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We consider a scalar field model with a gϕ4
4 interaction and compute the mass correction at next-to-

leading order in a large-N expansion to study the summability of the perturbative series. It is already known
that at zero temperature this model has a singularity in the Borel plane (a “renormalon”). We find that a
small increase in temperature adds two countable sets both with an infinite number of renormalons. For one
of the sets the position of the poles is thermal independent and the residue is thermal dependent. In the other
one both the position of poles and the residues are thermal dependent. However, if we consider the model
at extremely high temperatures, such that a dimensional reduction takes place, one observes that all the
renormalons disappear and the model becomes Borel summable.
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I. INTRODUCTION

The understanding of strongly coupled systems remains
one of the major challenges in particle physics and requires
the knowledge of the nonperturbative regime of quantum
chromodynamics (QCD), the currently accepted theory of
strong interactions.
Also, in the realm of condensed matter physics, systems

involving strongly coupled particles (fermions, for in-
stance) fall, in principle, outside the scope of perturbation
theory. However, apart from some simple models, non-
perturbative solutions are very hard to be found, which led
along the years to attempts to rely in some way on
perturbative methods (valid in general for weak couplings)
to get some results in strong-coupling regimes [1–6].
It is broadly discussed in the literature whether non-

perturbative solutions in field theory can or cannot be
recovered from a perturbative expansion. In any case, a
procedure is needed to make sense out of the perturbative
series. In fact, often the perturbative expansions are
asymptotic rather than convergent. Actually, we remember
that the perturbative series can be viewed just as a
representation of the exact solution and if we want to

obtain information about the nonperturbative solution from
its perturbative representation some summation technique
must be implemented. [1–6]
One of the most employed of these procedures is to

investigate, after perturbative renormalization has been
performed, the so-called Borel summability of a theory,
for a brief introduction see Refs. [7,8] and for a complete
review on the subject see Ref. [9]. If we start with an
asymptotic series, its Borel transform defines a new series
that can be convergent. The representation of the non-
perturbative result can be obtained by an inverse Borel
transform, essentially a Laplace transform, which requires a
contour integration in the complex Borel plane in order to be
properly defined. This procedure allows one to gain access to
the correct nonperturbative solution in many situations [3].
More precisely: if we take a theory characterized by an
already perturbatively renormalized coupling constant
g and consider a given quantity FðgÞ given by a formal
series (perhaps asymptotically divergent) in g, FðgÞ ¼P

nang
n; define its Borel transform BðF; bÞ as BðF; bÞ ¼P

nanb
n=n! and the inverse Borel transform as

F̃ðgÞ ¼ 1=g
R
∞
0 dbe−b=gBðF; bÞ. It can be easily verified

that F̃ðgÞ reproduces formally the original series FðgÞ. The
interesting point is that even if FðgÞ is divergent the series
BðF; bÞ may converge and in this case the inverse Borel
transform F̃ðgÞ defines a function of g which can be
considered in some sense as the sum of the original divergent
series FðgÞ. This “mathematical phenomenon” is named
Borel summability and is a way of giving a meaning to
divergent perturbative series. However, for the inverse Borel
transform to be well defined, the absence of singularities at
least on the positive real axis of the Borel plane b is required.
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We emphasize that we are working with a model in which
the perturbative renormalization of the coupling constant has
already been performed, in the spirit of Ref. [10,11]. In the
above quoted references, by starting with a perturbatively
renormalized QFT there can be singularities on the positive
real axis of the Borel plane that obstruct the Borel resumma-
tion of the perturbation theory. These singularities, in the case
of non-asymptotically free theories like λϕ4

4 and QED4 are
called ultraviolet (UV) renormalons.
The study of renormalons is also important from a

phenomenological perspective, as one needs, for instance,
to know the solution at the nonperturbative level to obtain
an estimate of the heavy-quark mass [12,13].
In the context of IR renormalons that arise in the context

of asymptotically free theories, it has been a subject of
recent investigation to consider compactified theories such
as non-Abelian SU(N) gauge theories onR3 × S1 [14] and
the CPN−1 nonlinear sigma model on R1 × S1 [4,15]. The
interest of considering a finite spatial extent L or thermal
dependence β ¼ 1=T arises from the fact that for smallL or
large T a weakly coupled regime is observed due to
asymptotic freedom [16,17]. A careful study of renorma-
lons for an SUðNÞ gauge theory has been made in
Ref. [14]. In it the absence of renormalons is discussed
when one introduces a finite small length L. However, in
the context of non-asymptotically free theories, it is not yet
clear how the renormalon phenomenon is influenced by
the presence of a finite temperature or finite extension.
In the present article, we investigate the behavior of a

scalar field model with OðNÞ symmetry in four dimen-
sions. Our main concern is the careful investigation of the
renormalon poles and residues at next-to-leading order in
the large-N expansion, as presented in Sec. II. This 1=N-
expansion allows to resum a class of diagrams (usually
called ring diagrams or necklaces) that generates the
renormalon contribution. Following recent literature, we
investigate the role of a compactification parameter, here
taken as introducing a temperature dependence. First, we
review in Sec. III the behavior at zero temperature and
find the existence of two renormalons. In Sec. IV, we
observe that at small temperatures the system develops a
countable set with an infinite number of renormalons that
can be separated into two classes: renormalons without
thermal poles but that can have thermal residues and
renormalons with thermal poles. In Sec. V we consider an
extreme increase in temperature, which is related to a
dimensional reduction, and obtain that it implies the
disappearance of renormalons. We summarize our con-
clusions in Sec. VI.

II. SCALAR FIELD MODEL AND RESUMMATION

We are mainly interested in computing corrections to the
field mass in a scalar theory with coupling ðg=NÞðϕiϕiÞ2, at
which i ¼ 1;…; N. The full propagator G is given by

G ¼ G0

X∞
k¼0

ðΣG0Þk ≡ G0

1 − ΣG0

; ð1Þ

where Σ is the sum of all 1PI (one-particle irreducible)
diagrams built with the free propagator G0. Or, if we
establish Σ using the full propagator G (a recurrence
relation) then, to avoid double counting, it is necessary
to consider just the 2PI diagrams. We use a set of 2PI
diagrams known as necklace or ring diagrams as illustrated
in Fig. 1. This set is the leading order contribution in the
1=N expansion, any other diagram will contribute only at
next to leading order in 1=N [18] and is then consistently
ignored as a subdominant behavior at this order.
Therefore, at an unspecified spacetime dimension D a

necklace with (k − 1)-pearls is given by RkðpÞ,

RkðpÞ ¼−
g
N

Z
dDl
ð2πÞD

1

ðp− lÞ2þM2

�
−

g
2N

ðNBðlÞÞ
�
k−1

;

ð2Þ
where

BðlÞ ¼
Z

dDq
ð2πÞD

1

q2 þM2

1

ðqþ lÞ2 þM2
ð3Þ

stands for each pearl [1,18].
Thus, by taking into account necklaces with all numbers

of pearls we obtain the full correction

Σ ¼
X∞
k¼1

RkðpÞ: ð4Þ

The subsequent analysis of this expression intends to verify
whether the series representation is or is not Borel sum-
mable. This is entirely dependent on the behavior of RkðpÞ
with respect to the summation index k.
Now that we have introduced the general idea, let us

investigate the thermal dependence in detail. By making a
compactification in imaginary time we introduce the
inverse temperature β ¼ 1=T. With this, the expression
for each pearl is modified to

Bðl;ωmÞ ¼
1

β

X
n∈Z

Z
dD−1q
ð2πÞD−1

1

q2 þ ω2
n þM2

×
1

ðqþ lÞ2 þ ðωn − ωmÞ2 þM2
; ð5Þ

FIG. 1. Sumover the class of necklace diagrams. The casewithout
any pearl is the usual “tadpole” (first diagram), the special case with
just one pearl is the usual “sunset” diagram (second diagram). Each
vertex contributes a factor g=N and each “pearl” a factorN; therefore
the whole series has the same order in the 1=N expansion.
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where ωn ¼ 2πnT is the frequency related to the (D − 1)-
dimensional momentum q, while the necklaces become

Rkðp;ωoÞ ¼
ð−gÞk
2k−1Nβ

X
m∈Z

Z
dD−1l
ð2πÞD−1

×
Bk−1ðl;ωmÞ

ðp − lÞ2 þ ðωo − ωmÞ2 þM2
; ð6Þ

where ωm and ωo are the frequencies related, respectively,
to the loop momentum l and the external momentum p.
Then, Eq. (5) can be treated by using the Feynman

parametrization, integrating over the momenta q and
identifying the infinite sum as an Epstein-Hurwitz zeta
function ZX2ðβ; νÞ defined by

ZX2ðβ; νÞ ¼
X
m∈Z

1

ðω2
m þ X2Þν : ð7Þ

We now perform the analytic expansion of the Epstein-
Hurwitz zeta function to whole complex ν plane [19],
which allows us to rewrite Eq. (5) as

Bðl;ωmÞ ¼
Γð2−D

2
Þ

ð4πÞD2
Z

1

0

dz½M2þðl2þω2
mÞzð1− zÞ�−2þD

2

þ 1

ð2πÞD2
X
n∈N⋆

Z
1

0

dz
ðnβÞ2−D

2 cos ½2πnmð1− zÞ�
½M2þðl2þω2

mÞzð1− zÞ�2−
D
2

2

×K2−D
2

h
nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þðl2þω2

mÞzð1− zÞ
q i

; ð8Þ

where KνðxÞ is the modified Bessel function of the
second kind.
Considering the case where D ¼ 4 − 2ε, we get

Bðl;ωmÞ¼B0ðl;ωmÞþBβðl;ωmÞ

¼ ΓðεÞ
ð4πÞ2

Z
1

0

dzf1− ε ln ½M2þðl2þω2
mÞzð1− zÞ�g

þ 1

ð2πÞ2
X
n∈N⋆

Z
1

0

dzcos ½2πnmð1− zÞ�

×K0

h
nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þðl2þω2

mÞzð1− zÞ
q i

: ð9Þ

The temperature-independent component B0 is standard
and well known [18],

B0ðl;ωmÞ ¼ −
1

ð4π2Þ

8>><
>>:ln

M2

Λ2
− 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

l2 þ ω2
m

s

× ln

2
641þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 M2

l2þω2
m

q
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 M2

l2þω2
m

q
3
75
9>>=
>>;: ð10Þ

For high values of the momentum lwe have the asymptotic
expression

B0ðl;ωmÞ ∼ −
1

ð4π2Þ ln
l2 þ ω2

m þM2

M2
: ð11Þ

However, we do not have a solution for the term Bβ for all
temperatures. In Secs. IVand V we respectively investigate
the regimes of low temperatures and extremely high
temperatures.

III. A FIRST GLANCE: RENORMALON AT T = 0

In this section we consider the special case of zero
temperature. In this situation the only contribution to the
pearl diagram comes from the B0 component. To obtain a
treatable expression to the necklace diagrams, we consider
the expansion for high values of the momentum l, Eq. (11),
at zero temperature

Bðl;ωmÞ ∼T¼0 −
1

ð4πÞ2 ln
l2 þM2

M2
: ð12Þ

At this point we recall that the standard approximation
is to consider the leading behavior in the momentum
l, that is, lnðl2 þM2Þ ≈ lnl2. Here, we avoid this
particular approximation and explore the consequences
of keeping the exact term lnðl2 þM2Þ. Let us return to
the necklace diagrams. To render the theory finite, we
employ the well-established Bogoliubov-Parasiuk-Hepp-
Zimmerman (BPHZ) procedure [20] to renormalize the
amplitude. Therefore, the renormalized necklace R̂kðpÞ is

R̂kðpÞ ¼ RkðpÞ − Rkð0Þ − p2
∂

∂p2
RkðpÞ

���
p¼0

: ð13Þ

We shall drop the hat unless it becomes important to
distinguish between the renormalized R̂kðpÞ and non-
renormalized RkðpÞ necklaces.
As can be noted, this affects only the p-dependent

propagator in the zero-temperature version of Eq. (6).
Regarding the expression of RkðpÞ given by Eq. (6), the
procedure of Eq. (13) is equivalent to perform the sub-
stitution on the denominator

APPEARANCE AND DISAPPEARANCE OF THERMAL … PHYS. REV. D 98, 045013 (2018)

045013-3



1

p2 þ l2 þM2
→

p4

ðl2 þM2Þ2ðp2 þ l2 þM2Þ

≈

8<
:

p4

ðl2þM2Þ3 ; lowp;

p2

ðl2þM2Þ2 ; highp;
ð14Þ

where the standard naive expansion ðp − lÞ2 ≈ p2 þ l2 is
assumed.
In a low-p expansion, then, for T ¼ 0 and small values

of p, the integral to be solved to obtain the necklace
expression is

RkðpÞ ∼ −
gp4

N

�
g

2ð4πÞ2
�

k−1 Z d4l
ð2πÞ4

ðln l2þM2

M2 Þk−1
ðl2 þM2Þ3 : ð15Þ

To solve it we first perform the integral over the solid angle
(Ω4 ¼ 2π2) and then reorganize the result by making the
change of variables l2 þM2 ¼ M2et, that is,

RkðpÞ ∼ −
gp4

16π2NM2

�
g

2ð4πÞ2
�

k−1 Z ∞

0

dtðe−t − e−2tÞtk−1:

ð16Þ

At this point we can clearly identify the presence of two
gamma functions, so that

RkðpÞ ∼ −
gp4

16π2NM2

�
ðk − 1Þ!

�
g

2ð4πÞ2
�

k−1

− ðk − 1Þ!
�

g
4ð4πÞ2

�
k−1

	
: ð17Þ

We can finally return to the sum over all contributions
Eq. (4),

Σ ∼ −
2g̃p2

NM2

�X∞
k¼1

ðk − 1Þ!g̃k−1 −
X∞
k¼1

ðk − 1Þ!
�
g̃
2

�
k−1

	
;

ð18Þ

where we have defined g̃ ¼ g=ð2ð4πÞ2Þ. Both sums are
divergent, but we can try to make sense of them by defining
a Borel transform,

BðΣ; yÞ ∼ −
2g̃p2

NM2

�X∞
k¼1

ðg̃yÞk−1 −
X∞
k¼1

�
g̃y
2

�
k−1

	

¼ −
2g̃p2

NM2

�
1

1 − g̃y
−

1

1 − g̃y=2

	
ð19Þ

We then obtain two poles on the real positive axis of the
Borel plane at y ¼ 1=g̃, 2=g̃. These poles (renormalons)
introduce problems to compute the inverse Borel transform.
In the standard procedure, see Ref. [18], Eq. (15) is solved

for very large l, which is justified as this is the relevant
region to get the asymptotic behavior for the k index.
This means that the approximation ½lnðl2 þM2Þ=M2�k−1=
ðl2 þM2Þ3 ≈ ðlnl2Þk−1=l6 is employed. Therefore, only
the first pole is found (at y ¼ 1=g̃) while the second pole is
hidden. When g̃ is very small this could be justified as 2=g̃
being very far from the origin.

IV. APPEARANCE OF THERMAL
RENORMALONS (LOW TEMPERATURES)

For low but finite temperatures, we can use the asymp-
totic representation of the modified Bessel function of the
second kind K0ðzÞ ∼ e−zfðzÞ, so that the thermal compo-
nent of the pearl (9) becomes

Bβðl;ωmÞ ∼
1

ð4πÞ2
X
n∈N⋆

8K0ðnβMÞ
nβ

1

l2 þ ω2
m
: ð20Þ

Using the above equation for Bβ and the expression
for the T ¼ 0 component, B0 [see Eq. (11)], the quantity
B ¼ B0 þ Bβ can be written in the low-temperature
regime as

Bðl;ωmÞ∼−
1

ð4πÞ2
�
ln
l2þω2

mþM2

M2
−

AðβÞ
l2þω2

m

�
; ð21Þ

where

AðβÞ ¼ 1

ð4πÞ2
X
n∈N⋆

8K0ðnβMÞ
nβ

ð22Þ

stores information about the dependence on the
temperature.
We then replace the expression in Eq. (21) into Eq. (6),

employ the BPHZ procedure and use a low-p expansion as
in Eq. (14),

Rkðp;ωoÞ ¼ −
g
N
ðp2 þ ω2

oÞ2
�

g
2ð4πÞ2

�
k−1 1

β

×
X
m∈Z

Z
d3l
ð2πÞ3



ln l2þω2

mþM2

M2 − AðβÞ
l2þω2

m

�
k−1

ðl2 þ ω2
m þM2Þ3 :

ð23Þ

So, integrating over the solid angle and expanding the
binomial, we get
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Rkðp;ωoÞ ¼ −
gðp2 þ ω2

oÞ2
2π2N

�
g

2ð4πÞ2
�

k−1 1

β

X
m∈Z

Xk−1
i¼0

�
k − 1

i

�
ð−AðβÞÞi

×
Z

∞

0

dll2
lnk−1−i½ðl2 þ ω2

m þM2Þ=M2�
ðl2 þ ω2

m þM2Þ3
�

1

l2 þ ω2
m

�
i
: ð24Þ

We reorganize the above expression in a more convenient way to compute the sum over the Matsubara frequencies. The
denominator is treated by employing a Feynman parametrization and the logarithm in the numerator is expanded in powers
of ω2

m=ðl2 þM2Þ, which is justified by an asymptotic behavior in l assuring that m=l < 1. This allows us to rewrite the
above equation in the form

Rkðp;ωoÞ ¼ −
gðp2 þ ω2

oÞ2
2π2N

�
g

2ð4πÞ2
�

k−1 Xk−1
i¼0

�
k − 1

i

�
ð−AðβÞÞi

Z
1

0

dz
Γð3þ iÞz2zi−1

Γð3ÞΓðiÞ

×

�Z
∞

0

dll2lnk−i−1
l2 þM2

M2

1

β

X
m∈Z

1

ðl2 þ ω2
m þM2zÞ3þi

þ
Z

∞

0

dll2
lnk−i−2 l2þM2

M2

l2 þM2

1

β

X
m∈Z

ðk − i − 1Þω2
m

ðl2 þ ω2
m þM2zÞ3þi þOðω4

mÞ
	
: ð25Þ

Although we could use this complete expression, this is unnecessary. It can be shown, after a lengthy computation, that
the relevant information (poles in the Borel plane) can already be obtained by using the following approximation,

Rkðp;ωoÞ ≈ −
gðp2 þ ω2

oÞ2
2π2N

�
g

2ð4πÞ2
�

k−1Xk−1
i¼0

�
k − 1

i

�
ð−AðβÞÞi

�Z
∞

0

dll2lnk−1−i
l2 þM2

M2

1

β
Zl2þM2ðβ; 3þ iÞ

	
; ð26Þ

where ZX2ðβ; νÞ is the Epstein-Hurwitz zeta function defined in Eq. (7). The contributions of orderOðω2
mÞ do not modify the

position of the poles and only change their residues. Moreover, for large values of k the integration of the expression over
the Feynman parameter z is asymptotically equal to the expression without the Feynman parameters. To avoid a tedious
calculation we do not exhibit in this article the step-by-step of this process.
Taking the approximation in Eq. (26) and considering again the analytic expansion of the Epstein-Hurwitz zeta function

to the whole complex ν plane, we get

Rkðp;ωoÞ ≈ −
gðp2 þ ω2

oÞ2
2π2N

�
g

2ð4πÞ2
�

k−1 Xk−1
i¼0

�
k − 1

i

�
ð−AðβÞÞi

Z
∞

0

dll2lnk−1−i
l2 þM2

M2

×
1ffiffiffiffiffiffi

4π
p

Γð3þ iÞ

�
Γð5

2
þ iÞ

ðl2 þM2Þ52þi
þ 4

2
5
2
þi

X
n∈N⋆

�
nβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þM2
p

�5
2
þi
K5

2
þi



nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þM2

p �	
: ð27Þ

Since i is an integer, the modified Bessel function of the second kind has a half-integer order, which has the series
representation [21]

K5
2
þiðnβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þM2

p
Þ ¼

ffiffiffi
π

2

r Xiþ2

j¼0

ðjþ iþ 2Þ!
j!ðiþ 2 − jÞ!

1

2jðnβÞjþ1
2

e−nβ
ffiffiffiffiffiffiffiffiffiffiffi
l2þM2

p

ðl2 þM2Þjþ1
2

: ð28Þ

So, the remaining integrals are given by
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Rkðp;ωoÞ¼−
gðp2þω2

oÞ2
4π5=2N

�
g

2ð4πÞ2
�

k−1Xk−1
i¼0

�
k−1

i

�

×
ð−AðβÞÞi
ð2þ iÞ!

�
Γ
�
5

2
þ i

�Z
∞

0

dll2
lnk−1−i l

2þM2

M2

ðl2þM2Þ52þi

þ
ffiffiffi
π

p
21þi

X
n∈N⋆

Xiþ2

j¼0

ðjþ iþ2Þ!
j!ðiþ2−jÞ!

1

2jðnβÞj−i−2

×
Z

∞

0

dll2
e−nβ

ffiffiffiffiffiffiffiffiffiffiffi
l2þM2

p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þM2

p
Þ2jþiþ7

2

lnk−1−i
l2þM2

M2

	
:

ð29Þ

The first integral in the preceding equation can be solved
as in the zero-temperature case (see Sec. III) by the change
of variables l2 þM2 ¼ M2et. One must note that

ffiffiffiffiffiffiffiffiffiffiffiffi
et − 1

p

has an upper bound
ffiffiffiffi
et

p
that is also its asymptotic value

for large values of the momentum t (which means also
large values of the index k). Then, we can use thatffiffiffiffiffiffiffiffiffiffiffiffi
et − 1

p ≲ ffiffiffiffi
et

p
to simplify the integral

I1 ¼
Z

∞

0

dll2
lnk−1−i l

2þM2

M2

ðl2 þM2Þ52þi

¼ 1

2M2þ2i

Z
∞

0

dttk−i−1
ffiffiffiffiffiffiffiffiffiffiffiffi
et − 1

p
e−tð32þiÞ

≲ 1

2M2þ2i

Z
∞

0

dttk−i−1e−tð1þiÞ

¼ ðk − i − 1Þ!
2M2þ2i

1

ð1þ iÞk−i : ð30Þ

For the second integral in Eq. (29) we make the change
of variables l2 þM2 ¼ M2r2 so that we obtain

I2 ¼
Z

∞

0

dll2
e−nβ

ffiffiffiffiffiffiffiffiffiffiffi
l2þM2

p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þM2

p
Þ2jþiþ7

2

lnk−1−i
l2 þM2

M2

¼ 2k−i−1M3−2ðjþi=2þ7=4Þ
Z

∞

1

dr
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p e−nβrlnk−i−1r

r2ðjþi=2þ7=4Þ−1

≲ 2k−i−1M3−2ðjþi=2þ7=4Þ
Z

∞

1

dr
e−nβrlnk−i−1r

r2ðjþi=2þ7=4Þ−2 : ð31Þ

Once more, we used that
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p ≲ r, which considerably
simplifies the integral and allows it to be identified as the
Milgram generalization of the integroexponential function
whose asymptotic behavior is known [22]

Eα
sðzÞ ¼

1

Γðαþ 1Þ
Z

∞

1

dt
ðln tÞαe−zt

ts

∼Rez→∞ e−z

zαþ1

�
1 −

ðαþ 1Þðαþ 2sÞ
2z

þ � � �
�
: ð32Þ

Hence, after substituting Eqs. (30) and (31) into Eq. (29),
and using the asymptotic behavior of the generalized
integroexponential, Eq. (32), we have

Rkðp;ωoÞ≲ −
gðp2 þ ω2

oÞ2
4π5=2N

�
g

2ð4πÞ2
�

k−1 Xk−1
i¼0

�
k − 1

i

�

×
ð−AðβÞÞiðk − i − 1Þ!

ð2þ iÞ!
�
Γ
�
5

2
þ i

�
1

2M2þ2i

×
1

ð1þ iÞk−i þ
ffiffiffi
π

p X
n∈N⋆

Xiþ2

j¼0

ðjþ iþ 2Þ!
j!ðiþ 2 − jÞ!

×
2k−2i−j−2

ðnβÞkþj−2i−2
e−nβ

M2jþiþ1=2

	
: ð33Þ

Now, let us focus attention on the k-dependence. The
previous equation can then be rewritten as

Rk≲ γ1g̃k−1ðk−1Þ!
Xk−1
i¼0

�
γ2;iðβ;MÞ
ð1þ iÞk−1þ

X
n∈N⋆

2k−1γ3;i;nðβ;MÞ
ðnβÞk−1

�
;

ð34Þ

where we have defined,

γ1 ¼ −
gðp2 þ ω2

oÞ2
4π5=2N

; ð35aÞ

g̃ ¼ g
2ð4πÞ2 ; ð35bÞ

γ2;iðβ;MÞ ¼ ð−AðβÞÞi
ð2þ iÞ!i!Γ

�
5

2
þ i

� ð1þ iÞi−1
2M2þ2i ; ð35cÞ

γ3;i;nðβ;MÞ ¼
Xiþ2

j¼0

ð−AðβÞÞi
ð2þ iÞ!i!

ffiffiffi
π

p ðjþ iþ 2Þ!
j!ðiþ 2 − jÞ!

×
e−nβ

M2jþiþ1=2

2−2i−j−1

ðnβÞj−2i−1 : ð35dÞ

The sum over all necklaces is then

R ¼
X
k∈N⋆

Rk ≲
X
k∈N⋆

γ1g̃k−1ðk − 1Þ!
Xk−1
i¼0

�
γ2;iðβ;MÞ
ð1þ iÞk−1

þ
X
n∈N⋆

2k−1

ðnβÞk−1 γ3;i;nðβ;MÞ
�
:
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The range of summation for the double sum is
0 ≤ i < k < ∞; we can change the sum ordering and then
split the sum over the index k in the form

X
k∈Nþ

Xk−1
i¼0

fi;k ¼
X∞
i¼0

X∞
k¼iþ1

fi;k ¼
X∞
i¼0

�X∞
k¼1

fi;k −
Xiþ1

k¼1

fi;k

�
:

The first double sum has the dominant contribution; this
can be seen by checking for each value of i. Therefore, the
relevant contribution is

R ∼ γ1
X∞
i¼0

�
γ2;i

X∞
k¼1

g̃k−1ðk − 1Þ!
ð1þ iÞk−1

þ
X
n∈N⋆

γ3;i;n
X∞
k¼1

g̃k−1ðk − 1Þ!
ðnβ=2Þk−1

�
: ð36Þ

However, this is not summable due to the presence of the
ðk − 1Þ!. To overcome this difficulty we can employ a
Borel transform,

BðR; yÞ ∼ γ1
X∞
i¼0

�
γ2;i

X∞
k¼1

g̃k−1yk−1

ð1þ iÞk−1

þ
X
n∈N⋆

γ3;i;n
X∞
k¼1

g̃k−1yk−1

ðnβ=2Þk−1
�

¼ γ1
X∞
i¼0

�
γ2;iðβ;MÞ
1 − g̃y

1þi

þ
X
n∈N⋆

γ3;i;nðβ;MÞ
1 − 2g̃y

nβ

�
: ð37Þ

Finally, we see in Eq. (37) the renormalons that appear
at low temperatures. There are two different sets of
renormalons both with residues that are thermal dependent,
respectively γ2;iðβ;MÞ and γ3;i;nðβ;MÞ. The first set of
renormalons was already found in previous works [23];
it is characterized by poles whose position are thermal-
independent and they are located along the real axis at
positions ð1þ iÞ=g̃ for i ∈ N. However, the second set of
poles, as far as we know, has not yet been reported. These
poles are also in the real axis but they are thermal-
dependent as they are located at nβ=2g̃ for n ∈ N⋆. The
existence of this new set seems to be a remarkable
enrichment for the model.
We remark that in the limit of extremely small temper-

atures these new renormalons are all very far from the
origin and this may justify why they are usually hidden.
Therefore, our result can be viewed as a first correction to
the standard approach. Furthermore, as we pointed out
before, we claim that our approximation in Eq. (26) is the
sufficient one (at least to describe the poles) and any further
corrections shall only change the residues. This means that
we have mapped all the renormalons that appear at low
temperatures.

As a further comment, we remember that in Sec. III we
show that at zero temperature there is a hidden second pole
located at 2=g̃. This does not add any new poles at low
temperatures because, as can be easily noted, we already
have an infinite set of poles located at i=g̃ for i ∈ N⋆.

V. DISAPPEARANCE OF THERMAL
RENORMALONS (EXTREMELY HIGH

TEMPERATURES)

In this section we explore the regime of extremely high
temperatures. In fact, we consider the regime of temper-
atures T → ∞ which is equivalent to a dimensional
reduction of one unit. In this case, it is well-known that
if the original theory was UV divergent the resulting theory
is not anymore UV divergent; which means that UV
renormalons should disappear. In this work, we recover
this fact using our formalism. In this situation, to treat
Eq. (9) we can use the following series expansion of the
modified Bessel function of the second kind [21],

K0ðzÞ ¼ − ln
zeγ

2
−
z2

4
ln
zeγ−1

2
þOðz4Þ: ð38Þ

The result is easier to get by assuming from the
beginning that m ¼ 0 (which means that this is the only
relevant mode) and recalling the following properties of the
Riemann zeta function, ζðsÞ ¼ P

n∈N⋆n−s,

ζ0ðsÞ ¼ −
X
n∈Nþ

ln n
ns

; ð39aÞ

ζð0Þ ¼ −1=2; ð39bÞ

ζ0ð0Þ ¼ ln
ffiffiffiffiffiffi
2π

p
; ð39cÞ

ζð−2kÞ ¼ 0; ∀ k ∈ N⋆; ð39dÞ

ζ0ð−2kÞ ¼ ð−1Þkζð2kþ 1Þð2kÞ!
22kþ1π2k

; ∀ k ∈ N⋆: ð39eÞ

Remembering Eq. (9), we then obtain the result

Bβðl;ωmÞ ∼ −B0ðl;ωmÞ −
1

8π2
ln
4πT
Meγ

−
ζð3Þ
27π4

�
M2 þ l2

6

�
1

T2
; ð40Þ

revealing that at extremely high temperatures the
original contribution from zero temperature is not present
anymore. This has a major impact and is responsible for the
disappearance of the renormalons. Therefore, we may write
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Bðl;ωmÞ ∼T→∞ −
1

8π2
ln
4πT
Meγ

−
ζð3Þ
27π4

�
M2 þ l2

6

�
1

T2
: ð41Þ

If we replace this back into the necklace expression
Rkðp; oÞ, in Eq. (23), we get

Rkðp;ωoÞ ¼ −gðp2 þ ωoÞ2
�

g
2ð4πÞ2N

�
k−1 1

β

×
X
n∈Z

Z
d3l
ð2πÞ3

lnk−1ð4πTMeγÞ
ðl2 þ ω2

n þM2Þ3 : ð42Þ

Since the integration over the internal loop is independent
of k we find that

Rk ∝
�
2g̃ ln

�
4πT
Meγ

��
k−1

; ð43Þ

and, therefore, there is no renormalon in this case.
The function ΣðgÞ ¼ P∞

k¼1 RkðpÞ is Borel summable,

Σ ∼
1

1 − 2g̃ lnð4πTMeγÞ
;

it is a meromorphic function of the coupling constant g̃
having a simple pole at g̃ ¼ ½2 ln ð4πT=ðMeγÞÞ�−1.

VI. CONCLUSION

In this article we study the existence of renormalons in a
scalar field theory with a gϕ4

4 coupling at next-to-leading
order in a large-N expansion. The results in the literature
report that there is one renormalon pole at zero temperature
(located at y ¼ 1=g̃) and there is an appearance of a
countable infinite set of renormalons at low temperatures

with the property that the poles are thermal-independent
(located at y ¼ i=g̃, for i ∈ N⋆). Although, in this article,
the standard behavior is reproduced, we also manage to
identify the existence of hidden poles, both at zero temper-
ature and at low temperatures. As far as we know, it seems
that this fact has not been noted in the literature. Perhaps,
these poles were hidden by the approximations used. The
extra pole at zero temperature is slightly shifted on the real
axis (y ¼ 2=g̃) and can be ignored, as it is done currently in
the literature, if the coupling is small enough. At low
temperatures, however, there is an entirely new set of
renormalons on the real axis that are located at y ¼ nβ=2g̃
for n ∈ N⋆. The appearance of renormalons with a small
increase in temperature is a remarkable feature of the
theory. In this paper we claim that we have mapped all the
poles that occur at low temperatures, therefore identifying
completely the thermal renormalons that appear. Any
further approximation would only improve the value of
the residues, but would not modify the number nor the
position of the poles in the Borel plane.
Furthermore, we obtain that at extremely high temper-

atures, which is related to a dimensional reduction fromD ¼
4 to D ¼ 3, as expected, no renormalon singularities occur
and the series becomes Borel summable. This seems to
indicate that we could speculate about the existence of a
“critical temperature” at which renormalons appear/
disappear. This will be the subject of investigation in future
work.
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