2 ≤ n2; ∀ ιαn1;n2;m1;m2
∈ IΓA

v;n1þn2∶

a1jιαn1;n2;m1;m2
i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 −m1

p jιβn1−1;n2;m1;m2
i; ð44aÞ

a†1jιαn1;n2;m1;m2
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 −m1 þ 1

p
jιγn1þ1;n2;m1;m2

i; ð44bÞ

a2jιαn1;n2;m1;m2
i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 −m2

p jιδnþ1;n2−1;m1;m2
i; ð44cÞ

a†2jιαn1;n2;m1;m2
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 −m2 þ 1

p
jισnþ1;n2þ1;m1;m2

i; ð44dÞ

with chosen ιβn1−1;n2;m1;m2
, ιδnþ1;n2−1;m1;m2

∈ IΓA

v;n1þn2−1, and ιγn1þ1;n2;m1;m2
, ισnþ1;n2þ1;m1;m2

∈ IΓA

v;n1þn2þ1. Equations (44) define

the operators fai; a†i g using a choice of the mappings between the G tensors ι. These equations guarantee that

∀ i ∈ f1; 2g; ½ai; ai†� ¼ I
HΓA

v
: ð45Þ

However, the mappings between the G tensors ι defining the actions of a1 and a2 are not independent, they are constrained
by the condition

MEHDI ASSANIOUSSI PHYS. REV. D 98, 045016 (2018)

045016-8



½a1; a2� ¼ 0: ð46Þ

Such consistent mappings exist but the choice is not
unique. This means that there is a freedom in choosing
the canonical operators fai; a†i g, encoded in the choice of
theG tensors mapping. Hence one could adjust their choice
of fai; a†i g to the coherence properties of the induced graph
coherent states that one would like to recover for a preferred
set of operators (observables). Since we are particularly
interested in the Hamiltonian operator, an example of such
consistent mappings is obtained by choosing the operators
fai; a†i g as

∀ i ∈ f1; 2g; Viai ≔ TrðlÞN ½τkhαi �†; Vi ≔ ðaiai†Þ−1=2;
ð47Þ

similarly to (23). Equations (47) fix the choice of the
mappings between G tensors, for which one can express
explicitly the matrix elements in a given basis, and they
determine a set of annihilation and creation operators
fai; a†i g satisfying (38).
Coming back to the remark at the beginning of Sec. III

about the equivalent orientations for a pair of germs:
if for instance the gauge group is SUð2Þ and we choose

the operator TrðlÞN ½τkhα� to induce the graph change, we
would have that two wedges ωKL and ωLK which have
opposite orientation are in fact equivalent from the per-
spective of special loops, and the associated annihilation
operators would not be independent. Explicitly, we would
choose

VKLaKL ≔ TrðlÞN ½τkhαKL
�†; ð48Þ

VLKaLK ≔ TrðlÞN ½τkhαLK �†; ð49Þ

however, for SUð2Þ we have that

TrðlÞN ½τkhαKL
�† ¼ −TrðlÞN ½τkhαLK �†: ð50Þ

This means that in this case the two orientations are
not independent, because the change of orientation gen-
erates a simple multiplication by a phase. Considering
both wedges would induce a redundancy in the construc-
tion of the canonical structure at the vertex. Therefore,
only one orientation should be considered when associating
a canonical structure to such pair of germs ð½eK�½eL�Þ, and
the second orientation would correspond to a different
but not independent choice of canonical structure at the
wedge.
Generalizing to an arbitrary number of wedges at the

vertex v is straightforward: given any state jιαfnig;fmigi
(i ∈ Wv) in HΓA

v , Eqs. (44) become

∀ j ∈ Wv;

ajjιαfnig;fmigi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj −mj

p jιβfn1;…;nj−1;…;nwvg;fmigi; ð51aÞ

a†j jιαfnig;fmigi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj −mj þ 1

p jιγfn1;…;njþ1;…;nwvg;fmigi;
ð51bÞ

with a consistent choice of mappings between theG tensors
ι. We call any pair of annihilation and creation operators
fai; a†i g satisfying (39) and (51) generalized annihilation
and creation operators. Also, a complete set of generalized
annihilation and creation operators, that is to each wedge of
the vertex v is associated a pair of generalized annihilation
and creation operators, will be called a consistent canonical
structure at v. The example (23) in Maxwell theory
presented earlier corresponds to a (gauge invariant) choice
of consistent canonical structure, while the choice in (47) is
an example of a (non gauge invariant) consistent canonical
structure in the non-Abelian case. Another example is given
in Sec. IV.

2. Graph coherent states in non-Abelian theories

As pointed out in (40), given a consistent canonical
structure at a vertex v, the kernels of generalized annihi-
lation operators are separable infinite dimensional Hilbert
spaces and they do not coincide, similarly to the case of a
multidimensional harmonic oscillator. However, unlike the
harmonic oscillator, due to the presence of the tensorial
structure at the vertices, one does not have a unique vacuum
state. Namely, using the above notation, the solution to the
system

∀ i ∈ Wv; aijιαfnig;fmigi ¼ 0; ð52Þ

is not unique. As a consequence of (44), such states have
necessarily fnig ¼ fmig and can simply be denoted
j0αv;fmigi. By construction the states with no special loops

satisfy (52), but also for each distribution of special loops at
a vertex, there exists at least one G tensor such that the
corresponding state satisfies (52). Given a vacuum state at
v, one can generate a subspace ofHΓA

v by successive action
of generalized creation operators, which is isomorphic to
the space of a multidimensional quantum harmonic oscil-
lator. To obtain the entire space HΓA

v one has to sum all the
vector spaces generated from all vacuum states selected by
the chosen canonical structure. We denote the space of
these vacuum states KvðfaigÞ.
Naturally, each choice of consistent canonical struc-

ture produces an overcomplete set of coherent states,
the generalized graph coherent vertices. These states
fjZvigv∈ΓA are defined as eigenvectors of the generalized
annihilation operators,
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∀ v ∈ ΓA; ∀ i ∈ Wv;

aijZvi ¼ zijZvi; Zv ≔ fzig ∈ Cwv ; ð53Þ

and can be obtained from the vacuum states selected by the
canonical structure:

∀ jZvi;

∃ !j0αv;fmigi ∈ KvðfaigÞ∶ jZvi ¼
Ywv

i¼1

ezia
†
i−z̄iai j0αv;fmigi:

ð54Þ
Hence, we denote them as jZv; f0αv;fmiggi. Therefore, the
generalized graph coherent states are obtained as

jZΓA ; 0ΓAi ≔ ⊗
v∈ΓA

jZv; f0αv;fmiggi; ð55Þ

they are labeled by a colored ancestor graph ΓA, a set of
complex numbers Zv at each vertex of ΓA, these are the
eigenvalues of the generalized annihilation operators, and a
set of selected vacuum states, one at each vertex.
Taking the example in (47), one finds that, for the

generalized graph coherent states obtained with this choice
of canonical structure, the results for the variance and the
relative variance computed in Maxwell case [from (28) to
(33)] hold in the non-Abelian case, independently of the
gauge group G and the choice of vacuum states.
In the following section, we discuss some aspects of the

construction and its possible extensions and ramifications.

IV. DISCUSSION

A. Gauge invariance

In the general construction, we presented in Sec. III B,
the canonical structure is obtained in the non gauge
invariant Hilbert space Hvtx. Also, in the example given
by (47), the generalized annihilation operators are not
gauge invariant; therefore, the graph coherent states they
induce would not be gauge invariant. There is, however, no
obstacle in building G gauge invariant coherent states, one
has to simply choose a gauge invariant consistent canonical
structure and restrict the G tensors to intertwiners (gauge
invariant tensors). An example of such structure is obtained
by defining the generalized annihilation operators as

∀ i ∈ Wv; Viai ≔ TrðlÞN ½hαi �†: ð56Þ

Such choice provides gauge invariant vacuum states and
one can use (54) and (55) to generate the gauge invariant
graph coherent states.

B. Gravity and Yang-Mills

As we mentioned earlier, the construction is independent
of the dynamics of the theory. The graph change considered

is indeed the one dictated by the dynamics of the polymer
Yang-Mills as well as Einstein gravity, however the con-
struction does not refer to any dynamics, only a specific
graph change. Therefore the graph coherent states can be
obtained in the context of any connection theory with a
compact gauge group quantized following the polymer
quantization, such as Yang-Mills and Einstein gravity.
However, since gravity Hamiltonian combines holonomies
and fluxes in a nonlinear fashion (6), we expect that one has
to make a more elaborate choice of consistent canonical
structure, other than (47), in order to induce coherence
properties of the Hamiltonian operator of gravity with
respect to the generated graph coherent states. This will be
investigated in future works.

C. Beyond the special loops

The construction of graph coherent states presented in
this article is tied to the graph change induced by the
Hamiltonian operators (6) and (7) with the special loop
regularization. This particular graph change allowed the
decomposition of the Hilbert space Hvtx into stable
separable subspaces, each with a structure which mimics
the one of a multidimensional quantum harmonic oscillator.
The additional tensorial structure at the vertices of a colored
graph is manifest through the G tensors mappings and the
presence of infinitely many, but countable, vacuum states.
However, this construction can in principle be extended
to other graph changes. The main property that a graph
change should abide, in order to realize the construction of
graph coherent states, is to be able to induce a decom-
position of the Hilbert space into stable separable sub-
spaces, such that each of them is isomorphic to a space of a
multidimensional quantum harmonic oscillator.

D. Graph coherent states and coarse graining

In [40], the authors introduce new states called the loopy
spin (SUð2Þ-colored) networks. These states represent a
coarse graining of the spin network states through enriching
the tensorial structure at each vertex with abstract closed
loops attached to it. The structure of the space of such
coarse states, in the case of a bosonic statistics for the loops,
is very similar to the structure of the spaces HΓA

v defined
above. However, in our case the space is still the Hilbert
space of the full quantum theory and the loops are
associated to the wedges of a graph. The canonical structure
that we defined is, though similar, very different from the
one induced on the space of loopy spin networks. Hence the
graph coherent states that we introduced take the form of
different basis states superposition, and carry an entirely
different interpretation than the one of a canonical coherent
state on the space of loopy networks. Nevertheless, the
similarities between the structures of the spaces suggest
that there is perhaps a possibility to join the two frame-
works in the direction of inducing a coarse grained

MEHDI ASSANIOUSSI PHYS. REV. D 98, 045016 (2018)

045016-10



dynamics for the loopy spin networks. This is to be
investigated in future works.

V. SUMMARY AND OUTLOOK

In this article, we introduced a new family of coherent
states on the Hilbert space of a polymer quantum theory of
connections with an arbitrary compact gauge group G.
These states take the form of a superposition of basis
network states with different graphs, hence the appellation
“graph coherent states.” Inspired from the quantum dynam-
ics of Yang-Mills and gravity, the notion of a graph change
lies at the core of the construction. This one starts by
introducing a consistent canonical structure on the stable
subspaces of the graph change, generating a Fock-like
structure similar to that of a multidimensional quantum
harmonic oscillator, but with additional d.o.f. that are the G
tensors (or intertwiners on the gauge invariant space). The
canonical structure consists of generalized canonical anni-
hilation and creation operators, which encode mappings
between G tensors and a set of vacuum states. The graph
coherent states are then given as eigenvectors of the
generalized annihilation operators. A set of complete
coherent states is not unique, as there is some freedom
in the choice of the canonical structure encoded in the
choice of consistent mappings between G tensors.
In addition to the standard coherence with respect to the

canonical operators, particular graph coherent states can
exhibit coherence properties with respect to operators
inducing the specific graph change, such as the ones

involved in the Hamiltonian operators in Yang-Mills or
gravity theories, but also with respect to operators depend-
ing only on fluxes, when these describe a more global
information concerning the graphs [e.g., the operator in
(34)]. Taking into account the freedom in the choice of the
canonical structure, one could build graph coherent states
more adapted to the operators that one would like to
investigate. In particular, one could hope to gain more
insight about the behavior of the quantum dynamics with
graph changing Hamiltonian operators, since the spectrum
of such operators is yet inaccessible.
Finally, there are many avenues which can be explored in

the context of those graph coherent states. Namely, the
possible link to a notion of coarse graining, e.g., the loopy
spin networks [40]; the realization of the construction for
other graph changes; the derivation of an effective dynam-
ics in a certain sector captured by a subset of the graph
coherent states; and a new perspective on the semi-classical
limit and the continuum limit. We leave these questions for
future research.

ACKNOWLEDGMENTS

The author thanks Ilkka Mäkinen, Jerzy Lewandowski,
Etera Livine, Christian Fleischhack and Daniel Siemssen
for fruitful discussions, clarifications and comments. This
work was supported by the Grant No. 2011/02/A/ST2/
00300 of the Polish Narodowe Centrum Nauki (NCN) and
the Project No. BA 4966/1-1 of the German Research
Foundation (DFG).

[1] A. Ashtekar and C. J. Isham, Representations of the hol-
onomy algebras of gravity and non-Abelian gauge theories,
Classical Quantum Gravity 9, 1433 (1992).

[2] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao, and T.
Thiemann, A manifestly gauge invariant approach to quan-
tum theories of gauge fields, in Geometry of Constrained
Dynamical Systems, pp. 60–86, http://www.cambridge.org/
gb/academic/subjects/mathematics/mathematical-physics/
geometry-constrained-dynamical-systems.

[3] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão, and
T. Thiemann, Quantization of diffeomorphism invariant
theories of connections with local degrees of freedom,
J. Math. Phys. (N.Y.) 36, 6456 (1995).

[4] R. Gambini and J. Pullin, Loops, Knots, Gauge Theories
and Quantum Gravity (Cambridge University Press,
Cambridge, England, 1996).

[5] A. Ashtekar and J. Lewandowski, Background indepen-
dent quantum gravity: A status report, Classical Quantum
Gravity 21, R53 (2004).

[6] C. Rovelli, Quantum Gravity, Cambridge Monographs on
Mathematical Physics (Cambridge University Press,
Cambridge, England, 2004).

[7] T. Thiemann,ModernCanonical QuantumGeneral Relativity
(Cambridge University Press, Cambridge, England, 2008).

[8] M. Han, W. Huang, and Y. Ma, Fundamental structure of
loop quantum gravity, Int. J. Mod. Phys. D 16, 1397 (2007).

[9] N. Bodendorfer, Quantum reduction to Bianchi I models
in loop quantum gravity, Phys. Rev. D 91, 081502 (2015).

[10] N. Bodendorfer, J. Lewandowski, and J. wieewski, A
quantum reduction to spherical symmetry in loop quantum
gravity, Phys. Lett. B 747, 18 (2015).

[11] K. V. Kuchar and C. G. Torre, Gaussian reference fluid and
interpretation of quantum geometrodynamics, Phys. Rev. D
43, 419 (1991).

[12] K. V. Kuchar and C. G. Torre, The harmonic gauge in
canonical gravity, Phys. Rev. D 44, 3116 (1991).

[13] C. Rovelli and L. Smolin, The Physical Hamiltonian in
Nonperturbative Quantum Gravity, Phys. Rev. Lett. 72, 446
(1994).

[14] K. V. Kuchar and J. D. Romano, Gravitational constraints
which generate a lie algebra, Phys. Rev. D 51, 5579 (1995).

[15] J. D. Brown and K. V. Kuchar, Dust as a standard of space
and time in canonical quantum gravity, Phys. Rev. D 51,
5600 (1995).

POLYMER QUANTIZATION OF CONNECTION THEORIES: … PHYS. REV. D 98, 045016 (2018)

045016-11

https://doi.org/10.1088/0264-9381/9/6/004
http://www.cambridge.org/gb/academic/subjects/mathematics/mathematical-physics/geometry-constrained-dynamical-systems
http://www.cambridge.org/gb/academic/subjects/mathematics/mathematical-physics/geometry-constrained-dynamical-systems
http://www.cambridge.org/gb/academic/subjects/mathematics/mathematical-physics/geometry-constrained-dynamical-systems
http://www.cambridge.org/gb/academic/subjects/mathematics/mathematical-physics/geometry-constrained-dynamical-systems
http://www.cambridge.org/gb/academic/subjects/mathematics/mathematical-physics/geometry-constrained-dynamical-systems
https://doi.org/10.1063/1.531252
https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1142/S0218271807010894
https://doi.org/10.1103/PhysRevD.91.081502
https://doi.org/10.1016/j.physletb.2015.05.040
https://doi.org/10.1103/PhysRevD.43.419
https://doi.org/10.1103/PhysRevD.43.419
https://doi.org/10.1103/PhysRevD.44.3116
https://doi.org/10.1103/PhysRevLett.72.446
https://doi.org/10.1103/PhysRevLett.72.446
https://doi.org/10.1103/PhysRevD.51.5579
https://doi.org/10.1103/PhysRevD.51.5600
https://doi.org/10.1103/PhysRevD.51.5600


[16] K. Giesel and T. Thiemann, Scalar material reference
systems and loop quantum gravity, Classical Quantum
Gravity 32, 135015 (2015).

[17] M. Assanioussi, J. Lewandowski, and I. Mäkinen, Time
evolution in deparametrized models of loop quantum
gravity, Phys. Rev. D 96, 024043 (2017).

[18] K. Giesel and T. Thiemann, Algebraic quantum gravity
(AQG). II. Semiclassical analysis, Classical Quantum
Gravity 24, 2499 (2007).

[19] T. Thiemann, Gauge field theory coherent states (GCS):
1. General properties, Classical Quantum Gravity 18, 2025
(2001).

[20] T. Thiemann and O. Winkler, Gauge field theory coherent
states (GCS). 2. Peakedness properties, Classical Quantum
Gravity 18, 2561 (2001).

[21] T. Thiemann and O. Winkler, Gauge field theory coherent
states (GCS): 3. Ehrenfest theorems, Classical Quantum
Gravity 18, 4629 (2001).

[22] T. Thiemann, Complexifier coherent states for quantum
general relativity, Classical Quantum Gravity 23, 2063
(2006).

[23] H. Sahlmann, T. Thiemann, and O. Winkler, Coherent states
for canonical quantum general relativity and the infinite
tensor product extension, Nucl. Phys. B606, 401 (2001).

[24] E. R. Livine and S. Speziale, A new spinfoam vertex for
quantum gravity, Phys. Rev. D 76, 084028 (2007).

[25] E. Alesci, A. Dapor, J. Lewandowski, I. Mäkinen, and J.
Sikorski, Coherent state operators in loop quantum gravity,
Phys. Rev. D 92, 104023 (2015).

[26] E. Alesci, J. Lewandowski, and I. Mäkinen, Coherent
3j-symbol representation for the loop quantum gravity
intertwiner space, Phys. Rev. D 94, 084028 (2016).

[27] A. Dapor and K. Liegener, Cosmological effective
Hamiltonian from full loop quantum gravity dynamics,
arXiv:1706.09833.

[28] E. Alesci and F. Cianfrani, A new perspective on cosmology
in loop quantum gravity, Eur. Phys. Lett. 104, 10001 (2013).

[29] E. Alesci and F. Cianfrani, Quantum-reduced loop gravity:
Cosmology, Phys. Rev. D 87, 083521 (2013).

[30] E. Alesci, F. Cianfrani, and C. Rovelli, Quantum-reduced
loop-gravity: Relation with the full theory, Phys. Rev. D 88,
104001 (2013).

[31] A. Ashtekar and J. Lewandowski, Representation theory of
analytic holonomy C* algebras, in Knots and Quantum
Gravity (Oxford University Press, New York, 1994).

[32] M. Assanioussi, J. Lewandowski, and I. Mäkinen,
New scalar constraint operator for loop quantum gravity,
Phys. Rev. D 92, 044042 (2015).

[33] T. Thiemann, QSD 5: Quantum gravity as the natural
regulator of matter quantum field theories, Classical Quan-
tum Gravity 15, 1281 (1998).

[34] T. Thiemann, Quantum spin dynamics (QSD), Classical
Quantum Gravity 15, 839 (1998).

[35] T. Thiemann, Quantum spin dynamics (QSD): II, Classical
Quantum Gravity 15, 875 (1998).

[36] E. Alesci, M. Assanioussi, and J. Lewandowski, Curvature
operator for loop quantum gravity, Phys. Rev. D 89, 124017
(2014).

[37] E. Alesci, M. Assanioussi, J. Lewandowski, and I. Mäkinen,
Hamiltonian operator for loop quantum gravity coupled to a
scalar field, Phys. Rev. D 91, 124067 (2015).

[38] J. Lewandowski and H. Sahlmann, Symmetric scalar con-
straint for loop quantum gravity, Phys. Rev. D 91, 044022
(2015).

[39] A. Ashtekar and J. Lewandowski, Quantum theory of
geometry. 2. Volume operators, Adv. Theor. Math. Phys.
1, 388 (1997).

[40] C. Charles and E. R. Livine, The Fock space of loopy spin
networks for quantum gravity, Gen. Relativ. Gravit. 48, 113
(2016).

MEHDI ASSANIOUSSI PHYS. REV. D 98, 045016 (2018)

045016-12

https://doi.org/10.1088/0264-9381/32/13/135015
https://doi.org/10.1088/0264-9381/32/13/135015
https://doi.org/10.1103/PhysRevD.96.024043
https://doi.org/10.1088/0264-9381/24/10/004
https://doi.org/10.1088/0264-9381/24/10/004
https://doi.org/10.1088/0264-9381/18/11/304
https://doi.org/10.1088/0264-9381/18/11/304
https://doi.org/10.1088/0264-9381/18/14/301
https://doi.org/10.1088/0264-9381/18/14/301
https://doi.org/10.1088/0264-9381/18/21/315
https://doi.org/10.1088/0264-9381/18/21/315
https://doi.org/10.1088/0264-9381/23/6/013
https://doi.org/10.1088/0264-9381/23/6/013
https://doi.org/10.1016/S0550-3213(01)00226-7
https://doi.org/10.1103/PhysRevD.76.084028
https://doi.org/10.1103/PhysRevD.92.104023
https://doi.org/10.1103/PhysRevD.94.084028
http://arXiv.org/abs/1706.09833
https://doi.org/10.1209/0295-5075/104/10001
https://doi.org/10.1103/PhysRevD.87.083521
https://doi.org/10.1103/PhysRevD.88.104001
https://doi.org/10.1103/PhysRevD.88.104001
https://doi.org/10.1103/PhysRevD.92.044042
https://doi.org/10.1088/0264-9381/15/5/012
https://doi.org/10.1088/0264-9381/15/5/012
https://doi.org/10.1088/0264-9381/15/4/011
https://doi.org/10.1088/0264-9381/15/4/011
https://doi.org/10.1088/0264-9381/15/4/012
https://doi.org/10.1088/0264-9381/15/4/012
https://doi.org/10.1103/PhysRevD.89.124017
https://doi.org/10.1103/PhysRevD.89.124017
https://doi.org/10.1103/PhysRevD.91.124067
https://doi.org/10.1103/PhysRevD.91.044022
https://doi.org/10.1103/PhysRevD.91.044022
https://doi.org/10.4310/ATMP.1997.v1.n2.a8
https://doi.org/10.4310/ATMP.1997.v1.n2.a8
https://doi.org/10.1007/s10714-016-2107-5
https://doi.org/10.1007/s10714-016-2107-5

