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We exhibit simple lattice systems, motivated by recently proposed cold atom experiments, whose
continuum limits interpolate between real and p-adic smoothness as a spectral exponent is varied. A real
spatial dimension emerges in the continuum limit if the spectral exponent is negative, while a p-adic extra
dimension emerges if the spectral exponent is positive. We demonstrate Hölder continuity conditions, both
in momentum space and in position space, which quantify how smooth or ragged the two-point Green’s
function is as a function of the spectral exponent. The underlying discrete dynamics of our model is defined
in terms of a Gaussian partition function as a classical statistical mechanical lattice model. The couplings
between lattice sites are sparse in the sense that as the number of sites becomes large, a vanishing fraction of
them couple to one another. This sparseness property is useful for possible experimental realizations of
related systems.
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I. INTRODUCTION

The p-adic numbers (for any fixed choice of a prime
number p) are an alternative way of filling in the “gaps”
between rational numbers in order to form a complete set,
or continuum. They have been studied for over a hundred
years, and one of many mathematical introductions to the
subject is [1]. The key ingredient is the p-adic norm.
Briefly, one defines jajp ≡ p−vðaÞ for nonzero a ∈ Z,
where vðaÞ (the so-called valuation of a) is the number
of times p divides a. Then ja=bjp ≡ p−vðaÞþvðbÞ for nonzero
integers a and b. By fiat, j0jp ¼ 0. This norm is very
different from the usual absolute value, which is denoted
jxj∞ to avoid any ambiguity. Just as the real numbers R are
the completion of the rationals Q with respect to j·j∞,
so the p-adic numbers Qp are the completion of Q with
respect to j·jp for any fixed p.1 We will often describe
the real numbers as Archimedean because the norm
j·j∞ satisfies the Archimedean property, namely that if
0 < jaj∞ < jbj∞, then for some n ∈ Z we have
jnaj∞ > jbj∞. This property fails for the p-adic norm

because it enjoys instead the so-called ultra-metric inequal-
ity, jaþ bjp ≤ maxfjajp; jbjpg, which implies in particular
that jnajp ≤ jajp for all n ∈ Z.
Field theories (in the physics sense of “field”) over the

p-adic numbers have been studied extensively, starting with
Dyson’s hierarchical model [2] and continuing with the
rigorous results of [3], with the field theory perspective
emerging clearly in [4]. In particular, the point that p-adic
field theories can be obtained as continuum limits of
hierarchical models was first made in [4]. The reviews
[5–8] provide useful points of entry into the large literature
on p-adic field theory and related topics.
The essential features of hierarchical models that we will

use in this work can already be understood, for p ¼ 2, in
terms of a slight rephrasing of Dyson’s original work, as
follows. Consider the “furthest neighbor” Ising model. By
this we mean that starting with 2N Ising spins, numbered 0
through 2N − 1, we strongly couple the spins which are as
far apart as possible as measured through sequential
counting. Thus spin 0 couples to spin 2N−1, spin 1 to spin
2N−1 þ 1, and so forth. Arranging the spins on a circle,

1Let’s briefly review what completion means. A Cauchy sequence fxng∞n¼1 with respect to a norm j·j is one where for any real number
ϵ > 0, we have jxn − xmj < ϵ provided n andm are larger than some minimum valueN (which usually depends on ϵ). The realsR can be
understood as the set of Cauchy sequences of rational numbers, modulo an equivalence relation defined by considering two Cauchy
sequences equivalent iff combining them by alternating terms gives again a Cauchy sequence. The p-adic numbers Qp are the
completion of Q with respect to the p-adic norm j·jp. The four field operations, namely addition, subtraction, multiplication, and
division by nonzero elements, are defined on Qp by continuity from their standard definition on Q. Complications arise if one attempts
to proceed similarly with nonprime p: In particular, the obvious Cauchy construction results in a ring, not a field—in fact, a ring in
which one can have xy ¼ 0 with both x and y nonzero.
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we are coupling pairs of spins which are diametrically
opposite. If we stopped there, we would have 2N−1 strongly
coupled pairs of spins, with each pair entirely decoupled
from every other pair. We want a more interesting thermo-
dynamic limit, so we keep going by coupling each pair of
spins with the pair furthest from it (again in the sense of
sequential counting). Then we couple pairs of pairs, and so
on. At each stage we reduce the coupling strength by a fixed
factor 2sþ1, where s ∈ R is what we will call the spectral
parameter. This coupling pattern can be expressed con-
cisely in terms of the 2-adic norm of the separation of the
spins, as we will specify in more detail in Sec. II C. The
overall picture is illustrated in Fig. 1.
A natural way to understand the furthest neighbor model

is in terms of a hierarchy of clusters of spins, as also
illustrated in Fig. 1. The hierarchical tree of these clusters
gives a particularly clear understanding of the 2-adic
distance, because if we define dði; jÞ as the number of
steps required to go from point i to point j on the tree, then
for boundary points i and j taking integer values between 0
and 2N − 1, we have ji − jj2 ¼ 2−Nþdði;jÞ=2.
A further step is to send the position h of each spin

through the discrete Monna map M, which takes as its
argument an integer between 0 and 2N − 1 and returns an
integer in the same range obtained by reversing the base 2
digits of the argument. This map is intuitively useful
because after applying it, positions which were close
hierarchically are close sequentially. Note however that
this closeness relationship doesn’t work in reverse: posi-
tions that are sequentially close after applying M need not
have been hierarchically close before applying M.
Not surprisingly, Green’s functions of spins in the

furthest neighbor Ising model depend on the locations i
and j of the spins only through the 2-adic norm ji − jj2.
Formally, this is a consequence of invariance of the
partition function under relabeling all lattice sites according

to i → uiþ b where u and b are elements of Z=2NZ and
juj2 ¼ 1. Note that the statement juj2 ¼ 1 is well defined in
Z=2NZ: it amounts to requiring u to be an odd number.
Intuitively, i → uiþ b is like a rotation followed by a
translation. Translational invariance means that the Green’s
function can depend on i and j only through their difference
i − j. “Rotational” invariance implies that the dependence
on i − j must be only through the norm ji − jj2.
The sparse coupling pattern that we want to study

eliminates couplings between spins i and j unless i − j is
a power of 2, or minus a power of 2, modulo 2N . So for
the case N ¼ 3 shown in Fig. 1, we drop the coupling
between spins 0 and 3, and between 0 and 5, and
between all translated copies of these pairs, for example
the pairs (1, 4) and (1, 6). For this small value of N,
obviously the “sparse” coupling pattern is still nearly all-
to-all. But for large N, the number of spins coupling to
spin 0 increases linearly with N while the total number of
spins is 2N . This type of coupling pattern was first
brought to our attention in discussions about proposed
cold atom experiments [9].
If the spectral exponent s is large and positive, we expect

to recover nearly the same results as if we had used a truly
2-adic all-to-all coupling as in the furthest neighbor model
described previously. Here’s why. When s is large and
positive, the coupling between spins 0 and 2N−1 produce
very tightly coupled pairs, and the pairs of pairs are also
pretty tightly coupled. This tight coupling means that when
we proceed to the next level down the tree and couple 0
relatively weakly to spins �2N−3 but not �3 × 2N−3, all
that matters to a good approximation is that we are coupling
the quartet f0; 2N−1;�2N−2g to the quartet f�2N−3;
�3 × 2N−3g. Likewise, as we go further down the hierarchy
of couplings, while it’s true that we couple spins in
previously established 2-adic clusters unequally, the clus-
ters at each step are so tightly bound within themselves

FIG. 1. Left: A furthest neighbor coupling pattern among eight spins. The thickness of lines indicates the strength of the coupling
between spin 0 and the other spins. The coupling pattern is invariant under shifting by a lattice spacing, so for example spins 1 and 5 are
as strongly coupled as spins 0 and 4. The blue circle is to guide the eye and does not indicate additional couplings. Right: A hierarchical
representation of the couplings between spins. Above each spin’s label we have given the base 2 presentation of the spin number, and we
have shown how the Monna map acts on these numbers by reversing digits in the base 2 presentation.

GUBSER, JEPSEN, JI, and TRUNDY PHYS. REV. D 98, 045009 (2018)

045009-2



relative to their coupling with each other that they act
almost like single spins.
Meanwhile, as we will see, when the spectral parameter s

is made large and negative, we recover nearest neighbor
interactions. The two-point Green’s function of the nearest
neighbor model with 2N spins is then well approximated at
large N by a continuum Green’s function that we can
extract from field theory over R. This Green’s function is
smooth in an Archimedean sense, except at zero separation:
In fact, if we are considering the model with pure nearest
neighbor interactions, the Green’s function away from zero
separation is C∞. The smoothness of the continuum limit of
the Green’s function is a good way to understand how
continuous quantities emerge from a discrete lattice
description.2 Poetically, a continuous spatial dimension
emerges from nearest neighbor interactions on a large
discrete lattice.
A natural question to follow up the discussion of the

previous paragraph is, what counts as a smooth continuum
Green’s function from a 2-adic point of view? Let’s revert
to discussing p-adic smoothness for any prime p, since it is
no more difficult than for p ¼ 2. Continuity is easy to
understand over the p-adic numbers: If a function G maps
Qp to R, then we can define G as continuous at x if for any
ϵ > 0 there exists a δ > 0 such that every y with jx−yjp<δ
has jGðxÞ −GðyÞj∞ < ϵ. It is harder to find the proper
analog of a C∞ condition on G, because derivatives of G
with respect to x are tricky to define. (Heuristically, that’s
because dG=dx is neither real nor p-adic, but apparently
some ratio of the two, which doesn’t quite make sense.) In
fact, the accepted analog of aC∞ condition is to require that
a mapG fromQp toR is locally constant.3 For a function to
be locally constant at a point x, we must be able to find
some δ > 0 such that every y with jx − yjp < δ has
GðxÞ ¼ GðyÞ. Surprisingly, a function from Qp to R which
is everywhere locally constant need not be globally con-
stant (as it would for a function from R to R). For example,
the function which is 1 on Zp and 0 over the rest of Qp is
locally constant everywhere, but obviously not globally
constant. Green’s functions in models with perfectly p-adic
coupling are also locally constant except at zero separation,
as we will see in examples soon. When we turn to sparse
coupling patterns, we will recognize that we are recovering
2-adic continuity precisely when the two-point Green’s
function is well approximated by a locally constant

function. This is exactly what happens in the limit of large
positive s for the 2-adic statistical mechanical models that
we will study explicitly.
In short, as the spectral exponent s ranges from large

negative to large positive values, the Green’s functions we
study transition from showing emergent Archimedean
continuity to showing emergent p-adic continuity. How
this transition occurs is slightly subtle, but we will combine
some numerical results with analytical reasoning to char-
acterize it both in momentum space and position space.
The sparse coupling pattern we consider was suggested

to us in connection with prospective cold atom experiments
in which coupling patterns of at least approximately the
form we consider may be realized [9], using techniques
along the lines of [12]. It is outside our present scope to
provide a detailed account of these experiments, but let us
mention three salient points:
(1) Translational invariance of the coupling (except for

endpoint effects) is a natural feature of the exper-
imental setup.

(2) While it is possible in principle to arrange a wide
variety of couplings, it is useful to focus on sparse
couplings, because every time a coupling is intro-
duced between spins at fixed separation, it increases
dissipative tendencies in the system.

(3) The most straightforward models to realize in the
cold atom system are XXZ Heisenberg models with
no on-site terms, i.e., with hopping terms only. We
will be dealing with a substantially simpler statistical
mechanical model in this paper but hope to return to
the more complicated dynamics of the XXZ model
in future work.

The organization of the rest of this paper is as follows. In
Sec. II, we describe the class of statistical mechanical, one-
dimensional spin chains that we will study, and we give a
general account of how to compute Green’s functions
before treating in turn four models within this class:
Nearest neighbor interactions, power-law interactions,
p-adic interactions (in principle for any prime p though
we eventually focus on p ¼ 2), and finally sparse cou-
plings, which interpolate between nearest neighbor and
p-adic behavior. In Sec. III, starting from field theory, we
obtain Hölder continuity bounds on the continuum limit of
Green’s functions computed in Sec. II. In Sec. IV, we show
through numerical studies that the smoothness of Green’s
functions in momentum space is well captured by the
Hölder continuity bounds derived in Sec. III. Position space
continuity is more complex, with different Hölder expo-
nents depending on whether one is looking at global or
local smoothness properties.

II. THE STATISTICAL MECHANICAL
MODELS OF INTEREST

Our aim is to work out the statistical mechanics of
models with a variety of nonlocal couplings. We want our

2In our construction, the coupling pattern given in the lattice
description determines the topological properties of the con-
tinuum field theory: Strongly coupled lattice sites are close to one
another in the continuum topology. For an alternative perspective
on the emergence of topology in the continuum limit, see [10].
The authors consider a (non-Riemannian) metric on spacetime
that arises from the two-point function of a scalar field theory.

3A more complete introduction to smooth test functions over
the p-adic numbers than we will provide can be found, for
example, in [11].
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results to be as explicit as possible, and to have as few
parameters as we can arrange. Consider, therefore, the
following Hamiltonian for a lattice with L sites:

H ≡ −
1

2

X
i;j

Jijϕiϕj −
X
j

hjϕj; ð1Þ

where the ϕi are still commuting real numbers. Clearly,
Jij ¼ Jji because ϕiϕj is symmetric. Let us also assume
translational invariance: That is, Jij ¼ Ji−j, where arith-
metic operations like i − j are carried out modulo L. Define
L-dimensional vectors v⃗κ by

vκ;j ≡ 1ffiffiffiffi
L

p e2πiκj=L for κ ¼ 0; 1; 2;…; L − 1: ð2Þ

Any quantity Xj depending on j ∈ f0; 1; 2;…; L − 1g can
be Fourier transformed according to

Xj ¼
XL−1
κ¼0

X̃κvκ;j: ð3Þ

An easy calculation shows that

Jv⃗κ ¼
ffiffiffiffi
L

p
J̃κv⃗κ; ð4Þ

where J without indices means the symmetric matrix Jij,
and J̃κ is the Fourier transform of the coupling strengths Jh.
Using (3)–(4), we have immediately

H ¼ −
ffiffiffiffi
L

p

2

XL−1
κ¼0

J̃κϕ̃−κϕ̃κ −
XL−1
κ¼0

h̃−κϕκ: ð5Þ

We now make two assumptions:
(i) J̃0 ¼ 0. We understand this as a consequence of

assuming the existence of a symmetry where all the
ϕi are shifted by a common value.

(ii) J̃κ < 0 for all κ ≠ 0. This amounts to saying that the
interactions among the ϕi are ferromagnetic.

It is useful to note that the second assumption follows from
the first together with the requirement that all Jh ≥ 0 for
h ≠ 0, with not all of them equal to zero.
In order to make the statistical mechanics of H well

defined, we insert a factor of δðϕ̃0Þ into the partition
function:

Z½h�≡
�YL−1

j¼0

Z
∞

−∞
dϕj

�
δðϕ̃0Þe−βH

¼ Z½0� exp
�
−

β

2
ffiffiffiffi
L

p
XL−1
κ¼1

1

J̃κ
h̃−κh̃κ

�
: ð6Þ

We are interested in the two-point function:

Gij ¼ hϕiϕji ¼
1

β2Z½0�
∂2Z½h�
∂hi∂hj

����
h¼0

: ð7Þ

From Jij ¼ Ji−j, it follows that Gij ¼ Gi−j. A short
calculation starting with (7) leads to

Gh ¼ −
1

βL3=2

XL−1
κ¼1

1

J̃κ
e2πiκh=L: ð8Þ

The factor of δðϕ̃0Þ in the partition function may seem
undesirable, especially from the point of view of construct-
ing Hamiltonians with only sparse couplings among the
spins, because δðϕ̃0Þ can be viewed as the K → ∞ limit of
e−Kϕ̃

2
0 , and this amounts to a strong all-to-all coupling

among spins (though of a very particular form). In fact, we
could achieve the essentially the same results by omitting
the factor of δðϕ̃0Þ while sending J0 → J0 − μ where μ is
small and positive. Then J̃0 ∝ −μ, while the other J̃κ would
scarcely be affected since they are finite and negative
already atOðμ0Þ. Use of (7) would then lead to the sameGh
as in (8), up to an overall constant proportional to 1=μ.
Discarding this uninteresting constant and then taking the
limit μ → 0 would lead to precisely the result given in (8).
In other words, we can recover (8) by starting with a
massive theory with truly sparse couplings and taking the
massless limit.
In Sec. II D, we will provide the exact formulation of the

sparse coupling model that is the main subject of this paper.
But first we will apply the analysis leading to (8) in
considering the Archimedean and p-adic statistical models
that the sparse coupling model interpolates between as the
spectral parameter ranges from negative to positive values.

A. Nearest neighbor coupling

As an extremal case of an Archimedean statistical model,
we consider the model with nearest neighbor coupling
specified by

JNNh ¼ J�ðδhþ1 þ δh−1 − 2δhÞ; ð9Þ

which leads to

GNN
h ¼ 1

4βJ�L

XL−1
κ¼1

e2πiκh=L

sin2 πκ
L

: ð10Þ

If L is large, then we can approximate sin πκ
L ≈ πκ

L and extend
the sum to infinity:

GNN
h ≈

L
βJ�

X∞
κ¼−∞;κ≠0

e2πiκh=L

4π2κ2
¼ L

βJ�
Gðh=LÞ; ð11Þ

where the continuum two-point function GðxÞ takes the
form
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GðxÞ ¼ 1

2

�
x −

1

2

�
2

−
1

24
for x ∈ ½0; 1�: ð12Þ

Properly speaking, GðxÞ is defined on a circle with
x ∼ xþ 1, with periodic boundary conditions, and it
satisfies

d2G
dx2

¼ −δðxÞ þ 1 and
Z

1

0

dxGðxÞ ¼ 0: ð13Þ

If instead of nearest neighbor coupling we have some
generic finite-range Jh satisfying Jh ¼ J−h > 0 for h ≠ 0

and J̃0 ¼ 0, then we get essentially the same result:

J̃κ ≈ −
4π2κ2

L5=2 J� for

���� κL
����
∞
≪ 1 ð14Þ

for some positive constant J�, and so for large L,

Gh ≈
L
βJ�

Gðh=LÞ ð15Þ

with the same continuum function GðxÞ given in (12).
It is worth noting that if we focus in on small jh=Lj∞,

then we are mostly insensitive to the fact that the system is
at finite volume, and we find GðxÞ ≈ Gð0Þ − jxj∞=2.

B. Power-law coupling

For comparison with the sparse coupling model to be
defined in Sec. II D, we will eventually need to adjust the
nearest neighbor model so as to have it include an
adjustable exponent that tunes the strength of the coupling,
analogously to the spectral parameter of the sparse coupling
model. To this end we define

J̃ power
κ ≡ −

J�
2s

ffiffiffiffi
L

p
�
sin

�
πκ

L

�	
−s

ð16Þ

so that

G̃power
κ ¼ 2s

βJ�
ffiffiffiffi
L

p
�
sin

�
πκ

L

�	
s
: ð17Þ

For s ¼ −2, this model reduces to the nearest neighbor
coupling model. In general, for s < 1, one can approximate
the Fourier series of (16) with an integral in the limit
h=L → 0 to find that

Jpowerh ∼ −
J�
π

Γð1 − sÞ sinðπs=2ÞΓðhþ s=2Þ
Γð1þ h − s=2Þ : ð18Þ

By additionally invoking Sterling’s formula, it becomes
apparent that in the regime 1 ≪ h ≪ L, the model we are
considering does indeed couple the spins according to a
power law:

Jpowerh ∼ −
J�
π
Γð1 − sÞ sin ðπs=2Þhs−1: ð19Þ

For s < −1, the large L limit of the position space Green’s
function asymptotes to

Gpower
h ¼ 2sπs

βJ�L1þs ½Li−sðe2πih=LÞ þ Li−sðe−2πih=LÞ�; ð20Þ

where LinðxÞ denotes the polylogarithm function.

C. p-adic coupling

Choose a prime number p and a positive integer N, and
assume

L ¼ pN: ð21Þ

Then an all-to-all coupling of spins can be defined based on
the p-adic norm:

Jp-adich ¼
(
J�jhj−s−1p if h ≠ 0

−J�L
ζpð−sÞ

ζpð1Þζpð−NsÞ if h ¼ 0:
ð22Þ

Here we have used the local zeta function

ζpðsÞ≡ 1

1 − p−s ; ð23Þ

so named because the usual Riemann zeta function is
ζðsÞ ¼ Q

pζpðsÞ where the product is over all prime
numbers.
To analyze (22), it is useful first to work out the Fourier

transform of the following function:

fh ¼ Ajhj−s−1p ð1 − δhÞ þ Bþ Cδh: ð24Þ

A tedious but straightforward calculation suffices to
show that

f̃κ ¼ Ãjκjsð1 − δκÞ þ B̃þ C̃δκ ð25Þ

where

Ã ¼ Lsþ1
2

ζpð−sÞ
ζpð1þ sÞA B̃ ¼ Cffiffiffiffi

L
p − Lsþ1

2

ζpð−sÞ
ζpð1Þ

A

C̃ ¼
ffiffiffiffi
L

p �
Bþ ζpð−sÞ

ζpð1Þ
A

�
: ð26Þ

With the help of (26), one can see immediately that Jp-adic0

was chosen in (22) precisely so as to have J̃p-adic0 ¼ 0.
Indeed,
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J̃p-adicκ ¼ J�
ffiffiffiffi
L

p �
ζpð−sÞ

ζpð1þ sÞ
���� κL

����s
p
−
ζpð−sÞ
ζpð1Þ

	
ð1 − δκÞ: ð27Þ

While J̃p-adicκ < 0 for κ ≠ 0 for any s ∈ R, we are mostly interested in the regime s > 0, in which case the absolute value of
the first term in square brackets in (27) is larger than the absolute value of the second. Thus we may expand

G̃p-adic
κ ¼ −

1

βLJ̃κ
ð1 − δκÞ ¼ −

ζpð1Þ=ζpð−sÞ
βL3=2J�

X∞
n¼1

�
ζpð1þ sÞ
ζpð1Þ

L−s
�

n

jκj−nsp ð1 − δκÞ: ð28Þ

The expansion is useful because it allows us to apply the Fourier transform (24)–(26) and obtain

Gp-adic
h ¼ −

ζpð1Þ=ζpð−sÞ
βL2J�

X∞
n¼1

ζpð1þ sÞn
ζpð1Þn

��
ζpð−nsþ 1Þ

ζpðnsÞ
jhjns−1p −

ζpð−nsþ 1Þ
ζpð1Þ

�
ð1 − δhÞ

−
ζpð−nsþ 1Þ

ζpð1ÞζpðNðns − 1ÞÞ δh
	
: ð29Þ

In a sense, the result (29) is more complicated than
necessary, because by adding a constant to Jp-adich for
h ≠ 0 and adjusting Jp-adic0 to keep J̃p-adic0 ¼ 0, we could

have arranged to have J̃p-adicκ ¼ J�
ffiffiffiffi
L

p ζpð−sÞ
ζpð1þsÞ j κL jsp, which

would result in the same result (29) for Gp-adic
h , except with

the infinite sum replaced by its first term: That is, Gp-adic
h ¼

Ajhjs−1p þ Bþ Cδh for some constants A, B, and C depend-
ing on s and proportional to 1

βL2J�
. However, for purposes of

analyzing the next example, the alterations in Jp-adich just
described are undesirable.
Note that if we hold L2J� fixed, then except at h ¼ 0

there is no L dependence at all inGp-adic
h ; the only thing that

changes is the range of allowed h. Taking L large means
that the range of h becomes p-adically dense in the p-adic
integers Zp, defined as the subset of Qp consisting of
elements whose norm is no greater than 1. Zp can be
understood as the p-adic analog of the interval ½−1; 1� ⊂ R.
Because Gp-adic

h is a function of h only through its p-adic
norm jhjp, we see that its continuum limit is locally
constant everywhere on Zp, except at h ¼ 0.
The results of this section are perhaps not too surprising

when compared with power-law interactions in real field
theories. Indeed, a power law 1=jxjα∞ in the action leads to a
power law 1=jxjα̃∞ in the Green’s functions, where α̃þ α ¼
2d and d is the dimension of the field theory (cf. results in
Sec. II B.) The current setup is essentially the same, except
that the ordinary absolute value has been replaced by the p-
adic norm.

D. The main model of interest: Sparse coupling

Now let

L ¼ 2N ð30Þ

for some positive integer N. Then we can consider a sparse
coupling of the form

Jsparseh ¼ J�
XN−1

n¼0

2nsðδh−2n þ δhþ2n − 2δhÞ: ð31Þ

By sparse we mean that out of L independent values of Jh,
only OðlogLÞ are nonvanishing. We could generalize from
p ¼ 2 to other values of p, but some unobvious compli-
cations arise in doing so which we prefer to postpone.
The main qualitative features of Gsparse

h are
(i) For sufficiently negative s, Gsparse

h closely approx-
imates GNN

h . This makes sense because when s is
large and negative, only the first few terms in the
sum matter.

(ii) For sufficiently positive s, Gsparse
h closely approx-

imates G2-adic
h . This is less obvious and will be

investigated further in the next section.
(iii) As s crosses from negative to positive values, Gsparse

h
undergoes a transition from being closer to a smooth
function in an Archimedean sense to being closer to
a smooth function in a 2-adic sense.

To visualize the behavior of Gsparse
h , we have found it

helpful to employ a discrete version of the Monna map,
introduced for p ¼ 2 already in Fig. 1. For completeness,
we record here its definition for any p. Let any h ∈
f0; 1; 2;…; L − 1g be expressed as

h ¼
XN−1

n¼0

hnpn where each hn ∈ f0; 1; 2;…; p − 1g:

ð32Þ
Then the image of h under the Monna map is

MðhÞ≡XN−1

n¼0

hN−1−npn: ð33Þ
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That is, we reverse the digits in the base p expansion of h. Clearly (this version of) the Monna map is an involution.4 By
inspection, we see that if i and j are p-adically close, then MðiÞ and MðjÞ are sequentially close.

FIG. 2. Left:Gsparse
h andGpower

h versus h. This column shows how closeGsparse
h is to a smooth function in the usual Archimedean sense,

and confirms that Gsparse
h ≈ Gpower

h when s is sufficiently negative. Right: Gsparse
h and G2-adic

h versus log2 MðhÞ. This column shows how
close Gsparse

h is to a smooth function in the 2-adic sense, and confirms that Gsparse
h ≈ G2-adic

h when s is sufficiently positive.

4The standard Monna map from Qp to the non-negative reals is defined similarly, by expanding x ∈ Qp as x ¼ P∞
n¼vðxÞ xnp

n

and then defining MðxÞ≡P∞
n¼vðxÞ xnp

−1−n. This map is continuous, volume-preserving, and surjective, but not quite injective: For

example, M maps both −1 and 1=p to 1. We will not have need of this continuous version of the Monna map.
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In Fig. 2, we show Gsparse
h and G2-adic

h , the former as a
function of both h and log2MðhÞ, for various values of s,
to confirm the qualitative features listed above.

III. CONTINUITY BOUNDS

Having observed an apparent change from Archimedean
to 2-adic continuity in the example of Sec. II D, we are
naturally led to investigate continuum theories with similar
coupling patterns. We start in Sec. III A with p-adic field
theories, since they are actually easier to deal with once one
understands the rules than Archimedean field theories. We
derive Hölder continuity bounds for the two-point Green’s
function both in momentum space and real space. Then, in
Sec. III B, we derive analogous bounds for bilocal
Archimedean field theories.
Before getting into the main field theory calculations,

let’s review what Hölder continuity bounds are in general.
Let F be either Qp or R, and denote the norm on F as j·j.
Let f be a map from some subset D ⊂ F to R. Usually, if
F ¼ R, then for us D will be an open interval, while if
F ¼ Qp, then D will be an affine copy of Zp. Let O be any
subset of D (and again we usually have in mind simple
choices of O like open intervals or affine copies of Zp).
Then f satisfies a Hölder continuity condition over O with
positive real exponent α iff there is some positive real
number K such that

jfðx1Þ − fðx2Þj∞ < Kjx1 − x2jα ð34Þ

for all x1 and x2 inO. IfO ¼ D, then we would say that f is
globally α-Hölder continuous. We say that f is locally α-
Hölder continuous at x iff there exists some open set I
containing x such that f is α-Hölder continuous on I. And
we describe f as a whole as locally α-Hölder continuous if
it is locally α-Hölder continuous at every point in its
domain (assumed to be an open set).
A Hölder continuous function with any positive expo-

nent α is continuous in the usual sense. How big we can
make α is an indication of how much “better” our function
is than merely continuous. If F ¼ R, then we don’t usually
expect to find α bigger than 1, because if we do, then f
must be constant over its connected components. But if
F ¼ Qp, then it is possible to have nonconstant functions
with arbitrarily positive Hölder continuity exponent. A
useful example of an α-Hölder continuous function fðxÞ is
a linear combination of functions jx − xijα where the xi are
constants.
The distinction between global and local α-Hölder

continuity is important to us because we are going to
argue, through a combination of analytic and numerical
means, that the continuum limit of the two-point function
Gsparse

h is, in some cases, globally Hölder continuous with
one exponent and locally Hölder continuous away from the
origin with a larger exponent.

A. 2-adic field theories

The standard integration measure onQp satisfies two key
properties:

(i) The measure of Zp is 1.
(ii) If S ⊂ Qp has measure l (a real number), then

the set aSþ b has measure jajpl for any
a, b ∈ Qp.

The Fourier transform on Qp is defined by

fðxÞ ¼
Z
Qp

dkχðkxÞf̃ðkÞ ð35Þ

where χðkxÞ ¼ e2πifkxg. The notation fξg means the frac-
tional part of ξ ∈ Qp: that is, fξg ¼ ξþ n for the unique
element n ∈ Zp that leads to fξg ∈ ½0; 1Þ. Just as with
ordinary plane waves on R, we have χðξ1 þ ξ2Þ ¼
χðξ1Þχðξ2Þ; in technical terms, χ is an additive character.
Note that χðξÞ ¼ 1 precisely if ξ ∈ Zp.
Specializing now to p ¼ 2, consider the bilocal field

theory

S ¼ −
Z
Q2

dxdy
1

2
ϕðxÞJðx − yÞϕðyÞ ð36Þ

where

JðxÞ ¼ J�
X
n∈Z

2ns½δðx − 2nÞ þ δðxþ 2nÞ − 2δðxÞ�; ð37Þ

and δðxÞ is defined as usual by the relationR
Q2

dxfðxÞδðxÞ ¼ fð0Þ for any continuous function f.
The action (36) becomes diagonal in Fourier space:

S ¼ −
Z
Q2

dk
1

2
ϕ̃ð−kÞJ̃ðkÞϕ̃ðkÞ; ð38Þ

The two-point function is defined as

GðxÞ ¼ hϕðxÞϕð0Þi≡
R
Dϕe−SϕðxÞϕð0ÞR

Dϕe−S
; ð39Þ

and one straightforwardly finds

G̃ðkÞ ¼ −
1

J̃ðkÞ : ð40Þ

For explicit calculations, it is convenient to set J� ¼ 1=4.
Then

J̃ðkÞ ¼ 1

4

X
n∈Z

2ns½χð2nkÞ þ χð−2nkÞ − 2�

¼ −
X
n∈Z

2nssin2ðπf2nkgÞ: ð41Þ
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The infinite sums in (41) may be restricted to n < −vðkÞ,
because only then is f2nkg nonzero.5 We immediately see
that it is necessary to choose s > 0 in order to have
convergence.
Assuming s > 0, we may rewrite (41) for nonzero k as

J̃ðkÞ ¼ −jkjs2Ψðk̂Þ ð42Þ

where k̂ ¼ jkj2k and

Ψðk̂Þ≡X∞
n¼1

2−nssin2ðπf2−nk̂gÞ: ð43Þ

The following features of Ψðk̂Þ are at the center of our
analysis:
(1) Ψðk̂Þ is bounded above and below by positive

constants which depend on s but not k̂.
(2) Ψðk̂Þ is globally s-Hölder continuous over U2.

The first of these properties is easily demonstrated,

2−s þ 2−2s−1 ≤ Ψðk̂Þ ≤ −ζ2ð−sÞ; ð44Þ

where the first inequality comes from dropping all but the
first two terms in the sum (43), and the second inequality
comes from replacing sin2ðπf2−nk̂gÞ by 1 in all terms of
the sum.
The second property requires more care, and it turns on

observing that if n ≤ vðk̂1 − k̂2Þ, then sin2ðπf2−nk̂1gÞ ¼
sin2ðπf2−nk̂2gÞ. (This follows because if n ≤ vðk̂1 − k̂2Þ,
then 2−nk̂1 and 2−nk̂2 differ by a 2-adic integer, so
χð2−nk̂1Þ¼ χð2−nk̂2Þ.) Therefore, when computing Ψðk̂1Þ−
Ψðk̂2Þ, only the terms with n > vðk̂1 − k̂2Þ contribute, and
if we replace sin2ðπf2−nk̂gÞ by 1 in these terms we arrive at
the desired Hölder inequality with

K ¼ −ζ2ð−sÞ: ð45Þ

The boundedness property of Ψðk̂Þ implies that 1=Ψðk̂Þ
is also globally s-Hölder continuous. Since the Green’s
function,

G̃ðkÞ ¼ 1

jkjs2Ψðk̂Þ
; ð46Þ

is the product of a locally constant factor and a Hölder-
continuous factor, we conclude that away from k ¼ 0, G̃ðkÞ
is locally s-Hölder continuous.
Turning to position space, our intuitive understanding is

that GðxÞ will be continuous everywhere iff G̃ðkÞ is
integrable at large k, which is the case iff s > 1. Let us
focus, therefore, on the regime s > 1. There is a compli-
cation in defining GðxÞ when s > 1: The integral

GðxÞ ¼
Z
Q2

dk
χðkxÞ

jkjs2Ψðk̂Þ
ð47Þ

is infrared divergent. An efficient way to handle this
divergence is to alter (47) to

GðxÞ≡
Z
Q2

dk
χðkxÞ − 1

jkjs2Ψðk̂Þ
¼ jxjs−12 gðx̂Þ; ð48Þ

where, by calculation,

gðx̂Þ ¼ ζ2ð1 − sÞ
Z
U2

dk̂

Ψðk̂Þ þ
X∞
n¼1

2ð1−sÞn
Z
U2

dk̂
χð2−nk̂ x̂Þ
Ψðk̂Þ :

ð49Þ

Other approaches to regulating the infrared divergence give
substantially the same result.6

We can conclude from (48) that GðxÞ is globally
Hölder continuous with exponent s − 1, provided we can
show gðx̂Þ is globally Hölder continuous with the same
exponent. (Note that the Hölder bound for GðxÞ can be
made global rather than local because jxjs−12 is itself
globally Hölder continuous with exponent s − 1.) To that
end, we note that when computing the difference
gðx̂1Þ − gðx̂2Þ, we can restrict the sum in (49) to
n > vðx̂1 − x̂2Þ. The remaining terms can be bounded

5An amusing connection to population dynamics can be
observed at this point. Recall the logistical map, x →
rxð1 − xÞ. If fxngn∈Z is a solution to this iterated map, then
we can think of xn as (proportional to) the population of a species
at generation number n. For r ¼ 4, a solution is xn ¼ sin2ðπ2nkÞ
where k is a real number. However, this is not the most general
solution, because it has the property xn → 0 as n → −∞.
Consider instead xn ¼ sin2ðπf2nkgÞ where k is a 2-adic number.
Then xn ¼ 0 for all n ≥ −vðkÞ, but we need not have xn → 0 as
n → −∞. Thus, we see that the 2-adic number k parametrizes the
routes to extinction under the r ¼ 4 logistical map, and the 2-adic
norm of k predicts the moment of extinction: n� ¼ log2 jkj2. To
make the discussion simple, suppose now that k is a 2-adic
integer, so that extinction has occurred by the time n ¼ 0. Further
suppose that each generation leaves an imprint on its environment
proportional to xn, and that this imprint dissipates over time with
a half life of 1=s generations. So the environmental imprint
at time 0 of generation n (with n < 0 since extinction occurs no
later than time 0) is In ¼ α2nsxn, where α is the constant of
proportionality. Then I ¼ −αJ̃ðkÞ as computed in (41) is the total
environmental imprint of the species, summed across all gen-
erations and measured at time 0.

6For example, instead of (48) we could stick with (47) but
exclude from the domain of integration all k with jkj2 < jkIRj2,
where kIR ¼ 2vIR is an infrared regulator (with vIR large and
positive). Then we would find

GðxÞ ¼ ζ2ðs − 1ÞjkIRj1−s
Z
U2

dk̂

Ψðk̂Þ þ jxjs−12 gðx̂Þ; ð50Þ

and upon dropping the first term we are back to (48).
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using jχð2−nk̂x̂1Þ − χð2−nk̂x̂2Þj∞ ≤ 2, and the desired
Hölder condition follows. Note that our final position
space continuity condition is significantly weaker than
the one in momentum space, because the Hölder exponent,
which was s in momentum space, is now s − 1. In Sec. IV,
we will in fact find numerical evidence that a stronger
Hölder condition is possible locally in position space, away
from x ¼ 0. No improvement to the global Hölder con-
tinuity exponent is possible, though, because if it were we
could demonstrate a faster fall-off of G̃ðkÞ at large jkj2 than
the one that follows from (46).

B. Archimedean field theory

A similar analysis can be carried out on the Archimedean
side, starting with the field theory

S ¼ −
Z
R
dxdy

1

2
ϕðxÞJðx − yÞϕðyÞ

¼ −
Z
R
dk

1

2
ϕ̃ð−kÞJ̃ðkÞϕ̃ðkÞ; ð51Þ

where the Fourier transform is

fðxÞ ¼
Z
R
dke2πikxf̃ðkÞ; ð52Þ

and we use precisely the same form of JðxÞ as in (37). The
general analysis (39)–(40) of two-point functions holds
unaltered, now leading to

J̃ðkÞ ¼ −ψðkÞ ð53Þ

where we have set J� ¼ 1=4 for convenience, and

ψðkÞ≡X
n∈Z

2ns sin2ðπ2nkÞ: ð54Þ

If s ≤ −2, the infinite sum in (54) diverges at large
negative n.7 But this only means that the coupling function
JðxÞ is overwhelming concentrated near x ¼ 0. If a cutoff is
imposed on the sum, and then J� is rescaled as this cutoff is
gradually removed, one can show that JðxÞ converges
precisely to −δ00ðxÞ, resulting in a perfectly local theory. If
instead s ≥ 0, then the sum in (53) diverges at large positive
n, signaling that arbitrarily long-ranged interactions
dominate.

The interesting regime, then, is −2 < s < 0. Here the
sum (54) converges, and we can ask what properties the
function ψðkÞ satisfies analogous to the ones enumerated
below (43) for Ψðk̂Þ in the 2-adic case. In fact, we claim
(1) ψðkÞ ≈ jkj−s∞ , meaning that there exist positive con-

stants K1 and K2, independent of k, such that
K1jkj−s∞ < ψðkÞ < K2jkj−s∞ for all k ∈ Rnf0g.

(2) For −1 < s < 0, ψðkÞ is globally Hölder continuous
with exponent −s.

(3) For −2 < s < −1, the derivative ψ 0ðkÞ ¼ dψðkÞ=dk
is globally Hölder continuous with exponent −s − 1.
(Note that ψðkÞ itself cannot have Hölder continuity
exponent greater than 1 without being constant. So
the derivative condition we claim here is the best
that can be expected.) It follows that ψðkÞ is globally
1-Hölder continuous on any bounded domain.

To arrive at the estimate ψðkÞ ≈ jkj−s∞ , we define

nk ≡ − log2ðπjkj∞Þ: ð55Þ

Then we have

ψðkÞ ¼
X
n<nk

2nssin2ðπ2nkÞ þ
X
n≥nk

2nssin2ðπ2nkÞ

≈
X
n<nk

2nsðπ2nkÞ2 þ
X
n≥nk

2ns

≈ ðπjkj∞Þ−s½−ζ2ð−s − 2Þ þ ζ2ð−sÞ�: ð56Þ

To derive the Hölder condition on ψ for −1 < s < 0, set
δ ¼ jk1 − k2j∞ and note that

jsin2ðπ2nk1Þ − sin2ðπ2nk2Þj∞ ≤ minf1; π2nδg: ð57Þ

Defining

nδ ¼ −log2ðπδÞ; ð58Þ

we see that

jψðk1Þ − ψðk2Þj∞ ≤
X
n∈Z

2nsminf1; π2nδg

¼
X
n<nδ

2nðsþ1Þπδþ
X
n≥nδ

2ns

≈ ðπδÞ−s½−ζ2ð−s − 1Þ þ ζ2ð−sÞ�; ð59Þ

where again ≈means equality to within fixed multiplicative
factors, independent in this case of δ. The last expression in
(59) is the desired Hölder bound, valid when −1 < s < 0.
If instead −2 < s < −1, then we may calculate

ψ 0ðkÞ ¼ π
X
n∈Z

2nðsþ1Þ sinðπ2nþ1kÞ: ð60Þ

7Again a population dynamical narrative can be attached to (a
slight variant of) (54): Regarding xn ¼ sin2ðπ2nkÞ as a solution to
the r ¼ 4 logistical map, and supposing that each generation
“eats” an amount αxn of a resource which, when undisturbed,
grows exponentially with doubling time −1=s, we see that a
cutoff version of the sum, ψ>ðkÞ≡P∞

n¼0 2
ns sin2ðπ2nkÞ, com-

putes for us the total quantity of resources I ¼ αψ>ðkÞ required at
time 0 to feed the species for all future time. Here α is some
constant of proportionality.
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By the same method as in (59) we arrive at the Hölder
continuity condition for ψ 0ðkÞ with exponent −s − 1.
By combining the property ψðkÞ ≈ jkj−s∞ with the

Hölder bounds, we see that G̃ðkÞ is locally Hölder with
exponent −s for −1 < s < 0. Also, G̃0ðkÞ is locally
Hölder away from k ¼ 0 with exponent −s − 1 for
−2 < s < −1, implying that G̃ðkÞ is locally 1-Hölder away
from k ¼ 0.
Now let’s investigate smoothness of the Green’s function

in position space. We naively define

GðxÞ ¼ −
Z
R
dk

e2πikx

J̃ðkÞ ¼
Z
R
dk

e2πikx

ψðkÞ : ð61Þ

As in the 2-adic case, our intuitive understanding is that
GðxÞ will be continuous everywhere iff G̃ðkÞ is integrable
at large k, which is the case iff s < −1. Because
ψðkÞ ≈ jkjs∞, the UV-integrable regime is −2 < s < −1

(where the lower limit is forced on us by the considerations
explained following (54)), and in this regime the integral
(61) has an IR divergence. Again as in the 2-adic case, the
infrared divergence results in an overall additive constant in
G. It does not matter much how this constant is removed;
one option is to alter (61) to

GðxÞ≡
Z
R
dk

e2πikx − 1

ψðkÞ : ð62Þ

For the purposes of a Hölder continuity condition we must
estimate

Gðx1Þ −Gðx2Þ ¼
Z
R

dk
ψðkÞ ðe

2πikx1 − e2πikx2Þ: ð63Þ

Setting δ ¼ jx1 − x2j∞, we have

jGðx1Þ −Gðx2Þj∞ ≤
Z
R

dk
ψðkÞminf2; 2πjkj∞δg ¼ 2π

Z
jkj<1=δ

dk
ψðkÞ jkj∞δþ 2

Z
jkj>1=δ

dk
ψðkÞ

≈
Z

1=δ

0

dkksþ1δþ
Z

∞

1=δ
ks ≈ δ−s−1

�
1

sþ 2
−

1

sþ 1

	
: ð64Þ

In short, for −2 < s < −1, we have obtained a global
Hölder bound with exponent −s − 1.

IV. NUMERICAL EVIDENCE

A. 2-adic approximation of sparse coupling results

The first question wewish to ask of numerics is how well
the two-point Green’s function derived from sparse cou-
pling approximates the one derived from 2-adic coupling
with the same value of s. Based on the rigorous field theory
results of Sec. III, we expect that, for s > 0, the answer in
momentum space is that

K1 < G̃sparse
κ =G̃2-adic

κ < K2 ð65Þ

for some positive constants K1 and K2 which may depend
on s. Numerical support for this conclusion is shown in
Fig. 3, where we show optimal values of K1 and K2 as
functions of s for variousN. As s → 0, the evidence thatK2

remains bounded as N increases becomes tenuous. We are
limited ultimately by our ability to go to sufficiently high
values of N.
Away from small positive s, G̃sparse

κ ≈ G̃2-adic
κ is evidently

an excellent approximation. Based on empirically examin-
ing the curves on the left side of Fig. 3, we find

FIG. 3. Left: Optimal values of the constants K1 and K2 appearing in (65) as functions of s for fixed N. Right: Optimal values of the
constantsK1 andK2 as function ofN for fixed s. The expectation is that provided s > 0,K1 andK2 asymptote to constants at sufficiently
large N.
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Ki ≈ 1þ 2−2sϰiðsÞ where the functions ϰiðsÞ vary rela-
tively slowly with s, possibly as a negative power of s, or
possibly as a small positive power of 2−s. In order to obtain
K1 and K2 as functions of N and s, the actual procedure
was as follows:
(1) For fixed N and s, compute G̃sparse

κ using the
methods of Sec. II, and adjust the overall coupling
strength J� so that G

sparse
h ¼ 1 when h ¼ 0. (In other

words, the normalization condition is implemented
in position space.)

(2) Likewise compute G̃2-adic
κ with G2-adic

0 ¼ 1.
(3) Compute K1 and K2 as

K1 ¼ min

�
G̃sparse

κ

G̃2-adic
κ

�
≡min

κ≠0

G̃sparse
κ

G̃2-adic
κ

K2 ¼ max

�
G̃sparse

κ

G̃2-adic
κ

�
≡max

κ≠0

G̃sparse
κ

G̃2-adic
κ

: ð66Þ

B. Smoothness in momentum space

Next we would like to understand how well the local
Hölder continuity bounds in momentum space are reflected
in the numerics. We also want to quantify how ragged the
Green’s functions become in momentum space in regimes
where we couldn’t derive any continuity bound (by
methods developed in the current work). The Hölder
bounds, as derived in field theory in Sec. III, are approx-
imately as follows:

(i) jG̃sparseðk1Þ − G̃sparseðk2Þj∞ < Kjk1 − k2js2 when
s > 0. More precisely, G̃sparseðkÞ as a map from
Q2 to R is locally s-Hölder continuous away
from k ¼ 0.

(ii) jG̃sparseðk1Þ − G̃sparseðk2Þj∞ < Kjk1 − k2j−s∞ when
−1 < s < 0. More precisely, G̃sparseðkÞ as a map
from R to R is locally −s-Hölder continuous away
from k ¼ 0 when −1 < s < 0, and locally 1-Hölder
continuous away from k ¼ 0 when −2 < s < −1.

To test the Hölder bound on the p-adic side, we first
adjust the overall coupling strength J� so that Gsparse

0 ¼ 1,
and likewise G2-adic

0 ¼ 1. Then we define

Ã2-adicðN; sÞ≡ log2max
κ odd

���� G̃
sparse
κ

G̃2-adic
κ

−
G̃sparse

κþL=2

G̃2-adic
κþL=2

����
∞

; ð67Þ

where on the right hand side we understand that G̃sparse
κ and

G̃2-adic
κ are computed using the same values of N and s.

We find numerically that A2-adicðN; sÞ exhibits linear
trajectories:

Ã2-adicðN; sÞ ≈ −sðN − 1Þ þ log2K̃
2-adicðsÞ; ð68Þ

where K̃2-adicðsÞ is N-independent. These linear trajectories
persist even at negative s, after 2-adic continuity is lost.
See Fig. 4.
In formulating the definition of Ã2-adicðN; sÞ, we chose to

focus on differences between site κ and κ þ L=2 because
these are nearest neighbors in terms of their 2-adic norm. To
make the connection to Hölder continuity bounds more
transparent, we note that (67)–(68) are equivalent to

���� G̃
sparse
κ1

G̃2-adic
κ1

−
G̃sparse

κ2

G̃2-adic
κ2

����
∞
≤ 2Ã

2-adicðN;sÞ ≈ K̃2-adicðsÞjκ1 − κ2js2
ð69Þ

for all odd κ1 and κ2 with κ2 − κ1 ¼ L=2. The inequality
(69) is clearly a close relative of the local s-Hölder
continuity condition on G̃ðkÞ. We could make an even
closer connection to this continuity condition if we gen-
eralized Ã2-adicðN; sÞ to a quantity that would track also the
separation between κ1 and κ2. Doing so would allow us to
check the Hölder condition on G̃sparse

κ =G̃2-adic
κ more thor-

oughly; however, our explorations in this direction seem to

FIG. 4. Left: 2-adic smoothness in momentum space. The dots are evaluations of Ã2-adicðN; sÞ in (67), and the lines are plots of the
linear trajectories indicated in (68), withKðsÞ chosen so that the line goes through the last data point. Right: Archimedean smoothness in
momentum space. The dots are evaluations of ÃpowerðN; sÞ in (71), and the lines are plots of the linear trajectories indicated in (72), with
KðsÞ chosen so that the line goes through the last data point.
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indicate that the final results are unaffected by such a
generalization.
In light of the approximately linear trajectories (68), it is

convenient to define

α̃2-adicðN; sÞ≡ −Ã2-adicðN; sÞ þ Ã2-adicðN − 1; sÞ: ð70Þ

Then, recalling that G̃2-adic
κ is a 2-adically smooth function,

we arrive at our main numerical result on 2-adic smooth-
ness of momentum space Green’s functions: G̃sparse

κ satisfies
a local Hölder condition whose best (i.e., most positive)
exponent is approximately α̃2-adicðN; sÞ ≈ s, in agreement
with our field theory expectations.
On the Archimedean side, in order to pursue a similar

strategy, we need some standard of comparison analogous
to G̃2-adic

κ . We define

ÃpowerðN; sÞ≡ log2 max
L
4
≤κ<3L

4

���� G̃
sparse
κ

G̃power
κ

−
G̃sparse

κþ1

G̃power
κþ1

����
∞
; ð71Þ

where G̃power
κ is given in (17) as usual we can adjust J� so

that Gpower
h ¼ 1 when h ¼ 0 in position space.

Because G̃power is C∞ away from κ ¼ 0, forming the
ratio G̃sparse

κ =G̃power
κ doesn’t affect the local smoothness

properties of G̃power
κ . However, this ratio does cancel out

part of the overall trend whereby G̃sparse
κ gets bigger near

κ ¼ 0 and κ ¼ L. As a result, studying G̃sparse
κ =G̃power

κ rather
than G̃sparse

κ by itself makes it easier to accurately pick out
the local smoothness properties from a finite sampling of
points. As on the 2-adic side, the numerical data approx-
imately follow exponential trajectories:

ÃpowerðN; sÞ ≈ sðN − 1Þ þ log2KpowerðsÞ; ð72Þ

where KðsÞ is N-independent. These trajectories persist
even at positive s, after Archimedean continuity is lost. So
we can usefully define

α̃powerðN; sÞ≡ −ÃpowerðN; sÞ þ ÃpowerðN − 1; sÞ; ð73Þ

and then α̃powerðN; sÞ ≈ −s for large N is our numerical
estimate of the best (i.e., most positive) exponent
appearing in a local Archimedean Hölder condition
for G̃sparse

κ .

C. Local smoothness in position space

Position space smoothness can be studied using quan-
tities analogous to the ones used in Sec. IV B for momen-
tum space. Specifically, we define

A2-adicðN; sÞ≡ log2max
h odd

����G
sparse
h

G2-adic
h

−
Gsparse

hþL=2

G2-adic
hþL=2

����
∞

α2-adicðN; sÞ≡ −A2-adicðN; sÞ þ A2-adicðN − 1; sÞ; ð74Þ

and then, assuming α2−adicðN; sÞ is nearly constant for
large N, its large N limit is our numerical estimate of the
best possible local Hölder exponent for Gsparse

h in a 2-adic
setting. Likewise, we define

ApowerðN; sÞ≡ log2 max
L
4
≤h<3L

4

����G
sparse
h

Gpower
h

−
Gsparse

hþ1

Gpower
hþ1

����
∞

αpowerðN; sÞ≡ −ApowerðN; sÞ þ ApowerðN − 1; sÞ: ð75Þ

The large N limit of αpowerðN; sÞ (assuming it exists) is our
numerical estimate of the best possible local Hölder
exponent for Gsparse

h in an Archimedean setting.
We find good evidence that α2-adicðN; sÞ and αpowerðN; sÞ

have finite large N limits. Our numerical results are well
described by piecewise linear dependence of α on s, and in
particular by

αpower ¼ −2ðsþ 1=2Þ for − 1 < s < 0

α2-adic ¼ 2ðs − 1=2Þ for 0 < s < 1: ð76Þ

See Fig. 5. Two caveats on our numerical results can be
summarized as follows:

(i) When jsj > 1, it becomes harder to get good
numerical results, particularly on the Archimedean
side, because the functions under consideration are
quite smooth, and we have to compute very small
differences accurately. Even apart from issues of
numerical accuracy, it becomes challenging on the
Archimedean side to distinguish between rapid but
smooth variation and the slightly nonsmooth behav-
ior that determines the Hölder exponent.

(ii) Numerical evaluations of Hölder exponents diverge
a bit from expectations at s ¼ 0, and also at s ¼ −1.
This is not too surprising, given that our estimates of
the prefactors K in the Hölder inequalities show
divergences at these values of s: See for example
(45), (59), and (64). Possibly at these special values
we need logarithmic corrections to the relevant
Hölder condition. It is also possible that simple
piecewise linear functions only approximately fit the
dependence of α on s. More extensive and accurate
numerical investigations are needed in order to
establish fully reliable results.

D. Transition between two types of smoothness

The most interesting regime in position space is
−1 < s < 1, where we are losing Archimedean continuity
and gaining 2-adic continuity. We focus in this section
entirely on this regime, and we present the simplest account
of the transition from Archimedean to ultrametric continu-
ity which is consistent with our numerics. Due to finite
numerical resolution, we cannot rigorously determine the
measure-theoretic behavior of the position space Green’s
functions in regions where the Green’s functions are very
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ragged. We attempt to qualify our claims below with the
appropriate level of confidence.
In momentum space, our numerics are consistent with

there being a single exponent on the 2-adic side, α̃2-adic ¼ s,
which describes both the global Hölder continuity

condition over all k and the local continuity at each possible
value of k. In other words, as far as we can tell, the function
G̃ðkÞ is equally ragged everywhere. A similarly uniform
story applies on the Archimedean side, with α̃power ¼ −s.
Numerical results are fully in accord with expectations

FIG. 6. Plots of Gsparse
h =G2-adic

h and G̃sparse
κ =G̃2-adic

κ over the Monna map of the odd integers. As s becomes more positive, the numerical
data is closer to a 2-adically continuous curve when N is large. Blue points are for N ¼ 6, while the red curves are for N ¼ 10.

FIG. 5. α versus s and α̃ versus s in the 2-adic and Archimedean settings. Field theory bounds derived in Sec. III are shown in dashed
black and dashed blue. Dotted black and dotted blue show the naive extrapolations of these bounds to negative α and α̃. Red and green
dots are numerical evaluations of α and α̃ as defined in Secs. IV C and IV B, respectively, with N ¼ 20. Solid red and green lines show
the obvious piecewise linear trends which approximately match the numerical evaluations. Open circles denote evaluations in which we
restricted 7L

16
≤ h < 9L

16
; otherwise we use half the available points as explained in the main text. For s ≤ −2, convergence of the sparse

model to the nearest neighbor model implies that α ¼ α̃ ¼ 1, but our numerical scheme for picking out α and α̃ becomes less reliable in
this region due to difficulty normalizing Gsparse and Gpower in a mutually consistent way.

GUBSER, JEPSEN, JI, and TRUNDY PHYS. REV. D 98, 045009 (2018)

045009-14



from field theory, where we were able to compute α̃2-adic

and α̃power analytically. The upshot is that the transition
from Archimedean to ultrametric continuity happens rather
simply, with ordinary continuity failing just as 2-adic
continuity emerges: i.e., α̃power becomes negative just as
α̃2-adic becomes positive, at s ¼ 0.
The field theory estimates of the Hölder exponents for

the position-space Green’s function were s − 1 on the 2-
adic side and −s − 1 on the Archimedean side. These
exponents (uniformly negative in the −1 < s < 1) were
based entirely on the average scaling of G̃ðkÞ as a power of
jkj far from k ¼ 0. As such, they tell us the global Hölder
exponent, which we believe characterizes the behavior of
GðxÞ close to x ¼ 0: That is, GðxÞ ≈ jxjs−12 on the 2-adic
side, while GðxÞ ≈ jxj−s−1∞ on the Archimedean side. The
surprise we get from numerics is that away from x ¼ 0, a
more complicated dependence of Hölder smoothness on s
emerges, with local Hölder exponents α somewhat more
positive than the field theory bounds: That is, GðxÞ seems
to be somewhat smoother away from the origin than its
behavior right near x ¼ 0. Our numerical results are
consistent with there being a piecewise linear dependence
of α on s, as summarized in particular by (76). These results
(76) indicate that Archimedean continuity of Gsparse

h is lost
at s ¼ −1=2, but 2-adic continuity doesn’t emerge until

s ¼ 1=2. We may well ask, what happens for
−1=2 < s < 1=2, when both αpower and α2-adic are negative?
To better understand the region of transition between the

Archimedean and 2-adic smoothness, it is instructive to
inspect overlaid plots of the Green’s function for different
system sizes; see Figs. 6 and 7.
Based on these figures and related studies, the scenario

we regard as most likely is that for −1=2 < s < 0, the
continuum limit of Gpower

h defines an absolutely continuous
measure, GðxÞdx, with respect to ordinary Lebesgue
measure dx, but for s > 0 any such continuum limit would
necessarily have a singular term in its Radon-Nikodym
decomposition. Similarly, we suggest that for 0 < s < 1=2,
the continuum limit of G2-adic

h defines an absolutely
continuous measure with respect to the standard Haar
measure on Q2 while for s < 0 any such continuum limit
would have a singular term (with respect to the Haar
measure on Q2) in its Radon-Nikodym decomposition.
We find support for the claim of absolutely continuous
measures in the above-mentioned regimes when we study
the scaling of the height of the spikes in Figs. 6 and 7 as
a function of N: the weight of each spike (meaning
the integral over a small region including the spike)
distinctly appears to tend to zero with increasing N.
When singular terms in Radon-Nikodym decompositions

FIG. 7. Plots of Gsparse
h =Gpower

h and G̃sparse
κ =G̃power

κ over the middle half of points. As s becomes more negative, the numerical data is
closer to a continuous curve when N is large. Blue points are for N ¼ 6, while the red curves are for N ¼ 10.
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do exist, we conjecture that they have as their support sets
which are dense in position space.
One way in which singular terms in Radon-Nikodym

decompositions could arise is for the continuum limit GðxÞ
to include delta functions. Inspection of Fig. 6 is consistent
with there being a dense set of delta function spikes inGðxÞ
as a function of 2-adic x when s ¼ −0.3, but none when
s ¼ 0.3. Similarly, Fig. 7 is consistent with there being a
dense set of delta function spikes in GðxÞ as a function of
real x when s ¼ 0.3, but none with s ¼ −0.3. The dis-
cerning reader may note, however, that the spikes on the
Archimedean side are stronger at s ¼ 0.3 than the ones on
the 2-adic side at s ¼ −0.3. This asymmetry manifests
itself in the scaling of the height of these spikes with N, for
the weight of each spike grows with N on the Archimedean
side for s ¼ 0.3, but may be trending very slowly toward 0
on the 2-adic side at s ¼ −0.3. A related effect appears in
Fig. 5: α2-adic ≈ −1 for s < 0, while αpower ≈ −1 − s
for s > 0.
Inspection of Figs. 6 and 7 reveals some self-similarity in

the Green’s functions both before and after the Monna map
is applied. We have not investigated this fractal behavior in
detail; however, we note that similar behavior has been
found independently in band structure calculations in
connection with proposed cold atom experiments [9].

V. DISCUSSION

For decades, p-adic numbers have been considered as an
alternative to real numbers as a notion of continuum which
could underlie fundamental physics at a microscopic scale;
see for example [8]. The current study shows how the large
system size limit of an underlying discrete system naturally
interpolates between a one-dimensional Archimedean con-
tinuum and a 2-adic continuum as we vary a spectral
exponent. By focusing a free field example, we are able to
solve the model through essentially trivial Fourier space
manipulations. The correlators of the theories we study are
all determined in terms of the two-point function through
application of Wick’s theorem. The two-point function is
smooth in an Archimedean sense when s is sufficiently
negative, and in a 2-adic sense when s is sufficiently
positive. The transition from these two incompatible
notions of continuity can be precisely characterized in
terms of Hölder exponents characterizing the smoothness
of the two-point function. We have found the dependence
of these exponents on s through a combination of analytical
field theory arguments and numerics on finite but large
systems.
Quite a wide range of generalizations of our basic

construction can be contemplated:
(1) We can generalize to primes p > 2. One significant

subtlety arises when doing so, namely the structure
within Z=pZ of sparse couplings. The simplest
alternative is for spin 0 to couple to spins �θpn

with a strength pns, where θ runs over all elements of

f1; 2; 3;…; p − 1g. This coupling pattern is feature-
less within Z=pZ because it treats all values of θ the
same. We could however contemplate other pos-
sibilities. For example, if p ¼ 5, an interesting
alternative is to introduce couplings only for θ¼1
and θ ¼ 4 (the quadratic residues). More generally,
one could expand the dependence of couplings on θ
in a sum of multiplicative characters over Z=pZ.

(2) We focused entirely on bosonic spins ϕi, but there
is no reason not to consider fermions ci instead.
Then the coupling matrix Jij would have to be anti-
symmetric, and likewise the two-point Green’s
function would be odd. Within this framework
one could consider a variety of sparse coupling
patterns.

(3) Higher-dimensional examples are not hard to come
by. Consider real bosonic spins ϕ⃗{ labeled by a two-
dimensional vector ⃗{ ¼ i11̂þ i22̂, where i1 and i2 are
in Z=3NZ. Suppose we establish a coupling matrix
J⃗{ |⃗ ¼ J⃗{−|⃗ where

Jh⃗ ¼

8>><
>>:

3minfn1;n2gs if h1 ¼ �3n1 and h2 ¼ �3n2

3n1s if h1 ¼ 0 and h2 ¼ �3n2

3n2s if h2 ¼ 0 and h1 ¼ �3n1 ;

ð77Þ

with all other entries vanishing except J0, whose
value we choose in order to have the Fourier
coefficient J̃κ⃗ vanish when κ⃗ ¼ 0. Then for suffi-
ciently negative s we have effectively a nearest
neighbor model which approximates the massless
field theory S ¼ R

d2x 1
2
ð∇ϕÞ2. For s sufficiently

positive, one obtains instead a continuum theory
over Z3 × Z3, which can be understood as the ring
of integers in the unramified quadratic extension
of Q3.

All the examples above remain within the paradigm of free
field theory. Still easy to formulate, but obviously much
harder to solve, are interacting theories with sparse cou-
plings. For example, we could start with any of the models
introduced in Sec. II and add a term

P
iVðϕiÞ to the

Hamiltonian describing arbitrary on-site interactions. To
get some first hints of what to expect these interactions
to do, recall in 2-adic field theory that GðxÞ ≈ jxjs−12 at
small x. Comparing this to the standard expectation

GðxÞ ≈ jxj2Δϕ

2 , we arrive at Δϕ ¼ ð1 − sÞ=2 as the ultra-
violet dimension of ϕ. When describing perturbations
of the Gaussian theory, we can use normal UV
power counting: ½ϕn� ¼ nΔϕ. Thus ϕn is relevant when
s > 1 − 2=n. If we impose Z2 symmetry, ϕ → −ϕ, then in
the region s < 1=2, theGaussian theory has no relevant local
perturbations, but as s increases from 1=2 to 1, first ϕ4 and
then higher powers ofϕ2 become relevant. It is reasonable to
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expect some analog ofWilson-Fisher fixed points to appear.
Possibly as s → 1 these fixed points extrapolate to analogs
of minimal models. An analogous story presumably applies
on the Archimedean side to power-law field theories con-
trolled by s in the range ð−1; 0Þ, with GðxÞ ≈ jxj−s−1∞ and
therefore Δϕ ¼ ð1þ sÞ=2. See Fig. 8.
The sparse coupling theories are sufficiently similar to 2-

adic field theories for s > 0 and to power-law field theories
for s < 0 that it is reasonable to conjecture that the same
pattern of renormalization group fixed points arises. This
line of reasoning leaves out a lot, though: In particular, we
have no deep understanding of how the improved local
Hölder smoothness arises, nor how it might affect renorm-
alization group flows. AMonte Carlo study of the phases of
the sparsely coupling Ising model might help refine
our understanding of the renormalization group flows

available to interacting models, particularly in the range
−2=3 < s < 2=3 where no powers of ϕ higher than ϕ4 are
relevant—according at least to naive power counting as
presented here.
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