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In this paper, we analyze the renormalization group (RG) flow of field theories with quenched disorder,
in which the couplings vary randomly in space. We analyze both classical (Euclidean) disorder and
quantum disorder, emphasizing general properties rather than specific cases. The RG flow of the disorder-
averaged theories takes place in the space of their coupling constants and also in the space of distributions
for the disordered couplings, and the two mix together. We write down a generalization of the Callan-
Symanzik equation for the flow of disorder-averaged correlation functions. We find that local operators can
mix with the response of the theory to local changes in the disorder distribution and that the generalized
Callan-Symanzik equation mixes the disorder averages of several different correlation functions. For
classical disorder, we show that this can lead to new types of anomalous dimensions and to logarithmic
behavior at fixed points. For quantum disorder, we find that the RG flow always generates a rescaling of
time relative to space, which at a fixed point generically leads to Lifshitz scaling. The dynamical scaling
exponent z behaves as an anomalous dimension (as in other nonrelativistic RG flows), and we compute it at
leading order in perturbation theory in the disorder for a general theory. Our results agree with a previous
perturbative computation by Boyanovsky and Cardy, and with a holographic disorder computation of
Hartnoll and Santos. We also find in quantum disorder that local operators mix with nonlocal (in time)
operators under the RG, and that there are critical exponents associated with the disorder distribution that
have not previously been discussed. In large-N theories, the disorder averages may be computed exactly,
and we verify that they are consistent with the generalized Callan-Symanzik equations.
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I. INTRODUCTION

Quenched disorder is of widespread interest, studied in
many branches of physics including statistical physics,
condensed matter, and theoretical high-energy physics.
A physical motivation for studying disorder comes from
the fact that real systems are not pure.1 We expect that
always, in addition to the basic homogeneous elementary
matter and its interactions, there will also be impurities, or
nonconstant background fields, which will modify the
microscopic interactions within the substance. In some
cases, these impurities may be treated as nondynamical;
this is called quenched disorder, and we will focus on this
case here (as opposed to annealed disorder in which the
impurities are dynamical). The impurities then correspond

to changes in the local couplings of the system, and they are
equivalent to nonhomogeneous background fields. In gen-
eral, in such a situation, all couplings which are allowed by
the symmetries will vary in space. In many cases, the
impurities (or background fields) are random, so that they
can be effectively described by randomly varying couplings
in our original homogeneous system, with some probability
distribution for finding specific space-dependent couplings.
We will be interested in the behavior of these systems at
long distances, and in particular at much larger distances
than the scale of variation of the couplings (which is
typically a microscopic scale like the lattice spacing). Thus
we can approximately take the scale of this variation to
zero, such that the couplings at different points vary
randomly and independently.
There are various systems for which this idea applies. We

can consider a statistical mechanics system near a second
order phase transition, which is described by a Euclidean
theory in the spatial directions; this is referred to as classical
disorder. A specific example involves random variations
in the temperature, where disorder couples to the ‘energy
operator’ EðxÞ. We will also consider quenched disorder in
a quantum system (at zero temperature), which has also a
time direction, and this is referred to as quantum disorder.
In particular, one can look for random quantum critical
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1A nice review of quenched disorder in classical statistical
systems appears in Chapter 8 of [1].
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points. We will not discuss here disordered quantum
systems at finite temperature, except for a few comments
in Sec. IV C 3.
Note that even a small amount of disorder can lead to

significant changes in the long-distance behavior. For
instance, in a statistical mechanics system for which the
disorder generates a relevant operator (in the renormaliza-
tion group sense), it grows with the distance scale, and can
lead to a flow to a different, random, fixed point at long
distances, or to no fixed point at all, such that the second
order phase transition disappears (see [2] and references
therein).
In order to describe the different versions of disorder

under the same framework, the basic quantity we will use is
the action. For classical disorder, this action will be
Euclidean and will stand for the Hamiltonian (more precisely
the reduced Hamiltonian which includes the inverse temper-
ature). For quantum disorder this action will be Lorentzian.
However, to have a uniform description we will analytically
continue it to Euclidean space. Our basic setup is, therefore,
the following.We are given some ‘pure’ system described by
an action S0. We can begin by considering the simplest case
where the disorder affects a single coupling constant, namely
it couples to a single scalar operator; in most cases the lowest
dimension operator has the largest effect on the long distance
physics, and the generalization of this (which will be
generated under the renormalization group flow) is straight-
forward. The disorder field will be denoted by hðxÞ (which
can be, for example, the distribution of impurities, or a
background magnetic field), and it will couple to some
interaction term O0ðxÞ. Because of the correspondence
between classical statistical mechanics and quantum
mechanics (through the path integral formalism), we will
refer toO0ðxÞ as a local operator in all cases. The total action
is thus schematically of the form

S ¼ S0 þ
Z

hðxÞ ·O0ðxÞ: ð1:1Þ

For quantum disorder hðxÞwill vary in space but not in time.
The partition function is as usual

Z½hðxÞ� ¼
Z

Dμe−S ð1:2Þ

where Dμ stands for the appropriate path integral measure.
We will treat the process of formation of the disorder as a

random process, with probability distribution P½hðxÞ� to
have a specific disorder configuration hðxÞ. Namely, we will
consider an ensemble of many different systems, whose
disorder is drawn from the distribution with the appropriate
probability. We can then compute the distributions for
various physical measurements, such as thermodynamic
quantities or correlation functions of local operators. In

some systems, called self-averaging, the distributions of
global observables become narrower as the system becomes
large, such that all the systems in the ensemble have the
same long-distance properties (depending on the probability
distribution). Other systems are not self-averaging, and in
particular this is the case for some observables when the
system flows to a random fixed point of the renormalization
group, which is scale-invariant [3–5]. Such a fixed point is
characterized by some probability distribution for the dis-
order, and also for any observable. The properties of the
fixed point cannot be measured using a single realization of
the disorder, whose observables will be taken from that
distribution, but only by measuring many different systems
with different realizations of the disorder. If we look at a
specific disorder realization, it will have a phase transition at
a critical temperature, but its properties at the critical
temperature at long distances will not be translation-invariant
or scale-invariant. When we sample different subregions or
different scales, we will obtain different results, that are
all drawn from the same probability distribution character-
izing the random fixed point. As practically we never sit
exactly at a critical point, self-averaging depends on the size
of the system; that is, we will have self-averaging whenever
the linear size of the system is much larger than the
correlation length.
The explicit dependence of the action on the disorder

hðxÞ implies that in both classical and quantum disorder,
translation invariance is broken. However, assuming that
the disorder distribution is invariant under translations,
translation invariance will be restored in the averages
(and higher statistical moments) of any physical observ-
ables. In particular, we can consider the free energy
averaged over the disorder distribution P½h�, which
restores the translation invariance. The disorder averages
of all thermodynamic quantities which are derivatives of
the free energy can be computed from derivatives of the
disorder-averaged free energy.
In this paper, we are interested in the renormalization

group flow of various quantities, averaged over the disorder
distribution. More generally, we are interested in the
probability distribution of these quantities. Disordered
systems, and in some cases their renormalization group
(RG) flow, were extensively analyzed in the statistical
mechanics and condensed matter literature before, but
usually for specific models2; here we will analyze com-
pletely general field theories, giving a few specific exam-
ples to illustrate our results. We focus on a general
discussion of the RG flow of correlation functions of local
operators, and of their behavior at random fixed points (one
particular case was studied in [7]). For pure systems this is
governed by the Callan-Symanzik (CS) equation, and we
are interested in the generalization of this equation to

2A general analysis of the expansion around a pure fixed point
is given in [6].
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averaged quantities of random systems (this was previously
done in a specific example in [8]).
One of the main tools we use in our analysis is the replica

trick [9–12]. For classical disorder this describes averaged
disordered systems as limits of standard ‘pure’ systems,
whose renormalization group behavior is well-understood;
formally any disordered computation can be viewed in this
way as a limit of standard computations. For quantum
disorder the disorder-averaged quantities are related to a
limit of nonlocal field theories, but we argue that one can
still use renormalization group methods. In some cases,
taking limits of correlation functions may be subtle for
dynamical reasons (such as replica symmetry breaking).
However, since we will be interested in general features of
the renormalization group flow of couplings and of local
operators, that are independent of the specific dynamics,
the replica analysis will be good enough for our purposes;
in particular we show that it gives results that are consistent
with a standard Wilsonian renormalization of the disor-
dered theories.

A. Summary of main new results, outline
and open questions

Since this paper is rather long, and contains some
sections reviewing known results, let us summarize the
main new results of this paper.
In Sec. II, we analyze classical disorder:
(i) We write down the generalized Callan-Symanzik

(GCS) equations governing the RG evolution of
disorder-averaged correlation functions of local
operators for classical disordered systems. For con-
nected correlation functions we show that there are
new contributions mixing these correlators with
products of connected correlators, and that these
lead to new types of anomalous dimensions at
disordered fixed points. Correlators of local oper-
ators do not have simple scaling behavior even at
random fixed points. This can be traced to the fact
that during the RG flow in random systems, the
distribution of the disordered couplings changes and
mixes with the standard coupling constants, which
implies that the local operators do not diagonalize
the matrix of anomalous dimensions.

(ii) In addition, for general (not necessarily connected)
correlation functions hO1ðx1Þ � � �OkðxkÞi we find an
extra “mixing” contribution to the CS equation. For
two-point functions at disordered fixed points this
new contribution gives a logarithmic behavior pre-
viously found in [13–15], and we analyze its
implications. We show that, surprisingly, some of
the long-distance observables related to such two-
point functions become less and less self-averaging
as the volume grows (namely, their normalized
variance grows logarithmically with the volume),

such that they are not (approximately) self-averaging
even when the disorder at the fixed point is small.

At the end of this section, we relate our results to those in
the statistical mechanics literature.
In Sec. III, we discuss the specific example of large-N

systems. In this case, one can perform explicit computa-
tions that can be used to illustrate our general methods,
but it turns out that this case is actually more subtle than
the generic case, because of degeneracies in the large-N
spectrum of operators.
Then, we move on to quantum disorder in Sec. IV, with

the following main results:
(i) We write down the same GCS equations also for

systems of quantum disorder, noting the new con-
tributions there. A new element that arises in this case
is a mixing of local operators with nonlocal operators
under the RG flow; for instance an operator O1ðx; tÞ
can mix with O2ðx; tÞ

R
dt0O3ðx; t0Þ.

(ii) It is sometimes stated that at disordered quantum
critical points there is no independent critical
exponent associated with the disorder (and
with the running of the disorder distribution), unlike
in the case of classical disorder (where this expo-
nent is usually called ϕ). We show that there is
in fact such a critical exponent also at quantum
critical points, and illustrate this explicitly in an
example.

(iii) We show that renormalization group flows for
quantum disorder always generate a coupling
h00

R
dxdtT00ðx; tÞ, where Tμν is the energy-

momentum tensor. That is, the coefficient of the
Hamiltonian h00

R
dtH in the action is running.

This can be interpreted as a stretching of the time
dimension compared to the spatial dimensions. We
show that the beta function of the coupling h00 is
precisely the deviation of the dynamical scaling
exponent z from 1, such that these theories generally
flow to Lifshitz-type fixed points, with a different
scaling for the time and the space dimensions.3

(iv) In the case of a weakly disordered fixed point,
obtained by RG flow from a Lorentz-invariant
conformal field theory, we show that this dynamical
exponent z has a universal value at leading order in
the disorder, given by the formula (4.37). We
compare this result with two previous computations:
a weakly coupled scalar theory analyzed by Boya-
novsky and Cardy [17] and a holographic model
analyzed by Hartnoll and Santos [18].

The results of this section are summarized in the
companion article [19].

3These statements are valid also in nonrelativistic RG flows in
pure theories, and some of them were discussed before in that
context (see, for example, [16]). However, the arguments used
there do not directly apply for disordered theories.
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We end with various Appendices containing technical
details.
There are many interesting questions that we leave open.

In our replica analysis, we assume that the replica sym-
metry is not broken; it would be interesting to understand
how such breaking modifies the RG flow of correlation
functions. We discuss only disorder coupled to scalar
operators, and it would be interesting to generalize our
analysis to anisotropic disorder, and to consider in such
cases correlation functions of nonscalar operators, which
may be related to additional critical exponents. Similarly
one can have anisotropies in internal symmetries. We focus
on a general analysis and do not discuss any specific
applications; it would be interesting to use our analysis for
specific systems, and to see if our results have any
measurable implications. On the more theoretical level,
we analyze some properties of disordered fixed points
when these exist, but it is not clear if these fixed points have
conformal symmetry or only scaling symmetry (in fact, as
mentioned above, even scaling symmetry is sometimes
broken by logarithms). Related to this it would be nice
to understand if disordered renormalization group flows
obey any generalization of a c theorem that would constrain
the flow (see e.g., [20]).

II. THE RENORMALIZATION GROUP FOR
CLASSICAL DISORDER

In this section, we consider the quenched disorder
version corresponding to classical statistical mechanics.
The setup and the notations we will use are as follows. We
have a statistical system in d spatial Euclidean dimensions
(with no time direction) described by the action S0 which
stands for the reduced Hamiltonian. We will restrict
ourselves to the most interesting case in which the d-
dimensional field theory described by S0 is a conformal
field theory (CFT), corresponding to a critical statistical
system describing physics at a second order phase tran-
sition. Applying quenched disorder to this system, the
disorder field is denoted by hðxÞ and it is a function
of the d-dimensional Euclidean space parametrized by x.
The disorder is coupled to an operator O0 such that the
action is

S ¼ S0 þ
Z

ddxhðxÞO0ðxÞ: ð2:1Þ

We assume for simplicity that disorder couples to a
single scalar field, though, as we will see, this can
change under the renormalization group flow. Usually
one operator coupled to disorder will dominate the long
distance behavior.
We will think of the disorder field as taken from a

probability distribution P½h� [which is a functional of hðxÞ],
and in this paper we will be interested in disorder-averaged
quantities. In some cases (called self-averaging), these

will be typical values for large-volume systems (the
thermodynamic limit), while in other cases, such as
disordered fixed points with strong randomness, the var-
iances may be large, and measuring the averages requires
an ensemble of many systems with different values of the
disorder. We denote disorder averages by

X̄ ≡
Z

DhP½h�X: ð2:2Þ

A distribution which is frequently used is a Gaussian
probability distribution in which

P½h� ∝ exp

�
−

1

2v

Z
ddxh2ðxÞ

�
; ð2:3Þ

normalized so that the sum of probabilities is 1. For this
distribution

hðxÞhðyÞ ¼ vδðx − yÞ; ð2:4Þ

and hðx1Þ � � � hðxkÞ are given by Wick’s theorem as the sum
over contractions with hðxÞhðyÞ. We will be interested in
the disorder-averaged correlation functions defined by

hO1ðx1ÞO2ðx2Þ � � �i

¼
Z

DhP½h�
R
DμO1ðx1ÞO2ðx2Þ � � � e−S0−

R
ddxhðxÞO0ðxÞR

Dμe−S0−
R

ddxhðxÞO0ðxÞ
:

ð2:5Þ

Applying quenched disorder to the critical system
described by S0 can be thought of as a perturbation of
the system, similar to adding some interaction. A well-
known argument in the context of the renormalization
group (RG) in disordered systems is the Harris criterion
[21]. If the dimension of O0 is Δ0, then the width of the
Gaussian disorder has dimensions ½v� ¼ d − 2Δ0. Then,
by dimensional arguments we expect that for Δ0 < d=2
disorder will be relevant, for Δ0 > d=2 it will be irrelevant,
and for Δ0 ¼ d=2 disorder is marginal. When we are close
to the marginal case we can often use perturbation theory
in the strength of the disorder and in the difference between
its dimension and the marginal value (as in the ϵ expansion,
see e.g., [22]), but we will not assume this and our final
results for the RG flow will be general.
Our goal is to study the renormalization group for

classical disorder. In pure systems, the RG provides us
with a description of the theory at different scales. The
coupling constants λi are thought of as running with the RG
scale M (which for Wilsonian RG is the defining scale,
while for renormalized RG it is the renormalization scale).
The basic RG coefficients are the beta functions βλiðλjÞ that
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represent the running of λi, and the gamma functions γ that
give anomalous dimensions. It is desirable to describe the
RG flow of correlation functions of local operators as these
appear in various physical observables. This is achieved for
pure systems using the Callan-Symanzik (CS) equation
[23,24]. In the simplest form of the CS equation, a
correlation function GðkÞ ≡ hOðx1Þ � � �OðxkÞi of k oper-
ators OðxÞ [for instance, in a scalar theory we can choose
OðxÞ ¼ φðxÞ] satisfies

�
M

∂
∂M þ

X
i

βλi
∂
∂λi þ kγ

�
GðkÞ ¼ 0; ð2:6Þ

including a sum over all the couplings λi in the theory,
where γ is the anomalous dimension of the operator.
A natural question is what is the generalization of this to

disordered systems. This is nontrivial since in the presence
of disorder the couplings become space-dependent. In
addition, it was noticed in [25] that some disorder-averaged
correlation functions do not appear to satisfy standard CS
equations (2.6). We could then wonder whether there exists
a simple way to express the RG for disordered systems. We
will find that in fact there are generalized CS equations that
are obeyed by the different types of disorder-averaged
correlation functions. One way in which disorder manifests
itself in these equations is that the disorder strength (or,
more generally, the parameters of the disorder distribution)
enters the equations as if it was a new coupling constant, to
which we may associate a beta function. However, this is
not the full story, and the form of the equations is modified
compared to those of pure systems. In this section, we will
derive the generalized Callan-Symanzik (GCS) equations
in a general setting, and in the next section, we apply them
to a simple example.
Disordered theories may flow at low energies to

standard fixed points, or to disordered fixed points
characterized by some nontrivial disorder distribution.
These fixed points are known to obey unusual properties.
Pure fixed points are described by conformal field
theories, where two-point functions at large distances
have a power law behavior. However, in disordered fixed
points logarithms can appear in disorder-averaged two-
point functions [13–15], as in logarithmic CFTs (see e.g.,
[26,27]). There are additional asymptotic behaviors of
correlation functions that were computed in [25], which
appear to be incompatible with usual scale invariance. We
will use the RG of disordered systems to approach the
fixed points and to study them. We will see where and
how logarithms can appear in this language, and we will
see that other nonstandard behaviors of disordered
systems at large distances are also compatible with the
GCS equations.
There are two main methods that we will use. We

begin by discussing the local Wilsonian renormalization
approach. This approach is very physical, but it is

complicated to perform computations with it, so we will
use it just to gain physical intuition about the expected form
of the renormalization of the couplings and of the local
operators. We will then discuss the replica approach, which
allows for a more precise general analysis of the possibil-
ities for renormalization group flow. Our GCS equations
are written directly in terms of the disordered theory, so
they do not depend on the replica approach.

A. The local renormalization group and the flow
of the disorder distribution

In this subsection, we use the local renormalization
group to directly analyze the space-dependent couplings
and their flow. The averaged correlation functions are
given by

hOðx1Þ � � �OðxkÞi ¼
Z

DhP½h�hOðx1Þ � � �OðxkÞihðxÞ;gi ;

ð2:7Þ

where the subscripts on the right-hand side signify that we
calculate the correlation function in the presence of the
disorder configuration hðxÞ and some other couplings gi.
For a given disorder configuration, using Wilsonian RG we
can change the cutoff Λ in the theory, and the physics will
be the same if the couplings appropriately run with the scale
hðx;ΛÞ, giðΛÞ. Under the RG, some of the couplings that
were constant will become inhomogeneous, so we need
to take giðx;ΛÞ, and we have an RG flow with inhomo-
geneous couplings which is referred to as local RG [28],
and is demonstrated perturbatively in Appendix A. The
different disorder configurations were originally endowed
with some probability distribution, and as the disorder field
changes under the RG, the distribution changes accordingly
(namely, its moments will be given by those of the disorder
configurations at the new scale after the flow), such that the
disorder-averaged physics is the same. Because of the
mixing between couplings under the RG, statistical corre-
lations among the different inhomogeneous couplings will
be induced. Therefore, what we get is a set of inhomo-
geneous couplings, including all couplings that are con-
sistent with the symmetries of the disordered theory, and
a joint probability distribution on them that flows under
the RG:

hOðx1Þ � � �OðxkÞi

¼
Z

DhðΛÞDgiðΛÞP½hðx;ΛÞ; giðx;ΛÞ;Λ�hOðx1Þ � � �

×OðxkÞiðΛÞhðx;ΛÞ;giðx;ΛÞ: ð2:8Þ

The description of the disordered theory at different scales
is then given by the joint probability distribution P½h; gi;Λ�
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at different scales. Note that the average values of different
couplings also flow, such that the constant modes of the
couplings mix with the disorder distribution. This picture
of the flowing probability distribution was used long ago
for local disorder using block spin transformations
(see e.g., [29–31], and see [32] for the quantum disorder
case). Computations using this local RG method are
technically complicated, but should lead to the same results
that we compute below using the replica trick (as we verify
in simple cases).
As usual in RG, the form of the running distribution is

restricted by symmetries. For instance, if we describe the
Ising model in terms of a φ4 field theory, then in the
random-bond Ising model in which disorder is coupled to
φ2, no coupling to φ (constant or varying) will be induced
under the RG [this is clear e.g., from (A4)]. In the random-
field Ising model, where disorder is coupled to φ, if we start
from a distribution invariant under hðxÞ → −hðxÞ then this
will be preserved under the RG flow.

1. Operator mixings in the local RG

In a standard renormalization group flow, the coupling
constants run and the local operators mix with each other.
If, under an RG step, an operator OiðxÞ mixes with OjðxÞ,
then the CS equation for the flow of the correlation function
hOiðxÞ � � �i includes a term proportional to hOjðxÞ � � �i,
with a coefficient depending on the coupling constants at
our RG scale M.
In a disordered theory, such operator mixings are not

uniform but depend on the local couplings around the point
x, so the coefficient of the term with Oj above will depend
on these local couplings. Therefore, for a specific realization
of the disorder, we have usual CS equations, with the only
modification that the RG coefficients depend locally on the
inhomogeneous couplings. When we average over the
disorder, we will have some contributions in which we
separately average over the coefficients and over the
correlation functions, and these contributions to the running
of a disorder-averaged correlation function will be the same
as in the standard CS equation. However, there are also new
contributions that will appear when the disorder averaging
mixes the correlation functions with the mixing coefficients.

Let us analyze this here in the simplest case, in which
we have a single disordered coupling hðxÞ chosen from a
Gaussian distribution (2.3), and we expand at leading
order in the disorder. Later we will see the same effects in
the exact theory using the replica approach. In our
approximation, in addition to a constant mixing of
OiðxÞ with OjðxÞ, we can have a mixing with
hðxÞOjðxÞ. Before the disorder averaging, this simply
mixes hOiðxÞ � � �i with hðxÞhOjðxÞ � � �i. However, when
we average over the disorder, this means that hOiðxÞ � � �i
mixes with

Z
DhP½h�hðxÞhOjðxÞ � � �ihðxÞ

¼
Z

Dh

�
−v

δ

δhðxÞP½h�
�
hOjðxÞ � � �ihðxÞ

¼ v
Z

DhP½h� δ

δhðxÞ hOjðxÞ � � �ihðxÞ
¼ −vðhO0ðxÞOjðxÞ � � �i − hO0ðxÞihOjðxÞ � � �iÞ: ð2:9Þ

In the first term, we can replace the product of two operators
at the same point, using the OPE, by a set of other local
operators, so this looks like a standard operator mixing.
However, the second term gives a new type of mixing which
is not present in standard field theories.
If, instead of starting with the general correlation

function, we begin with the connected correlation function
hOiðxÞ � � �iconn, then the same arguments imply that it
mixes with the connected correlation function
hO0ðxÞOjðxÞ � � �iconn. However, now we cannot simply
use the OPE for the products of two operators at the same
point, because the expansion of the connected correlation
function in terms of general correlation functions involves
both terms of the form hO0ðxÞOjðxÞ � � �ih� � �i � � �, where
we can use the OPE, and terms of the form
hO0ðxÞ � � �ihOjðxÞ � � �ih� � �i � � � where we cannot use it.
Taking this into account, we find that the correlator
hO0ðxÞOjðxÞ � � �iconn appearing in the mixing should be
understood as

�
O0ðxÞOjðxÞ

Yk
l¼1

OjlðxlÞ
�

conn
¼

�
½O0ðxÞOjðxÞ�

Yk
l¼1

OjlðxlÞ
�

conn

−
X

Partitions of f1;…;kg
into S1 ;S2

�
O0ðxÞ

Y
l∈S1

OjlðxlÞ
�

conn

�
OjðxÞ

Y
l∈S2

OjlðxlÞ
�

conn
; ð2:10Þ

where ½O0ðxÞOjðxÞ� is a short-hand notation for the combination of local operators appearing in the OPE. The second term
on the right-hand side of (2.10) gives us a new type of mixing with other kinds of correlation functions (rather than the usual
mixing with the same correlation function of different operators).
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There is a special case of the discussion above where
OjðxÞ is simply the identity operator; in particular there is
always such a mixing with the identity for the operator
OiðxÞ ¼ O0ðxÞ itself (the RG flow mixes this with hðxÞ
times the identity operator). In this case, using (2.9), the
nonconnected correlation function hOiðxÞ � � �i mixes with
hO0ðxÞ � � �i − hO0ðxÞih� � �i. While the first term is of the
usual kind of mixing, the second term gives us a nontrivial
contribution to the flow of the correlation function, involv-
ing again a product of correlators. This mixing with the
identity operator does not give additional nontrivial con-
tributions of this sort to the flow of connected correlation
functions in (2.10) (Oj being the identity), because con-
nected correlation functions of the identity operator vanish.
The general analysis of the flow of correlation functions

will be performed below using the replica trick, and we will
see that it will agree with our expectations from the analysis
of this section. This should help in removing doubts about
the validity of the replica trick due to the n → 0 analytic
continuation, at least as long as the replica symmetry is
unbroken.

B. The replicated theory

The main tool that we will use for explicit computations
is the replica trick; we review it and its relation to
disordered correlation functions here.

To obtain a generating functional for correlation func-
tions we couple sources JiðxÞ to various operators OiðxÞ.
The partition function in the disordered theory is then

Z½h;Ji�¼eW½h;Ji� ¼
Z

Dμe−S0−
R
ddxhðxÞO0ðxÞþ

P
i

R
ddxJiðxÞOiðxÞ:

ð2:11Þ

It is useful to define WD½Ji� ¼ W½h; Ji�, which is the
averaged free energy. By construction this generates the
disorder-averaged connected correlation functions

δWD½Ji�
δJi1ðx1ÞδJi2ðx2Þ � � �

����
Ji¼0

¼ hOi1ðx1ÞOi2ðx2Þ � � �iconn:

ð2:12Þ

The basic motivation for the replica trick is that while it
is natural to average the partition function, this is not the
case for averaging the free energy. To simplify this task, the
replica trick expresses the free energy in terms of a power of
the partition function, which itself behaves as a partition
function of a slightly different theory, the averaging of
which can then be performed.
In the replica trick, we use the fact that W ¼ logðZÞ ¼

limn→0ð∂Zn

∂n Þ. Zn can be thought of as n copies of the same
theory. Using this, introduce [9–11]

Wn½Ji� ¼
Z

DhP½h�Zn½h; Ji�

¼
Z

DhP½h�
Z Yn

A¼1

DμAe
−
P

A
S0;A−

P
A

R
ddxhðxÞO0;AðxÞþ

P
i;A

R
ddxJiðxÞOi;AðxÞ

≡
Z Yn

A¼1

DμAe
−Sreplicaþ

P
i;A

R
ddxJiðxÞOi;AðxÞ ð2:13Þ

where in the last line we have performed the integration
over h, and A ¼ 1;…; n. In this equation, n is treated as a
non-negative integer, and in the replica trick, we will treat
analytic expressions in n as if n is real; in particular,
WD½Ji� ¼ limn→0

∂Wn½Ji�∂n . For a given disordered theory,
(2.13) defines the associated replicated theory (which is
local, at least perturbatively, in the cumulants of the
probability distribution).
In examples we will focus on the case of Gaussian

disorder. It is then straightforward to perform the h
integration in (2.13) to obtain

Sreplica ¼
X
A

S0;A −
v
2

X
A;B

Z
ddxO0;AðxÞO0;BðxÞ: ð2:14Þ

Several remarks are in order. First, note that for A ¼ B the
product of the same operator at coincident points diverges

in the absence of an ultraviolet cutoff. Using the operator
product expansion (OPE), each such term can be replaced
by the operators appearing in the OPE. The relevant
operators must anyway be introduced once we deform
the pure CFT we began with, since in general they will be
generated under the RG, so the A ¼ B terms do not need to
be considered separately from other operators in S0;A, and
the sum can be restricted to A ≠ B. In specific pure CFTs
(free theories and large-N theories), there is a special
operator appearing in a nonsingular way in the OPE of
O0 andO0, which is denoted byO2

0, and it will be marginal
when the disorder is marginal, so that it is natural to include
the term with A ¼ B in (2.14).
Second, the sign of the term proportional to v seems to

give an unbounded potential from below (since v ≥ 0).
However, in general there will be terms in S0 that will
stabilize the potential. In addition, there are nðn − 1Þ terms
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in this sum over A ≠ B and so as we take n → 0 the sign of
this potential changes [1].
For any P½h�, there are several relations between corre-

lation functions in the disordered theory and in the replicated
theory. Using the relation of WD to Wn, (2.12) and (2.13),
the disorder-averaged connected correlation functions can be
obtained from the replicated theory as4:

hOi1ðx1ÞOi2ðx2Þ � � �iconn
¼ lim

n→0

∂
∂n

�X
A

Oi1;Aðx1Þ
X
B

Oi2;Bðx2Þ � � �
�

replicated
;

ð2:15Þ

where the right-hand side is evaluated in the replicated
theory, and the correlation function appearing there is a-
priori not the connected one. Actually, since as will be
explained in a moment any correlation function of the form
hPAOi1;Aðx1Þ � � �i is proportional to n as n → 0, only the
connected part contributes to (2.15), so that we can take the
connected correlation function in the replica side as well.
Equation (2.15) can be expressed in another form. A

useful symmetry of the replicated theory is an Sn

permutation symmetry of the replicas (the n copies of
the theory), as can be seen by the definition of the replicated
theory. We will assume that this ‘replica symmetry’ is
not broken spontaneously; when it is broken it is more
difficult to relate the correlation functions of the replicated
theory to those of the disordered one.5 From the Sn
symmetry it follows that in the correlation function
hPA1

Oi1;A1
ðx1Þ

P
A2
Oi2;A2

ðx2Þ���i, the contribution of two
different A1’s is the same. Therefore, hPA1

Oi1;A1
ðx1Þ×P

A2
Oi2;A2

ðx2Þ � � �i ¼ nhOi1;1ðx1Þ
P

A2
Oi2;A2

ðx2Þ � � �i and

hOi1ðx1ÞOi2ðx2Þ � � �iconn
¼ lim

n→0

�
Oi1;1ðx1Þ

X
A2

Oi2;A2
ðx2Þ � � �

�
replicated

: ð2:16Þ

We can also extract nonconnected correlation functions
(by which we mean a general correlation function including
both connected and disconnected contributions) from the
replicated theory (see [15] and references therein). For any
positive integer n, we have

hOi1ðx1ÞOi2ðx2Þ � � �i ¼
Z

DhP½h�
R
DμOi1;A1¼1ðx1ÞOi2;A2¼1ðx2Þ � � � e−

P
A
S0;A−

P
A

R
ddxhðxÞO0;AðxÞ

Z½h�n : ð2:17Þ

Suppose that this equation can also be continued to n → 0. Then (using limn→0Wn ¼ 1)

hOi1ðx1ÞOi2ðx2Þ � � �i ¼ lim
n→0

hOi1;1ðx1ÞOi2;1ðx2Þ � � �ireplicated: ð2:18Þ

This relation can also be generalized straightforwardly to include operators from different replicas, giving a similar
relation which holds for all integer n large enough. Assuming we can continue the obtained relation to n → 0, we get6

hOi1ðxi1ÞOi2ðxi2Þ � � �ihOj1ðxj1ÞOj2ðxj2Þ � � �i � � � ¼ lim
n→0

hOi1;1ðxi1ÞOi2;1ðxi2Þ � � �Oj1;2ðxj1ÞOj2;2ðxj2Þ � � �ireplicated: ð2:19Þ

There is an important comment regarding the relation (2.19) (and the previous ones), which is strongly related to the
renormalization group in these theories (the guiding idea will appear later in more detail, while the comment here is
brief). This relation holds for bare operators, but it is not necessarily true for renormalized operators. The operators OA
mix among themselves, so the renormalization is not multiplicative. We define the renormalized correlation functions in
the disordered theory through this relation, with the operators on the replica side being the renormalized ones, ensuring
that we get finite answers. In particular, the correlators hO � � �Oimix with correlators of the form hO � � �OihO � � �Oi � � �

6Note that we could add to the replica theory couplings which vanish as n → 0, and still get the relations (2.16), (2.19) to the
disordered theory. This is useful since there are cases in which the original replicated theory is not well-defined (for instance due to the
presence of tachyons), but such modifications can cure the problem. Such a situation was noticed and analyzed in [33].

5Note that even if this symmetry is spontaneously broken, this will not affect the renormalization group flow of the coupling constants
and the local operators of the replica theory, and the flow in the replica theory as n → 0 is the same as the one we saw in the local RG
picture in subsection II A (including the flow of the probability distribution). However, such a breaking may affect the correlation
functions and the equations that they obey.

4Note that limn→0Wn ¼ 1. There is an additional term on the RHS of limn→0h
P

AOi1;Aðx1Þ � � �i ∂
∂nWn, but as will be explained in a

moment, the correlation function inside the limit is proportional to n and thus this term vanishes as n → 0.
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where the total number of operators is the same, implying that we cannot renormalize all of hO � � �Oi just by a
redefinition O ¼ ffiffiffiffi

Z
p

OR.
There is another kind of replica correlation function whose relation to the disordered theory will be needed. It has the

form hOi1;1ðx1Þ � � �OiI ;IðxIÞ
P

n
1 Oj1;A1

ðy1Þ � � �
P

n
1 Ojk;Ak

ðykÞi, where the subscripts Aj ¼ 1;…; n (j ¼ 1;…; k) are replica
indices. As n → 0 it is given in the disordered theory by

lim
n→0

hOi1;1ðx1Þ � � �OiI ;IðxIÞ
Xn
A1¼1

Oj1;A1
ðy1Þ � � �

Xn
Ak¼1

Ojk;Ak
ðykÞireplicated

¼
X

Partitions of f1;…;kg
into S1 ;…;SI

�
Oi1ðx1Þ

Y
l∈S1

OjlðylÞ
�

conn
� � �

�
OiI ðxIÞ

Y
l∈SI

OjlðylÞ
�

conn
: ð2:20Þ

In the sum on the right-hand side, we are going over all the
partitions of f1;…; kg into I sets (where some of them can
be empty). This is, in fact, a generalization of (2.16).
Equation (2.20) is derived in Appendix B.
For the validity of the relations above, we have assumed

that there is a stable vacuum with no replica symmetry
breaking. We also assume that the n → 0 limit exists; this is
true in any perturbative expansion in the disorder, where
only polynomials in n appear, sowe believe that it should not
affect the form of the GCS equations that we will derive.
Indeed, in simple cases, we have confirmed that these
equations can be derived from the original disordered theory
(subsection II A), with no reference to the replica trick.
In the replica theory, the parameters of the disorder

distribution become standard coupling constants as in
(2.14), so it is clear that they run like any other couplings,
and mix with the other couplings, consistently with the
description in subsection II A. In (2.13), we wrote a
disorder distribution only for a single coupling hðxÞ,
but an RG flow will generate such a distribution also for
other couplings; in the replica theory this will happen by
generating additional couplings between different replicas,
beyond the ones present in (2.13). Generically at the UV
cutoff scale (e.g., the lattice scale) there will be some
disorder distribution for all the couplings, and its param-
eters will then flow under the renormalization group,
together with the flow of the standard coupling constants.
If we have a symmetry G of our original theory that is

unbroken by the coupling to the disorder, namely it is
unbroken in (2.1), then in the replica theory (2.13) (without
the sources) we get n copies of this symmetry (Gn), one for
each replica. This does not happen when the symmetry is
broken by the coupling to the disorder. However, we can
sometimes restore the symmetry by making the disordered
coupling hðxÞ in (2.1) also transform, if the disorder
distribution is invariant under this transformation. In such
a case, the symmetry G will still be there in the disorder-
averaged correlation functions, and the replica theory
(2.13) that we obtain after the integral over h still has
one copy of this symmetry. This happens in particular for

translations and rotations, and in some cases also for
internal symmetries.
As an example, the random-bond Ising model above

with a random coupling h̃ðxÞφ2ðxÞ preserves the Z2

symmetry taking φ → −φ, so this becomes a ðZ2Þn
symmetry in the replica theory. A varying coupling for
φ corresponds in the replica to a

P
A≠BφAφB coupling, that

is allowed by the overall Z2 symmetry, but is forbidden by
the ðZ2Þn symmetry. This agrees with our discussion in
subsection II A. On the other hand, the random-field Ising
model with hðxÞφðxÞ breaks the φ → −φ symmetry. But if
the distribution of the background field is Gaussian, we
have a new ðhðxÞ;φðxÞÞ → −ðhðxÞ;φðxÞÞ “symmetry” of
the disordered theory, which is a symmetry of the disorder-
averaged correlation functions, and which becomes a single
Z2 symmetry in the replica theory.

C. The generalized Callan-Symanzik equations

1. Connected correlation functions

The replicated theory is a standard QFT. In principle, we
should include in it all the deformations which are relevant
or marginal, and are consistent with the symmetries
preserved by the CFT we began with and the term(s)
induced by the disorder. It will be assumed that there is a
finite number of such couplings. We can also discuss a
Wilsonian renormalization group flow, in which we keep
all deformations during the flow (relevant and irrelevant);
we will take a prescription in which operators can mix with
other operators of lower dimension, but not with operators
of higher dimension.
Consider correlation functions of an operator OðxÞ,

which at first is taken to be of lowest dimension (we
will generalize this below). Examples of such operators
are scalar fields in weakly coupled quantum field
theories constructed by a deformation of a free field
theory in the ultra-violet. Even though in the pure CFT
O does not mix with other operators because of the
dimension condition, in the replicated theory the cor-
responding operators OA mix among themselves. This
is reflected in the Callan-Symanzik equation for a
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correlation function of k O’s by promoting the anoma-
lous dimension γ to a matrix γAB:

M
∂
∂M hOAðx1ÞOBðx2Þ � � �i þ βλ̄i

∂
∂λ̄i hOAðx1ÞOBðx2Þ � � �i

þ γAA0 hOA0 ðx1ÞOBðx2Þ � � �i þ � � � ¼ 0 ð2:21Þ

(we sum over repeated indices such as i and A0 here).
Here λ̄i are all the couplings of the replica theory,
and the dots stand for terms similar to the last one, for
each of the other operators OBðx2Þ; � � �. Next, sum over
A;B;… and take the derivative with respect to n:

M
∂
∂M

∂
∂n

�X
A

OAðx1Þ
X
B

OBðx2Þ � � �
�

þ ∂βλ̄i
∂n

∂
∂λ̄i

�X
A

OAðx1Þ
X
B

OBðx2Þ � � �
�

þ βλ̄i
∂
∂λ̄i

∂
∂n

�X
A

OAðx1Þ
X
B

OBðx2Þ � � �
�

þ ∂
∂n

X
A;A0

γAA0

�
OA0 ðx1Þ

X
B

OBðx2Þ � � �
�
þ � � � ¼ 0:

ð2:22Þ

The Sn replica symmetry implies that

γAB ¼ γ0δAB þ γ00: ð2:23Þ

Taking the limit of n → 0 (assuming that the β and γ
functions are smooth as n → 0, which is guaranteed in
perturbation theory), using (2.15), and noting again that
hPAOAðx1Þ

P
BOBðx2Þ � � �i vanishes as n → 0, we get

�
M

∂
∂Mþ βλ̄i jn¼0

∂
∂λ̄i þ kγ0jn¼0

�
hOðx1Þ � � �OðxkÞiconn ¼ 0:

ð2:24Þ

We have shown that the disordered connected correla-
tion functions of such operators OðxÞ satisfy a standard
Callan-Symanzik equation with βðλ̄iÞjn¼0 and γ0jn¼0.
In the case of Gaussian disorder, the disorder strength v

should be treated as one of the couplings λ̄i in (2.21) [see
(2.14)], in addition to any other couplings λi of the original
theory (these correspond to the constant part of what were
called gi above). Additional moments of the disorder
distribution should also be included in principle, but if
the disorder is close to being marginal, the higher moments
will correspond to irrelevant operators, see Appendix C,
and these do not have to be included. The CS equation in
the disordered theory is thus

�
M

∂
∂Mþ βv

∂
∂vþ βλi

∂
∂λi þ kγ0

�
hOðx1Þ � � �OðxkÞiconn ¼ 0

ð2:25Þ

where the beta and gamma functions in this equation are the
replica beta and gamma functions at n ¼ 0. Equation (2.25)
suggests that these should be called the disordered beta
and gamma functions; they are not the same as those of the
pure system.
It is useful to take advantage of the Sn replica symmetry

as was done above, since it restricts the possible mixing.
Operators transforming as the same irreducible representa-
tion can mix with each other under the RG, but not with
operators transforming as a different irreducible represen-
tation. Therefore, it is favorable to work in a basis of
operators forming irreducible representations of Sn.
Operators with a single replica index OA decompose into
two irreducible representations

Õ ¼
X
A

OA; ÕA ¼ OA −
1

n

X
A

OA; ð2:26Þ

the first being a singlet (invariant under permutations).
Disordered connected correlation functions are related to
replica correlation functions of Õ by (2.15). In the simplest
case considered above, Õ was the only singlet, which then
did not mix with other operators, and this is why a simple
CS equation was obtained.
For a general operator O�ðxÞ of the original theory, the

corresponding singlet operator Õ�ðxÞ in the replica theory
will mix with other operators. The first kind of operators
that it can mix with are operators of the same formP

AOi;A ¼ Õi. These just correspond to operators OiðxÞ
in the pure theory that O�ðxÞ can mix with. But, there are
additional singlet operators in the replicated theory. From
products of two replicated operators, we can form the
singlet ÕijðxÞ ¼

P
A≠BOi;AðxÞOj;BðxÞ.7 Similarly, singlets

can be formed from products of three operators, and so on.
Since operators can mix only with operators of lower
dimension, and there is a finite number of operators with
dimensions ½Oi� ≤ ½O�� for the first kind of operators,
½Oi� þ ½Oj� ≤ ½O�� for the second kind, and so on (½O� is
the dimension of O), there is a finite number of operators
with which Õ�ðxÞ can mix.
We may wonder what is the meaning of this mixing in

the language of the disordered theory, since while Õi are
the replica analog of the local operatorsOi in the disordered
theory, there are no local operators in the disordered theory
corresponding to the replica operators with a higher number

7Note that after turning on disorder there can be short-distance
singularities in the product of Oi;A and Oj;B corresponding to
other singlet operators, and we assume that these have been
subtracted.
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of replicas such as Õij. Recalling that the integral ofP
A≠BOAOB corresponds to the Gaussian term in the

disorder distribution, it is natural to associate these oper-
ators with the disorder distribution. Using Appendix C, if
we denote the coupling multiplying the operator Oi in the
disordered action by gi, we see that Õi in the replica
corresponds to having a constant part for gi, while Õij

corresponds in the disordered theory to correlations
between nonconstant gi and gj. So the constant coupling
for Õij corresponds to some moment of the disorder
distribution. Thus, in the language of the disordered system
we have a mixing between all the coupling constants and all
the distribution parameters (moments). This can also be

seen using the approach of the running distribution and
inhomogeneous couplings described in subsection II A.
While this accounts for these operators mixings from the

point of view of the corresponding mixing of couplings, we
also saw in subsection II A directly what is the origin of the
mixing of operators. This came from a mixing of local
operators with coefficients depending explicitly on the
disorder field.
To see the implications of such mixings for disorder-

averaged correlation functions, assume for simplicity that
there is a single operator Õij with which Õ can mix. The
relevant equation in the replicated theory that will lead to
the disordered connected correlation function of O now
becomes

M
∂
∂M

�X
A1

OA1
ðx1Þ � � �

X
Ak

OAk
ðxkÞ

�
þ βλ̄i

∂
∂λ̄i

�X
A1

OA1
ðx1Þ � � �

X
Ak

OAk
ðxkÞ

�
þ kγÕ

�X
A1

OA1
ðx1Þ � � �

X
Ak

OAk
ðxkÞ

�

þ
�
γÕ;Õij

�X
A≠B

Oi;AOj;Bðx1Þ
X
A2

OA2
ðx2Þ � � �

X
Ak

OAk
ðxkÞi þ � � �

	
¼ 0: ð2:27Þ

Taking the derivative with respect to n and the n → 0 limit, using

X
A≠B

�
Oi;Aðx1ÞOj;Bðx1Þ

X
A2

OA2
ðx2Þ � � �

�
¼ nðn − 1Þ

�
Oi;1ðx1ÞOj;2ðx1Þ

X
A2

OA2
ðx2Þ � � �

�
ð2:28Þ

and (2.20), leads to

M
∂
∂M hOðx1Þ � � �OðxkÞiconn þ βλ̄i

���
n¼0

∂
∂λ̄i hOðx1Þ � � �OðxkÞiconn þ kγÕ

���
n¼0

hOðx1Þ � � �OðxkÞiconn

− γÕ;Õij

���
n¼0

" X
Partitions of f2;…;kg

into S1 ;S2

�
Oiðx1Þ

Y
l∈S1

OðxlÞ
�

conn

�
Ojðx1Þ

Y
l∈S2

OðxlÞ
�

conn
þ ðx1 ↔ x2Þ þ � � � þ ðx1 ↔ xkÞ

#
¼ 0:

ð2:29Þ

Restoring the disorder strength and returning to the notation in which the beta and gamma functions in the disordered
theory stand for the appropriate ones in the replicated theory at n ¼ 0, the full GCS equation is

�
M

∂
∂M þ βv

∂
∂vþ βλi

∂
∂λi þ kγO

�
hOðx1Þ � � �OðxkÞiconn

− γO;Oij

" X
Partitions of f2;…;kg

into S1 ;S2

�
Oiðx1Þ

Y
l∈S1

OðxlÞ
�

conn

�
Ojðx1Þ

Y
l∈S2

OðxlÞ
�

conn
þðx1 ↔ x2Þ þ � � � þ ðx1 ↔ xkÞ

#
¼ 0: ð2:30Þ

These are nontrivial GCS equations for the connected correlators, which precisely agree with what we found (under
additional simplifying assumptions) using the local RG approach (2.10). Note that if γO;Oij

is vanishing, then γO just reduces
to what was denoted by γ0 in the simplest case considered in (2.25). Our discussion implies that Eq. (2.25) is valid only
when there is no mixing of Õ with multireplica operators. Mixing with operators with more replicas correspond in the local
RG approach to including terms of higher order in hðxÞ, either in the operator mixings or in the disorder distribution (or
both). The corresponding generalization of (2.30) is straightforward.
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2. Nonconnected correlation functions

Consider next general (nonconnected) disordered corre-
lation functions. Here, already for the simplest case in
which OA mix only among themselves [that led to (2.25)]
there is a nontrivial GCS equation.
Look again at correlation functions of k O’s. Set A ¼

B ¼ � � � ¼ 1 in (2.21) to get

M
∂
∂M hO1ðx1ÞO1ðx2Þ � � �i þ βλ̄i

∂
∂λ̄i hO1ðx1ÞO1ðx2Þ � � �i

þ kγ0hO1ðx1ÞO1ðx2Þ � � �i

þ
�
γ00
X
A

hOAðx1ÞO1ðx2Þ � � �i þ � � �
�

¼ 0: ð2:31Þ

Taking n → 0 and using (2.19), this gives

M
∂
∂M hOðx1Þ � � �OðxkÞi þ βλ̄i

���
n¼0

∂
∂λ̄i hOðx1Þ � � �OðxkÞi

þ kðγ0 þ γ00Þjn¼0hOðx1Þ � � �OðxkÞi
− γ00jn¼0

h
hOðx1ÞihOðx2Þ � � �OðxkÞi

þ hOðx2ÞihOðx1ÞOðx3Þ � � �OðxkÞi þ � � �
i
¼ 0: ð2:32Þ

Recall that the disorder strength v should be treated as one
of the coupling constants. We see that the GCS equation
satisfied by these disordered correlation functions is�
M

∂
∂M þ βv

∂
∂vþ βλi

∂
∂λi þ kðγ0 þ γ00Þ

�
hOðx1Þ � � �OðxkÞi

− γ00
h
hOðx1ÞihOðx2Þ � � �OðxkÞi

þ hOðx2ÞihOðx1ÞOðx3Þ � � �OðxkÞi þ � � �
i
¼ 0: ð2:33Þ

This is precisely the contribution (2.9) that we found in
the local RG approach, due to mixing with the identity
operator. Operator mixings with multireplica operators will
lead to an even more complicated equation, along the lines
of our discussion above.
Note that the beta and gamma functions that appear in

the GCS equations (2.25) and (2.33) for the disordered
connected and nonconnected correlation functions are
intrinsic to the disordered theory, and do not depend on
the replica trick; indeed we found similar mixings in the
local RG approach.

D. Disordered fixed points

A disordered theory may flow to a fixed point, defined
by vanishing disordered beta functions βλi ¼ βv ¼ 0. It can
flow to a pure fixed point if v (and any other disorder-
related coupling constants) flows to zero, but otherwise it
will be a random fixed point. We will analyze here the
properties of such random fixed points if and when they
arise, denoting the anomalous dimensions at the fixed point
by γ�, and the couplings by λ�i , v

�.

1. Connected correlation functions

Connected correlation functions of low-dimension oper-
ators, obeying (2.25), will have standard scaling behavior at
such fixed points. However, for the more general Sn-singlet
operators Õ that can mix, the situation is different. We
illustrate this by again looking at the simplest case of an Õ
which mixes only with Õij, with some 2 × 2mixing matrix
γ (the same computation can be performed directly with
averaged correlation functions, but it will be simpler to use
the replica approach here). The CS equations for their two-
point functions in the replica theory at fixed points are

�
M

∂
∂M þ 2γ�11

�
hÕðxÞÕð0Þi þ 2γ�12hÕðxÞÕijð0Þi ¼ 0;�

M
∂
∂M þ γ�11 þ γ�22

�
hÕðxÞÕijð0Þi þ γ�21hÕðxÞÕð0Þi þ γ�12hÕijðxÞÕijð0Þi ¼ 0;�
M

∂
∂M þ 2γ�22

�
hÕijðxÞÕijð0Þi þ 2γ�21hÕðxÞÕijð0Þi ¼ 0: ð2:34Þ

By the same arguments as before, all these correlation
functions are proportional to n as n → 0, and, therefore,
when a derivative with respect to n is taken on these
equations, in the limit n → 0 all the correlation functions
will simply be replaced by their derivatives with respect
to n. Recall also that as n → 0, the correlator
∂
∂n hÕðxÞÕð0Þi approaches hOðxÞOð0Þiconn, while the

other two-point functions do not approach a connected
correlation function.
The first question to ask is whether there are linear

combinations of the three 2-point functions in (2.34) such
that the CS equations can be written as three homogeneous
equations of the form ðM ∂

∂M þ 2γ�ÞGðxÞ ¼ 0. It can be
checked that this can be done, unless the matrix
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γ� ¼
�
γ�11 γ�12
γ�21 γ�22

�

is not diagonalizable.
If γ� is not diagonalizable in the n → 0 limit, it can only

be brought to the Jordan form

γ� ¼
�
γ�11 γ�12
0 γ�11

�
:

This can only happen if there is an exact degeneracy in the
scaling dimensions (as n → 0), which is unlikely to happen
except in special cases such as large-N theories, that will be
discussed in Sec. III. The consequences of such degener-
acies will be addressed there.
In the general case, there will not be such an exact

degeneracy in the anomalous dimensions. There is then a
basis of three correlation functions which satisfy a usual
CS equation, and at the fixed point each of them is given by
a power law. However, when substituted back into the
original basis which is distinguished by ∂

∂n hÕðxÞÕð0Þi
giving in the n → 0 limit the disordered connected
correlation function hOðxÞOð0Þiconn, it implies that
hOðxÞOð0Þiconn will generically be a sum of three different
power laws. Therefore, the connected part of a disordered
correlator will not satisfy the usual power law behavior of
pure fixed points, but rather will include combinations of
power laws, even at a fixed point. Of course, the smallest
dimension will always dominate the correlation function at
long distances. The generalization to a higher number of
mixing operators is the same, resulting in a larger number
of powers in a single disordered connected correlation
function.
This is different from a pure unitary (reflection-positive)

system, in which we can diagonalize the mixing of
operators such that for k operators, only k dimensions
appear. Contrary to that, in disordered systems, the corre-
lation functions in the replica that give connected disor-
dered correlation functions are distinguished. In the
absence of a mixing with multireplica operators such as
Õij, we can diagonalize the Õi operators as usual, but once
the Õi operators mix with multi-replica operators, the
dimensions of all these multi-replica operators will mix
into the connected disordered correlation functions. So not
only is the total number of critical exponents larger than the
number of local operators in the disordered theory, because
of the presence of the disorder-related couplings and the
associated replica operators, but all of these exponents can
appear also in the connected correlation functions of the
local operators.
In addition, in pure fixed points of unitary theories, the

anomalous dimensions γ� must all be real. However, this is
not necessarily true for random fixed points (even though
the replica theories are unitary for positive integer values

of n). For such fixed points, some of the dimensions (and
some of the critical exponents) can be complex; however,
complex dimensions must always come in complex-
conjugate pairs, so they must arise for pairs of operators
that are allowed to mix. Moreover, since the dimensions are
continuous along the RG flow, when we flow from a
unitary theory, complex dimensions can only appear if two
operator dimensions become degenerate along the RG flow
and then move off into the complex plane. When we have
an operator with a complex dimension Δ, its two-point
function will scale as jxj−2ReðΔÞ sin ½2 · ImðΔÞ logðμjxjÞ�,
and will feature discrete scale-invariance.
In situations of weak disorder that is seen in perturbation

theory around a unitary theory, complex dimensions can
arise only if the original unitary theory has a pair of
operators with degenerate dimensions. Generically this is
not the case, but it is true when our unitary theory is free,
which is often the starting point for ϵ-expansions of scalar
field theories around 4 dimensions. In such cases, the
double-replica operator related to disorder for some O is
degenerate with the operator O2ðxÞ (which is well-defined
in a free theory) and will mix with it, potentially leading to
complex dimensions (and complex critical exponents).
Such a situation was observed for several perturbative
random fixed points [17,34–37].
Since disordered fixed points are in general not unitary,

there is no argument that scale-invariant disordered fixed
points should obey conformal invariance (even when it is
obeyed by the replica theories for positive integer n). It
would be interesting to understand if and when disordered
fixed points have a conformal symmetry.

2. Nonconnected correlation functions

Disordered fixed points have even more unusual behav-
ior of their nonconnected correlation functions. For the
simpler sort of operators for which OA mix only among
themselves, the GCS equations for the connected and the
nonconnected correlation functions were obtained above.
For the two-point functions, the GCS equations (2.25) and
(2.33) that we found reduce at fixed points to�

M
∂
∂M þ 2γ0�

�
hOðxÞOð0Þiconn ¼ 0�

M
∂
∂M þ 2γ0�

�
hOðxÞOð0Þi þ 2γ00�hOðxÞOð0Þiconn ¼ 0:

ð2:35Þ

When γ00� ≠ 0 these equations cannot be diagonalized such
that in each of them only one combination of correlators
appears.8

8In the replica theory, taking as a basis the correlation
functions hO1O1i and hO1O2i where the indices are replica
indices, such a diagonalization is possible for any n ≠ 0.
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The solution of the first equation is the usual one9

hOðxÞOð0Þiconn ¼
M−2γ0�

x2Δþ2γ0� gðλ�i ; v�Þ ∝
M−2γ0�

x2Δþ2γ0� ð2:36Þ

(Δ is the dimension of O at the pure CFT and gðλ�i ; v�Þ is
some integration constant). Now, solving the second
equation, we find

hOðxÞOð0Þi ¼ M−2γ0�

x2Δþ2γ0� ðhðλ�i ; v�Þ − 2γ0�gðλ�i ; v�Þ logðxMÞÞ

∝
M−2γ0�

x2Δþ2γ0� ðC0 þ C logðxMÞÞ ð2:37Þ

(with hðλ�i ; v�Þ another integration constant, and C0, C are
also constants).
These solutions exhibit two properties. First, the con-

nected correlation function has a power law behavior as in
usual pure fixed points. It is evident now that disordered
connected correlation functions containing only this simple
sort of operators must behave at random fixed points as in
pure theories, because of the usual CS equations (2.25).
Second, the nonconnected correlation function contains a
log. The appearance of logs in the nonconnected correlation
functions of disordered fixed points was found in [13–15],
and we reproduce it here in our approach; it is similar to
what happens in a logarithmic CFT. Generically this means
that some correlation functions are not scale-invariant at the
fixed point, because of the mixing of the operators under
the RG flow. In other words, there is no basis of operators
that transforms homogeneously under scaling. Note that the
coefficient C of logðxÞ in (2.37) is universal, but the
constant term (which can be swallowed into M) is not.

3. Higher moments of correlation functions

Since disordered fixed points have no characteristic
scale, they will not in general be self-averaging in the
large volume limit; we expect the probability distributions
of local dimensionless observables to be independent
of the scale. In the lack of self-averaging, a given
disordered system is an instance in the probability space,
and the complete description of the disorder problem is
given by the various moments of observables. Until now
we mostly concentrated on average values of observables,
but we can just as well consider higher moments of
those. One such interesting quantity is the variance of a
two-point function (connected or not), for which we need
both the average (squared) of the two-point function
hOðxÞOð0Þi and the average of a product of correla-
tors hOðxÞOð0ÞihOðxÞOð0Þi.

At a long-distance fixed point the moments hOðxÞOð0Þik
of the two-point function will behave as 1=x2Xk (up to
possible logs as discussed above), and the behavior of the
Xk was analyzed in [38]. The k’th moment is given in the
replica by the two-point function of OA1

� � �OAk
ðxÞ (with

the Ai being different replica indices). This operator is not
an Sn singlet but rather decomposes into kþ 1 operators

OðkÞ
i transforming in different irreducible representations ri,

i ¼ 0;…; k, each with its own scaling dimension at a
random fixed point. Note that the irreducible representa-
tions appearing in kþ 1 are those of k plus one additional
irreducible representation [38]. The lowest dimension

among the OðkÞ
i for fixed k will dominate and will fix

Xk. If there is no mixing between operators of different k,
e.g., by symmetry considerations, then the Xk are inde-
pendent and give a multifractal behavior for the distribution
of the two-point function, with infinitely many critical
exponents [38]. This is the case for the q-state Potts model
as seen for small q − 2 [38] (see also [8]) and for finite
q − 2 in [39]. Otherwise, nonperturbatively, we expect in
general the operators transforming under the same irreduc-
ible representation ri for different k to mix with each other,
and then the lowest dimension among the different k for a
fixed i will dominate the contribution of ri to Xk. If the new
irreducible representation rkþ1 added by increasing k by 1
has a lower dimension, we would then get Xkþ1 < Xk, and
otherwise Xkþ1 ¼ Xk. In any case, ηk ¼ Xk=k is non-
increasing with increased k by general probability theory
(since the kth root of the kth moment is nondecreasing with
k). As a result, the kth cumulant (e.g., the variance for
k ¼ 2) of the two-point function will scale as 1=x2Xk with
the same Xk (since at large distances there will not be
contributions more dominant than the kth moment).
It is often more natural to consider the distribution

of integrated correlation functions, such as
1

Volume

R
ddxddyeiqðx−yÞhOðxÞOðyÞi. As we will discuss

below, in the computation of the variance of such integrated
two-point functions of operators of dimension Δ < d=2,
the four operators in hOðxÞOðyÞihOðx0ÞOðy0Þi will be
at generic points, so it will be related to the dimension
of OðxÞ rather than to the other independent operators in
the replicated theory.
Suppose that we are still in the simplest case in whichOA

mix only among themselves. We can obtain the GCS
equation that such an average of product of correlators
will obey. To get a closed system of equations, we should
write in turn the GCS equations of the correlators that
appear in the inhomogeneous parts of each GCS equation
[as, for instance, in (2.33)], giving a system of GCS
equations. This is analogous to what was done above for
the average of the connected and nonconnected two-
point functions, and it can be done in the usual basis
hOAOBOCODi in the replica trick (with n ¼ 0). We may
then ask whether logs appear in certain correlation

9An abuse of notation is used in which a vector raised to some
power stands for the norm of that vector raised to the same power.
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functions at disordered fixed points. When bringing the
system of equations to the Jordan form, the highest power
of log that will appear in some of the correlation functions
is the size of the largest Jordan block minus one.
When performing this exercise for the case at

hand, we find that (at separated points)
hOðx1ÞOðx2ÞiconnhOðx3ÞOðx4Þiconn satisfies a usual CS
equation (with no inhomogeneous terms) and, therefore,
contains no logs. It means that it is given at fixed points by

hOðx1ÞOðx2ÞiconnhOðx3ÞOðx4Þiconn
¼ gðxijÞ

jx1 − x2j2Δ� jx3 − x4j2Δ� ð2:38Þ

where gðxijÞ is a dimensionless function of xij ¼ xi − xj,

and Δ� ¼ Δþ γ0�. However, hOðx1ÞOðx2ÞihOðx3ÞOðx4Þi
does not satisfy a usual CS equation, and in fact at a fixed
point it takes the form

hOðx1ÞOðx2ÞihOðx3ÞOðx4Þi

¼ 1

jx1 − x2j2Δ� jx3 − x4j2Δ� · ðC0
1ðxijÞ þ C0

2ðxijÞγ0� logðMxÞ

þ C0
3ðxijÞðγ0�Þ2log2ðMxÞ þ C0

4ðxijÞðγ0�Þ3log3ðMxÞÞ
ð2:39Þ

where x is any chosen one out of the xij. The highest power
of log has a nonzero coefficient if γ00� ≠ 0, and the
corresponding term in (2.39) turns out to be proportional
to log3ðxÞhOðx1ÞOðx2ÞOðx3ÞOðx4Þiconn. The implications
for the integrated correlators will be discussed below.

E. Relation to statistical mechanics

The results above can be used to compute properties of
disordered fixed points, which describe second order phase
transitions in disordered materials. Various fixed points of
this type were analyzed long ago in the statistical mechanics
literature, by the ϵ expansion and other methods, and it was
found that indeed the disorder distribution flows and that it
leads to additional critical exponents (see, e.g., [11,31]).
In pure fixed points, when one changes the temperature

to go slightly away from a phase transition, all operators
allowed by the symmetry are generated. The lowest one
EðxÞ controls the specific heat exponent α, and higher
dimension operators give measurable corrections to the
leading scaling behavior. The value of α is related to the
dimension of EðxÞ by

ΔE ¼ d
α − 1

α − 2
; α ¼ d − 2ΔE

d − ΔE
¼ ðd − 2ΔEÞν: ð2:40Þ

At random fixed points the same is true, except that there
are extra contributions from the couplings controlling the

disorder distribution, or equivalently from multi-replica
operators in the replica picture. These mix with the standard
couplings/operators, and the phase transition is character-
ized by the full spectrum of dimensions, containing these
additional contributions beyond the ones related to local
operators. Typically the first subleading correction to
objects like the specific heat will come from the first
disorder-related operator Ψ which in the replica picture
includes

P
A≠BOAOB, and its contribution is characterized

by a critical crossover exponent ϕ defined by

ϕ ¼ d − ΔΨ

d − ΔE
¼ ðd − ΔΨÞν: ð2:41Þ

For weak disorder ϕ is close to α, but in general it could be
smaller or larger (as was found in [31]). As we are flowing
at long distances to a disordered fixed point, ϕ < 0 in the
IR (in order to avoid extra fine-tuning). The presence of
these extra powers is one difference between pure and
random fixed points.
One way to characterize disorder is to consider the

distribution of macroscopic variables, such as the suscep-
tibility, in different realizations of the disorder. At a pure
fixed point, the susceptibility has a fixed value at large
volume, while at a random fixed point, it will generally
have some distribution even at large volume, since random
fixed points are not self-averaging [4]; in particular the
parameters of the distribution cannot be measured by going
to larger systems, but only by manufacturing many systems
with different random couplings. The distribution of macro-
scopic variables is not controlled directly by the distribu-
tion of the microscopic couplings that we discussed earlier
(which is scheme-dependent), but rather by other properties
of the disordered fixed point. For instance, a natural
macroscopic object to look at in a finite-volume system is

χ ¼ 1

Volume

Z
ddxddyhσðxÞσðyÞiconn; ð2:42Þ

for some operator σðxÞ; in the Ising model this gives the
magnetic susceptibility. At a random fixed point this has
some variance χ̄2 − χ̄2, whose ratio to χ̄2 is given by

Rχ ≡
R
ddxddyddzddwhσðxÞσðyÞiconnhσðzÞσðwÞiconn

ðR ddxddyhσðxÞσðyÞiconnÞ2
− 1:

ð2:43Þ

Note that as long as the dimension of σ obeys Δσ < d=2,
the integrals are dominated by the regime where all the
points are far from each other, of order the size of the
system, so the short distance singularities where different
operators come together (and one sees the effects of the
operator

P
A≠BσAσB) do not contribute. In the replica

approach, Rχ involves ratios of four-point functions to

RENORMALIZATION GROUP FLOW IN FIELD THEORIES … PHYS. REV. D 98, 045012 (2018)

045012-15



two-point functions squared, which can be used to char-
acterize the disordered fixed point; in [4] Rχ was used to
define the dimensionless disordered coupling v at the fixed
point, and since Rχ vanishes when the disorder goes to zero,
this definition is as good as any other definition (the
microscopic value of v is scheme-dependent).
Since the correlators in (2.43) are scale-invariant at a

fixed point, as discussed above, Rχ approaches a constant at
a disordered fixed point. This was used in [4] to conclude
that there is no self-averaging (for weakly disordered fixed
points Rχ is small and there is an approximate self-
averaging). Similar behavior is expected also for higher
moments of the distribution of χ, that will generically not
be Gaussian at the fixed point.
The arguments above are relevant when Δσ < d=2 at the

random fixed point. For operators with Δ ≥ d=2, the
correlation functions appearing in the variance are domi-
nated by short-distances, so the averages of products will
scale as a lower power of the volume than the product of the
averages. Thus, correlation functions of such operators, and
in particular the specific heat, will be self-averaging.
We can also consider nonconnected correlation functions

instead of the connected ones above; these are relevant for
instance for scattering off disordered materials (see e.g.,
[7]). These quantities are even less self-averaging when
Δ < d=2. The reason for this is that as we saw above, while
in the nonconnected two-point function there is a single log
and in the square of it there is a log2, in the average of a
product of two-point functions there is a log3. Therefore,
for a system of linear size L, the normalized variance Rχ of
integrated two-point functions of operators with Δ < d=2
will behave as logðMLÞ, which approaches infinity (rather
than a constant) in the infinite volume limit. This happens
for operators for which γ00 ≠ 0, that is, there is a mixing
between the different fOAg operators. Generically such a
mixing will occur, unless there is a symmetry under which
the different OA’s transform differently. We discussed such
symmetries at the end of subsection II B. For instance, in
the random-bond Ising model (where we couple disorder to
a Z2-invariant operator) there is a replica ðZ2Þn symmetry
and γ00 ¼ 0 for any Z2-charged operator σ. Thus in this case
a logarithm will not appear in the variance of integrated
two-point functions of σ, but it may appear in other
correlation functions and in other examples.

III. CLASSICAL DISORDER
IN LARGE-N THEORIES

In this section, which can be skipped if desired, we
discuss classical disorder in large-N field theories, at
leading order in 1=N, where they correspond to ‘general-
ized free fields’. There are three new features compared to
our general discussion in Sec. II. First, we can obtain exact
results for the correlation functions in the presence of
disorder, that will demonstrate the GCS equations we

derived. Second, when the disorder is marginal, there is
always a marginal operator also in the original theory
before adding the disorder, which complicates the renorm-
alization group flow. And finally, in large-N replica
theories there are always degeneracies between operators
involving a different number of replicas, which lead to
logarithms already in the connected correlation functions.
All these properties are only valid at leading order in the
1=N expansion, though they affect also higher orders in this
expansion. Some of these properties are also present in free
field theories with disorder, but in that case the degener-
acies mentioned above are lifted by the renormalization
group flow, while in large-N theories they remain.

A. The RG flow in a disordered generalized
free field theory

Throughout this section, we will use the generalized free
field CFT, which gives the leading order in the 1=N
expansion. It is similar to a free field theory, except that
the basic operator has a general scaling dimension.
Disorder in this theory was studied in [25], and we will
see how the results found there are consistent with our GCS
equations.
In a generalized free theory, there are basic operators that

do not talk to each other at leading order in the large-N
limit, so we can concentrate on a single basic ‘generalized
free field’ OðxÞ. Its correlation functions are given by
Wick’s theorem with the contraction

hOðxÞOð0Þi ¼ 1

x2ΔO
; ð3:1Þ

and the only operators we need to keep are products of O
with itself and with its derivatives, that are well-defined
with no short-distance singularities. This behavior charac-
terizes both vector and matrix large-N theories; in matrix
large-N theories O is called a single-trace operator, and its
products are called multi-trace operators.
We will couple disorder toOðxÞ, and will be interested in

the case where the disorder is marginal according to the
Harris criterion, namely ΔO ¼ d=2. Note that the momen-
tum space correlation function (3.1) diverges logarithmi-
cally and a cutoff is needed, so we will work in position
space. For this case the deformation by O2 is also marginal
at large-N, and so it is natural to consider

S ¼ S0 þ
λ

2

Z
ddxO2ðxÞ þ

Z
ddxhðxÞOðxÞ: ð3:2Þ

The second term is a ‘double-trace deformation’ in the case
of a large-N matrix theory, while the third term is the
disorder term. We take the random distribution of hðxÞ to
be the Gaussian one, with width v. For large N, only
correlation functions including the specific operator O in
(3.2) and its products are modified by these interactions.
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Correlation functions in this section will be calculated
using conformal perturbation theory. We will treat λ, v and
hðxÞ as small parameters (the typical disorder field for a
small v is indeed small) and expand in them to get Feynman

diagrams. When averaging disordered correlation functions,
hðxÞ is eliminated in favor of v. We will work up to second
order in the couplings (that is v2, vλ and λ2). The integrals
that are needed in this section are of the following form

Z
ddz

1

ðx − zÞdðz − yÞd ¼
2Sd−1 logðΛjx − yjÞ þ C1

ðx − yÞd ;

Z
ddzddw

1

ðx − zÞdðz − wÞdðw − yÞd ¼
4S2d−1log

2ðΛjx − yjÞ þ C2 logðΛjx − yjÞ þ C3

ðx − yÞd ; ð3:3Þ

up to terms which vanish when the UV cutoff Λ → ∞,
where Sd−1 is the volume of the (d − 1)-dimensional
sphere. The constants C1, C2, C3 can be evaluated, but
they are scheme dependent and their exact value will not be
needed.
The replicated theory corresponding to the generalized

free field theory (3.2) with Gaussian disorder is

Sreplica ¼
X
A

S0;A þ λ

2

X
A

Z
ddxO2

AðxÞ

−
v
2

X
A;B

Z
ddxOAðxÞOBðxÞ; ð3:4Þ

note that here we included in the last term also the case
A ¼ B, even though it can be swallowed into λ. The
Feynman diagrams in this theory are quite simple and
consist of insertions along the propagators. The renormal-
ized two-point functions in the replicated theory are found
to be10

hOAðxÞOBð0Þireplicated · xd
¼ δAB þ 2Sd−1ðv − δABλÞ logðMxÞ
þ ðv2n − 2vλþ δABλ

2Þ logðMxÞ
· ðC2 − 2C1Sd−1 þ 4S2d−1 logðMxÞÞ þ � � � : ð3:5Þ

Either from the CS equation, or from the relations β ¼
M ∂λ

∂M and γ ¼ Z−1 M
2

∂Z
∂M with fixed bare quantities (Z is the

wavefunction renormalization matrix), the beta and gamma
functions that are obtained are

γAB ¼ δAB

�
Sd−1λþ

�
Sd−1C1 −

C2

2

�
λ2
�
− Sd−1v

þ
�
C1Sd−1 −

C2

2

�
ð−2λvþ nv2Þ þ � � � ;

βλ ¼ 2Sd−1λ2 þ � � � ;
βv ¼ 4Sd−1λv − 2nSd−1v2 þ � � � : ð3:6Þ
The operator O corresponds to the simplest kind of
operators considered in Sec. II, for which OA mix only
among themselves. Therefore, disordered connected cor-
relation functions of O satisfy (2.25).
The beta functions of the disordered theory, and the

gamma function that enters the connected correlation
functions, are thus [25]

γ0jn¼0 ¼ Sd−1λþ
�
Sd−1C1 −

C2

2

�
λ2 þ � � � ;

βλjn¼0 ¼ 2Sd−1λ2 þ � � � ;
βvjn¼0 ¼ 4Sd−1λvþ � � � : ð3:7Þ
A simple correlation function to be considered in the

disordered theory is hOðxÞOð0Þiconn, which actually sat-
isfies hOðxÞOð0Þiconn ¼ hOðxÞOð0Þiconn in this case since
it happens to be independent of the disorder. From (3.5)
follows [25]

hOðxÞOð0Þiconn · xd
¼ 1− 2λSd−1 logðMxÞ
þ λ2 logðMxÞðC2 − 2C1Sd−1 þ 4S2d−1 logðMxÞÞ þ � � � :

ð3:8Þ
This correlation function indeed satisfies the GCS equa-
tion (2.25) with the beta and gamma functions in (3.7).
Note that if one sets λ ¼ 0 and considers the leading 1=N

correction, as in [25], then the leading correction in (3.8)
goes as log2ðMxÞ, which does not take the standard form of
an anomalous dimension. This comes from a combination
of the standard anomalous dimension with the fact that the
operators

P
AO

2
A and

P
A≠BOAOB no longer have the same

10We mostly use the renormalized correlation functions, in
which we eliminate the short distance cutoff Λ in favor of a finite
energy scaleM. This is achieved by a redefinition of the coupling
constants and the fields such that there is no dependence in
correlation functions onΛ (where terms that vanish asΛ → ∞ are
ignored). The bare correlation functions could instead be used
just as well.
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dimension in the replica theory, giving an extra logarithm
from the different running of the corresponding couplings.
This extra logarithm is not related to the ones discussed in
Sec. II and, in the next subsection, which appear also at
fixed points of the renormalization group.

B. Composite operators

In cases where the pure CFT is a free theory or a large-N
theory, there are composite operators such as the operator

O2ðxÞ considered above. In addition to correlation func-
tions ofO as were used in the previous subsection, we may
consider correlation functions of O2. For them however,
we have the mixing that was considered in subsection II C.
That is, the replicated operator

P
AO

2
A mixes with the

double-replica operator
P

A≠BOAOB. This is a particular
case of the discussion that led to (2.30). The disordered
connected correlation functions of the composite operator
thus obey

�
M

∂
∂M þ βv

∂
∂vþ βλi

∂
∂λi þ kγO2

�
hO2ðx1Þ � � �O2ðxkÞiconn

− γ0O2

" X
Partitions of f2;…;kg

into S1 ;S2

�
Oðx1Þ

Y
l∈S1

O2ðxlÞ
�

conn

�
Oðx1Þ

Y
l∈S2

O2ðxlÞ
�

conn
þðx1 ↔ x2Þ þ � � � þ ðx1 ↔ xkÞ

#
¼ 0: ð3:9Þ

In addition, in large-N theories there can be degeneracies
in the scaling dimensions of operators, and in particular the
two operators above,

P
O2

A and
P

A≠BOAOB, are degen-
erate in the large N and n → 0 limit.11 Therefore, in a large
N disordered fixed point, we are generically in a situation in
which the anomalous dimension matrix can only be
brought to a Jordan form, as in the discussion below
(2.34). In such cases, the three CS equations (2.34) can be
brought to the form (2.35), with one additional equation of
the form of the second equation there. The solutions to
these equations involve logarithms. When brought back to
the original basis of correlation functions, we see that in the
large-N limit also in the disordered connected correlation
functions there will be logarithms. The phenomenon of the
anomalous dimension matrix taking a Jordan form and
resulting in logarithms was understood in [26].
To demonstrate this, we will change basis and use the

basis of representations of Sn. The coupling λ is associated
with the operator

P
AO

2
A ¼ 1

n Õ
2 þP

AÕ
2
A, while v is the

coefficient of the operator Õ2 ¼ P
A;BOAOB. The repli-

cated theory in the basis of Õ and ÕA is thus

Sreplica ¼
X
A

S0;A þ 1

2

�
λ

n
− v

�Z
ddxÕ2ðxÞ

þ λ

2

Z
ddx

X
A

Õ2
A: ð3:10Þ

Using the relations toOA, we get the two-point functions in
the generalized free field theory

hÕðxÞÕð0Þi0 ¼
n
xd

;

hÕAðxÞÕð0Þi0 ¼ 0;

hÕAðxÞÕBð0Þi0 ¼
δAB − 1=n

xd
: ð3:11Þ

The second one vanishes as expected by the symmetry.
Since Õ and ÕA are decoupled, at large N the correlation

functions of only Õ’s and correlation functions of onlyP
AÕ

2
A are renormalized multiplicatively. The renormal-

ized correlators and gamma functions to second order can
be found to be

hÕ2ðxÞÕ2ð0Þi x
2d

2n2
¼ 1þ 4Sd−1ðnv − λÞ logðMxÞ þ 2ðλ − nvÞ2 logðMxÞ · ðC2 − 2C1Sd−1 þ 6S2d−1 logðMxÞÞ þ � � �

γÕ2 ¼ 2Sd−1ðλ − nvÞ þ ð2C1Sd−1 − C2Þðλ − nvÞ2 þ � � � ; ð3:12Þ
and

�X
A

Õ2
AðxÞ

X
B

Õ2
Bð0Þ

�
x2d

2ðn − 1Þ ¼ 1 − 4Sd−1λ logðMxÞ þ 2λ2 logðMxÞ · ðC2 − 2C1Sd−1 þ 6S2d−1 logðMxÞÞ þ � � �

γP Õ2
A
¼ 2Sd−1λþ ð2C1Sd−1 − C2Þλ2 þ � � � : ð3:13Þ

11As n → 0, Õ and ÕA have the same dimensions [15] (see footnote 21), and at large N, ½Õ2� ¼ 2½Õ� and ½Õ2
A� ¼ 2½ÕA�. As a

consequence of these, in the limit n → 0 for large N,
P

AO
2
A and

P
A≠BOAOB have the same dimension.
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Of course, the same renormalizations of λ, vwere used as in
hOAOBi above.
In this example, Õ2 ¼ P

A;BOAOB and
P

AÕ
2
A ¼P

AO
2
A − 1

n Õ
2 diagonalize the anomalous dimensions.

The operator relevant for the disordered connected corre-
lation functions,

P
AO

2
A, is not an eigenvector of the

anomalous dimensions. Hence the GCS equation mixes
its disordered connected correlation functions with other
correlation functions.
A simple example of the GCS equation arises in the

theory with λ ¼ 0. A-priori setting λ ¼ 0 should be avoided
since this deformation is expected to be generated and
should be included. However, at large N taking λ ¼ 0 is
consistent. By considering the replicated action (3.10)
in the basis Õ and ÕA, the Õ sector and ÕA sector are
decoupled. If we begin with λ ¼ 0, the ÕA sector will
remain free, and so the double-trace deformation will never
be generated.
The GCS equation will be tested on the bare correlators

for simplicity, which is like testing the RG flow at the cutoff
scale Λ. Using perturbation theory in the disordered theory
and then averaging over the disorder, we get the following
simple correlators, which are exact in v (there are no higher
order corrections) [25]:

hO2ðxÞO2ð0Þiconn · x2d
¼ 2þ 4vð2Sd−1 logðΛxÞ þ C1Þ;

hOð0ÞO2ðxÞiconnhOð0Þiconn · x2d
¼ 2vð2Sd−1 logðΛxÞ þ C1Þ: ð3:14Þ

At first sight the log in the two-point function (at all scales)
is confusing. However, the GCS equation (3.9) for the
two-point function of O2 is

�
Λ

∂
∂Λþ βv

∂
∂vþ 2γO2

�
hO2ðxÞO2ð0Þiconn

− 4γ0O2hOð0ÞO2ðxÞiconnhOð0Þiconn ¼ 0: ð3:15Þ

In the evaluation of hOAOBi in the replicated theory
with λ ¼ 0, the term with k powers of v comes with
nk−1. Therefore, for n ¼ 0 the beta function vanishes:
βvjλ¼n¼0 ¼ 0 to all orders in v. Thus (3.14) and (3.15) give

8Sd−1vþ 2γO2ð2þ 4vð2Sd−1 logðΛxÞ þ C1ÞÞ
− 4γ0O2 · 2vð2Sd−1 logðΛxÞ þ C1Þ ¼ 0: ð3:16Þ

We see that for

γO2 ¼ γ0O2 ¼ −2Sd−1v ð3:17Þ

the GCS equation is indeed satisfied by (3.14) to all orders
in v.
This term is scheme independent and should match the

results (3.12), (3.13) found at the beginning of this
subsection. There we used another basis of operators.
The current basis is related to the previous one by

P
AO

2
A ¼

1
n Õ

2 þP
AÕ

2
A and

P
A≠BOAOB ¼ n−1

n Õ2 −
P

AÕ
2
A, that

is, by the transformation matrix

O ¼
� 1

n 1

n−1
n −1

�
: ð3:18Þ

In the previous basis, the anomalous dimensions matrix γ
was diagonal. In the new basisO0

i ¼ OijOj, the anomalous
dimensions are γ̃ ¼ OγO−1. Using (3.12), (3.13), (3.18)
above, and then substituting n ¼ λ ¼ 0, we get

γ̃ ¼
�−2Sd−1v −2Sd−1v

2Sd−1v 2Sd−1v

�
ð3:19Þ

(this result is from the calculation to order v2). The first line
indeed matches the values (3.17).

IV. THE RENORMALIZATION GROUP FOR
QUANTUM DISORDER

The quantum version of quenched disorder, in which the
disorder varies in spatial directions but there is also a time
direction, is described in a similar way to the classical case,
but it involves a few additional complications.
We now think about the quantization of a many body

system in the presence of disorder, which might for
instance be caused by impurities. The basic many body
system will be defined on a d-dimensional space. In the
path integral quantization of the system, we use fields
which are defined on the d-dimensional space, as well as
one additional time direction. In the absence of the disorder,
we assume for simplicity that the system is critical
(conformal) and Lorentz-invariant, though the generaliza-
tion of our results to general systems which can be
nonrelativistic and non-scale-invariant is straightforward,
and this assumption does not affect any of our conclusions.
The path integral quantization is based on the action
which is a functional of the fields defined on the
(dþ 1)-dimensional Minkowski space. Denoting the coor-
dinates of space by boldface letters x (having d compo-
nents) and time by tM, the disorder field is taken to vary
only in space h ¼ hðxÞ. We will also use x; y;… for the
dþ 1 dimensional spacetime coordinates. As before we
denote by S0 the action of the pure system. In the presence
of the disorder coupled to the operator O0, the action is

S ¼ S0 −
Z

ddxdtMhðxÞO0ðx; tMÞ: ð4:1Þ
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We will analytically continue Minkowski space to a
Euclidean space using tM ¼ −it, in which the action
becomes

SE ¼ S0;E þ
Z

ddxdthðxÞO0ðx; tÞ: ð4:2Þ

In the following, we will work exclusively in Euclidean
space, and omit the subscripts denoting that.12 The total
spacetime dimension will be denoted by

d̄ ¼ dþ 1: ð4:3Þ

Exactly as before we will have a probability distribution
P½hðxÞ� for the disorder, and an average of a quantity X
with respect to it is denoted by X̄. The Gaussian probability
distribution (2.3) is defined as before.
In the presence of a particular disorder configuration

hðxÞ, the symmetries under space translations and space-
time rotations are broken, but the time translation sym-
metry remains. After averaging, similarly to the classical
case, if P½h� is symmetric under translations and rotations,
the space translation and rotation symmetries are restored
(we assume they are not spontaneously broken). However,
the symmetry under full spacetime rotations is not
restored, and instead of this SOðdþ 1Þ symmetry, we
are left in the averaged correlation functions with an
SOðdÞ × Z2 symmetry, where the Z2 acts as a simulta-
neous time reversal and reflection of one spatial dimen-
sion. As a consequence, at disordered critical points we
should not expect in general a scaling symmetry under
which x → λx and t → λt, even if we start from a
relativistic pure system. A more generic possibility is that
Lifshitz scaling may emerge, under which x → λx and
t → λzt, where z is the dynamical exponent.
The Harris criterion for the case of quantum disorder is

modified as follows. Denoting again the dimension ofO0 in
the pure theory by Δ0 and taking a Gaussian disorder
distribution, the width v has now the dimension
½v� ¼ dþ 2 − 2Δ0. This means that disorder is relevant
for Δ0 <

dþ2
2
, marginal for Δ0 ¼ dþ2

2
and irrelevant for

Δ0 >
dþ2
2
. Assuming that disorder couples to the lowest

dimension operator EðxÞ whose dimension is related to the
critical exponent ν ¼ 1=ðdþ 1 − Δ0Þ, this means that we
should have ν ≤ 2=d for disorder to be marginal or relevant.
As before, the case where we may have perturbative
control is when the operator is close to the marginal value
Δ0 ¼ dþ2

2
.

The analysis of subsection II B goes through for the
quantum case, but with P½h� independent of time such that
h varies only along the spatial directions. The replicated

theory is defined just in the same way. In particular, for the
Gaussian disorder, the replicated action is

Sreplica¼
Xn
A¼1

S0;A−
v
2

Xn
A;B¼1

Z
ddxdtdt0O0;Aðx;tÞO0;Bðx;t0Þ:

ð4:4Þ

Note that in (4.4) we do need to include in the sum the
terms with A ¼ B, since the two operators are generally
separated. In general, we will have singularities in the
operator we added to the action when A ¼ B and t0 → t;
this will have interesting consequences below.
In (4.4), we see the main complication in the case of

quantum disorder: the replica theory is not local in time.
Because of this it is far from obvious that we can use
Wilsonian RG methods; however, the local RG point of
view discussed in subsection II A suggests that we can, and
we will argue (and show explicitly in examples) that for
n → 0 we can indeed use the renormalization group. For
finite values of n the theories (4.4) suffer from IR
divergences related to the extra time integral and we will
not try to make sense of them here.
There are many interesting works about quantum disorder

(see [40] for a survey of the subject). We will relate our
general analysis to two specific examples. In [17], a weakly
coupled OðmÞ model was investigated, and the breaking
of the symmetry between space and time was noticed.
Additionally, the renormalization group was studied for this
model, and the dynamical exponent z was evaluated per-
turbatively. In [18], holography was used to study a large-N
system with exactly marginal quantum disorder. It was found
that Lifshitz scaling emerges at low energies, and the
dynamical exponent z was calculated analytically and
numerically as a function of the dimensionless v.13

The purpose of this section is to study the renormaliza-
tion group for the case of quantum disorder, emphasizing
general properties. There are at least two main goals. The
first is to address the general appearance of Lifshitz scaling
both qualitatively (showing where it comes from) and
quantitatively (evaluating perturbatively the dynamic expo-
nent z). Second, we would like to see if there are GCS
equations for the case of quantum disorder as well, given
that the replica theory now is nonlocal. We will again
mostly be interested in disordered fixed points, and will
ignore various difficulties (such as Griffiths-McCoy sin-
gularities [42–44]) in practical realizations and measure-
ments of such fixed points.

A. Universal properties of quantum disorder

We start from a pure theory and add disorder to it,
starting from the simplest case of a Gaussian disorder

12In Minkowski space, this means that we will only consider
time-ordered correlation functions.

13Another model where Lifshitz scaling arises from holo-
graphic disorder was studied in [41].
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distribution (we will discuss the generalization later). In the
language of the replica trick, this deformation of the pure
theory is described by (4.4). We would like to see what
happens as we flow along the renormalization group. A
useful way to do that is to use conformal perturbation
theory: we assume that the disorder v is small, and expand
in it. Denoting the partition function of the pure theory by
Z0, the partition function of the deformed theory is

Z
Z0

¼ 1þ v
2

X
AB

Z
ddxdtdt0hO0;Aðx; tÞO0;Bðx; t0Þi

þ v2

8

X
AB

X
CD

Z
ddx1dt1dt01d

dx2dt2dt02

× hO0;Aðx1; t1ÞO0;Bðx1; t01ÞO0;Cðx2; t2ÞO0;Dðx2; t02Þi
þ � � � : ð4:5Þ

The expectation values are evaluated in the pure replica
theory. Even if some expectation value vanishes, we do not
set it to zero since we are interested also in the results with
operator insertions. Whenever operators in this expansion
are coincident, we will get divergences. This is dealt with as
usual by introducing a cutoff. A simple cutoff is introduced
by having a minimal distance 1=Λ between spacetime
points. For instance this is the case when the system is
defined on a (space-time) lattice. To implement the
renormalization group, we modify the coupling constants
such as to cancel these cutoff dependences, ensuring that
the physics at long distances remains the same as the cutoff
changes.
A new phenomenon that occurs in quantum disorder is

that the bi-local operator that we added to the action (4.4)
needs regularization. The terms with A ¼ B are singular
as t0 → t, leading to a (generally divergent) mixing of this
bi-local operator with integrals of local operatorsP

A

R
ddxdtO0

Aðx; tÞ. We will discuss this mixing in more
detail in the next subsection. In general, these local
operators appear already in the original pure action S0, so
including them does not add anything new to the RG
analysis. However, the disorder-related operator that we
added can mix also with operators that are not Lorentz-
invariant but are only SOðdÞ invariant. These do not appear
in the original action assuming that we start from a
relativistic theory, and they must also be added now to
the action, beginning at order v. In a general RG flow, we
would need to add all such operators and they would all flow.
A particularly interesting operator, that mixes with all

the bi-local operators related to quantum disorder, is the
integral of the time-time component of the energy-
momentum tensor T00ðx; tÞ, namely the Hamiltonian inte-
grated over time. This is always a marginal operator, so its
coefficient is dimensionless, and it can exhibit universal
logarithmic divergences in a perturbative expansion.
Adding this operator will be interpreted below as a

stretching of the time direction relative to the spatial
directions, but for now let us just analyze the RG flow
of the replica theory and show that we have to add this
operator to the action; we do this in the case where the
disorder is marginal such that we can perform explicit
perturbative computations.
In order to make sense of (4.5) at the leading order in v,

note that when t0 is close to t in the linear term in v, we can
use the OPE O0 ×O0. We show in Appendix D that in this
OPE there is a universal term

O0ðxÞO0ð0Þ ⊃
cOOT

cT

xμxν

x2Δ0−d̄þ2
Tμνð0Þ ðin d̄ dimensionsÞ;

ð4:6Þ

where cT and cOOT are defined in (D1) and (D2) (with
O ¼ O0 there). Applying it to our case, we set d̄ ¼ dþ 1
and Δ0 ¼ ðdþ 2Þ=2 corresponding to marginal disorder,
and get in (4.5)

v
2

X
A

Z
ddxdtdt0

cOOT

cT

1

jt − t0j hT00;Aðx; tÞi

∼ v
cOOT

cT
logðΛtÞ

X
A

Z
ddxdthT00;Aðx; tÞi: ð4:7Þ

The notation Λt stands for the short distance cutoff in
the time direction, and is meant to emphasize that in a
relativistic theory it does not matter in what directions
precisely we use a cutoff, but here it may be more natural to
use different cutoffs in the space and time directions.
This means that a deformation proportional to T00

is generated by the RG flow.14 We should, therefore,
modify (4.4) to15

Sreplica ¼
X
A

SA;0 −
v
2

X
A;B

Z
ddxdtdt0O0;Aðx; tÞO0;Bðx; t0Þ

þ h00
X
A

Z
ddxdtT00;Aðx; tÞ: ð4:8Þ

To leading order the flow of the coupling h00 is such as to
compensate for the logarithmic cutoff dependence that was
found,

δh00 ¼
vcOOT

cT
logðΛtÞ þOðv2Þ: ð4:9Þ

14A similar logarithmic running of the coefficients of the
energy-momentum tensor was seen also in nonrelativistic theo-
ries (see, for example, [16]).

15The motivation for denoting the new coupling constant by
h00 is that when coupling a field theory to a curved space, the
linear order deformation corresponding to the metric variation hμν
is hμνTμν. However this is just a notation and no coupling to a
curved space will be needed here.
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The corresponding beta function is

βh00 ¼
vcOOT

cT
þOðv2Þ: ð4:10Þ

The new term in (4.8) is a single-replica term, so this
deformation corresponds to adding h00

R
ddxdtT00ðx; tÞ to

the original disordered theory. Note that we could also add
terms proportional to Tμ

μ, in the disordered theory or in the
replica theory, but since we start from a CFT this vanishes
by the equations of motion, so it can be removed by a field
redefinition. In particular, adding T00 is the same as
adding Tii with an opposite sign. This is true only around
the CFT, since along the RG flow we have only a well
defined T00.
Even though this result used the replica theory corre-

sponding to a Gaussian disorder, it holds for a general
local P½h�. Defining v through hðxÞhðyÞ ¼ vδðx − yÞ,
the replica theory will include the v term in (4.4) that
was used, as well as additional terms from the higher
moments of the distribution, see Appendix C. If the
Gaussian disorder is marginal then all these additional
terms are irrelevant when Δ0 > 1 (namely d > 0), and do
not affect (4.10).
The generated T00 deformation leads to an anisotropy

between space and time; in fact it is equivalent to rescaling
time, as will be shown now. For a general theory with action
S, the variation of the action from the infinitesimal trans-
formation x0μ ¼ xμ þ ϵμðxÞ is δS ¼ −

R
dd̄x∂μϵνTμν, as

follows from Noether’s theorem.16 Therefore, for an infini-
tesimal time dilation, t0 ¼ tð1þ ϵÞ,

δS ¼ −ϵ
Z

ddxdtT00ðx; tÞ: ð4:12Þ

Since at leading order h00 is the coefficient of the total
energy of the replica theory (or of the original theory),
we conclude that a small h00 deformation is equivalent
to rescaling time. The relation between correlation
functions in the presence of this h00 deformation
(denoted in the following equation by adding an h00
subscript) and correlation functions without it, is (for
scalar operators)

hOi1;A1
ðx1; t1Þ � � �Oik;Ak

ðxk; tkÞih00
¼ hOi1;A1

ðx1; t1Þ � � �Oik;Ak
ðxk; tkÞi

− h00
Xk
i¼1

ti
∂
∂ti hOi1;A1

ðx1; t1Þ � � �Oik;Ak
ðxk; tkÞi þOðh200Þ:

ð4:13Þ

So far we discussed the first (linear) order in perturbation
theory of (4.8). Consider next higher orders. Since h00 is
just equivalent to time rescaling, terms in the perturbative
expansion which include h00 will not give rise to new
contributions which diverge as the cutoff is removed (such
as logarithmic terms). This can be checked explicitly to
second order.
Thus, the only remaining contribution to the RG flow

from (4.8) at second order in the couplings is from the v2

term in (4.5). Cutoff dependent terms arise when two or
more operators become close to each other. This v2 term,
which multiplies the operator OAOBOCOD (with the
spacetime arguments and the ‘0’ subscript left implicit),
will contribute to the running of various operators. One
contribution comes from the region where OA,OC are
close to each other, as well as OB,OD being close (and
the symmetric region obtained by C ↔ D). In these
regions, we can use the OPE O0 ×O0. Defining cOO
and cOOO as the coefficients in the two- and three-point
functions of O0,

hO0ðx1ÞO0ðx2Þi ¼
cOO

ðx1 − x2Þ2Δ0
;

hO0ðx1ÞO0ðx2ÞO0ðx3Þi ¼
cOOO

jðx1 − x2Þðx1 − x3Þðx2 − x3ÞjΔ0
;

ð4:14Þ

there is the following term in the OPE (evaluated by the
same strategy used in Appendix D)

O0ðxÞO0ð0Þ ⊃
1

xΔ0

cOOO

cOO
O0ð0Þ: ð4:15Þ

Using this OPE in the above regions (with Δ0 ¼
ðdþ 2Þ=2) gives a contribution logarithmic in the cutoff
to the disorder operator corresponding to v. It is compen-
sated by taking

δv ¼ −
v2

2
Sd−1

c2OOO

c2OO

πΓðd
4
Þ2

Γðdþ2
4
Þ2 logðΛxÞ ð4:16Þ

(where again Sd−1 is the volume of the d − 1 dimensional
sphere), giving a universal contribution to the beta function
of v. Unfortunately, this is only one contribution, and we
cannot infer from it the beta function of v to order v2. There
is for instance the region where the three operatorsOA,OB,
OC are close together, and behave as a single OA, giving

16Another way to see this is to couple the theory to a curved
background space and use the usual convention for the energy
momentum tensor (see for instance [45])

Tμν ¼ −
2ffiffiffi
g

p δS
δgμν

: ð4:11Þ

After restricting to flat space, the variation of the action under
x0μ ¼ xμ þ ϵμ is the same as written above.
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together with theOD an additional correction to the running
of v. This is not the usual OPE of two operators and cannot
be evaluated for a general theory. Using the OPE to get the
contribution (4.16) is the same as what is done in a usual
local field theory to get the v2 term in the beta function
of a coupling v corresponding to a local operator. The
region where three operators are close together is what
gives the v3 term in the beta function of a local interaction,
for which there is no formula in terms of simple CFT data.
In the disordered case, this complication appears already
at order v2. We will see an explicit example of this in
subsection IV D.
A straightforward generalization of quantum disorder is

when the disorder is homogeneous in an arbitrary number
dt of directions, such that classical disorder corresponds to
dt ¼ 0 while quantum disorder is dt ¼ 1. This is actually
useful in many contexts, such as theories of constant
random couplings (dt ¼ d̄), or theories with disorder that
is homogeneous in some directions and not others. The
Harris criterion states that coupling disorder to an operator

of dimension Δ0 will be relevant if Δ0 <
d̄þdt
2

(again d̄
includes both the directions in which the disorder varies
and those in which it is homogeneous), irrelevant if

Δ0 >
d̄þdt
2

and marginal for Δ0 ¼ d̄þdt
2
. Using the OPE

(4.6) as before, there will be generated Tαα deformations for
α ¼ 0;…; dt − 1 along the directions on which the disorder
does not depend:

v
2

cOOT

cT

X
A

Z
dd̄−dtxddttddt t0

Xdt−1
α;β¼0

ðt0− tÞαðt0− tÞβ
jt0− tj2Δ0−d̄þ2

Tαβ;Aðx;tÞ

∼
v
2

cOOT

cT

Sdt−1
dt

logðΛtÞ
X
A

Z
dd̄−dtxddt t

Xdt−1
α¼0

Tαα;Aðx;tÞ:

ð4:17Þ

By analogy with the quantum case, the directions in which
the disorder is homogeneous were denoted by t. The
disorder was taken again to be marginal or very close to
marginal (in the latter case the log in (4.17) is the first term
in an expansion in powers of log). The deformation

δSreplica ¼
X
A

h00
Xdt−1
α¼0

Z
dd̄−dtxddttTαα;Aðx; tÞ ð4:18Þ

is thus generated with

βh00 ¼
vcOOT

2cT

Sdt−1
dt

þ � � � ¼ vcOOT

2cT

πdt=2

Γððdt þ 2Þ=2Þ þ � � � :

ð4:19Þ

This is again equivalent to a rescaling of the directions in
which the disorder is homogeneous (and the first term on

the second line of Eq. (4.13) is modified to a sum over all
the dt directions).

B. Operator mixings and generated interactions
in the theory

In quantum disorder, the nonlocality of the replica theory
in time naively allows many more possibilities for operator
mixings and interactions compared to the classical disorder
case, and we would like to see which ones actually arise.
We will show that as expected the only new interactions
that arise are those that can be interpreted as corrections to
the disorder distribution.
The replica theory suggests, as we will argue in a

moment, that operator mixings in quantum disorder should
be nonlocal in the time direction. Such a mixing seems very
surprising since the disordered theories are local, so their
RG evolution should not include any nonlocal effects.
However, the nonlocal effects arise after averaging over the
disorder, because the disorder distribution correlates dis-
order at the same position at different times. For example, if
one repeats the analysis around (2.9) of the local RG flow,
one finds that in the same setup described there, the
correlation function hOiðx; tÞ � � �i mixes with

− v

���Z
dt0O0ðx; t0Þ

�
Ojðx; tÞ � � �

�

−
�Z

dt0O0ðx; t0Þ
�
hOjðx; tÞ � � �i

�
: ð4:20Þ

Unlike in classical disorder, the operators O0 and Oj

are now at different times, so there is no short-distance
singularity, and (4.20) is well defined. For connected
correlation functions this implies that hOiðx; tÞ � � �iconn
mixes with hðR dt0O0ðx; t0ÞÞOjðx; tÞ � � �iconn, without any
additional contributions.
Going back to the replica theory, the nonlocality of the

replica action in time is reflected in singularities that are
independent of some of the time differences between local
operators. Considering a correlation function including
operators O0;Aðx; tÞ and O0;Bðy; t0Þ, already at leading
order in perturbation theory in vwe obtain a UV divergence
from the interaction term in (4.4), whose form is indepen-
dent of t or t0. The origin of this divergence comes from one
of the operators in the disorder interaction v approaching
an external operator. In this region, we can use the OPE,
and conclude that the UV divergence can be cancelled
by a mixing of the operator O0;Aðx; tÞ with the operatorP

B

R
dt0O0;Bðx; t0Þ with a divergent coefficient.

More generally, in conformal perturbation theory, an
operator O0

Aðx; tÞ will mix with any operators that appear
with singular coefficients when we bring it together with
the interaction vertices in (4.5). The general form of such
operators that O0

Aðx; tÞ can mix with is
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O00
Aðx; tÞ

X
A1

Z
dt1O

ð1Þ
A1
ðx; t1Þ � � �

X
Ak

Z
dtkO

ðkÞ
Ak
ðx; tkÞ:

ð4:21Þ

These general mixings allow us to cancel any singularities
where two operators come together. Our previous example
involved the special case where O00 was the identity
operator. Note that in the action any nonlocality is related
to an extra integral over time, and this always comes with
a sum over the replica index, restricting the possible
mixings to the form (4.21). In other words, every inde-
pendent integration over time comes with a separate Sn
symmetry rotating the replica indices of the operators with
that time variable.
If we look at integrated operators, that can appear in the

action, the same argument implies that operators of the
form

Z
ddx

X
A1

Z
dt1O

ð1Þ
A1
ðx;t1Þ���

X
Ak

Z
dtkO

ðkÞ
Ak
ðx;tkÞ ð4:22Þ

only mix among themselves, so that if we start from such an
operator in the action (as above), only such operators will
be generated by the renormalization group flow. Note that
even though the k operators in (4.22) are generically at
different times, their product at the same spatial point still
needs to be regularized, as we saw in the example of the
previous subsection. In particular, the scaling dimension of
such a product of operators will not simply be the sum of
the dimensions of its constituents; we will see an explicit
example of this in subsection IV D. Note also that there can
be contributions when one of the operators OðjÞ is equal to
the identity operator. These contributions will be propor-
tional to the volume of the time direction so that they are
IR-divergent, but they are also proportional to n so they will
vanish as n → 0.
Next, let us verify that the replica interactions that are

generated are precisely the ones related to the standard
couplings and to the disorder distribution. We can identify
those using the approach to the RG using the flow of
inhomogeneous couplings (subsection II A). First, we have
the various homogeneous couplings that are generated
along the flow, and give the usual local replica termsR
ddxdt

P
AOi;Aðx; tÞ. In addition to that, different cou-

plings become inhomogeneous in the spatial directions
under the RG, and the disorder distribution flows as well.
Using Appendix C, the quadratic correlations between the
different inhomogeneous couplings give in the replicaR
ddxdtdt0

P
A;BOi;Aðx; tÞOj;Bðx; t0Þ, and higher moments

in the distribution (generated even if they are not there in
the ultra-violet) give higher multi-replica interactionsR
ddxdt1 � ��dtk

P
A1;…;Ak

Oi1;A1
ðx;t1Þ���Oik;Ak

ðx;tkÞ. These
are precisely the terms that we encountered above.

As an example where the disorder distribution is modi-
fied, consider a scalar theory with disorder coupled to
O0 ¼ φ4 in d̄ ¼ 3 dimensions, which is marginal by the
Harris criterion. The disorder corresponds to the replica
coupling

v
Z

ddxdtdt0
X
A;B

φ4
Aðx; tÞφ4

Bðx; t0Þ: ð4:23Þ

The following coupling is consistent with the symmetriesZ
ddxdtdt0

X
A;B

φ2
Aðx; tÞφ2

Bðx; t0Þ; ð4:24Þ

and indeed it is generated (with a divergent coefficient)
already at order v2, for instance by the diagram appearing
on the left-hand side of Fig. 1 (the dashed line represents
the nonlocal interaction (4.23) that can connect different
replicas; for the precise Feynman rules in a similar theory
see subsection IV D). This interaction corresponds to
Gaussian disorder coupled to the operator φ2 in the original
local disordered theory. Higher moments for this disorder
will also be generated (not only Gaussian); for example the
couplingZ

ddxdt1dt2dt3dt4
X

A;B;C;D

φ2
Aðx; t1Þφ2

Bðx; t2Þ

× φ2
Cðx; t3Þφ2

Dðx; t4Þ ð4:25Þ

is generated through the diagram on the right hand side of
Fig. 1. There are analogous diagrams generating all higher-
order moments as well. Note that when the dimension of all
operators (consistent with the symmetries) in the original
theory is larger than one, interactions with higher moments
have higher dimensions and will be suppressed at low
energies. However, when there is an operator of dimension
one,

R
dtOðx; tÞ is dimensionless, so all higher moments

will be equally important at low energies (this is what
happens in our example). If there is an operator of

FIG. 1. Examples of diagrams that generate nonlocal terms in
the replica action.
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dimension less than one, these higher moments are
expected to dominate. We will assume for simplicity that
these situations do not arise; in such a case it is reasonable
to use a basis for the operators which is polynomial in the
original local operators, despite the nonlocality in time. In
other cases, like the disordered quantum Ising chain (see
Chapter 21.6 of [40] for a review and references) it is more
suitable to study the flow of the full disorder distribution.
Note that if one only takes into account the overall Sn

replica symmetry, then there are additional operators that
are allowed, even though they have no mapping to the
disorder distribution. One example is the local operator
δS1 ¼ ṽ

R
ddxdt

P
A;BOi;Aðx; tÞOj;Bðx; tÞ which would

correspond to classical disorder, and is not expected to
be generated since the couplings in our disordered theory
depend only on space and cannot develop a dependence on
time. Another example is

δS2 ¼ −v0
X
A

Z
ddxdtdt0OAðx; tÞOAðx; t0Þ; ð4:26Þ

which seems to correspond to a nonlocal interaction in the
disordered theory. However, all operators of these types
cannot be generated, because every time integration comes
with a sum over the replica index, and every sum over the
replica index comes with a time integration. In other words,
all interactions between different replicas are independent
of the time difference between the replicas, and all nonlocal
interactions in time are independent of the replica indices.
Since this argument that time integrations always come

with sums over replica indices and vice versa will be used
several times, let us mention that this can also be seen
diagrammatically in perturbation theory. All diagrams,
such as those in Fig. 1, will always consist of k sub-
diagrams which are connected among themselves by
dashed lines. In such diagrams, both the time coordinates
and the replica indices are uncorrelated between the
different sub-diagrams, as can be seen by the types of
interactions that we have. In momentum space, they come
with k separate delta functions for energies. As a result, any
generated interaction (or operator mixing) will maintain
this property.

C. Generalized Callan-Symanzik equations

Quantum disorder differs from the classical case in
several aspects, modifying the GCS equations and their
implications. The first difference is the anisotropy between
space and time. The main other difference is that the
mixings of local operators are not the same as those in the
classical case. On the one hand, the sorts of mixing we saw
for classical disorder are not present in quantum disorder.
First, there is no mixing of the single-replica operators with
local multi-replica operators (such as the mixing we had
between Õ and Õij). The reason for this is that k-replica

operators always appear with k independent time coordi-
nates; alternatively, the absence of such a mixing can
be seen by a diagrammatic argument as above. Similarly,
local operators from different replicas cannot mix as in
(2.23), and so in this sense γ00 is zero. On the other hand, as
mentioned above, single-replica operators can mix with
integrated multi-replica operators (4.21). We shall see
how this mixing affects the disorder-averaged correlation
functions.
As in classical disorder, the couplings related to the

disorder distribution flow and mix with the standard
couplings that are there already in the original theory
(i.e., both types of couplings appear in the beta functions).
Indeed, the mixing of the couplings is consistent with the
argued mixing of the integrated operators. Alternatively we
can associate all the couplings with “local” operators of the
form (4.21) which mix with each other.

1. Connected correlation functions

For connected correlation functions of local operators,
we should consider the replica operators of the formP

AO
0
Aðx; tÞ. These mix with the operators (4.21) summed

over A. When considering connected correlation functions,
we can simply forget about the mixing with operators
(4.21) in which O00 is the identity operator, since their
sum over A will introduce an extra factor of n giving no
contribution as n → 0.
Let us start by considering operators O that do not have

this sort of mixing (in particular this is the case for the
lowest dimensional operators assuming that all operator
dimensions are greater than 1). The derivation of
subsection II C goes through once we include all the
couplings in the replica theory. As before these include
v (and possibly the other parameters of the joint disorder
probability distribution) and the various homogeneous
couplings of the original theory, which we denote by λi.
The homogeneous couplings should include all operators
consistent with the symmetries, and in particular h00. As in
Sec. II, we get

�
M

∂
∂M þ βv

∂
∂vþ βλi

∂
∂λi þ βh00

∂
∂h00 þ kγ0

�

× hOðx1Þ � � �OðxkÞiconn ¼ 0: ð4:27Þ

We can also use the equivalent language in which h00 is
replaced by time rescaling to write these equations in a
different form. Using (4.13), we obtain for scalar operators

∂
∂h00 hOA1

ðx1Þ � � �OAk
ðxkÞih00

¼ −
Xk
i¼1

ti
∂
∂ti hOA1

ðx1Þ � � �OAk
ðxkÞi þOðh00Þ: ð4:28Þ
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The GCS equations then become for scalar operators17

�
M

∂
∂M þ βv

∂
∂vþ βλi

∂
∂λi þ γt

X
i

ti
∂
∂ti þ kγ0

�

× hOðx1Þ � � �OðxkÞiconn ¼ 0; ð4:29Þ

with the “anomalous dimension of time” defined [using
(4.10)] by

γt ≡ −βh00 ¼ −
vcOOT

cT
þ � � � : ð4:30Þ

We can now move on to the more general case where the
local operators mix with the nonlocal operators (4.21). For

simplicity, let us assume that
P

AOAðx; tÞ mixes only withP
AOi;Aðx; tÞ ·

P
BOj;Bðx; E ¼ 0Þ, where we abbreviated

Oðx; E ¼ 0Þ ¼ R
dt0Oðx; t0Þ. The situation here differs

from the classical case in two respects. First, the mixing
occurs with an operator which is nonlocal in time. This will
be reflected in a similar nonlocality in time in the GCS
equation; this nonlocality in time is not some artifact of the
replicated theory, but originates in the correlations between
the values of the disorder at large time separation, as we
saw at the beginning of subsection IV B. Second, the sum
includes not only A ≠ B, but also A ¼ B. This implies
that the disorder-averaged connected correlation functions
mix only among themselves (as opposed to the classical
case). By following the usual derivation using (2.15), we
get (for a scalar O)

�
M

∂
∂M þ βv

∂
∂vþ βλi

∂
∂λi þ γt

X
i

ti
∂
∂ti þ kγO

�
hOðx1; t1Þ � � �Oðxk; tkÞiconn

þ γO;Oij

h
hOiðx1; t1ÞOjðx1; E ¼ 0ÞOðx2; t2Þ � � �Oðxk; tkÞiconn þ ðx1 ↔ x2Þ þ � � � þ ðx1 ↔ xkÞ

i
¼ 0: ð4:31Þ

This is exactly the form of mixing found below (4.20) using
the local RG approach. Note that Eq. (4.31) and the other
GCS equations given below will be presented in the form
where we do not have h00, and are valid for scalar operators
O [otherwise small straightforward modifications are
needed, which originate in the modification of (4.13)].
We can always use the form with h00, valid for generic
operators, by replacing

γt
X
i

ti
∂
∂ti → βh00

∂
∂h00 : ð4:32Þ

2. Fixed points and the dynamical exponent z

At quantum disordered fixed points, the equations above
generically lead to Lifshitz behavior. Naively, at a fixed
point, all beta functions, including βh00 , should vanish.
However, allowing it to take a constant nonzero value ð−γ�t Þ
still gives a fixed point, just with different scaling. To see
this let us solve the simplest GCS equation (4.29) for the
connected two-point function at a fixed point,

�
M

∂
∂M þ γ�t t

∂
∂tþ 2γ0�

�
hOðxÞOð0Þiconn ¼ 0: ð4:33Þ

The solution is

hOðxÞOð0Þiconn ¼
M−2γ0�

x2Δþ2γ0� F

�
t

Mγ�t x1þγ�t
; λ�i ; v

�
�
; ð4:34Þ

with the function F undetermined from the GCS equation.
This two-point function is invariant under the rescaling
x→ λx, t → λzt, O → λ−Δ

�
O, with dimension Δ� ¼Δþγ0�

and

z ¼ 1þ γ�t : ð4:35Þ
Since βh00 is nonzero already at leading order in the disorder,
we see that fixed points generically have such a generalized
scale invariance. Such fixed points do not describe theories
that have hyperscaling violation at low energies.
Clearly, the entire theory, and not only such a correlation

function, is invariant under this Lifshitz scaling, as can be
seen by the RG flow. Rescaling the RG scaleM by a factor
b is the same as rescaling space and time x → x=b,
t → t=b. At a fixed point, all beta functions vanish, except
for a constant βh00 which we allowed, so that under an
infinitesimal RG step h00→h00−βh00 logðbÞ. As explained
around (4.12), this is equivalent to keeping h00 fixed
(together with all the other couplings) and rescaling t→
tð1þβh00 logðbÞÞ∼ tbβh00 . Therefore, we find that the theory
is invariant under the scaling x→x=b, t → t=b1−βh00 , which
is the Lifshitz scaling with the exponent z just found. If the
pure theory was Lifshitz invariant with exponent zpure rather
than the relativistic zpure ¼ 1, the RG transformation we
would start from is x → x=b, t → t=bzpure since under this
RG transformation the pure theory is a fixed point with the
corresponding scaling dimensions. Then again βh00 gives

17Note that the effect of the higher orders in h00 is that the
infinitesimal transformation is exponentiated, resulting in rescal-
ing the times ti, and changing variables in the equations to the
rescaled times.
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the anomalous scaling exponent, so that zrandom ¼
zpure þ γ�t . (Equivalently, in solving (4.33), we would have
to use dimensional arguments based on the scaling behav-
ior of the UV fixed point, for which ½M� ¼ 1, ½x� ¼ −1,
½t� ¼ −zpure, ½O� ¼ Δ, so that in (4.34) the power of x
inside F becomes zpure þ γ�t .)
Equation (4.35) holds also in pure nonrelativistic sys-

tems (see, for example, [16]). However, the usual argument
for it in such systems uses the appearance of the beta
function in the expression for the trace of the energy-
momentum tensor, while in disordered theories only the
components of this tensor associated to time translations
exist. Our arguments show that only the existence of the
Hamiltonian is required for (4.35).
For classical disorder, as reviewed above, the response

of the IR fixed point to the disorder deformation corre-
sponded to a critical exponent ϕ that was independent of its
response to homogeneous deformations (related to the
critical exponents ν or α). This was related to the fact
that the two corresponded to two different local operators
in the replica theory, with unrelated dimensions in the
IR. Naively in the quantum disorder case this would
not be true, since one would say that the dimension of
the replica operator corresponding to the disorderP

A;B

R
ddxdtdt0O0;Aðx; tÞO0;Bðx; t0Þ, involving two oper-

ators at separate points, is simply related to the dimension
of O0, so that there is no independent critical exponent.18

However, our discussion above shows that this is not true,
and this operator does have an independent anomalous
dimension, corresponding to an independent critical
exponent ϕ. We will see an example of this below. It
would be interesting to test this experimentally at quantum
critical points. In particular, we can define the exponent ϕ
in analogy to the classical case through the dimension
ΔΨ of the disorder-related operator which includesP

A;B

R
dtdt0O0;Aðx; tÞO0;Bðx; t0Þ, by ΔΨ ¼ d − ϕ

ν. Then
in the IR disordered fixed point, we expect ϕ < 0.
Using the incorrect relation mentioned above between
the dimension of the disorder operator and the dimension
of O0, this leads to ν > 2=d. However, independently of
this, it is argued that this inequality is still true [46].
For a perturbative fixed point, we find at leading order

using (4.30) and the Ward identity (D9)

z ≈ 1 − v
cOOT

cT
¼ 1þ v

cOO

cT

d̄Δ0

ðd̄ − 1Þ
Γðd̄=2Þ
2πd̄=2

; ð4:36Þ

where cOO is the coefficient of the two-point function of
O0ðxÞ.19 In this computation, the disorder was chosen to be
marginal or very close to marginal in order to allow for a
perturbative fixed point, and thus to leading order

z ≈ 1þ v
2

cOO

cT

d̄ðd̄þ 1Þ
d̄ − 1

Γðd̄=2Þ
2πd̄=2

: ð4:37Þ

This is a universal formula for the dynamical exponent z, valid
for any weak scalar disorder. We will see examples below.
As in Sec. II, the anomalous dimensions of operators that

mix with each other can be complex. However, since the
energy is conserved, T00 is well-defined and does not mix
with any other operators, and, therefore, γ�t (and thus z) will
always be real.
In quantum disorder, the GCS equations generally mix

connected correlation functions among themselves
[as we saw in (4.31)]. But still, we do not expect simple
scaling behavior for correlation functions of the
operators that have nontrivial mixing with multi-replica
operators. Consider, for instance, a two-point function
hOðx; tÞOð0Þiconn satisfying (4.31), which then mixes with
hOiðx; tÞOjðx; E ¼ 0ÞOð0Þiconn. The latter, however, can-
not be treated as a connected correlation function of
two operators (in particular, it is not the same as
hðOiðx; tÞOjðx; E ¼ 0ÞÞOð0Þiconn where the two operators
in the parenthesis are treated as a single operator for the
purpose of the connectedness), and, therefore, we cannot
perform a diagonalizing transformation among the local
operators (including those multiplied by zero-energy oper-
ators) that will bring a connected correlation function to a
simple scaling behavior.
The generalization to several directions dt > 0 on

which the disorder does not depend (as discussed in
subsection IVA) includes summing over all those direc-
tions in the t ∂

∂t terms in the GCS equation (4.29) (and the
other GCS equations), and γt ¼ −βh00 given by (4.19). For
0 < dt < d̄, there is an SOðd̄ − dtÞ × SOðdtÞ symmetry in
averaged correlation functions, and the solution of the
connected two-point function is still given by (4.34) where

now t there stands for jtj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPdt−1

α¼0 x
2
α

q
, the norm in the dt

directions (and x still stands there for the norm in the
other d̄ − dt directions). The Lifshitz scaling is xμ → λxμ
for μ ¼ dt;…; d̄ − 1 and xα → λzxα for α ¼ 0;…; dt − 1,
with z ¼ 1þ γ�t . For weak disorder (using a marginal or
very close to marginal disorder, with the appropriate Δ0 for
a general dt),

z ≈ 1 − v
cOOT

cT

Sdt−1
2dt

¼ 1þ v
cOO

cT

d̄Δ0

d̄ − 1

Γðd̄=2Þ
2πd̄=2

Sdt−1
2dt

≈ 1þ v
4

cOO

cT

d̄ðd̄þ dtÞ
dtðd̄ − 1Þ

Γðd̄=2Þ
πðd̄−dtÞ=2Γðdt=2Þ

: ð4:38Þ

3. Nonconnected correlation functions

Let us begin with operatorsOAðx; tÞ that do not mix with
other operators (4.21). For such operators, we find the
simple equation

18This claim appears, for instance, in [40].
19We can choose any normalization we want forO0ðxÞ, but the

combination vcOO is independent of this.
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�
M

∂
∂M þ βv

∂
∂vþ βλi

∂
∂λi þ γt

X
i

ti
∂
∂ti þ kγ0

�

× hOðx1Þ � � �OðxkÞi ¼ 0: ð4:39Þ

We could think that because there is no mixing among the
fOAg, there is a significant difference for this simplest sort
of operators compared to classical disorder, where we
found a nontrivial GCS equation mixing different correla-
tion functions. However, this is not precisely the case as we

will see in a moment, since the operators satisfying (4.39)
are analogous to the cases in classical disorder where we
had a Gn symmetry under which the fOAg transformed
differently, and resulted in γ00 ¼ 0 in (2.23).
Consider a more general operator OAðx; tÞ and assume

again for simplicity that it mixes only with Oi;Aðx; tÞ ·P
BOj;Bðx; E ¼ 0Þ (the generalization to more general

mixings follows along similar lines). Writing the CS
equation in the replicated theory for correlation functions
of OA¼1, taking the n → 0 limit and using (2.19), we find

�
M

∂
∂M þ βv

∂
∂vþ βλi

∂
∂λi þ γt

X
i

ti
∂
∂ti þ kγO

�
hOðx1; t1Þ � � �Oðxk; tkÞi

þ γO;Oij

h

hOiðx1; t1ÞOjðx1; E ¼ 0ÞOðx2; t2Þ � � �Oðxk; tkÞi − hOjðx1; E ¼ 0ÞihOiðx1; t1ÞOðx2; t2Þ � � �Oðxk; tkÞi

�
þ ðx1 ↔ x2Þ þ � � � þ ðx1 ↔ xkÞ

i
¼ 0: ð4:40Þ

Again, this is precisely what we saw in (4.20).
For connected correlation functions, we could forget

about a mixing of local operators with operators (4.21) in
which O00 ¼ 1; this is no longer true for nonconnected
correlation functions. This mixing corresponds to a mixing
with the identity operator in the local RG approach,
contributing only to disorder-averaged nonconnected cor-
relation functions. In particular, we may have such a mixing
with Oj¼O, that is, a mixing of OAðx; tÞ withP

BOBðx; E ¼ 0Þ. This gives us a quantum disorder analog
of the γ00 mixing in classical disorder. Note that the latter
time-integrated operator mixes into the former operator, but

clearly it does not happen in the other direction (because of
the time dependence), and, therefore, this mixing does not
give rise to new anomalous dimensions of local operators,
and the dimension of the local operator is the same as the
dimension of the integrated operator (plus z) as could be
expected by the definition of a scaling dimension.20 This is
the same as in classical disorder where γ00 did not modify
scaling dimensions.21 It does, though, change the GCS
equation. Using Eq. (4.40) with Oi ¼ 1, Oj ¼ O, and
changing notation γO → γ0, γO;Oij

→ γ00, we find the analog
of (2.33):

�
M

∂
∂M þ βv

∂
∂vþ βλi

∂
∂λi þ γt

X
i

ti
∂
∂ti þ kγ0

�
hOðx1; t1Þ � � �Oðxk; tkÞi þ γ00

h

hOðx1; E ¼ 0ÞOðx2; t2Þ � � �Oðxk; tkÞi

− hOðx1; E ¼ 0ÞihOðx2; t2Þ � � �Oðxk; tkÞi
�
þ ðx1 ↔ x2Þ þ � � � þ ðx1 ↔ xkÞ

i
¼ 0: ð4:41Þ

Such a mixing is independent of the time coordinate of the local operator and is, therefore, a mixing only of 1βOAðx;E¼0Þ
(where β is the volume of the time direction) with

P
BOBðx; E ¼ 0Þ. Going to energy space, this GCS equation becomes

�
M

∂
∂M þ βv

∂
∂vþ βλi

∂
∂λi − γt

�Xk
i¼1

Ei
∂
∂Ei

þ k − 1

�
þ kγ0

�
hOðx1; E1Þ � � �Oðxk; EkÞi

þ γ00
h
2πδðE1Þ



hOðx1; E1Þ � � �Oðxk; EkÞi − hOðx1; E1ÞihOðx2; E2Þ � � �Oðxk; EkÞi

�
þ ðx1 ↔ x2Þ þ � � � þ ðx1 ↔ xkÞ

i
¼ 0; ð4:42Þ

20The disorder operator had an independent dimension since it is constructed by a product of operators, and as usual such operators
get anomalous dimensions.

21We mentioned that the operators that should have well-defined dimensions are Õ and ÕA which form Sn irreducible representations.
Both in classical and quantum disorder, a mixing ofOA and

P
BOB given by γ00 is independent of A and, therefore, can contribute only to

the dimension of Õ. But this contribution will come with an explicit factor of n, and so goes to zero as n → 0. Therefore, Õ and ÕA have
the same dimension.
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where each averaged correlator (and averaged product of
correlators) is defined after factoring out an overall energy
conserving delta function as usual, and in this equationP

iEi ¼ 0 (alternatively we can eliminate using energy
conservation one of the energies so that we are left with
k − 1 energies, and the sum in the first line of this equation is
restricted to the k − 1 appropriate terms). We see that, in
nonconnected correlation functions, therewill be δðEÞ terms,
as happens also in different physical situations. As men-
tioned, this mixing does not affect connected correlators,
and, therefore, there are no δðEÞ terms in connected
correlation functions, which are related to thermodynamic
quantities.
Contrary to the γ00 mixing in classical disorder, there are

no logs in disorder-averaged correlation functions of local
operators at quantum disordered fixed points. The reason
for this is that such logs require degeneracies and non-
diagonalizability of operator dimensions. However, in
quantum disorder there is no mixing between the local
OAðx; tÞ and

P
BOBðx; tÞ. Note that γ00 in (4.41) is

dimensionful, and we have no dimensionful quantities at
disordered fixed points.
This is all at zero temperature (or more physically at

large distances, but much smaller than β ¼ 1=T). At finite
temperature T, the Euclidean time dimension is compact.
At large distances we can use a Kaluza-Klein reduction on
the time direction. We then get that the quantum disorder
problem in dþ 1 dimensions, reduces at large distances to
classical disorder in d dimensions. Each operator Oi gives
rise to a tower of operators Oiðx; EÞ which are local in x
(the classical disorder coordinates). As before, along the
RG, independent replica indices come with independent
time integrations, and thus the disorder is coupled only to
zero-energy operators. Similarly, while we expect a mixing
among the fOAg for any O in classical disorder (and not
only for the operators to which disorder was coupled), here
we get such a mixing only for the zero-energy operators
[this is the mixing of OAðx; EÞ with

P
BOBðx; EÞ]. Note

that anyway only the zero-energy modes are relevant for
long distance physics.

4. Example of the generalized Callan-Symanzik equation

Let us check the GCS equation (4.29) on the two-point
function of O0ðxÞ to which disorder was coupled up to
order v. Using perturbation theory in v in the replica theory
as before, we have

hO0;Aðx; tÞO0;Bð0Þiv
¼ hO0;Aðx; tÞO0;Bð0Þi þ

v
2

Z
ddx1dt1dt01

X
C;D

hO0;Aðx; tÞ

×O0;Bð0ÞO0;Cðx1; t1ÞO0;Dðx1; t01Þi þ � � � : ð4:43Þ

The correlation functions on the right hand side are again
evaluated in the un-deformed CFT.
For marginal disorder the term of order v0 is

hO0;Aðx; tÞO0;Bð0Þi ¼
cOOδAB

ðx2 þ t2Þdþ2
2

: ð4:44Þ

Next consider the term of order v1 for A ¼ B. The
contribution from C ¼ D ≠ A is just the order v0 contri-
bution times a correction to the vacuum energy. We are left
with the correction from C ¼ D ¼ A ¼ B which is

v
2

Z
ddx1dt1dt01hO0;Aðx; tÞO0;Að0ÞO0;Aðx1; t1ÞO0;Aðx1; t01Þi

ð4:45Þ

(no sum over A). This is not universal, but we can compute
one universal term in the OPE expansion of the four-point
function. Using the T00 term in the OPE O0 ×O0 we get
the term

v
2

Z
ddx1dt1dt01

cOOT

cT

1

jt1− t01j
hO0;Aðx;tÞO0;Að0ÞT00;Aðx1;t1Þi∼v

cOOT

cT
logðΛtÞ

Z
ddx1dt1hO0;Aðx;tÞO0;Að0ÞT00;Aðx1;t1Þi:

ð4:46Þ

This and (4.44) are independent of n, so they contribute to hO0ðx; tÞO0ð0Þi.
The first contribution to the CS equation (4.29) to this order comes from γt

P
ti ∂

∂ti acting on the Oðv0Þ term. On the
two-point function, this is

γtt
∂
∂t

cOO

ðx2 þ t2Þðdþ2Þ=2 ¼ −γtðdþ 2ÞcOO
t2

ðx2 þ t2Þðdþ4Þ=2 : ð4:47Þ

The second contribution comes from the log divergent term of order v (as we already noted in subsection III B, we can useΛ
instead of M in the CS equation)
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Λt
∂
∂Λt

�
v
cOOT

cT
logðΛtÞ

Z
ddx1dt1hO0;Aðx; tÞO0;Að0ÞT00;Aðx1; t1Þi

	
¼ v

cOOT

cT

Z
ddx1dt1hO0;Aðx; tÞO0;Að0ÞT00;Aðx1; t1Þi:

ð4:48Þ

We evaluate this integral explicitly in Appendix E. Setting
in (E7) Δ ¼ ðdþ 2Þ=2, we get

v
cOOT

cT
ðdþ 2ÞcOO

−t2

ðx2 þ t2Þðdþ4Þ=2 : ð4:49Þ

In the GCS equation, we claimed that γt is given by (4.30),
and indeed with this value the two terms cancel and the
GCS equation is satisfied. Note that the GCS equation
implies the nontrivial statement that any logarithmic
divergences arising from the additional terms that we did
not explicitly compute above must be proportional to the
leading order two-point function.

5. Large-N quantum disorder

As in Sec. III, large N provides an interesting test of the
GCS equations. Let us consider the quantum version of the

generalized free field theory representing a large-N limit,
with the replicated theory given by

Sreplica ¼
X
A

S0;A −
v
2

X
A;B

Z
ddxdtdt0OAðx; tÞOBðx; t0Þ:

ð4:50Þ

In most of the examples we consider, the disorder is
taken to be marginal (or close to marginal), but in general
we do not have to restrict to the marginal case. In fact, here
it will be more interesting to consider the relevant case in
which the dimension of O is taken to be Δ ¼ dþ1

2
. The

double trace deformation is marginal, but as in Sec. III,
we can set it to zero. The two-point functions of OA are
given by

hOAðx; tÞOBð0Þi ¼
δAB

ðx2 þ t2Þðdþ1Þ=2 þ v
Z

ddzdt1dt2
1

ððz − xÞ2 þ ðt1 − tÞ2Þðdþ1Þ=2
1

ðz2 þ t22Þðdþ1Þ=2

¼ δAB
ðx2 þ t2Þðdþ1Þ=2 þ v

πΓðd
2
Þ2

Γðdþ1
2
Þ2
2Sd−1 logðΛxÞ þ C1

xd ; ð4:51Þ

where we used (3.3). There are no higher order corrections
in v for n → 0. Equation (4.51) can be renormalized using
ðOAÞR ¼ OA þ c · v

R
dt0

P
BOBðx; t0Þ for an appropriately

chosen c, but we may also apply the GCS equations
directly with M → Λ. We may test the nonconnected
GCS equation (4.41), which for the two-point function is�
Λ

∂
∂Λþ βv

∂
∂vþ γtt

∂
∂tþ 2γ0

�
hOðx; tÞOð0Þi

þ 2γ00hOðx; E ¼ 0ÞOð0Þiconn ¼ 0: ð4:52Þ

In large-N, the central charge cT is large and, thus, we
expect γt ¼ 0. This GCS equation is indeed satisfied, to all
orders in v, with the correlators given by

hOðx; tÞOð0Þi ¼ 1

ðx2 þ t2Þðdþ1Þ=2

þ v
πΓðd

2
Þ2

Γðdþ1
2
Þ2
2Sd−1 logðΛxÞ þC1

xd ;

hOðx;E¼ 0ÞOð0Þiconn ¼
ffiffiffi
π

p
Γðd

2
Þ

Γðdþ1
2
Þ

1

xd : ð4:53Þ

The anomalous dimensions are γ0 ¼ 0, γ00 ¼
−Sd−1v

ffiffi
π

p
Γðd=2Þ

Γððdþ1Þ=2Þ, and indeed γt ¼ 0.

D. Example 1: Perturbation theory
in scalar field theories

As our first example, let us analyze scalar field theories
with quantum disorder coupled to φ2ðxÞ, and compare our
analysis above to a computation performed by Boyanovsky
and Cardy [17]. They considered an OðmÞ symmetric
model of m real scalar fields φi, with disorder coupled
to φ2 ¼ P

m
i¼1 φ

2
i . The dimension of spacetime is taken to

be d̄ ¼ 4 − ϵ, and the number of time dimensions (on
which the disorder does not depend) is taken to be ϵd ≪ 1,
with a Gaussian distribution hðxÞhðyÞ ¼ vδðd̄−ϵdÞðx − yÞ.
This is a particular case of the generalization that we had of
dt dimensions along which the disorder is constant, with
dt ¼ ϵd. The disorder coupling v is dimensionless for
ϵ ¼ ϵd ¼ 0, and one can perform an expansion in ϵ and
ϵd. This is the reason why dt ¼ ϵd is taken to be small,
while eventually one is interested in the quantum disorder
case dt ¼ 1. Let us keep d̄ and dt general, but keeping the
disorder marginal or very close to being marginal such that
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we can use perturbation theory (giving the constraint dt ≈
d̄ − 4 since Δ ¼ d̄ − 2 for φ2), and compare this to the case
of [17]. The replicated action used in [17] is

Sreplica¼
X
A

Z
dd̄−dtxddtt

�
1

2
ð∇⊥φAÞ2þ

α

2
ð∇kφAÞ2þ

m2

2
φ2
A

	

−
v
2

Z
dd̄xdd̄x0δðd̄−dtÞðx−x0Þ

X
A;B

φ2
AðxÞφ2

Bðx0Þ:

ð4:54Þ

Here ∇⊥ are the derivatives along the spatial d̄ − dt
directions, and ∇k is along the dt temporal directions.
This model was analyzed in [17] up to two loops in a
double expansion in ϵ, ϵd (in which case a local φ4

interaction should also be included), and they then
inspected the renormalization group flow and its fixed
points. They observed the need to introduce a parameter α
which parameterizes the anisotropy of the model, and that
this α flows under the renormalization group.
The correction to the action that we found earlier in this

section matches exactly this modification of the temporal
part of the kinetic term, for the case where the CFT is a free
scalar theory. Indeed, in a free scalar theory, the improved
energy-momentum (EM) tensor takes the form (see [45])

TμνðxÞ ¼ ∂μφ · ∂νφ −
1

4ðd̄ − 1Þ ½ðd̄ − 2Þ∂μ∂ν þ δμν∂2�φ2:

ð4:55Þ

The term we added to the action in (4.18) becomes

h00
X
A

Xdt−1
α¼0

Z
dd̄xTαα;AðxÞ ¼ h00

X
A

Z
dd̄xð∇kφAÞ2;

ð4:56Þ

which is exactly the α term in (4.54) with h00 ↔ α−1
2
. The

running of α using (4.19) is thus expected to be

βα ≈
vcOOT

cT

Sdt−1
dt

: ð4:57Þ

What is left is to find the relevant OPE coefficients cT and
cOOT for the free theory. With the usual free propagator

hφiðxÞφjð0Þi ¼
δij

ðd̄ − 2ÞSd̄−1
1

xd̄−2
; ð4:58Þ

it is checked easily that the two-point function of the EM
tensor is of the form (D1) with

cT ¼ md̄

ðd̄ − 1ÞS2
d̄−1

ð4:59Þ

(see also [45]). Next, a calculation of the correlation
function hφ2ðx1Þφ2ðx2ÞTμνðx3Þi gives the expected form
(D2) with22

cOOT ¼ −
2md̄

ðd̄ − 1Þðd̄ − 2ÞS3
d̄−1

: ð4:61Þ

Thus we find

βα ≈ −
2v

ðd̄ − 2ÞSd̄−1
Sd1−1
dt

¼ −
2v

ðd̄ − 2Þdt
πðdt−d̄Þ=2

Γðd̄=2Þ
Γðdt=2Þ

:

ð4:62Þ

Using the marginality of the disorder dt ≈ d̄ − 4 we get

βα ≈ −
v
2π2

: ð4:63Þ

Interestingly, this is independent of d̄; however, this is a
special property of the caseO0 ¼ φ2 (as can be seen by the
diagrams evaluated below). We can now compare it to [17].
The correct relation between v and the corresponding
rescaled δ that appears in their Eq. (3.26) is v ¼ 8π2δ as
we will verify below (this is not precisely the normalization
written below Eq. (3.26) there). With this normalization, we
find an agreement between (4.63) and their equation for ξα
in (3.26b) (using the fact that α ¼ 1 to leading order).

1. Quantum disorder for φ2 in four space dimensions

The quantum disorder case corresponds to dt ¼ 1. For
this case we can still use perturbation theory when disorder
couples to O0 ¼ φ2, if we take the marginal case of d̄ ¼ 5.
In this subsection, we present a detailed analysis of this
case, to confirm our general expectations discussed above.
In particular, we want to verify that the anomalous
dimension of the non-local-in-time operator related to
the disorder is not just twice the anomalous dimension
of O0.
In 5d, the homogeneous φ4 coupling is irrelevant so we

do not have to include it. The replicated action is then
(4.54) which we rewrite as

22This result can also be checked using the Ward identity (D9)
(the energy-momentum tensor was chosen with the appropriate
normalization). In our case,

cOO ¼ 2m

ðd̄ − 2Þ2S2
d̄−1

ð4:60Þ

and Δ ¼ d̄ − 2.
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S ¼
X
A

Z
ddxdt

�
1

2

Xd
i¼1

ð∂iφAÞ2 þ
α

2
ð∂tφAÞ2 þ

m2
0

2
φ2
A

	

−
v0
2

X
A;B

Z
ddxdtdt0φ2

Aðx; tÞφ2
Bðx; t0Þ: ð4:64Þ

From now on, we use a single scalar for simplicity, but in
fact the renormalization group coefficients we will compute
hold also form real scalars (they are independent ofm); the
reason is that in this case, the OðmÞ model is obtained
simply by taking the Sn indices A to stand for a pair of Sn
and OðmÞ indices A → ðA; iÞ, and since we take n → 0,
there is no dependence on m. Subscripts were added to the
couplings in (4.64) to indicate that these are the bare
couplings. When doing renormalization, we will write v0 in
terms of the renormalized couplings. We treat m2

0 and δα ¼
α − 1 as counter-terms which are included in the perturba-
tion theory. Also, an overall wave-function renormalization
should be considered (φ in (4.64) is the bare field). The
Feynman rules that are obtained, including the non-local
coupling v, are shown in Fig. 2; their normalization is the
one above, which differs by symmetry factors from the
standard normalization. The dashed lines signify the non-
local operators (similarly to [17]).
Dimensional regularization will be used as d ¼

4 − ϵ. m2 ¼ 0 will not be needed. Additionally, only

one-particle-irreducible (1PI) diagrams are considered,
since they are sufficient to expose the entire renormaliza-
tion structure of the theory. We will write the expressions
for the various diagrams in dimensional regularization, and
omit their evaluation since they reduce eventually to the
same expressions as in the well-known φ4 scalar theory in
four spacetime dimensions. We are interested in the
renormalization group functions up to second order in v,
and, therefore, we will need the full evaluation of the
diagrams to first order, and only the cutoff dependent terms
in second order (omitting as usual the terms that go to zero
as the cutoff is removed).
Let us start with the two-point function of φ. For any

fixed A there is a symmetry φA → −φA, φB → φB (B ≠ A),
so hφAφBi ¼ 0 for A ≠ B. We, therefore, consider hφAφAi
with fixed replica index A. We will omit the external leg
propagators of the 1PI diagrams and so the zeroth order
diagram is (the momenta are split to spatial momenta p and
energy E)

ð4:65Þ

We omit in all of the diagrams contributing to this
correlation function the overall momentum conserva-
tion ð2πÞdþ1δðp1 þ p2ÞδðE1 þ E2Þ.

To first order we have only a single diagram

ð4:66Þ

Note that we omit the arbitrary dimensionful quantity that needs to be introduced in order to fix the units in dimensional
regularization, and will restore it later on. Since there is no cutoff dependent p2

1 term, there is no need for a wavefunction

FIG. 2. Feynman rules for the d̄ ¼ 5 theory with disorder coupled to O0 ¼ φ2.
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renormalization to first order. In order to have no depend-
ence on the cutoff, (4.66) should be compensated using the
diagram

ð4:67Þ

fixing δα to first order to be

δα ¼ −
v

2π2ϵ
þOðv2Þ: ð4:68Þ

1=ϵ is essentially logðΛÞ and so this δα is the same as the
one found before [it gives rise to the beta function (4.63)].
To second order (in which v20 can be replaced by v2), we

have first of all the following diagram which is fixed from
the previous evaluation

ð4:69Þ

As in the first order diagram, the renormalization of the coupling v0 ¼ vþ G1v2 gives the contribution

−G1

v2

4π2
E2
1

�
2

ϵ
− γ þ 1þ log

�
4π

E2
1

��
; ð4:70Þ

where here and below we write only the cutoff dependent part to second order (and use the ∼ sign to indicate that). There are
also two new diagrams at second order:

ð4:71Þ

and

ð4:72Þ

There are also the following two diagrams

ð4:73Þ
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having a δð0Þ of energy, proportional to the volume of the
time direction. This vanishes in dimensional regularization,
but in any case these diagrams are proportional to n and thus
vanish as n → 0 in any regulator. In the language we used
before, they are related to mixing with the integrated identity
operator, and all diagrams of this type will vanish as n → 0.
As was mentioned, for any fixed A there is a symmetry

φA → −φA with the rest unchanged. φA and φB (B ≠ A)
transform differently under it, and thus they renormalize
multiplicatively and do not mix (this is actually true even
without this symmetry as we argued before). Since to
second order we do have a cutoff dependent p2

1 term, we
introduce a wavefunction renormalization

ðφAÞR ¼ φA

�
1þ v2

32π4ϵ
þ � � �

�
1=2

: ð4:74Þ

This wavefunction renormalization multiplying the zeroth
order diagram, should be combined with the expressions
(4.69)–(4.72), and with the δα counter-term to second
order, to give all the contributions to this order in
perturbation theory. Cancellation of the cutoff-dependent
logðE1Þ terms fixes the coupling renormalizationG1¼− 2

π2ϵ
and so

v0 ¼ v −
2

π2ϵ
v2 þ � � � : ð4:75Þ

The remaining dependence is compensated by the second
order term in

δα ¼ −
v

2π2ϵ
þ v2

4π4ϵ

�
5

2ϵ
−
5

8

�
þ � � � : ð4:76Þ

We can now find the beta function of v. In order to do that
in dimensional regularization, we should restore dimen-
sions by introducing the energy scale μ. Defining the
dimensionless coupling corresponding to v by v̄, they
are related through v ¼ v̄μϵ. The beta function is given
by μ ∂v̄

∂μ when v0 is kept fixed, giving

βv ¼ −
2

π2
v2 þ � � � : ð4:77Þ

We can test the consistency of our results by considering
the fully connected 1PI four-point functions of φ. Consider
first the correlation function hφAðp1; E1ÞφAðp2; E2Þ×
φBðp3; E3ÞφBðp4; E4Þi with A ≠ B. Define

δ12;34 ¼ ð2πÞdþ2δðp1 þ p2 þ p3 þ p4ÞδðE1 þ E2Þ
× δðE3 þ E4Þ ð4:78Þ

with similar definitions for different choices of indices. In
considering this correlation function, we evaluate only the
diagrams proportional to δ12;34 and we leave this factor
implicit. The leading order diagram is

ð4:79Þ

To second order we have a cutoff dependent contribu-
tion from

ð4:80Þ

as well as the same divergent contribution for the diagram reflected horizontally (that is interchanging 1,2 with 3,4), and
from

ð4:81Þ
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There is also the diagram

ð4:82Þ

having again a δEð0Þ, and vanishing for n → 0.
We saw that there is no wavefunction renormalization to

first order in v. Therefore, ignoring the last diagram we get
that the cutoff dependence should be cancelled by

v0 ¼ v −
2

π2ϵ
v2 þ � � � ; ð4:83Þ

consistent with our previous result (4.75).23

The analysis of the four-point function hφAφAφAφAi
with fixed A is the same, just with various permutations of
the external legs, so again it is consistent with the previous
computation of the beta function. There is an alternative
way to formulate this agreement. If we were using the result
for the coupling renormalization as obtained here from the
four-point function, then in the calculation of the two-point
function it would imply that the 1

ϵ logðE1Þ terms cancel, as
they should for renormalizability.
Let us now compare the running of v to the general

conformal perturbation theory analysis of Sec. IVA. The
contribution to βv that we get by substituting the appro-
priate OPE coefficients of the case at hand in (4.16) is
− 1

π2
v2. This gives half of the value we found in (4.77).

Indeed, the logarithmic divergence in the diagram (4.81),
which gives half of the contribution to the beta function, is
dominated by the OPE region where the operators come
together in pairs, and we see that this contribution comes
from the O0 term in the OPE. On the other hand, the other
diagrams (4.80) are not dominated by this region, and as
discussed above acquire contributions also when three of
the operators are close together. This is an illustration of our
general discussion in Sec. IVA.

2. Mixing of operators

We claimed that in general an operator O0
Aðx; tÞ can mix

with various operators of the form (4.21), and such
operators mix also among themselves. We would like to
show that this effect indeed happens by using the example

of this subsection. In addition, we argue that taking into
account mixing of this form, the correlation functions of
operators (4.21) are renormalizable for n → 0 (and for this
it is important that we take the sum over the A1;…; Ak
indices in all operators integrated over time; as usual time
integration comes with a sum over replicas). We can
represent external states of the form (4.21), with momen-
tum ðp; EÞ, by vertices in Feynman diagrams as shown in
Fig. 3. Such an external vertex imposes

pþ p0 þ p1 þ p2 þ � � � ¼ 0;

E1 ¼ E2 ¼ � � � ¼ 0;

Eþ E0 ¼ 0: ð4:84Þ

Now let us test the naive argument that is used in the
literature, which says that the disorder operator which
multiplies v in (4.4) has a dimension that is fixed by the
dimension of O0ðx; tÞ. The dimension of the disorder
coupling can be read from the beta function (4.77), and
up to order v it is

½v� ¼ −
∂βv
∂v ¼ 4v

π2
þ � � � : ð4:85Þ

In order to compare this to the dimension of φ2, we
consider the correlation function h1

2
φ2
Aðp; EÞφAðp1; E1Þ×

φAðp2; E2Þi (with fixed A). The diagrams up to order v that
contribute to the anomalous dimension appear in Figs. 4(a)
and 4(b). We dropped the diagrams giving a divergence
which is simply cancelled by the 1-loop T00 running as in
(4.66)–(4.68). There is also the diagram of Fig. 4(c), but it

FIG. 3. A general external state of the form (4.21). In this figure,
we have O00 ¼ φ3 and there are several operators integrated over
time, which are depicted as Oð1Þ ¼ Oð2Þ ¼ � � � ¼ φ2.

FIG. 4. Diagrams contributing (except the last one) to the
anomalous dimension of the φðx; tÞ2 operator.

23In all of the diagrams in this section, since disorder is coupled
to φ2 and we had no local interactions, all the energies were fixed
and did not appear in loop integrations. As a result, there would
actually be no dependence on dt if it was taken to be arbitrary. Thus
the βv result will also be the same for the case of dt ¼ ϵd as in [17].
Comparing it to the equation for βδ in (3.26a) of [17], we find the
normalization relation between our v and their δ is v ¼ 8π2δ.
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has no logarithmic divergence and no contribution to the
anomalous dimension (in dimensional regularization it is
simply finite). Omitting the usual energy-momentum con-
servation delta functions, the diagram of Fig. 4(a) gives 1,
while the divergent part of the diagram in Fig. 4(b) is v

2π2ϵ
.

This implies that the dimension of φ2 is (adding the
anomalous dimension to the classical dimension)

Δφ2 ¼ 3 −
v
2π2

þ � � � : ð4:86Þ
If we use this naively in the disorder operator, we find that
the dimension of the integrated disorder operator in (4.4) is
− v

π2
which does not equal to −½v�. This shows explicitly that

assuming that the dimension of integrated operators sepa-
rated in time is simply the sum of their dimensions is wrong.
Instead, we should consider the local (in space) operator

related to the disorder

ΨðxÞ≡X
A;B

Z
dt1φAðx; t1Þ2

Z
dt2φBðx; t2Þ2 ð4:87Þ

as an independent operator which needs to be separately
renormalized. We can find its dimension essentially in the
same way as we do for local operators in a local field
theory. The disorder operator ΨðxÞ is of the form (4.21)
withO00 being the identity operator, andOð1Þ ¼ Oð2Þ ¼ φ2.
It is convenient to consider the correlation function�

1

4
ΨðpÞ

X
A1

φA1
ðp1; t1Þ

X
A2

φA2
ðp2; t2Þ

×
X
A3

φA3
ðp3; t3Þ

X
A4

φA4
ðp4; t4Þ

�
; ð4:88Þ

and represent the disorder operatorΨðxÞ as in Fig. 3. Let us
look at the contributions that give ð2πÞdþ2δðpþ p1 þ p2 þ
p3 þ p4ÞδðE1 þ E2ÞδðE3 þ E4Þ and omit this factor (the
other ones are the same). At tree level we have the diagram
of Fig. 5(a). We recognize the corrections of Figs. 5(b)

and 5(c) as coming from the renormalization of each of the
φ2 factors in ΨðxÞ [compare to the diagram in Fig. 4(b)].
Assuming that the dimension of the disorder operator ΨðxÞ
is fixed by the dimension of φ2 amounts to taking into
account only these diagrams. However, there are additional
corrections, such as Fig. 5(d). There is also the diagram of
Fig. 5(e), which contributes only for A ¼ B in the sum inΨ,
but it gives another sum over replica indices from the other
side of the disorder interaction, so it should be taken into
account as well. There is an additional diagram shown in
Fig. 5(f) which has a δð0Þ of energy, but as before this has
an extra factor of n with respect to the previous diagrams
(the power of n is the number of solid lines in correlators
of this form) and vanishes as n → 0. Writing only the
divergent part of the order v diagrams, the correlation
function of interest is (up to order v)

2n2
�
1þ v

2π2ϵ
þ v
2π2ϵ

þ 2v
π2ϵ

þ v
π2ϵ

�
: ð4:89Þ

As in local field theories we may then define a
renormalized disorder operator

ðΨðxÞÞR ¼
�
1 −

4v
π2ϵ

þ � � �
�
ΨðxÞ þ � � � ð4:90Þ

where we have additional corrections from mixing with
other operators [such as the single-replica operatorP

A

R
dt1φAðx; t1Þ∂2

t1φAðx; t1Þ]. However, it can be seen
easily (at least to this order in v) that these additional
operators do not get contributions from the disorder
operator ΨðxÞ, and, therefore, the mixing matrix is tri-
angular. This means that the anomalous dimension of the
disorder operator is still given by the value on the diagonal
(even though the eigenvector that corresponds to this value
is no longer the trivial one). Thus, the anomalous dimen-
sion to order v (note that at this order there is no wave-
function renormalization of φ) is

γ ¼ −
4v
π2

þ � � � ð4:91Þ

and the dimension is

½ΨðxÞ� ¼
�X
A;B

Z
dt1φ2

Aðx; t1Þ
Z

dt2φ2
Bðx; t2Þ

	

¼ 4 −
4v
π2

þ � � � : ð4:92Þ

The dimension of the space integral over this is exactly
ð−½v�Þ as it should be.

3. A perturbative random fixed point in d = 4 + ϵ

Using the result of (4.77) we see that at d ¼ 4þ ϵ there
is a random fixed point at

FIG. 5. Diagrams contributing (except the last one) to the
anomalous dimension of the (nonlocal in time) disorder operator.
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v ¼ π2ϵ

2
þOðϵ2Þ: ð4:93Þ

In this fixed point, we can evaluate the dynamical exponent
z. To leading order we can use the result from the d̄ ¼ 5
computation [e.g., using (4.63), (4.30), and (4.35)] which
gives

z ¼ 1þ ϵ

8
þOðϵ2Þ: ð4:94Þ

The anomalous dimension of the coupling v is 4v=π2 þ
Oðv2Þ ¼ 2ϵþOðϵ2Þ and, therefore,

½v� ¼ ϵþOðϵ2Þ: ð4:95Þ
This is positive and it means that this is a UV-stable fixed
point (rather than IR stable). The dimension of the operator
φ2 in the random fixed point is

Δφ2 ¼ 3þ ϵ −
v
2π2

þOðv2Þ ¼ 3þ 3ϵ

4
þOðϵ2Þ: ð4:96Þ

E. Example 2: The holographic model
of Hartnoll and Santos

An interesting class of theories in which the effects of
disorder can be explicitly studied is large-N theories. The
generalized free field theory of Sec. III is the simplest case
where we keep only the leading order in 1=N, but other
cases can also be studied. When the large-N theories are
weakly coupled, they can be studied using large-N pertur-
bative field theory techniques. Some strongly coupled
large-N theories can be described by classical gravitational
theories in a space of one higher dimension, using the
AdS=CFT correspondence [47–49].
A specific model for this, with quenched quantum

disorder, was studied in [18,50,51]. The holographic theory
there was taken to have the metric gμν and a scalar field Φ
with the action

I¼ κ

Ld̄−1

Z
AdS

dd̄þ1x
ffiffiffi
g

p �
Rþ d̄ðd̄−1Þ

L2
þ2ðDΦÞ2þ4m2Φ2

�
;

ð4:97Þ

where κ is a constant and L is the curvature radius of anti-de
Sitter (AdS) space. This corresponds to a toy CFT which
contains just the energy-momentum tensor (dual to gμν) and
a scalar operator O dual to Φ, whose dimension is related
to the mass of Φ. The normalizations in (4.97) are such
that we keep the leading nontrivial order in 1=N in the
computation of all connected correlation functions; κ scales
as a power of N, such that quantum corrections to (4.97)
correspond to higher orders in 1=N. In [18,50], Gaussian
disorder was coupled to O, and the mass of Φ was chosen
so that the disorder is marginal.

In the gravitational description, the source hðxÞ for O
appears through the boundary conditions for Φ at the
boundary of AdS space, and one can solve the classical
equations perturbatively in the source and then average over
the disorder. In [18,50], this was done analytically up to
second order in the disorder, and numerically for general
values of the disorder. The low-energy behavior is governed
in the holographic description by the behavior in the interior
ofAdS space, and the theorywas found to flow to adisordered
infra-red fixed point, with an averagemetric in the IR that has
a Lifshitz formwith a dynamical exponent z, depending on v.
In order to compare their results with ours, we first

compute the two- and three-point functions following from
(4.97). By the usual rules of the AdS=CFT correspondence
we obtain

cT ¼ 2κ

πd̄=2
d̄þ 1

d̄ − 1

Γðd̄þ 1Þ
Γðd̄=2Þ ;

cOOT ¼ −4κ
d̄Δð2Δ − d̄Þ
2πd̄ðd̄ − 1Þ

ΓðΔÞΓðd̄=2Þ
ΓðΔ − d̄

2
Þ ;

cOO ¼ 4κ
ð2Δ − d̄ÞΓðΔÞ
πd̄=2ΓðΔ − d̄

2
Þ : ð4:98Þ

Substituting this in (4.37) (together with Δ¼ðd̄þ1Þ=2),
our computation gives at leading order

z ≈ 1þ v
2
·
d̄ · Γðd̄þ1

2
ÞΓðd̄

2
Þ2

π
d̄þ1
2 Γðd̄þ 1Þ

¼ 1þ πd̄=2

2π
Γ
�
d̄
2

��
v

ð2πÞd̄−1
�
:

ð4:99Þ

In order to compare with [18], we need to match their
normalization of the disorder distribution to ours. We find
that the sources that they introduce obey (when their IR
cutoff is removed)

hðxÞhðyÞ ¼ ð2πÞdV̄2δdðx − yÞ ⇒ v ¼ ð2πÞdV̄2: ð4:100Þ

Thus, translating (4.99) to their notation gives

z ¼ 1þ πd̄=2

2π
Γ
�
d̄
2

�
V̄2 þ � � � ; ð4:101Þ

which is exactly the second order in V̄ term found in [18].
These theories were further studied in [51], in which a

case with relevant disorder [a different choice of m2 in
(4.97)] was also numerically analyzed. Both for strong
marginal disorder and for relevant disorder, the low-energy
behavior showed signs of discrete scale invariance related
to complex anomalous dimensions. This is presumably
related to our discussion in subsection II D where we
argued that along the renormalization group flow of
disordered field theories operators can become degenerate
and their dimensions can become complex. Note that in this
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example this cannot happen for weak marginal disorder,
since there is no degeneracy of dimensions in the pure
theory corresponding to (4.97), consistent with the results
of [51].
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APPENDIX A: PERTURBATIVE LOCAL
RENORMALIZATION GROUP

For homogeneous (constant) couplings, it can be seen in
a perturbative expansion that theories are RG invariant
in the Wilsonian sense, and one can obtain a universal
formula for the quadratic term in the beta function (see for

instance [1]). Here we generalize this to inhomogeneous
couplings, and see at the leading orders how the Wilsonian
local RG works. The starting point is a Euclidean theory
with action S ¼ S0 þ

R
ddxgiðxÞOiðxÞ with giðxÞ the inho-

mogeneous couplings. The cutoff will be taken to be a
minimal distance a. The corresponding dimensionless
couplings are ui ¼ giad−Δi (where Δi is the dimension
of Oi). The partition function in perturbation theory is
(repeated indices are summed over)

Z
Z0

¼1−aΔi−d
Z

ddxuiðxÞhOiðxÞiþ
1

2
aΔiþΔj−2d

×
Z
jx1−x2j>a

ddx1ddx2uiðx1Þujðx2ÞhOiðx1ÞOjðx2Þiþ���:

ðA1Þ

Now let us change the cutoff scale a → a0 ¼ að1þ ϵÞ
for infinitesimal ϵ and see how the theory can remain
invariant. The first order change is from the explicit powers
of a, e.g., in the first order term the variation is
−ðΔi − dÞϵaΔi−d

R
ddxuiðxÞhOiðxÞi. These can be com-

pensated by ui → ui þ ϵðd − ΔiÞui. The next variation
comes from the a dependence of the integral in the second
order. Having a cutoff a in this term can be replaced by a0
plus the variation

1

2
aΔiþΔj−2d

Z
a<jx1−x2j≤að1þϵÞ

ddx1ddx2uiðx1Þujðx2ÞhOiðx1ÞOjðx2Þi: ðA2Þ

For these close-by operators the OPE can be used [we will assume in this Appendix that the operators are normalized so that
cOO ¼ 1 in (D10)]. For a scalar operator Ok in the OPE we get

1

2
aΔiþΔj−2dcijk

Z
a<jxj≤að1þϵÞ

ddxddx2uiðx2 þ xÞujðx2ÞjxjΔk−Δi−ΔjhOkðx2Þi

≈
1

2
aΔk−2dcijk

Z
ddx2hOkðx2Þiujðx2Þ

Z
a<jxj≤að1þϵÞ

ddx

�
uiðx2Þ þ xμ∂μuiðx2Þ þ

1

2
xμxν∂μ∂νuiðx2Þ þ � � �

�

≈
1

2
aΔk−dcijk

Z
ddx2hOkðx2Þiujðx2ÞϵSd−1

�
uiðx2Þ þ

a2

2d
∇2uiðx2Þ þ � � �

�
: ðA3Þ

The expression in brackets is the expansion of the angular integral S−1d−1
R
jxj¼a dΩuiðx2 þ xÞ. This variation can also be

compensated by changing the functions ukðxÞ. We see invariance under local RG when the inhomogeneous couplings run as

a
dukðxÞ
da

¼ ðd − ΔkÞuk þ
Sd−1
2

X
ij

cijkujðxÞ
�
uiðxÞ þ

a2

2d
∇2uiðxÞ þ � � �

�
þ � � � ;

a
dgkðxÞ
da

¼ Sd−1
2

X
ij

cijkadþΔk−Δi−ΔjgjðxÞ
�
giðxÞ þ

a2

2d
∇2giðxÞ þ � � �

�
þ � � � : ðA4Þ

Generically, this flow leads to inhomogeneous couplings for all the operators allowed by the symmetries, even if one starts
from only one inhomogeneous coupling. We can use (A4) to obtain the flow of the disorder probability distribution, but we
will not do this here.
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APPENDIX B: DERIVATION OF (2.20)

We will prove (2.20) by induction on I. For I ¼ 1 the equation is (2.16) that was proven in the text. The equation for
(I − 1) is

lim
n→0

�
Oi1;1ðx1Þ � � �OiI−1;I−1ðxI−1Þ

Xn
A1¼1

Oj1;A1
ðy1Þ

Xn
A2¼1

Oj2;A2
ðy2Þ � � �

Xn
Ak¼1

Ojk;Ak
ðykÞ

�
replicated

¼
X

Partitions of f1;…;kg
into S1 ;…;SI−1

�
Oi1ðx1Þ

Y
l∈S1

OjlðylÞ
�

conn
� � �

�
OiI−1ðxI−1Þ

Y
l∈SI−1

OjlðylÞ
�

conn
: ðB1Þ

Using the Sn symmetry we can write the left-hand side as

lim
n→0

��
hOi1;1ðx1ÞOj1;1ðy1Þ � � �OiI−1;I−1ðxI−1Þ

Xn
A2¼1

Oj2;A2
ðy2Þ � � �

Xn
Ak¼1

Ojk;Ak
ðykÞ

�
replicated

þ ðI − 2Þperms

�

þ ðn − I þ 1Þ
�
Oi1;1ðx1Þ � � �OiI−1;I−1ðxI−1ÞOj1;Iðy1Þ

Xn
A2¼1

Oj2;A2
ðy2Þ � � �

Xn
Ak¼1

Ojk;Ak
ðykÞ

�
replicated

	
: ðB2Þ

The bottom line is the one we want to compute. We can compute each term on the top line using the induction step; for
instance the first term there is equal to

X
Partitions of f2;…;kg

into S1 ;…;SI−1

�
ðOi1ðx1ÞOj1ðy1ÞÞ

Y
l∈S1

OjlðylÞ
�

conn
� � �

�
OiI−1ðxI−1Þ

Y
l∈SI−1

OjlðylÞ
�

conn
; ðB3Þ

where ðOi1ðx1ÞOj1ðy1ÞÞ is considered as a single operator, such that

�
ðOi1ðx1ÞOj1ðy1ÞÞ

Y
l∈S

OjlðylÞ
�

conn
¼

�
Oi1ðx1ÞOj1ðy1Þ

Y
l∈S

OjlðylÞ
�

conn

þ
X

partitions of S to Ŝ1;Ŝ2

�
Oi1ðx1Þ

Y
l∈Ŝ1

OjlðylÞ
�

conn

�
Oj1ðy1Þ

Y
l∈Ŝ2

OjlðylÞ
�

conn
: ðB4Þ

Plugging this into (B3), and plugging (B3) into (B2), the terms coming from the first line of (B4) (adding together all the
permutations) are exactly the same as the ones appearing on the right-hand side of (B1), while the terms coming from the
second line give

ðI − 1Þ
X

Partitions of f2;…;kg
into S1 ;…;SI

�
Oi1ðx1Þ

Y
l∈S1

OjlðylÞ
�

conn
� � �

�
OiI−1ðxI−1Þ

Y
l∈SI−1

OjlðylÞ
�

conn

�
Oj1ðy1Þ

Y
l∈SI

OjlðylÞ
�

conn
; ðB5Þ

and we find that (B5) plus the n → 0 limit of the second line of (B2) gives zero, which is precisely what we wanted to prove.

APPENDIX C: NON-GAUSSIAN DISORDER

In explicit calculations, the disorder distribution P½h� is usually taken to be Gaussian. Let us see how the analysis in the
replica trick is modified for a non-Gaussian distribution. For both classical and quantum disorder we will still assume that
the disorder is local in space (that is, there are no correlations between the disorder field at different points in space), but the
distribution at each point is not necessarily Gaussian.
Recall the cumulant expansion. Suppose we have random variables hi. The moment generating function is

ehiOi ¼ eKðOiÞ; ðC1Þ

where KðOiÞ is the cumulant generating function. The first few terms in the cumulant generating function are
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K ¼ hiOi þ
1

2
ðhihj − hi · hjÞOiOj þ

1

3!
ðhihjhk − hihj · hk − hihk · hj − hjhk · hi þ 2hi · hj · hkÞOiOjOk

þ 1

4!
ðhihjhkhl − hihjhk · hl − hihjhl · hk − hihlhk · hj − hlhjhk · hi − hihj · hkhl − hihk · hjhl − hihl · hjhk

þ 2hihj · hk · hl þ 2hihk · hj · hl þ 2hihl · hk · hj þ 2hjhk · hi · hl þ 2hjhl · hi · hk þ 2hkhl · hi · hj

− 6hi · hj · hk · hlÞOiOjOkOl þ � � � : ðC2Þ

The coefficients are the same as those in the expressions for connected correlation functions in terms of the general ones.
Classical disorder (Sec. II). After doing the replica trick we had the following dependence on the disorder

e−
R

ddxhðxÞ
P

A
OAðxÞ ðC3Þ

and we would like to integrate it
R
DhP½h� to get the replica action from (2.13). Suppose that

hðxÞ ¼ 0

hðxÞhðyÞ ¼ κ2δðx − yÞ
hðxÞhðyÞhðzÞ ¼ κ3δðx − yÞδðx − zÞ

hðxÞhðyÞhðzÞhðwÞ ¼ κ4δðx − yÞδðx − zÞδðx − wÞ þ κ22δðx − yÞδðz − wÞ þ κ22δðx − zÞδðy − wÞ þ κ22δðx − wÞδðy − zÞ:
ðC4Þ

We get that the disorder gives the following contribution to the replicated action

δSreplica ¼−
κ2
2

Z
ddx

X
A;B

OAðxÞOBðxÞþ
κ3
3!

Z
ddx

X
A;B;C

OAðxÞOBðxÞOCðxÞ−
κ4
4!

Z
ddx

X
A;B;C;D

OAðxÞOBðxÞOCðxÞODðxÞþ �� � :

ðC5Þ

If the disorder is chosen to be marginal (that is, saturating the
Harris criterion), all the higher cumulants κ3; κ4;… of the
disorder distribution give rise to irrelevant terms and thus in
principle can be dropped if the disorder is regarded as a small
perturbation. This justifies using the Gaussian distribution in
such a case. In general, the nth cumulant of the local disorder
distribution maps to a coupling involving n replicas in the
replica theory. The generalization to disorder coupled to
more than one operator is straightforward.

Quantum disorder (Sec. IV). In the quantum disorder
case, the disorder appears in the replica trick as

e−
R

ddxdthðxÞ
P

A
OAðx;tÞ: ðC6Þ

We should then again integrate
R
DhP½h�. With the same

notations as in (C4), the effect of the disorder on the
replicated action is now

δSreplica ¼ −
κ2
2

Z
ddxdt1dt2

X
A;B

OAðx; t1ÞOBðx; t2Þ þ
κ3
3!

Z
ddxdt1dt2dt3

X
A;B;C

OAðx; t1ÞOBðx; t2ÞOCðx; t3Þ

−
κ4
4!

Z
ddxdt1dt2dt3dt4

X
A;B;C;D

OAðx; t1ÞOBðx; t2ÞOCðx; t3ÞODðx; t4Þ þ � � � : ðC7Þ

For marginal disorder Δ ¼ dþ2
2
, once again all the higher κ3; κ4;… terms are irrelevant. For other Δ, the number of such

terms that are relevant or marginal is finite, unless Δ ≤ 1.
Note that, naively, the expansion (C2) contains also terms that are nonlocal in x. However, these all cancel; the replica

action must be local in x whenever P½h� involves independent disorder distributions at different points, since the integral
over hðxÞ in (2.13) splits in this case into separate integrals at every point x.
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APPENDIX D: THE ENERGY-MOMENTUM
TENSOR IN THE O ×O OPE

We work with a general Euclidean CFT in d̄ dimensions,
in which we have a scalar primary operatorOðxÞ. To get the
OPE coefficient of the EM tensor, we use (see e.g., [45])

hTμνðxÞTρσð0Þi ¼
cT
x2d̄

�
1

2
ðIμρIνσ þ IμσIνρÞ −

δμνδρσ
d̄

�
;

where IμνðxÞ≡ δμν − 2
xμxν
x2

; ðD1Þ

and

hOðx1ÞOðx2ÞTμνðx3Þi ¼ cOOT

VμVν − 1
d̄
δμνVαVα

xd̄−213 xd̄−223 x2Δ−d̄þ2
12

;

where Vμ ≡ xμ13
x213

−
xμ23
x223

and xij ≡ xi − xj:

ðD2Þ

Using invariance under Lorentz, scaling, and transla-
tions, we have in the OPE,

Oðx1ÞOðx2Þ⊃α
xμ12x

ν
12

x2Δ−d̄þ2
12

Tμνðx2Þþdescendants of T; ðD3Þ

for some constant α. We do not write a δμνTμν term since
the EM tensor is traceless. Therefore, we get in the three-
point function

hOðx1ÞOðx2ÞTρσðx3Þi

¼ α
xμ12x

ν
12

x2Δ−d̄þ2
12

hTμνðx2ÞTρσðx3Þi þ higher order in x12

¼ α
xμ12x

ν
12

x2Δ−d̄þ2
12

cT
x2d̄23

�
1

2
IμρIνσ þ

1

2
IμσIνρ −

δμνδρσ
d̄

�
þ � � �

ðD4Þ

(the Iμν are evaluated at x23). Let us take ρ ≠ σ to avoid
writing the last term. Then,

hOðx1ÞOðx2ÞTρσðx3Þi

¼ α
cT

x2Δ−d̄þ2
12 x2d̄23

�
xρ12 − 2

x12 · x23x
ρ
23

x223

�

×

�
xσ12 − 2

x12 · x23xσ23
x223

�
þ � � � : ðD5Þ

In order to compare to (D2), we need Vμ for small x12. To
leading order it is given by

Vμ ¼ xμ12
x223

−
2x23 · x12x

μ
23

x423
þ � � � : ðD6Þ

Therefore, for ρ ≠ σ, substituting this in the full three-point
function (D2),

hOðx1ÞOðx2ÞTρσðx3Þi ¼
cOOT

x2Δ−d̄þ2
12 xd̄−213 xd̄−223

1

x423

�
xρ12 −

2x12 · x23x
ρ
23

x223

��
xσ12 −

2x12 · x23xσ23
x223

�
þ � � �

¼ cOOT

x2Δ−d̄þ2
12 x2d̄23

�
xρ12 −

2x12 · x23x
ρ
23

x223

��
xσ12 −

2x12 · x23xσ23
x223

�
þ � � � : ðD7Þ

Comparing the two expressions we get α ¼ cOOT=cT and
thus the OPE contains

Oðx1ÞOðx2Þ ⊃
cOOT

cT

xμ12x
ν
12

x2Δ−d̄þ2
12

Tμνðx2Þ: ðD8Þ

Note that the conformal Ward identity in these con-
ventions is

cOOT

cOO
¼ −

d̄Δ
ðd̄ − 1ÞSd̄−1

¼ −
d̄Δ
d̄ − 1

Γðd̄=2Þ
2πd̄=2

; ðD9Þ

where cOO is defined through

hOðx1ÞOðx2Þi ¼
cOO

x2Δ12
: ðD10Þ

APPENDIX E: EXPLICIT EVALUATION
OF

R
dd̄x0hOðxÞOð0ÞT00ðx0Þi

It will be useful to evaluate explicitly the integral over the
position of the EM tensor of a correlation function. It will
be used both in checking the GCS equations, and in
comparing to expectations relating it to time dilation.
In this Appendix, O will denote a general dimension Δ

scalar primary operator in a Euclidean CFT in d̄ dimen-
sions. We would like to evaluate [see (D2)]
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Z
ddx1dt1hOðx; tÞOð0ÞT00ðx1; t1Þi ¼

Z
ddx1dt1cOOT



t−t1

ðx−x1Þ2þðt−t1Þ2 þ
t1

x2
1
þt2

1

�
2
− 1

dþ1
VαVα

ðx2 þ t2Þð2Δ−dþ1Þ=2ððx − x1Þ2 þ ðt − t1Þ2Þd−12 ðx2
1 þ t21Þ

d−1
2

; ðE1Þ

where Vμ ≡ ðx−x1Þμ
ðx−x1Þ2 þ

x1;μ
x2
1

, namely

x2Δ−dþ1

cOOT

Z
dd̄x1hOðxÞOð0ÞT00ðx1Þi ¼

Z
dd̄x1

� ð t−t1
ðx−x1Þ2 þ

t1
x2
1

Þ2
xd−11 ðx − x1Þd−1

−
1

dþ 1

x2

xdþ1
1 ðx − x1Þdþ1

	
: ðE2Þ

Note that if we were to evaluate the integral over the second term, it would manifestly have a logarithmic divergence. The
same holds for the first term as well. We will relate this integral of the three-point function to time dilation in the CFT, so we
expect it to have no divergences and the logarithmic divergences just mentioned should cancel.
We will present briefly some steps in one way to evaluate this integral. The most important ingredient is the calculation of

the following integrals, which we computed in momentum space:Z
dd̄x0

1

ðx0Þaðx − x0Þb ¼ πd̄=2xd̄−a−b
Γðd̄−a

2
ÞΓðd̄−b

2
ÞΓðaþb−d̄

2
Þ

Γða
2
ÞΓðb

2
ÞΓð2d̄−a−b

2
Þ ;

Z
dd̄x0

x0iðx − x0Þi
ðx0Þaðx − x0Þb ¼

πd̄=2

4
ðd̄þ 4 − a − bÞΓð

d̄−a
2

þ 1ÞΓðd̄−b
2

þ 1ÞΓðaþb−d̄−4
2

Þ
Γða

2
ÞΓðb

2
ÞΓð2d̄þ4−a−b

2
Þ · xd̄−a−b½x2 þ ðd̄þ 2 − a − bÞx2i �;

Z
dd̄x0

ðx0iÞ2
ðx0Þaðx − x0Þb ¼

πd̄=2

2

Γðd̄−a
2

þ 1ÞΓðd̄−b
2
ÞΓðaþb−d̄−2

2
Þ

Γða
2
ÞΓðb

2
ÞΓð2d̄þ2−a−b

2
Þ · xd̄þ2−a−b

�
1þ a − d̄ − 2

2d̄þ 2 − a − b

�
1þ ðd̄þ 2 − a − bÞ x

2
i

x2

�	
:

ðE3Þ
Here xi is a fixed component out of the d̄ components of x.

These are the ingredients in the integral that we want to
evaluate. As was mentioned, we cannot directly use those
since the separate integrals diverge. What we can do instead
is to take d̄ → d̄þ ϵ as an intermediate regularization, use
the formulae just mentioned, and after summing the terms
take the limit ϵ → 0. This gives indeed a finite result

Z
dd̄x1

� ð t−t1
ðx−x1Þ2 þ

t1
x2
1

Þ2
xd−11 ðx − x1Þd−1

−
1

dþ 1

x2

xdþ1
1 ðx − x1Þdþ1

	

¼ −
2dπðdþ1Þ=2

ðdþ 1ÞΓðdþ3
2
Þ
x2 þ t2 − ð1þ dÞt2
ðx2 þ t2Þðdþ1Þ=2 : ðE4Þ

Taking the canonical EM tensor, we can use the Ward
identity (D9) for cOOT, and this gives for the integral over
hOOT00i

cOO
2Δ

dþ 1

x2 þ t2 − ð1þ dÞt2
ðx2 þ t2ÞΔþ1

: ðE5Þ

Clearly if we were calculating
P

μhOOTμμiwe would get 0
here, consistent with the formula (D2) we started from.
However, (D2) does not include the contact terms

hTμμðxÞOðx1Þ � � �OðxkÞi
¼ −

X
i

δðx − xiÞΔhOðx1Þ � � �OðxkÞi: ðE6Þ

The contact term from each μ should be the same, and,
therefore, we expect in hOðxÞOð0ÞT00ðx1Þi to have the
contact term − Δ

dþ1
ðδðx1 − xÞ þ δðx1ÞÞhOðxÞOð0Þi. The

integral of this over x1 gives the additional contribution
− 2Δ

dþ1
· cOO
x2Δ . Together with the explicit integral we evaluated,

we find Z
ddx1dt1hOðx; tÞOð0ÞT00ðx1; t1Þi

¼ −2ΔcOO
t2

ðx2 þ t2ÞΔþ1
: ðE7Þ

This is consistent with (4.13). The integral over the
position of the EM tensor that we evaluated can be
extracted from the coefficient of the term proportional to
ε in

heε
R

ddx1dt1T00ðx1;t1ÞOðx; tÞOð0Þi: ðE8Þ

The expectation value is evaluated in the CFT. As in (4.13),
we expect the ε term to be the same as

t
∂
∂thOðx;tÞOð0Þi¼ t

∂
∂t

cOO

ðx2þ t2ÞΔ¼
−2Δ · t2cOO

ðx2þ t2ÞΔþ1
ðE9Þ

which is indeed what we have found for the integrated
three-point function.
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