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Two-dimensional QCD with adjoint fermions has many attractive features, yet its single-particle content
remains largely unknown. To lay the foundation for a crucially improved approximation of the theory’s
spectrum, we developed a method to find the basis of eigenstates using the symmetry structure of the
asymptotic theory where pair production is disallowed. This method produces complete sets of
multidimensional harmonic functions for the massless and the massive theory. Previously only part of
such a basis was known. The method presented here should be applicable to other theories and has the
promise of factoring out the long-range Coulomb-type part of interactions. The role of pair production and
implications for the bosonized theory in the case of adjoint QCD2 are discussed.
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I. INTRODUCTION

Two-dimensional adjoint quantum chromodynamics,
QCD2A, is a non-Abelian Yang-Mills theory coupled to
fermions in the adjoint representation, and based on the
Lagrangian

L ¼ Tr

�
−

1

4g2
FμνFμν þ iΨ̄γμDμΨ

�
; ð1Þ

where Ψ ¼ 2−1=4ðψχÞ, with ψ and χ being N × N matrices.
The field strength is Fμν ¼ ∂μAν − ∂νAμ þ i½Aμ; Aν�, and
the covariant derivative is defined as Dμ ¼ ∂μ þ i½Aμ; ·�.
Throughout the paper, light-cone coordinates x� ¼ ðx0 �
x1Þ= ffiffiffi

2
p

are used, where xþ plays the role of a time. We will
work in the light-cone gauge, Aþ ¼ 0, effectively omitting
fermionic zero modes.
The theory is discussed extensively in the literature

[1–6]. Why is QCD2A interesting? For starters, it is the
simplest gauge theory apart from ’t Hooft’s model [7] that
exhibits confinement. Additionally, QCD2A shows several
features of higher-dimensional gauge theories. Its adjoint
degrees of freedom (d.o.f.) mimic the transverse gluons
which are dynamical obviously only in two or more spatial
dimensions. Also, QCD2A exhibits a phase transition from
confinement to screening in the limit of vanishing mass m
of the adjoint fermions. This mass furthermore parameter-
izes the supersymmetric behavior the theory exhibits at

m2 ¼ g2N. The theory has an exponentially increasing
density of bound states according to [1,3]. Since the density
behaves like ρðMÞ ∼ eM=TH for large bound state massesM,
one expects a deconfinement transition at the Hagedorn
temperature TH. Also, this transition depends crucially on
the fermion mass. In particular, the Hagedorn temperature
goes to zero in the limit m → 0, driven by the vanishing
string tension at the deconfinement transition. There are
several unresolved issues, for instance the existence of
Regge-trajectories of single-particle (bound) states. Few
single-particle states have been identified to date [3,4,8],
which has led to speculations that there is no Regge
trajectory in massless QCD2A [6]. This is understandable
in a screening theory in which long strings should fall apart,
but leaves one to explain what happens to the many single-
trace states. It seems that most of them have to be
interpreted as multiparticle states [3,8]. But since some
of them can be projected out by bosonization [9] and the
rest is close to threshold in a formulation of the theory with
a finite discretization parameter, this must be considered an
unsettled question. On the other hand, the theory is the
simplest available1 exhibiting these interesting features, so
the hope is to learn something about the mechanisms
underlying more realistic gauge theories. Indeed, there
recently has been a renewed interest in three- and four-
dimensional versions of the theory [10,11].
While the ultimate goal is a solution of the full theory,

our aim here is much more modest. As a foundation for
future work, we construct in Sec. II a complete set of
eigenstates for the asymptotic theory based on symmetries
which are broken in the full theory, thereby expanding
work begun in [12]. The basis is a set of linear combina-
tions of multidimensional harmonic functions subject to
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the symmetry constraints furnished by the light-cone
Hamiltonian derived from Eq. (1). Since the asymptotic
theory has disjoint sectors with different parton numbers,
the basis states can be organized by parton number r, which
results in r − 1 excitation numbers responsible for the
multidimensionality of the solution. Technically, the basis
will be appropriate only in the high excitation number limit.
Empirically, we find that even the lowest states are well
represented, probably due to their large separation in
(bound state) mass. In the full theory, particle pair pro-
duction couples the disjoint parton sectors, and eigenfunc-
tions of the full theory will be linear combinations of basis
states of different parton numbers. Thus, the harmonic basis
states can be used to discuss the role of particle creation and
annihilation, as envisioned in [1]. This is done in Sec. III B.
As applications of our method we briefly describe a
program to solve the full theory with numerical methods
in Sec. III A, and point out implications for the bosonized
version of the theory in Sec. III C. Finally, we discuss the
results and general applicability of the method in Sec. IV.

II. CONSTRUCTING A HARMONIC BASIS

A. Introductory remarks

Starting from the QCD2A Lagrangian, Eq. (1), the
dynamics of a system of adjoint fermions interacting via
a nondynamical gluon field in two dimensions can be
described by a light-cone momentum operator Pþ and
Hamiltonian operator P−. The two operators are expressed
in terms of fermionic operators subject to the anticommu-
tation relation

fbijðkþÞ; b†lkðpþÞg ¼ δðkþ − pþÞ
�
δilδjk −

1

N
δijδkl

�
:

ð2Þ

To wit

Pþ ¼
Z

∞

0

dkkb†ijðkÞbijðkÞ; ð3Þ

P− ¼ m2

2

Z
∞

0

dk
k
b†ijðkÞbijðkÞ þ

g2N
π

Z
∞

0

dk
k
CðkÞb†ijðkÞbijðkÞ

þ g2

2π

Z
∞

0

dk1dk2dk3dk4

�
BðkiÞδðk1 þ k2 þ k3 − k4Þ

× ðb†kjðk4Þbklðk1Þbliðk2Þbijðk3Þ − b†kjðk1Þb†jlðk2Þb†liðk3Þbkiðk4ÞÞ
þ AðkiÞδðk1 þ k2 − k3 − k4Þb†kjðk3Þb†jiðk4Þbklðk1Þbliðk2Þ

þ 1

2
DðkiÞδðk1 þ k2 − k3 − k4Þb†ijðk3Þb†klðk4Þbilðk1Þbkjðk2Þ

�
; ð4Þ

with

AðkiÞ ¼
1

ðk4 − k2Þ2
−

1

ðk1 þ k2Þ2
; ð5Þ

BðkiÞ ¼
1

ðk2 þ k3Þ2
−

1

ðk1 þ k2Þ2
; ð6Þ

CðkÞ ¼
Z

k

0

dp
k

ðp − kÞ2 ; ð7Þ

DðkiÞ ¼
1

ðk1 − k4Þ2
−

1

ðk2 − k4Þ2
; ð8Þ

where the trace-splitting term DðkiÞ can be omitted at large
Nc, and the trace-joining term is proportional to BðkiÞ. The
structure of the Hamiltonian P− displayed in Eq. (4) is

P− ¼ P−
m þ P−

ren þ P−
PC;s þ P−

PC;ns þ P−
PV þ P−

finite N: ð9Þ

The mass term P−
m is dropped in the massless theory, but the

renormalization operator P−
ren needs to be included. Parton-

number violating terms, P−
PV , couple blocks of different

parton number. Parton-number conserving interactions P−
PC

are block diagonal, and may include singular(s) or non-
singular(ns) functions of the parton momenta. The finite N
term P−

finite N is proportional to DðkiÞ. For details see
[2,3,12].
The problem is cast into an eigenvalue equation

2PþP−jΨi≡HLCjΨi ¼ M2jΦi: ð10Þ

Namely, the light-cone Hamiltonian HLC acts on an
eigenket jΨi yielding the mass (squared) of a bound
state as the eigenvalue. The eigenkets are in general
linear combinations of states of definite parton(fermion)
number r
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jΦri ¼
Z 1

r

0

dx1

�Yr−1
i¼2

Z
1−ðr−1Þx1−

P
i−1
j¼2

xj

x1

dxi

�
ϕrðx1; x2;…; xrÞ

Nr=2
c

Tr½bð−x1Þ � � � bð−xrÞ�j0i: ð11Þ

The wave functions ϕr distribute momentum between the partons. Note that there are only r − 1 integrations since total
momentum can be set to unity. The integration is over the effective Hilbert space, which looks complicated due to
elimination of redundant operator combinations like Tr½bðxÞbðyÞbðzÞ� ¼ Tr½bðyÞbðzÞbðxÞ�. The explicit shape of the
integration domain is displayed to emphasize that for r > 3 the wave function cannot be reconstructed2 in the region around
the middle of the naive Hilbert space ½0; 1�r−1.
In the asymptotic limit, where only highly excited states are considered, both parton-violation and mass terms can be

neglected. As a consequence the asymptotic theory splits into decoupled sectors with fixed parton numbers subject to ’t
Hooft-like equations

M2

g2N
ϕrðx1;…; xrÞ ¼ −

Xr

i¼1

ð−1Þðrþ1Þðiþ1Þ
Z

∞

−∞

ϕrðy; xi þ xiþ1 − y; xiþ2;…; xiþr−1Þ
ðxi − yÞ2 dy: ð12Þ

The total momentum is set to unity, and thus the momen-
tum fractions xi add up to one,

P
ixi ¼ 1. Clearly, the

number of partons r is even (odd) for bosonic (fermionic)
states. In [1,12], additionally the approximation

Z
1

0

dy
ðx − yÞ2 ϕðyÞ ≈

Z
∞

−∞

dy
ðx − yÞ2 ϕðyÞ ð13Þ

was used. Mathematically this is helpful because the
solutions of the eigenvalue problem then are harmonic
functions, see Eq. (15). The approximation makes sense
physically, because for the highly excited states the integral
is dominated by the interval around x ¼ y which is
associated with the long-range Coulomb-type force.
In [12], we showed that the integral equation (12) can be

solved algebraically using the ansatz

jn1; n2;…nr−1i ≐
Yr−1
j

eiπnjxj ¼ ϕrðx1; x2;…; xrÞ; ð14Þ

where xr ¼ 1 −
P

r−1
j xj. The ansatz is motivated by its

simplest (r ¼ 2) version, which solves the ’t Hooft equation
of fundamental QCD2 [7]

M2

g2N
eiπnx ¼ −

Z
∞

−∞

dy
ðx − yÞ2 e

iπny ¼ πjnjeiπnx; ð15Þ

where the excitation number n is integer. We thus use the
single-particle states of a Hamiltonian appropriate for the
problem to construct a Fock basis, inspired by [13].
Since the integral equation (12) is more involved than the

’t Hooft equation, we have to symmetrize the ansatz (14) to
comply with the constraints inherent in the Hamiltonian
(10). Namely, the solutions of the adjoint ’t Hooft problem
have to be (pseudo)cyclic,

ϕrðx1; x2;…; xrÞ ¼ ð−1Þrþ1ϕrðx2; x3…; xr; x1Þ; ð16Þ

since the fermions are real. To implement this constraint we
introduce the cyclic permutation operator

C∶ðx1; x2;…; xrÞ → ðx2; x3;…; xr; x1Þ:

Since the Hamiltonian is unchanged by a color index
reversal of its operators, the string or trace of fermionic
operators in the states (11) can be reversed at will. The
solutions can therefore be organized into sectors of definite
parity under the orientation symmetry,

T ∶ bij → bji: ð17Þ

The two symmetry operators act on the ansatz, Eq. (14), as
follows.

C∶ jn1; n2;…; nr−1i → ð−1Þnr−1 j − nr−1; n1 − nr−1; n2 − nr−1;…; nr−2 − nr−1i;
T ∶ jn1; n2;…; nr−1i → ð−1Þn1 j − n1; nr−1 − n1; nr−2 − n1;…; n2 − n1i: ð18Þ

In [12], we constructed eigenfunctions in the two- and three-parton sectors (r ¼ 2, 3) for both the massive and the massless
theory, with bound-state masses

M2 ¼ g2Nπ

�
jn1j þ jnr−1j þ

Xr−2
k¼1

jnk − nkþ1j
�
: ð19Þ

2Meaning we cannot determine the wave function in this region from symmetries and its values close to the domain boundaries. For
r ¼ 2 we can: knowing ϕ2ðxÞ in ½0; 1

2
� and ϕ2ðxÞ ¼ −ϕ2ð1 − xÞ is obviously enough.
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The crucial ingredient of the method is the symmetrization due to C,

jn1; n2;…nr−1isym ≡ 1ffiffiffi
r

p
Xr

k¼1

ð−1Þðr−1Þðk−1ÞCk−1jn1; n2;…nr−1i; ð20Þ

where C0 ¼ 1, because only the symmetrized states reflect the (pseudo)cyclic structure of the Hamiltonian.
While the r ¼ 2, 3 wave functions reproduce known (DLCQ) solutions of the theory remarkably well down to the lowest

states, the ansatz fails to work for r > 3 in general. In [12], wewere able to express a subset of the r ¼ 4 solutions as a linear
combination of the symmetrized four-parton states. These solutions coincide with the ones derived earlier [1]. To introduce
notation and show the complexity of the problem, we display a five-parton state symmetrized under C and T , i.e., of definite
C and T quantum numbers.3 Note that the state consists of 4r ¼ 20 statelets, characterized by an (r − 1)-tuple of (ordered)
excitation numbers ni [here: ðn;m; l; kÞ]

jϕ5; n; m; l; k; M̄2 ¼ jnj þ jn −mj þ jm − lj þ jl − kj þ jkjiT
¼ jn;m; l; ki þ ð−1Þkj − k; n − k;m − k; l − ki þ ð−1Þljk − l;−l; n − l; m − li
þ ð−1Þmjl −m; k −m;−m; n −mi þ ð−1Þnjm − n; l − n; k − n;−ni
þ T½ð−1Þnj − n; k − n; l − n;m − ni þ jk; l; m; ni þ ð−1Þkjl − k;m − k; n − k;−ki
þ ð−1Þljm − l; n − l;−l; k − li þ ð−1Þmjn −m;−m; k −m; l −mi�: ð21Þ

Typically, these states are paired with a partner state of
negative excitation numbers to create a real wave function,
i.e., a sine or cosine. It is convenient to do so with an
additional symmetry in mind, which we’ll introduce in the
next section.

B. Exhaustive symmetrization

As is well known, the eigenfunctions of the massive
theory have to vanish when one parton momentum is zero
to guarantee Hermiticity of the Hamiltonian [7]

ϕnð0; x2;…; xnÞ ¼ 0: ð22Þ

This is sometimes called a boundary condition because it
behaves as one, which is misleading—after all, we are
trying to solve an integral and not a differential equation. In
the massive two-parton sector (or the simpler fundamental
theory QCD2f [7]), this leads to sine eigenfunctions, and to
cosine eigenfunctions in the massless theory. Clearly, the
general verdict is that the Hilbert space of the theory splits
into two disjoint sets of functions: one even and the other
one odd. It seems that the consequences of this straightfor-
ward observation have not been fully realized. This is not
surprising, since the answer to the simple question—under
which transformation or symmetry the eigenfunctions are
odd or even—is trivial for few partons, and fairly compli-
cated for many. Indeed, the symmetry in question is

manifest only in the parton sectors with r ≥ 4, because
it is redundant with C and T otherwise. To get a handle on
it, note that while physically it is true that we need to
manage the behavior of the wave functions at the bounda-
ries of the domain of integration, mathematically boundary
conditions are not the right tool. Rather, we have to
implement symmetries that will result in the desired
behavior of the wave functions at the boundary—just like
the C symmetrization assures that the state so constructed is
an eigenstate of the Hamiltonian. We alluded to such a
symmetry in [12], but the general method is more involved.
For massive fermions, we need the wave functions to

vanish on the hyperplanes characterized by xi ¼ 0 for at
least one xi. Since our wave function ansatz (14) is
modular, we can simply add for every term of the form

eiπ
P

j
njxj another term with opposite sign that is the same

for xi ¼ 0 but different4 for xi ≠ 0. This idea can be realized
by introducing r − 1 symmetry operators Si which we
might call lower-dimensional inversions, because they
invert all but one of the excitation numbers

Si∶ jn1; n2;…; ni…; nr−1i
→ j − n1;−n2;…; ni − niþ1 − ni−1ð1 − δ1iÞ;…;−nr−1i:

ð23Þ
The replacement of the ith excitation number is such that
the mass (squared) of the state remains invariant, see
Eq. (19). This symmetry is hidden in the three-parton
sector r ¼ 3 because the low-dimensional inversion can be

3While T is an ordinary quantum number reflecting a sym-
metry of the Hamiltonian,C (or rather the set ofCi) is fixed by the
constraint that the state has an (anti)cyclic wave function,
Eq. (16), as required by the structure of the Hamiltonian as a
sum over permutations of the parton momenta.

4Because the wave function would otherwise be identically
zero, of course.
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expressed in terms of the other symmetry operations5

(S ¼ T C2, see Eq. (26) of [12]), so that r ¼ 4 is the lowest
parton sector in which the full symmetry unfolds.
In Sec. II D, we will see that additional S operators creep

in, so let’s call the set of lower-dimensional inversions
E ¼ fS1;S2;…;SNðrÞg. For a given parton number r, the
maximal number NðrÞ of independent S operators can be
determined from a group theoretical argument. In practice,
the argument boils down to combinatorics: the number of
operators of the permutation group of order r with inversion
is 2r!. We derive the full symmetry group G in Sec. II D and
use only its generic properties here. The group choice is
intuitive as we will see, since in the r parton sector, we are in
essence permuting r objects. That the objects (the partons)
carry different momenta is irrelevant here. We are thus
symmetrizing the wave functions under the set of NðrÞ S-
symmetries. Later we will see that there is only one common
multiplicative Z2 quantum number S. Tentatively, we write

jriSsym ¼
�
1þ

XNðrÞ

i

SiSi¼1

�
jrisym;

where jrisym is the ansatz state jn1; n2;…; nr−1i sym-
metrized under the cyclic group hCi, Eq. (20).
To include all symmetries in our approach, it is con-

venient to make the inversion of excitation numbers explicit
with the operator

I∶ jn1; n2;…; nr−1i → j − n1;−n2;…;−nr−1i: ð24Þ

Clearly, I is a Z2 operator, and states even and odd under I
simply represent cosine and sine wave functions, respec-
tively. We can then write down an orthonormal set of basis
states in all sectors of the theory, characterized by their Z2

quantum numbers ðT; I; SÞ under the symmetry transfor-
mations T , I , and S, and their excitation numbers ni
collected in jri

jriFullSym ≡ Gjri ¼
�ð1þ TT Þð1þ IIÞffiffiffiffiffiffiffiffiffiffiffi

2r!N
p

×
Xr−1
k¼0

ð−Þðr−1ÞkCk
�
1þ

XNðrÞ

i

SiSi¼1

�
jri
�
; ð25Þ

where N is the volume of the Hilbert space in the r parton
sector,

N ¼
Z 1

r

0

dx1

�Yr−1
i¼2

Z
1−ðr−1Þx1−

P
i−1
j¼2

xj

x1

dxi

�
¼ 1

r!
; ð26Þ

cf. Appendix of Ref. [12]. The excitation numbers can,
in general, be even or odd integers. Since the states,
Eq. (25), are by construction eigenstates of the light-cone
Hamiltonian with masses given by Eq. (19), they furnish, in
principle, a full solution6 of asymptotic QCD2A—keeping
in mind that we made the approximation, Eq. (13).

TABLE I. Characteristics of the lowest states in the first few parton sectors of the asymptotic theory including their quantum numbers
TIS. The sectors are labeled with a subscript indicating behavior under T ( �) and superscripts signifying massless ( 0) and massive
fermions ( μ). For an explanation of the discrepancy between the T quantum number and the T sector, see Appendix B.

r T I S Sector Excitation numbers of lowest states Masses (g2Nπ)

2 −þ joi0þ (1),(3),(5),(7) 1,3,5,7
−− jeiμþ (2),(4),(6),(8) 2,4,6,8

3 þþ jeei0− (0,0),(2,2),(4,2),(4,0),(6,2) 0,4,8,8,12
−− jeei0þ (4,2),(6,2),(8,2),(8,4) 8,12,16,16
þ− jeeiμ− (2,0),(4,0),(6,2),(6,0) 4,8,12,12
−þ jeeiμþ (6,2),(8,2),(10,4),(10,2) 12,16,20,20

4 þ−− joeoi0þ ð1; 2; 3Þ; ð3;−2;−1Þ; ð3;−2;−3Þ; ð5;−2;−1Þ 6,10,12,14
−þþ joeoi0− ð1; 0; 1Þ; ð1;−2;−1Þ; ð3; 0; 1Þ; ð2;−2;−1Þ 4,6,8,10
þ−þ jeeeiμþ ð4;−2; 0Þ; ð6;−2; 0Þ; ð6; 10; 10Þ; ð8; 10; 6Þ; ð8; 10; 10Þ 12,16,20,20,20
−þ− jeeeiμ− ð4; 0; 2Þ; ð4;−2; 0Þ; ð6; 4; 6Þ; ð6;−2; 0Þ 12,12,16,16

5 þþþ jeeeei0þ (0,0,0,0),(2,2,2,2),(2,4,4,4),(4,4,4,2),(4,4,4,4) 0,4,8,8,8
−−− jeeeei0− (4,4,4,2),(4,6,6,6),(4,6,4,2),(6,6,4,2),(4,8,8,8) 8,12,12,12,16
þþ− jeeeeiμþ (4,6,6,4),(6,8,8,6),(6,10,10,6),(8,10,10,6) 12,16,20,20
−−þ jeeeeiμ− (8,10,10,6),(8,12,10,6),(8,14,12,8) 20,24,28

6 −þþ joeoeoi0þ (1,2,3,2,1),(1,2,3,4,3),(5,4,3,2,1),(3,4,5,4,3) 6,8,10,10
þ−− joeoeoi0− ð…Þ
þþ− jeeeeeiμ−
−−þ jeeeeeiμþ

5At r ¼ 2 the situation is fully degenerate with C ¼ T ¼ S up
to signs.

6This construction should also settle the issue raised by ’t
Hooft in the footnote of his seminal paper [7]: since the
“boundary conditions” are really symmetrizations, they must
hold order by order in Nc.
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C. Classification of states

In practice, most sectors prescribed by Eq. (25) are
empty. As can be gleaned from the symmetry operations,
Eqs. (18), (23), and (24), only two sets of quantum numbers
lead to viable states. Namely, only states with all even
excitation numbers, and states with alternating odd and
even numbers give rise to bona fide states. In the latter case,
the first and last excitation numbers must be odd, so that
these states only exist in the even parton sectors. Even so,
most of these excitation number combinations are not
viable due to cancellations of terms. For example, bona
fide states are only found in the ðT�; I∓Þ four-parton
sectors and in the ðT�; I�Þ five-parton sectors, see Table I.
In the odd parton sectors, these four sectors (for both S�)
are indeed the four sectors necessary to describe the two
T -sectors of the massive and the massless theory, respec-
tively. For an even number of partons, the addition of
the mixed excitation number states (jodd; even; oddi≡
joeoi for r ¼ 4) does, of course, not lead to more sectors.
Rather, two even excitation number sectors do not yield
bona fide states. For an explanation, see Appendix A. For
instance, in the four parton sector, only ðT�; I ∓; S�Þ in
the even excitation number sector and ðT�; I ∓; S∓Þ with
mixed even and odd ni are viable; the former are the two
sectors of the massive theory, and the latter represent the
two massless sectors. This is a straightforward generali-
zation from the earlier findings [12] that in the two-parton
sectors cosines with odd excitation number represent the

massless and sines with even excitation number the massive
theory, whereas all excitation numbers in the three-parton
sector are even.
To check our musings, we make contact with known

results. Our solution (25) reproduces the results of Ref. [1]
Eq. (4.13) and classifies them as jeee;T − I þ S−i states.
The wave functions (4.13) of [1] exhibit only two (not
three) excitation numbers, because they represent a subset
of the full set of wave functions. We thus find that there are
more states than anticipated, and that the counting of states
is more involved; it does not seem to lend itself to a string-
motivated parametrization. Note that the solution (4.13) in
[1] is much more compact and looks differently (double
sines versus triple cosines), but this is a superficial
disagreement and the price one has to pay for generality:
12 terms7 of (4.13) in [1] vs. 48 terms in Eq. (25) at r ¼ 4.
Next we check how accurate our algebraic solution is by
comparing to a numerical (DLCQ) calculation, see Figs. 1
and 2. Some masses are degenerate at r ¼ 4 as opposed to
r < 4, and the agreement is not as good as in the three-
parton sector [12], due to considerable mixing of states of
equal mass. Recall that the algebraic eigensolutions were
derived by making the approximation Eq. (13); using the
correct limits of the integral evidently induces interactions
between the algebraic basis states. As can be gleaned from
Figs. 1 and 2, the discrepancy between algebraic and

(a) (b)

FIG. 1. Lowest DLCQ (solid lines,K ¼ 32) and asymptotic eigenfunctions (dashed lines) in the massless four-parton sectors, i.e., joeoi
states with μ≡m2=g2N ¼ 0, plotted as a function of the normalized basis state number n̄. (a) Tþ, hence I − S−. (b) T−, hence I þ Sþ. We
used a rather low harmonic resolution K to increase readability, since we do not need to worry about convergence here.

7Obviously, a sine has two exponential terms.
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numerical solutions is noticeable even in the massless
sector, where the masses are not degenerate. This heralds
the worsening of our approximation at large parton number
r. Namely, the effective volume of the Hilbert space
decreases as 1=r!, see Eq. (26). As a consequence, the
integral looks less and less like ðR∞

−∞ dxÞr−1, although the
core motivation for the approximation (that the region
around the singularity is the most important) remains valid.
What do the exact wave functions tell us? First off, the

massless and massive sectors show significant differences.

The massive sector is more straightforward, perhaps due to
the more stringent constraint of wave functions vanishing
on the xi ¼ 0 hyperplanes. Even the lowest states exhibit
degenerate masses in the massive, but not the massless
theory. Also, the bound-state masses are much lower in the
massless sector. This is more surprising than it sounds,
since we are omitting the mass term in the asymptotic limit.
The difference in bound-state mass is thus generated by
symmetry alone. The lowest four states are in the massive
theory (μ ≠ 0)

j1iμ≠0þ−þ ¼ j4;−2; 0i12; j1iμ≠0−þ− ¼ j4; 0; 2i12;
j2iμ≠0þ−þ ¼ j6;−2; 0i16; j2iμ≠0−þ− ¼ j4;−2; 0i12;

j3iμ≠0þ−þ ¼ 1ffiffiffi
2

p ðj6; 10; 10i20 þ j8; 10; 6i20Þ; j3iμ≠0−þ− ¼ j6; 4; 6i16;

j4iμ≠0þ−þ ¼ j8; 10; 10i20; j4iμ≠0−þ− ¼ j6;−2; 0i16: ð27Þ

In the massless theory, they look like

j1iμ¼0
þ−− ¼ j1; 2; 3i6; j1iμ¼0

−þþ ¼ j1; 0; 1i4;
j2iμ¼0

þ−− ¼ j3;−2;−1i10; j2iμ¼0
−þþ ¼ j1;−2;−1i6;

j3iμ¼0
þ−− ¼ j3;−2;−3i12; j3iμ¼0

−þþ ¼ j3; 0; 1i8;
j4iμ¼0

þ−− ¼ j5;−2;−1i14; j4iμ¼0
−þþ ¼ j3;−2;−1i10; ð28Þ

(a) (b)

FIG. 2. Lowest eigenfunctions of the massive theory in the four-parton sectors. Solid lines represent numerical results as emulated in
DLCQ by letting μ ¼ 4, dashed lines the algebraic eigenfunctions. Note that for μ ¼ 1, the theory is supersymmetric. (a) T even
eigenfunctions. (b) T odd eigenfunctions.
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where the indices represent the TIS quantum numbers
on the right-hand states, and the mass (squared in units
g2Nπ) on the left-hand states. Note that the excitation
numbers ni are not unique. For instance, at r ¼ 4 each state
has up to 2r! ¼ 48 different tuples. One way of classifying
the state is to pick one statelet’s numbers to represent the
entire state, e.g., by choosing the lowest positive number
for ni followed by the smallest absolutes jnij as in Eq. (28).

D. Some group theory

The solutions (25) are right cosets of the subgroup B
of transformations associated with the full domain
of integration (the “bulk”). Namely, B is the direct
product of inversions I , reorientations T and cyclic
permutations C

B¼f1;C;C2;…Cr−1;T ;T C;…T Cr−1;I ;IC…;IT Cr−1g:
ð29Þ

We can construct a partition of the full group G of
symmetry transformations of QCD2A by acting on all
elements of B with the lower-dimensional inversions S
concerning symmetrization on the hyperplanes forming
the boundary of the integration domain collected in the
set8 E alluded to in Sec. II B

E ¼ fS1;S2;…S1=2ðr−1Þ!−1g: ð30Þ

In general, we find NðrÞ ¼ 1
2
ðr − 1Þ! − 1 independent

lower-dimensional inversions. We work with the right
cosets here, because we want to make explicit the
symmetrization of the state under the cyclic subgroup
hCi, as required by the structure of the Hamiltonian, as
implicitly defined in Eq. (12). Since the order of B is
jBj ¼ 2T × 2I × rC and its operators act on all elements
of E plus the identity, a fully symmetrized state contains
2r! “statelets” owing to the 2r! independent automor-
phisms that can be formed on a set of r objects (here:
momentum fractions) if inversions are allowed.
The general theme is hard to prove, so we simply

checked with a computer algorithm that the order of
G is indeed jGj ¼ 2r!—in particular, that it is finite. This
is expected because permutations form subgroups of
the symmetric group. From a physical point of view,
permutations are reorderings which leave the bound-
state masses invariant, and thus symmetries of the
Hamiltonian.
To check the order of G we proceeded as follows. By

acting on all 4r statelets Bijri with the first operator
S ≡ S1 we produced the left coset S1B. To keep the

symmetry of the Hamiltonian manifest, we need however
the right coset BS1. Recall that terms of odd C-parity
must be negative in the even r sectors to ensure the
alternating signs of the cyclic permutations in the
Hamiltonian Eq. (12). Since in general the cosets are
not normal, S1B ≠ BS1, we do not off-hand know which
C-parity the members of a left coset of B might have. In
general, both the left and the right coset will therefore
contain new operators, which we’ll have to include in our
growing set of operators to move towards group closure.
We must then act with these new operators on B as well
as on the existing right cosets, which in turn will yield
new operators, right and left cosets. This process con-
tinues until no new operators arise—if the group is finite.
It is thus a nontrivial test of our hypothesis. We find that
the algorithm always converges on the expected number
of operators or statelets, namely 2r! ¼ 240, 1440, 10080,
80640 for r ¼ 5, 6, 7, 8 and beyond.
To construct an actual eigenfunction, we need to solve

one more problem. It is the assignment of S parity to the
individual statelets, in the sense that some of them will
carry an odd power of S quantum number, and some an
even power. Recall that S2 ¼ 1 since S is a Z2 operation. It
is convenient to introduce the notion of a primary operator.
Of the 1

2
ðr − 1Þ! − 1 S operators in the r parton sector,

naively only r − 1 (associated with the r − 1 excitation
numbers) seem necessary to ensure that the wave function
is vanishing (maximal) on the hyperplanes xi ¼ 0 in the
massive (massless) theory, respectively. We call those r − 1
operators together with an additional operator9 Sr the

TABLE II. The E part of the group multiplication table in the
five-parton sector organized as left coset elements. Since there is
a small number of primary operators, the table has been trans-
posed, in the sense that the column-heading operators act on the
row-leading operators, e.g., S1S2 ¼ S6. It is obvious that E is not
a subgroup of G; multiplying S operators generates B operators.

S1 S2 S3 S4 S5

S1 id S11IT S7 S11C3 S7IT
S2 S6 id S10 S6IT C3 S10IT C
S3 S7 S8 id S7IT C4 S8IT C
S4 S11C3 S6IT C3 S11IT C id S6C4

S5 S8C4 S10IT C S8IT C S10C id
S6 S2 S4IT C3 S9IT C2 S2IT C3 S4C
S7 S3 S9 S1 S3IT C4 S1IT
S8 S5C S3 S5IT C S9IT C4 S3IT C
S9 S10IT C2 S7 S6IT C2 S8IT C4 S11

S10 S9IT C2 S5IT C S2 S5C4 S2IT C
S11 S4C2 S1IT S4IT C S1C2 S9

8We refer to it as the exhaustive set E, because its elements are
exhausting the “symmetrization space.” It is not a group, because
it is not closed under composition of its members which may
produce elements of B.

9While not intuitive, the last operator is necessary to complete
the map Si × hCi → hCiSi, since the cyclic subgroup hCi is of
order r, not r − 1.
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primary operators. They form a conjugacy class under hCi
and have similar properties, since10

Si ¼ Ci−1SCr−iþ1: ð31Þ

It is not hard to show that the primary operators fulfill the
following pseudocommutation relations

CjSi ¼ Smod0rðiþjÞCj and ðT CjÞSi ¼ Smod0rðr−iþjþ1ÞðT CjÞ;
ð32Þ

where mod0r is congruence modulo r shifted by one, so that
S0 ¼ Sr and Srþ1 ¼ S1. In other words, the S operators
commute with the members of the subgroup B under loss
of their identity: they transmute into a different primary
operator. But then we are done! These relations allow us to
compute all other operators in the symmetry group G. In
fact, we must keep adding operators until the 2r! slots in the
full symmetry group are exhausted. The product of two
primary operators can be evaluated as follows due to the
associativity group axiom11

SkðCjSiÞ ¼ ðSkCjÞSi ¼ CjðSmod0rk−jSiÞ
¼ ðSkSmod0riþjÞCj for 1 ≤ i; j; k ≤ r: ð33Þ

The second half is the commutation relation for the
secondary operator Smod0rðk−jÞSi. As an example, consider
r ¼ 5. First one shows with Eqs. (31)–(33) that the operator
compositions S1S2, S1S3, and S2S3 cannot be written in
terms of powers of C, T , I , or Si (i ¼ 1;…5). In this sense,
these three combinations are “new” operators, and rela-
beled S6, S7, and S8, respectively. One then iterates by
acting with existing operators on these operators, and puts
any further “new” operators into G. Often though, an
equivalent operator combination will already exist in G.
For example, when acting with S2 on the right-coset statelet
CS3jr ¼ 5i one finds using Eq. (33)

S2ðCS3Þjr ¼ 5i ¼ CS1S3jr ¼ 5i ¼ CS7jr ¼ 5i;

and no new operator needs to be added. Finding new
operators thus essentially reduces to the word problem of
abstract algebra. Proceding along this way, a group
multiplication table can be computed. We display part of
it for r ¼ 5 in Table II. As a corollary we note that these
identities show that the Hamiltonian symmetrization con-
straint (fixed signs under hCi) is intact. Namely, the T iCj

component of a right coset of B of any Sk (whether primary
or not) is mapped onto the T iCj component of a right coset
of some other operator Sk0.
So what are the relative signs of the individual terms?

The signswithin theB-blocks (4r statelets of the right cosets
BSi) are fixed by the Hamiltonian and the T and I quantum
numbers. At r ¼ 4 the assignment of the S quantum number
is simple if counter-intuitive: both the S1 and the S2 block

(a) (b)

FIG. 3. Lowest eigenfunctions in all five-parton sectors. Solid lines represent numerical (DLCQ) results, dashed lines the algebraic
eigenfunctions. (a) Massless theory (μ ¼ 0). (b)Massive theory (μ ¼ 4). The lowest two eigenfunctions are T even, the upper two T odd.

10This relation is not unique, for instance Sr−1 ¼ ðT CÞSðT CÞ
also.

11The T version of this relation is SkðT CjSiÞ ¼
T CjðSmod0rðr−kþjþ1ÞSiÞ ¼ ðSkSmod0rðr−iþjþ1ÞÞT Cj.
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carry an additional S sign (32 statelets); only the identity
block’s eight statelets do not acquire a sign. This seems
unbalanced, but works due to sign-cancellations unique to
the four-parton sector. At r ¼ 5 the orders of group and
subgroups are such that we get an even split into two “half-
groups.” Namely, the one quarternary and four secondary
operators plus the identity are S even and the primary
operators plus a peculiar secondary operator12 S9 are odd
and carry an S sign. This makes r! ¼ 120 statelets with an S
sign, and 120 without. For an algorithm that is more
universally applicable, see Appendix A.
This completes our construction of the most general

solution in all parton sectors. As a cross-check we construct
the eigenfunctions in the five-parton sector and compare
them to numerical solutions in Fig. 3. Figure 4(a) shows the
comparison for some six-parton eigenfunctions. We used
the rather low harmonic resolutions K ¼ 23 and K ¼ 20,
because otherwise the plots get too ”crowded”; agreement
is just as good at higher K of course. As we glean from
Fig. 3, the agreement is near-perfect for the lowest T even
state in the massive theory, good in the massive theory in
general, and fair in the massless theory. This might be due
to the fact that the density of states is much higher in the
massless theory. Apparently, the condition that the wave
function vanish for zero parton momenta is quite restrictive.
Given that the number of statelets rises to 1440 at r ¼ 6 the
agreement between algebraic eigenfunctions and numerical
solution seems surprisingly good in Fig. 4(a).
It is indeed quite remarkable how perfectly the features of

the theory are represented by the properties of the harmonic
basis. It is tempting to speculate that this approach—which
one might call “exhaustively-symmetrized light-cone quan-
tization (eLCQ)”—applies to other theories, at least in two
dimensions where light-cone coordinates are the natural

language. Hopefully, the treatment of the present toy model
is a harbinger of wider applicability.

III. APPLICATIONS

A. Using “eLCQ”: Some suggestions

Since we have found a complete set of basis states for
the asymptotic theory in Sec. II, we can systematically
approximate the full theory in a basis-function approach.
This should be pretty straightforward, but implementing the
algorithm in the higher parton-sectors is too tedious to be
presented here, so we only sketch the general idea. Namely,
we can use the set of coupled integral equations derived
in [3] from theHamiltonian Eq. (4) for the full wave functions
fr in the r-parton sectors. The full equation couples sectors of
different parton number; fr and fr�2 appear in the equation.
We expand the full eigenfunctions frðx1; x2;…; xrÞ into

a complete set of asymptotic eigenfunctions ϕr;n⃗

frðx1; x2;…; xrÞ ¼
X
n⃗

cr;n⃗ϕr;n⃗ðx1; x2;…; xrÞ;

where n⃗ represents a tuple of r − 1 excitation numbers.
Formally, the integral equation looks like

M2fr ¼ M2
X
n⃗

cr;n⃗ϕr;n⃗ðx1; x2;…; xrÞ

¼ 2PþP−
X
n⃗

cr;n⃗ϕr;n⃗ðx1; x2;…; xrÞ:

If we project onto the asymptotic eigenfunctions charac-
terized by ðs; m⃗Þ, we get an equation for the associated
coefficient

M2

Z
drxf�s;m⃗ðx⃗Þfrðx⃗Þ ¼ M2

X
r;n⃗

Z
drxcr;n⃗f�s;m⃗fr;n⃗

¼ M2
X
r;n⃗

cr;n⃗δs;rδn⃗;m⃗ ¼ M2cs;m⃗;

(a) (b)

FIG. 4. (a) Massless six-parton T even eigenfunctions of asymptotic QCD2A at K ¼ 20. (b) The two- and three-parton parts of the
lowest T even eigenfunction of the bosonized theory at KB ¼ 14 which is equivalent to K ¼ 28 in the fermionic theory. In both graphs,
DLCQ eigenfunctions are plotted with solid lines and “eLCQ” or model wave functions with dashed lines.

12It commutes with the B subgroup, i.e., BS9 ¼ S9B, which
does not imply commutation of individual subgroup elements Bi
with S9: BiS9 ≠ S9Bi in general.
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where x⃗ represents the rmomentumfractionsxi, and
R
drx the

integration over the appropriate domain subject to the con-
straint

P
ixi ¼ 1 and the removal of cyclic redundancies,

cf. Eq. (11).We assumed the asymptotic eigenfunctions to be
orthonormal and complete. On the left hand side, we have to
evaluate the Hamiltonian matrix elements and multiply the
matrix with the columnvector of coefficients. In other words,
we have to solve an eigenvalue problem for the coefficient
vectors. Diagonalizing the full Hamiltonian clearly will yield
the coefficients to express the full eigenfunctions as linear
combinations of the asymptotic eigenfunctions.
Now, the number of statelets in a state is equal to the

order of the group jGj ¼ 2r! and grows exponentially. This
limits the practical value of the approach. However, it is in
some sense the worst case scenario. Often, accidental
symmetries arise due to special combinations of excitation
numbers ni. For instance, the four-parton eigenfunctions,
Eq. (4.13) in Ref. [1], can be generated by symmetrizing
the statelet jn1; 0; n2i. Most of its statelets will not exhibit a
vanishing excitation number, yet the state as a whole is
more symmetric than the generic four-parton eigenstate. To
wit, it possesses an additional Z2 symmetry,13so that the 24
independent statelets can be cast into 12 sinusoidal func-
tions, or into the 6 double-sines of Eq. (4.13) in Ref. [1].
Analogous symmetries seem to exist in all higher parton-
sectors, e.g., six-parton states jn1; 0; n2; 0; n3i generating
states14 of the form Eq. (4.15) in Ref. [1]. All symmetries
will reduce the eigenvalue problem further by block-
diagonalizing the Hamiltonian and may give an intuitive
understanding of the bosonization process, by which trivial
multiparticle states are projected out [9].
So far the emphasis has been on symmetries of the set of

excitation numbers. This is natural, since the S symmetries
were introduced exactly for this purpose in Eq. (23). Awave
function symmetrized with respect to its excitation numbers
is clearly also symmetrized with respect to its arguments, i.e.,
momentum fractions. What kind of momentum space
symmetries do the NðrÞ S operators represent? It should
be enough to explicitly look at only two, since all others can
be derived from them. Namely, S1 and S2 can be considered
stereotypical single- and double-neighbor permutations,
respectively, since in the latter case n2 → n2 − n1 − n3 is
affected by both of the neighboring excitation numbers. It is
clear that the shift in excitation numbers comes from the
following shift in momentum fractions

S1∶ x1 → x1; x2 → x2 − x1; x3 ¼ −x3;…; xr−1

→ −xr−1; xr → −xr − x1;

S2∶ x1 → −x1 − x2; x2 → x2; x3 ¼ −x3 − x2; x4

→ −x4;…; xr → −xr:

Apparently there is only one fundamental operation in
momentum space: all (except one) momentum fractions
are inverted, and the fractions next to the invariant one are
shifted by the invariant fraction. This shows that the
condition that the Hamiltonian be Hermitian, and hence
that its eigenfunctions are invariant under S, generates a set
of momentum space symmetries that grows exponentially
with the parton number. Since these generated symmetries
are not obvious, the general method may be useful to
determine a full set of symmetries of a given Hamiltonian
in other theories.

B. The role of pair production

With the asymptotic solution Eq. (25) at hand, what can
we say about the effect of pair production, i.e., parton
number violation? The first observation is that the sub-
sequent parton sectors with the same T parity have
opposite I parity. In other words, the Hamiltonian is
sandwiched between a cosine and a sine wave function.
The simplest case is the matrix element between the two
and four massless parton T even sectors,15

−þhr ¼ 2; 1jP−
PV jr ¼ 4; 1iþ−−;

where

jr ¼ 2; 1i−þ ¼ cos πx;

jr ¼ 4; 1iþ−− ¼ sin πðx1 þ 2x2 þ 3x3Þ
− sin πð3x1 þ 2x2 þ x3Þ
þ sin πðx1 − 2x2 − x3Þ
þ sin πðx1 þ 2x2 − x3Þ;

and the latter wave function has an interesting “disappear-
ance” symmetry under x2 ↔ x4. In general, we will have to
evaluate a matrix element of the form

−þhn̄jP−
PV jn;m; liþ−−;

where n̄ and n, m, l represent the excitation numbers of the
two- and four-parton states, respectively, and P−

PV is
defined in Eqs. (9) and (4). Owing to the definition of
Hamiltonian and states, Eqs. (4) and (11), we have to do
eight integrations over momenta (one plus three for the
states, and four for the Hamiltonian), and have one
momentum conserving delta-function, as well as five more
appearing when we commute through annihilation oper-
ators. So we are left with two integrations over a trigono-
metric function divided by a quadratic function of the
momenta. The structure of the final expression is therefore13Its identity and S1 statelets fulfill T Zjri ¼ Zjri, whereas for

the S2 statelets we have C2jri ¼ I jri, so that half the statelets are
redundant.

14Note that this works in the massless joeoeoi sector, too.
15The subscripts here are the TIðSÞ quantum numbers, con-

sistent with Table I.
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−þhn̄jP−
PV jn;m; liþ−− ∼

Z Z
sin πðn0xþm0yÞ

ðxþ yÞ2 dxdy;

where the integers n0 and m0 will depend on all excitation
numbers n̄, n, m, l of the two and four-parton states. This
integral can be expressed in terms of cosine and sine
integrals (CiðxÞ, SiðxÞ), and is not divergent. There will be
several terms, and cancellations are possible. Thus, for
specific states, or in certain sectors16 the matrix element
may vanish.
This in turn raises the question whether it is systemati-

cally possible to find linear combinations of the asymptotic
eigenstates for which the annihilation matrix elements
are zero. These would then be states with a definite parton
number. In other words, we would have succeeded in
summing all pair creation effects, effectively “renormaliz-
ing” the theory, i.e., formulating it in terms of effective
d.o.f. This program is beyond the scope of the present note,
but it seems to be viable—judging from previous work.
Namely, in [2,3], it was shown that many of the bound
states are very pure in parton number. An open question is
whether this behavior is generic or due to the finite
discretization used in [2,3].

C. Implications for the bosonized theory

QCD2A can be bosonized by rewriting the Hamiltonian
in terms of current operators Jð−pÞ ∼ R

dqbðqÞbðp − qÞ
subject to a Kac-Moody algebra, see e.g., Refs. [8,14].
Bosonization is in essence a basis transformation, so the
eigenfunctions will change while the eigenvalues, i.e., the
bound state masses, remain invariant. Straightforward
bosonization generates a nonorthonormal basis, with states
consisting of color traces of adjoint current operators
acting on a vacuum state.17 Numerical approaches [8]
produce orthonormal solutions; i.e., the coordinate vectors
associated with a chosen basis (whether orthonormal or
not) are mutually orthogonal and of unit length. In this
sense, a basis of symmetrized harmonics as produced by
our “eLCQ” method will be orthonormal.
To get a handle on the bosonized theory, current-number

changing operators can be omitted at first [14], and one
arrives at an integral equation for the bosonized eigen-
functions ϕrB,
M2

g2N
ϕrBðx1;…; xrÞ

¼ −
Xr

i¼1

Z
∞

−∞

ϕrBðy; xi þ xiþ1 − y; xiþ2;…; xiþr−1Þ
ðxi − yÞ2 dy;

ð34Þ

where we have used the subscript B to stress that the partons
in the bosonized theory are currents and not fermions. The
equation is virtually identical with Eq. (12) save for the
nonalternating signs. These signs stemming from anticom-
muting fermionic operators are clearly absent in the boson-
ized theory. We should therefore be able to describe the
bosonized wave functions with our “eLCQ” ansatz, Eq. (25).
We cannot hope for a perfect match, because we cannot
decouple sectors of different current number. A consistent
asymptotic theory does not exist due to the nature of the
Kac-Moody algebra of the current operators. There is an
associated problem. Namely, the full theory contains unin-
teresting nontrivial multiparticle states which interact with
the single-particle states of interest at any finite resolution in
discretized versions of the theory [4,12]. Indeed, only a few
single-particle states have hitherto been identified as such.
Furthermore, bosonization only works for massless fer-
mions, so there is no massive sector. Hence, our comparison
of numerical and algebraic wave functions will be rather
limited. Of course, in the bosonized theory, there is a bosonic
and also a fermionic sector. In the latter, the basis states are
different owing to the elimination of cyclic symmetry due to
the existence of a unique fermionic operator (the “adjoint
vacuum”). Here, we will focus on the bosonic sector of the
bosonized theory. This is a real test of our ansatz, since the
symmetrization clearly cannot be the same as in the theory
with fermions. The “eLCQ” ansatz (25) for the two-current
wave function ϕ2B is

ϕ2B ¼ einx þ ð−1Þne−inx

(compare to Eq. (B1) which has a minus sign between
the terms). Therefore, we “predict” that the massless states
with odd n will be sines in the bosonized theory, not
cosines as in the fermionic theory. This is consistent with
Ref. [14], and also the numerical bosonized eigenfunctions
in Fig. 4(b) are consistent with our ansatz.18 Note that
numerical approaches such as DLCQ use different bases
for the fermionic and bosonized theories. The fermionic
theory is approximated using antiperiodic boundary con-
ditions (odd half-integer momentum fractions), whereas the
bosonized theory uses periodic boundary conditions (integer
momentum fractions). Of course, regardless of the basis
used, they should be decent approximations to the algebraic
wave function.
In sum, we find that the “eLCQ” ansatz is compatible

with the known solutions of the theory in a significantly
different representation. This hints at a wider applicability
of our method. What seems crucial is that the structure of
the Hamiltonian be of the form

16Of course, the T sector is fixed, but the result can be different
in the massive and massless sectors of the theory.

17Either the traditional vacuum state or an “adjoint vacuum,”
represented by a fermionic operator of zero momentum acting on
the vacuum.

18We used ϕ2B ¼ sinðπx1Þ and ϕ3B ¼ − 1
20
½cosðπx1Þ þ

cosðπx2Þ þ cosðπx3Þ� to describe the generic features of the
two wave functions. Note that the cosines in the higher
parton sectors are consistent with our earlier finding that wave
functions of same T have opposite I at subsequent r.
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P− ∼
Z

dp
p2

Jijð−pÞJjiðpÞ:

In other words, the “eLCQ” ansatz is poised to solve the
long-range Coulomb-type part of a strongly interacting
system. This is akin to the DLCQ ansatz which was shown
in Ref. [13] to decouple the center of mass motion of a
system from its more interesting physics.

IV. CONCLUSION AND DISCUSSION

The goal of this paper was to find a complete set of
eigenfunctions of QCD2A. We succeeded in constructing a
basis of the asymptotic theory without pair-production,
consisting of multidimensional harmonic functions. In
order to completely and exhaustively symmetrize the wave
functions in the r parton sector, a group of operators of
order 2r! is necessary and sufficient. This finite group of
abstract symmetries is defined by the relations between the
generators Eqs. (31)–(33). Paradoxically, this rather com-
plicated arithmetic is based on the simple observation that
“boundary conditions” on the wave functions have to be
implemented as symmetries in a Hamiltonian approach
(which leads to an integral equation for the eigenfunc-
tions). Our finding that the eigenfunctions can be con-
structed largely algebraically with group theory arguments
is corroborated by comparison with numerical solutions of
the theory.
At first glance, our method of exhaustively symmetrizing

a system quantized on the light-cone (“eLCQ”) applies to a
specific family of systems, namely theories with adjoint
d.o.f. in one spatial dimension with a Coulomb-type long-
range interaction. It seems likely, though, that the method
presented here is more widely applicable due to its general-
ity. In particular, exhaustive symmetrization deals with
momentum as an abstract entity; i.e., it deals with it
regardless of its Lorentz structure. There might well be
requirements due to the Poincaré group, but this is not the
point here. Rather, the fact that we have rmomenta requires
us to symmetrize on purely abstract grounds, rather as a
preconditioning of the wave functions akin to the Slater
determinant implementing the antisymmetrization require-
ment of the Pauli principle.
We presented evidence that “eLCQ” is a useful method

at least for theories exhibiting similar integral equations
as QCD2A—like its bosonized version as discussed in
Sec. III C. Other theories to which “eLCQ” can be
straightforwardly applied include two-dimensional Yang-
Mills theory coupled to adjoint scalars [2] and a theory with
adjoint Dirac fermions tackled in [15]. Also, many of the
supersymmetric models with adjoint particles (for instance
[16]) could be re-evaluated with the present method.
We did not have the space to fully exploit the fact that the

asymptotic spectrum of QCD2A is now completely mapped
out, so there are several opportunities for future projects.
For instance, the interaction of asymptotic states and

the formation of multiparticle states can be studied. In
Sec. III B, we laid down an initial plan how to proceed. And
while the exponential rise of terms in the eigenfunctions
presents some difficulty, one might be able to improve the
precision of numerical solutions enough by using “eLCQ”
basis functions to positively identify the single-particle
content of the theory. Accidental symmetries described in
Sec. III Awill help in this regard. Also, the structure of the
asymptotic solutions may help to disentangle salient
features of this and other theories. For instance, the
“topological sector” of the theory, introduced in [4] to
explain the appearance of fermion-fermion multiparticle
states in the fermionic sectors, might be an artifact of finite
group theory. As long as parton number is finite, there is a
clear separation of group properties according to their
(finite) order. Some combination rules for multiparticle
states in terms of T quantum numbers found in [4] might
just be the result of such “artificial” group theoretical
relations.
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APPENDIX A: DERIVATION OF THE GROUP
MULTIPLICATION TABLE

To fully understand why there is only one quantum
number S associated with the large set E of S operators, we
work out the details here. We start with the simplest case
r ¼ 4. We need to show that the fully symmetrized wave
function Gjri is an eigenstate to all three S operators
associated with its three excitations numbers ðn;m; lÞ. Note
that de facto there are only two independent S operators at
r ¼ 4, which we also have to explain, along with the fact
that two thirds—not half—of a state’s statelets carry an
S sign.
First, we observe that the 4r members of the subgroup B

naturally split into four subsets, namely the cosets of the
cyclic subgroup hCi under T , I , T , and IT . But I is in the
center of G, and therefore can be largely ignored. The cyclic
structure of the Hamiltonian means that there is a conserved
quantity which we might call T C-parity. Odd and even
powers of the cyclic group carry different signs in general.
Therefore, an even(odd) power has to be mapped under any
S operation onto an even(odd) power of C. When we act
with T , then the combined power has to be the same
modulo two, e.g., Cmod2j ↔ T Cmod2ðj−1Þ. There is a twist.
Namely, for states with mixed even and odd excitation
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numbers like joeoi, there is an additional sign, which shifts
the relative power under T , so we have Cmod2j ↔ T Cmod2j.
So the subgroup B has two subsets even and odd under T C-
parity, Be and Bo. We call their members (i.e., combina-
tions like I iT tCc) Ze

j and Zo
j . At r ¼ 4 we have the

pseudocommutation relations19

SiZe
j ¼ Ze

jSi; ðidentity preservingÞ ðA1Þ

SiZe
j ¼ Ze

jSmod0
2
ðiþ1Þ: ðidentity swappingÞ ðA2Þ

Note that

SiBe ¼ BeSi and SiBo ¼ BoSmod0
2
ðiþ1Þ;

i.e., while the individual operators do not pseudocommute,
they remain in the same subset. At r ¼ 4, the following
additional identities hold,

S1S2 ¼ TZo
kS1 ¼ TS2Zo

k;

S2S1 ¼ TZo
kS2 ¼ TS1Zo

k; ðA3Þ

for some k, so that Zo
k ∈ Bo. In fact, Zo

k ¼ T C2. In other
words, the product of the two S-operators can be reduced to
the leading one, but an oddZ operator appears as well as an
additional T operator which switches the T sign. We are
now ready to calculate the action of Si on the totally
symmetrized state. There are two versions of that state. If
focusing on S symmetry properties, it is natural to write the
state in terms of left coset statelets SBjri

Gjr ¼ 4i ¼ ðBe þ BoÞjri þ SS1ðBe þ BoÞjri
þ SS2ðBe þ BoÞjri:

On the other hand, we have to preserve cyclical properties
due to the structure of the Hamiltonian, in which case we
should use right coset statelets BSjri20

Gjr ¼ 4i ¼ ðBe þ BoÞjri þ SðBe þ BoÞS1jri
þ SðBe þ BoÞS2jri:

Both requirements lead to the same constraint on the
quantum numbers. In the latter case, we have

S1Gjr ¼ 4; eeei ¼ S1ðBe þ BoÞjri þ SS1ðBe þ BoÞS1jri þ SS1ðBe þ BoÞS2jri
¼ ðBeS1 þ BoS2Þjri þ SðBe þ BoS2S1Þjri þ SðBeS1S2 þ BoÞjri
¼ SðBe þ BoÞjri þ ðBe þ STBoÞS1jri þ ðSTBe þ BoÞS1jri
¼ SGjr ¼ 4; eeei ðif ST ¼ 1Þ; ðA4Þ

where we used Eq. (A3) in the last step. The calculation goes analogously for S2. We thus proved that a symmetrized
state is an eigenstate of S1 (and S2) in the jeee;T � S�i sector of the theory. In the mixed sector, the Cj and T Cj−1 terms get
an extra sign for odd j due to ð−1Þn ¼ ð−1Þl ¼ −1. This effectively reverses T, therefore the viable sectors are
joeo;T ∓ S�i.
If we organize in terms of the left cosets we come to the same conclusion. To wit

19In full detail, they read

S1C ¼ IT S2 S1C2 ¼ IT CS1 S1C3 ¼ C3S2

S1T ¼ ICS2 S1T C ¼ IC2S1 S1T C2 ¼ T C2S2 S1T C3 ¼ T C3S1

S1I ¼ IS1 S1IC ¼ T S2 S1IC2 ¼ T CS1 S1IC3 ¼ IC3S2

S1IT ¼ CS2 S1IT C ¼ C2S1 S1IT C2 ¼ IT C2S2 S1IT C3 ¼ IT C3S1

S2C ¼ CS1 S2C2 ¼ IT C3S2 S2C3 ¼ IT S1

S2T ¼ IC3S1 S2T C ¼ T CS2 S2T C2 ¼ T C2S1 S2T C3 ¼ IC2S2

S2I ¼ IS2 S2IC ¼ ICS1 S2IC2 ¼ T C3S2 S2IC3 ¼ T S1

S2IT ¼ C3S1 S2IT C ¼ IT CS2 S2IT C2 ¼ IT C2S1 S2IT C3 ¼ C2S2:

20If this seems inconsistent, recall that the fully symmetrized state is symmetrized both in B and in S. Hence, though parts of the state
will appear to be symmetrized with respect to only one symmetry, the state as a whole has to be symmetric with respect to both
operations. In general, this is only possible for certain combinations of quantum numbers. This is the reason why many sectors of the
theory do not give rise to proper states.
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S1Gjr ¼ 4; eeei ¼ S1ðBe þ BoÞjri þ SðBe þ BoÞjri þ SS1S2ðBe þ BoÞjri
¼ S1ðBe þ BoÞjri þ SðBe þ BoÞjri þ STS2ZoðBe þ BoÞjri
¼ S½ðBe þ BoÞjri þ SS1ðBe þ BoÞjri þ TS2ðBe þ BoÞjri�
¼ SGjr ¼ 4; eeei ðif S ¼ TÞ: ðA5Þ

The I quantum number is necessarily the opposite of T. The
reason is that in the four-parton sector the pseudocommu-
tation relations are such that T I-parity ð−1Þtþi is con-
served: commuting a (primary) S-operator with a B
operator will yield a different B operator with equal tþ
i (modulo two). This essentially links the identity and T
statelets of S1 to the IT and I statelets of S2, respectively.
Therefore T and I have to be different,21 because otherwise
the wave function is identically zero.
The higher parton sectors, r > 4, are harder to analyze

because the pseudocommutation relations are more com-
plicated. In particular, there is no identity preserving
relation akin to Eq. (A1). Rather, we have to use
Eq. (32). Here I is decoupled, and I-parity thus independ-
ently conserved. So we have to come up with an “operator
calculus” that allows us to evaluate the S sign of a
combination of operators. As it turns out, r ¼ 5 is not
the most general case, but tractable and yielding clues for
the generic case r > 5, so we discuss it here.
The exhaustively symmetrized state in terms of left coset

elements can formally be written as

Gjri ¼ Bjri þ
XNðrÞ

j¼1

SjSjBjri ¼
�
1þ

XNðrÞ

j¼1

SjSj

�
Bjri;

where the r primary operators Sj carry an S sign, so Sj ¼ S
for j ≤ r. The nonprimary operators Sj carry an unknown
sign Sj ¼ �S. As before, NðrÞ ¼ 1

2
ðr − 1Þ! − 1 ¼ 11;

59; 359;…. The action of a primary operator Sk on an
exhaustively symmetrized state is then

SkGjri ¼
�
Sk þ Sþ

XNðrÞ

j¼1
j≠k

SjSkSj

�
Bjri

¼ S

�
1þ SSk þ S

XNðrÞ

j¼j
1≠k

SjSkSj

�
Bjri;

where we have used Sk ¼ S for primary operators. Due to
the group axioms, the secondary operators SkSj can be
expressed in terms of a single S operator followed by
operators of the B subgroup, to wit

SkSj ¼ SlI iT tCc;

where the index l and the powers i, t, c can be looked up in
a table like Table II. But to reproduce the exhaustively
symmetrized state Gjri, we need to have

SSjIiTtCc ¼ Sl; ðA6Þ

since the B operators can be absorbed into Bjri, whence
only the quantum numbers I, T, C re-emerge. This is the
condition we can use to identify the S signs of the
nonprimary operators.
As an example, consider r ¼ 5, where we can formally

set C ¼ 1, since cyclic permutations at odd r do not carry
signs. Acting with S1, say, on Gj5i yields the operator
indices and powers displayed in the S1 column of Table II.
Since IiTt ¼ 1 for all of them, Eq. (A6) simplifies to
SSj ¼ Sl, so that S6¼S7¼S8¼S10¼S11¼S2 and S9 ¼ S.
Note the interplay between S9 and S10: since S1S9 ∝ S10

and S1S10 ∝ S9, one operator gets an S sign, and the other
does not. Which one it is has actually to be decided by
acting with another primary operator on the exhaustively
symmetrized state or by writing the state in terms of right
coset statelets.
The general algorithm is then as follows. Initially, we

produce an exhaustive list of operators by acting with
primary operators on primary operators until no new
operators arise. This leads to a group multiplication table,
such as Table II for r ¼ 5 which can be used to write down
consistent expressions for primary operators acting on the
generic state (with yet undetermined S signs) in terms of
left or right coset statelets. The condition that the emerging
state has to be an eigenstate of the primary operators
determines the signs, and may lead to a further condition on
I as a function of T. Using the sign condition Eq. (A6) we
start with the r known signs Sj of the primary operators to
get another r signs Sl, and iterate the process. The only time
this goes bad is when both Sj and Sl are unknown, as in the
case of S9 and S10 at r ¼ 5. In this case we go on to the next
Sk. Another constraint arises from the different powers of I
and T in the group multiplication table. It will lead to a
condition which determines one of these quantum numbers
in terms of the other, e.g., I ¼ T at r ¼ 5. At even r there
will be another condition linking (the value of) S and T,
leading to two viable sectors per (even or mixed) excitation
number sector, which is what we need to produce exactly
four sectors of bound states at every r.

21In fact, this yields exactly two sectors, which makes sense in
the even r sectors, since here we have two excitation number
sectors (even and mixed) for the required four (two massive and
massless) sectors. In the odd r sectors, there is only one condition
due to the fact that there is no sign due to relative C operators; at
odd r all cyclic permutations enter with a positive sign.
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APPENDIX B: SECTORS, SIGNS, AND SINES

The assignment of symmetry sectors can be confusing due
to several signs and quantum numbers involved. Let’s
straighten things out by considering the simplest case,
r ¼ 2. Here, we have ϕ2ðx1; x2Þ ≐ jni, so we think of the
wave function ϕ2 depending on two momentum fractions xk,
as being represented by an abstract vector jni labeled by one
excitation number. The orientation symmetry T of the
Hamiltonian acts on states only via their fermionic operators
bijð−xkÞ. By flipping color indices, T effectively reverses
the order of the operators and thus the order of momentum
fractions. To compensate, also the wave function must be
rewritten with the last momentum fraction now being first.
Wave functions might be even or odd under this reversal, and
the trace of operators might or might not acquire a sign under
T . To assign a state to a sector, we have to take into account
both behaviors. For example, a two-parton state looks like22

jΦ2i ¼
1

Nc

Z 1
2

0

dxϕ2ðx; 1 − xÞTr½bð−xÞbð1 − xÞ�j0i:

Since

T bijð−xÞbjið1 − xÞ ¼ bjið−xÞbijð1 − xÞ
¼ Tr½bð−xÞbð1 − xÞ�

is T even without the need to reverse the arguments,
this state belongs to the T even sector, even though
the wave function ϕ2 is odd under reversal of its argu-
ments,23 cf. Eq. (16). Technically, the wave function is
represented as

jϕ2i ¼ jni þ TT jni þ IðI jni þ TIT jniÞ
¼ jni þ Tð−1Þnj − ni þ Ij − ni þ ITð−1Þnjni;

and also as24

jϕ2i ¼ jni þ ð−1Þrþ1Cjni ¼ jni − ð−1Þnj − ni; ðB1Þ

where we recalled that T jni ¼ Cjni ¼ ð−1Þnj − ni. So for
even n we need T ¼ I and the vanishing of the wave
function at x ¼ 0 is guaranteed by the latter equation
which produces a sine wave function with I ¼ −1.
Clearly, the even n states constitute the massive sector.
If n is odd, on the other hand, we get cosines with I ¼ 1.
In both cases, T ¼ −1 even though the states are T even,
T jϕ2i ¼ jϕ2i. In sum, its quantum number T does not
directly give away the T sector of a state,25 but a negative
(positive) I quantum number always results in a wave
function made of sines(cosines).
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