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In this paper, admitting a de Sitter (dS)-invariant vacuum in an indefinite inner product space, we present
a Gupta-Bleuler type setting for causal and full dS-covariant quantization of free “massless” spin-2 field in
dS spacetime. The term “massless” stands for the fact that the field displays gauge and conformal
invariance properties. In this construction, the field is defined rigorously as an operator-valued distribution.
It is covariant in the usual strong sense: UgKðXÞU−1

g ¼ Kðg:XÞ, for any g in the dS group, where U is
associated with the indecomposable representations of the dS group, SO0ð1; 4Þ, on the space of states. The
theory, therefore, does not suffer from infrared divergences. Despite the appearance of negative norm states
in the theory, the energy operator is positive in all physical states and vanishes in the vacuum.
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I. INTRODUCTION

The subject of quantum field theory (QFT) in de Sitter
spacetime is of paramount importance to the understanding
of the early Universe as well as its present accelerated
expansion (interpreted as the existence of a positive
cosmological constant or a dark energy1). One of the most
striking challenges of dS QFT is to formulate a completely
satisfactory theory for “massless” particles. Indeed, it is
now quite universally believed that all physical theories that
pretend to be fundamental make use of masslessness in
one form or another; as massless photons and gravitons
are basic to electrodynamics and to gravitation. On this
basis, we are motivated to study “massless” spin-2 particles
in dS space.
The content of this paper is group theoretical.

Considering the dS massless spin-2 field, it attempts to
continue “à la Wigner” program for SO0ð1; 4Þ. We begin
our study by presenting the field equation as an eigenvalue
equation of the coordinate-independent Casimir operators
of the dS group (see Sec. II). The Casimir operators carry
the group-theoretical content of the theory. More techni-
cally, they enable us to classify the unitary irreducible
representations (UIRs) of the dS group [11,12] based on
two parameters p and q which, respecting the nature of the
considered group representation, behave like a spin (s)
and a mass (m) in the Minkowskian limit. This group-
theoretical structure is not coordinate dependent. However,

in order to make the structure explicit, we shall utilize the
dS ambient space coordinates. Interestingly, this approach
allows us to clarify what is meant by the concept of
masslessness in dS space. This concept can be realized by
examining several criteria: conformal extension, Poincaré
contraction, light-cone propagation, and gauge invariance.
The latter is intimately related to the dS indecomposable
representations. A comprehensive discussion on the mass-
lessness criteria can be found in [13,14].
Massless particles in Minkowski space are associated

with UIRs of the Poincaré group, with zero mass and with
discrete helicity (the Poincaré massless representations).
These representations are the only ones of the Poincaré
group that have unique extensions to the conformal group.
More exactly, it is proved that any system that is invariant
under a massless representation of the Poincaré group is
invariant under a uniquely determined UIR of the con-
formal group [15]. In this sense, the only representations of
the dS group that hold this property, in the Dixmier’s
notation [11], are Πþ

p;q ⊕ Π−
p;q when q ¼ p ¼ s (in our

case q ¼ p ¼ 2).2 These representations are associated
with the discrete series representations of the dS group.
Moreover, they contract smoothly to the Poincaré massless
representations in the limit of vanishing curvature [16,17].
From now on, we refer to them as the dS massless
representations.
It should be noted that the physical representations are

unitary and as already pointed out they belong to the dS
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massless representations, however, this does not mean that
our theory is conformally invariant. The point is in fact the
gauge invariance property of the theory (another feature of
masslessness that make sense in dS space). Let us be more
precise. If the dS massless spin-2 representation is realized
in terms of the traceless-transverse rank-2 tensor field, the
solutions to the associated wave equation result in a
singularity due to the divergencelessness condition. This
condition is required to relate the tensor field to the dS
massless representations. To fix this problem, the diver-
gencelessness condition must be ignored. The modified
field equation then becomes gauge invariant, and one is free
to use a gauge-fixing parameter c. Note that, the gauge-
invariant subspace makes an indecomposable structure
unavoidable.
On this basis, the theory admits three spaces of solutions:

the space of the gauge and the c-independent divergence-
lessness solutions, respectively, denoted by Vg and Vci, and
the space of the c-dependent solutions which are not
divergenceless Vcd, so that, Vg ⊂ Vci ⊂ Vcd. The gauge
solutions are orthogonal to the whole divergencelessness
solutions including themselves. The solutions associated
with each part are explicitly calculated in Sec. III. It is
discussed that the gauge-fixing parameter c ¼ 2=5, accord-
ing to the group representation theory, leads to the minimal
covariant structure of the space of solutions. Any departure
from this choice results in logarithmic states which imply
reverberation inside the light cone. Of course, whatever c
one chooses, the propagation of the divergencelessness
solutions is confined to the light cone.
In Sec. IV, the role of dS invariance is considered in

detail. We show that, considering the standard positive
frequency solutions (with respect to the conformal time),
the space of solutions is not invariant under the action of the
dS group SO0ð1; 4Þ; all negative frequency solutions are
unavoidably generated. This difficulty, known as the “zero-
mode” problem, is indeed inherited from the dS minimally
coupled scalar (MCS) field, which is appeared as a
structure function in the space of the dS massless spin-2
field solutions. To circumvent this problem, respecting the
minimal requirements for a canonical quantization, we
present a Gupta-Bleuler type formalism based on weaker
conditions, which does not prohibit negative frequency
solutions in the theory. This structure is simply called the
Krein-Gupta-Bleuler (KGB) structure. Here, the term
“Krein”, more exactly the Krein space, stands for direct
sum of the Hilbert and the anti-Hilbert spaces associated
with the dS massless spin-2 field. On this larger framework,
the Krein space, each of three spaces of solutions (Vg, Vci

and Vcd) would be invariant under the action of the dS
group. This action is indecomposable; that is, there is no
invariant subspace that is complementary to Vg in Vci or to
Vci in Vcd. To ensure a reasonable interpretation of the
theory, now, we need to specify the subspace of physical
modes. Demanding the positivity requirement and also

being invariant under the action of the dS group as well as
the gauge transformation, this space is given in Sec. IV. We
show that the central part Vci=Vg contains all the physical
modes (of course, it is not restricted to them).
In Sec. V, the Fock space structure and also the field

operator are constructed. The field fulfills the conditions of:
(a) locality, (b) covariance, (c) transversality, and (d) trace-
lessness. It is therefore free of infrared divergences. Again,
in our KGB quantization scheme the positivity requirement
in the definition of the field has been ignored. In this regard,
it must be underlined that the field itself is not observable (it
is gauge dependent). The stress tensor however is. We
discuss this matter in Sec. VI and show that the KGB
quantization scheme provides an automatic and covariant
renormalization of the stress tensor, so that, the vacuum
energy of the free field vanishes without any reordering nor
regularization, and on the physical states it is always
positive. This assures a reasonable physical interpretation
of the theory. We finally discuss our result in Sec. VII.

II. GROUP CONTENT OF DE
SITTERIAN RELATIVITY

The dS space is conveniently seen as (the covering space
of) a one-sheeted hyperboloid embedded in a five-dimen-
sional Minkowski space

MH ¼ fx ∈ R5; x2 ¼ ηαβxαxβ ¼ −H−2g;

whereH stands for the Hubble constant, α, β ¼ 0, 1, 2, 3, 4,
and ηαβ ¼ diagð1;−1;−1;−1;−1Þ. The induced metric
reads

ds2 ¼ ηαβdxαdxβjx2¼−H−2 ¼ gμνdXμdXν; ð1Þ

where the Xμ’s are intrinsic spacetime coordinates
(μ, ν ¼ 0, 1, 2, 3).
This description of the dS spacetime, a pseudo-sphere in

the bulk (a higher-dimensional Minkowski space), is called
the ambient space notations. In this approach, a tensor field
KðxÞ (dS field) is considered as a homogeneous function of
the R5-variables xα as follows

xα
∂
∂xαKðxÞ ¼ x · ∂KðxÞ ¼ ϱKðxÞ; ð2Þ

in which ϱ is an arbitrarily selected degree. For the sake of
simplicity, we select ϱ ¼ 0, for which, the d’Alembertian
operator □≡∇μ∇μ on dS intrinsic spacetime (∇μ being
the covariant derivative) corresponds to its counterpart
□5 ≡ ∂2 on R5. In addition, the dS fields must satisfy
the transversality condition x:KðxÞ ¼ 0, to ensure that the
direction of them lies in the dS tangent space. Because of
the importance of this transversality, the symmetric
and transverse projector θαβ ¼ ηαβ þH2xαxβ is defined
to permit one to construct transverse entities like the
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transverse derivative on dS space, ∂̄α ¼ θαβ∂β ¼
∂α þH2xαx · ∂; x · ∂̄ ¼ 0. Note that, θαβ is the only tensor

which is linked to the dS metric, so that, gμν ¼ xαμx
β
νθαβ with

xαμ ¼ ∂xα=∂Xμ. Similarly, any intrinsic tensor field
Kμ1…μrðXÞ can be locally characterized by the transverse
tensor field Kα1…αrðxðXÞÞ through the following relation,

Kμ1…μrðXÞ ¼ xα1μ1…xαrμrKα1…αrðxðXÞÞ: ð3Þ

As we pointed out earlier, the aim of this section is to
present the dS massless spin-2 (the traceless and symmetric
rank-2 massless tensor) field equation as an eigenvalue
equation of the dS Casimir operator. The dS relativity
group, Oð1; 4Þ, is the ten-parameter group with two
Casimir operators. In this paper, we will only consider
its connected component SO0ð1; 4Þ and focus on its
quadratic (or second order) Casimir operator denoted by
Qr. The index “r” herein means the carrier space is
constituted by rank-r tensors. This Casimir operator on
the ambient space reads [18,19]

Qr ≡ −
1

2
LðrÞ
αβL

ðrÞαβ; ð4Þ

where the ten infinitesimal generators LðrÞ
αβ ¼ Mαβ þ SðrÞαβ

are the self-adjoint representatives of the killing vectors.
The orbital part is given by

Mαβ ¼ −iðxα∂β − xβ∂αÞ; ð5Þ

and the spinorial part SðrÞαβ acts on the tensor indices as
follows

SðrÞαβKα1…αr ¼ −i
Xr
i¼1

ðηααiKα1…ðαi→βÞ…αr

− ηβαiKα1…ðαi→αÞ…αrÞ: ð6Þ

The Casimir operator commutes with all generators of
the dS group and, as a consequence, it has a constant value
on all the states in each UIR. Hence, the eigenvalues of Qr
can be considered to classify the UIR’s. More precisely, the
states of the dS UIRs lie among the solutions of the
following dS-invariant equation [19,20]

ðQr − hQriÞK ¼ 0; ð7Þ

supplemented with the divergencelessness condition
(∂ ·K ¼ 0). Note that, this condition along with trans-
versality of dS fields imply the tracelessness condition [20]

K0
α1…αr−2 ≡ ηαr−1αrKα1…αr−2αr−1αr ¼ 0:

Following Dixmier [11] the UIR’s then can be labeled by a
pair of parameters p and q, in terms of the eigenvalues
of Qr,

hQri ¼ ½−pðpþ 1Þ − ðqþ 1Þðq − 2Þ�; ð8Þ

with 2p ∈ N and q ∈ C. According to the possible values
of the parameters p and q, the dS UIRs can be split into
three types of inequivalent categories, namely, the princi-
pal, complementary and discrete series. For the principal
and complementary series, the H ¼ 0 contraction limit
(vanishing curvature limit) compels the value of p to bear
the meaning of spin. In the case of the discrete series,
however, label q has a spin meaning. One can get a detailed
discussion about the mathematical and physical principles
underlying the contraction between the dS and Poincaré
group in Refs. [16,21].
The spin-2 tensor representations associated with our

study in this paper are as follows:
(I) The UIR’s U2;ν in the principal series, with p ¼

s ¼ 2 and q ¼ 1
2
þ iν, correspond to

hQν
2i ¼ ν2 −

15

4
; ν ∈ R: ð9Þ

Note that, U2;ν and U2;−ν are equivalent.
(II) The UIR’s V2;q in the complementary series, with

p ¼ s ¼ 2 and q − q2 ¼ μ, correspond to

hQμ
2i ¼ q − q2 − 4≡ μ − 4; 0 < μ <

1

4
: ð10Þ

(III) The UIR’s Π�
p;2 in the discrete series, with

q ¼ s ¼ 2, correspond to

hQp
2 i ¼ −pðpþ 1Þ: ð11Þ

Based on the contraction of the group representations,
the following “mass” formula has been proposed by Garidi
[22] in terms of the dS UIR parameters p and q:

m2
H ¼ hQri − hQp¼q

r i ¼ ½ðp − qÞðpþ q − 1Þ�ℏ2H2=c4:

ð12Þ

Since we have set the zero of the mass parameter mH
according to the lowest value of the Casimir operator, i.e.,
for p ¼ q which corresponds to the conformal massless
case, we are insured that every dS UIRs which are mean-
ingful from a Minkowskian viewpoint are labelled by
m2

H ≥ 0. On this basis, the massless spin-2 field in
dS space corresponds to the representation Π�

2;2 with
hQ2i ¼ −6 (from now on, we simplify our notations by
considering Qp¼2

2 ≡Q2). The dS representation Πþ
2;2 has

indeed a unique extension to a direct sum of two UIRs of
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the conformal group, namely C>ð3; 2; 0Þ and C<ð−3; 2; 0Þ,
respectively, associated with positive and negative ener-
gies.3 That extension is equivalent to the conformal
extension of a massless UIR of the Poincaré group
with helicity þ2, symbolized by P>ð0; 2Þ and P<ð0; 2Þ.
Symbols P≷ð0;�2Þ denote the Poincaré massless repre-
sentations with helicity �2 and with positive (respectively
negative) energy. Similar arguments can be applied to the
representation Π−

2;2. The following diagrams present these
correspondences [16,17]

C>ð3;2;0Þ C>ð3;2;0Þ ↩ P>ð0;2Þ
Πþ

2;2 ↪ ⊕ !H¼0 ⊕ ⊕

C<ð−3;2;0Þ C<ð−3;2;0Þ ↩ P<ð0;2Þ;
ð13Þ

C>ð3;0;2Þ C>ð3;0;2Þ ↩ P>ð0;−2Þ
Π−

2;2 ↪ ⊕ !H¼0 ⊕ ⊕
C<ð−3;0;2Þ C<ð−3;0;2Þ ↩ P<ð0;−2Þ;

ð14Þ

the arrows ↪ determine unique extension.
Here, it must be underlined that Eq. (7) is not suitable for

the massless spin-2 field. In fact, for the Casimir operator
eigenvalue hQ2i ¼ −6, the solution to (7), i.e.,

KαβðxÞ ¼ ε1αβðx; Z; ξÞΦðxÞ

þ 1

ðhQ2i þ 6Þ ε
2
αβðx; Z; ξ; ∂̄ÞΦðxÞ; ð15Þ

results in a singularity due to the term 1=ðhQ2i þ 6Þ [23].
Here ε1αβ and ε2αβ are operators that act on the scalar field

ΦðxÞ. Z is a constant vector in ambient space and ξ ∈ R5

lies on the null cone ξ2 ¼ 0. Note that, ε1, ε2, andΦðxÞ also
contain the parameters p and q, but which do not diverge
for p ¼ q ¼ 2 [23]. This means that the subspace supple-
mented with the condition ∂ ·K ¼ 0 is not sufficient for the
construction of a quantum massless spin-2 field. To fix this
problem, we need to drop the divergencelessness condition,
i.e., ∂ ·K ≠ 0 [23]. Hence, the modified equation of (7)
takes the form

ðQ2 þ 6ÞKþD2∂2 ·K ¼ 0; ð16Þ

where the generalized gradient on the dS hyperboloid is
D2 ≡ SðD1 − xÞ, in which the operator S is the symmetr-
izer (Sξαωβ ¼ ξαωβ þ ξβωα) and D1 ¼ H−2∂̄. The action
of the generalized divergence on a general rank-2 tensor
field is ∂2 ·K ¼ ∂ ·K −H2xK0 − 1

2
∂̄K0.

By using the following identities

∂2 ·D2Λg¼−ðQ1þ6ÞΛg; Q2D2Λg¼D2Q1Λg; ð17Þ
one can simply show that Eq. (16) is invariant under the
general gauge transformationK → KþD2Λg, in which Λg

is an arbitrary vector field. It is known that, because of this
gauge symmetry the canonical quantization of the massless
spin-2 field becomes impossible. Equation (16), therefore,
has to be modified in order to circumvent this problem as
follows

ðQ2 þ 6ÞKcd þ cD2∂2 ·Kcd ¼ 0; ð18Þ

where c is a constant called the “gauge-fixing parameter”
and added to the theory to restrict the subspace of gauge
solutions. We denote byKcd the general solutions to (18) to
remind us that they are c-dependent. The important point to
note here is that Eq. (18) is exactly the ambient counterpart
of the transverse-traceless sector of the dS linearized
Einstein equation in the context of the most general
gauge-fixing functionals [24,25].
It is obvious that the field equation (18) becomes fully

gauge invariant if we put c ¼ 1. For other choices, the
tensor fieldKcd would be traceless [20] and associated with
an indecomposable representation of the dS group; from
now on, we regard c ≠ 1. A structure analogous to that of
the Gupta-Bleuler triplets of Minkowski QED or of dS
QED then could appear in the space of solutions [26,27].
We will show that, see Sec. III, the general solutions to (18)
still suffer from logarithmic singularities, and one can
eliminate them by adopting a suitable choice of c.

III. THE FIELD SOLUTION

In the previous section, we showed that in the case of the
dS massless spin-2 field, as expected for a massless field,
one faces three kinds of solutions: the gauge solutions, the
divergencelessness solutions, and the solutions which are
not divergenceless. The latter is simply called the general
solution. We here explicitly calculate each of these three
kinds of solutions (again, for c ≠ 1).
The general solution to the dS massless spin-2 field

equation (18) can be written in terms of two tensors of
rank-1 (K and Kg) and a rank-0 tensor (ϕ1) through the
following linearly independent formula [19]

Kcd ¼ θϕ1 þ SZ̄K þD2Kg; ∂2 ·Kcd ≠ 0: ð19Þ

The operators θ, SZ̄ and D2 make a symmetric transverse
rank-2 field from the scalar field and the vector fields,

3The compact subgroup of the conformal group SOð2; 4Þ
is determined by SOð2Þ ⊗ SOð4Þ. Considering E as the
eigenvalues of the conformal energy generator of SOð2Þ and
ðj1; j2Þ as the ð2j1 þ 1Þð2j2 þ 1Þ dimensional representation of
SOð4Þ ¼ SUð2Þ ⊗ SUð2Þ, the symbols CðE; j1; j2Þ stand for
irreducible projective representation of SOð2; 4Þ.
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respectively. Here, Kg and K are transverse (x ·Kg¼ 0¼
x ·K) and the vector field K is divergenceless, i.e.,
∂ · K ¼ 0.4 Moreover, we have

2ϕ1 þ Z · K þH−2∂̄ · Kg ¼ 0: ð20Þ

It is a direct consequence of the tracelessness condition,
ðKcdÞ0 ¼ 0.
After putting (19) into (18) and using (17) and the

following relations

Q2θϕ1 ¼ θQ0ϕ1; ∂2 · θϕ1 ¼ −H2D1ϕ1; ð21Þ

Q2SZ̄K ¼ SZ̄ðQ1 − 4ÞK − 2H2D2x · ZK þ 4θZ · K;

∂2 · SZ̄K ¼ TZ · ∂̄K −H2D1Z · K þ 5H2x · ZK; ð22Þ

one obtains

ðQ0 þ 6Þϕ1 ¼ −4Z · K; ð23Þ

ðQ1 þ 2ÞK ¼ 0; ð24Þ

and

ð1−cÞðQ1þ6ÞKg¼ð2−5cÞH2x ·ZK

þc

�
−
1

2
H2D1ϕ1−TZ · ∂̄K

�
þΞg;

ð25Þ

where TZ · ∂̄K ¼ Z · ∂̄K −H2xZ · K, and Ξg is an arbi-
trary vector field which is due to the canceling property
of D2,

D2Ξg ¼ 0: ð26Þ

The scalar field ϕ1 in Eq. (23) is completely
determined by

ϕ1 ¼ −
2

3
Z · K; ð27Þ

where we use this fact that Eq. (24) combined with
∂̄ · K ¼ 0 imply Q0K ¼ 0. Therefore, we have

Q0ϕ1 ¼ −
2

3
Q0Z · K ¼ 0: ð28Þ

Considering Kg ¼ K̃g þ Λg, while ð1 − cÞðQ1 þ 6ÞΛg ¼
Ξg (x · Λg ¼ 0, ∂̄ · Λg ¼ 0), we can rewrite the inhomo-
geneous equation (25) as

ðQ1 þ 6ÞK̃g ¼ ½1=ð1 − cÞ�½−c; c=3; 2 − 5c�; ð29Þ

where ½a; b; e� ∈ E; the space E is the three-dimensional
space generated by a linear combination of a set of three
basic functions

½a; b; e� ¼ aTZ · ∂̄K þ bH2D1Z · K þ eH2x · ZK:

The space E is invariant under the action of ðQ1 þ 6Þ,

ðQ1 þ 6ÞTZ · ∂̄K ¼ ½6; 2; 0�; ð30Þ

ðQ1 þ 6ÞH2D1Z · K ¼ ½0; 6; 0�; ð31Þ

ðQ1 þ 6ÞH2x · ZK ¼ ½−2; 0; 0�: ð32Þ

Therefore, the solution to Eq. (29), K̃g ¼ ½v; u; w�, is simply
obtained with respect to the following system

0
B@

6 0 −2
2 6 0

0 0 0

1
CA
0
B@

v

u

w

1
CA ¼ 1

ð1 − cÞ

0
B@

−c
c=3

2 − 5c

1
CA ð33Þ

Note that, the matrix determinant is zero. This implies that,
Eq. (29) gives a solution inside E as long as we adjust the
gauge-fixing parameter to c ¼ 2=5 (the simplest structure).
But, as we will see, it is interesting to study the general
solution with an arbitrary value for c (the general structure).
In the following, we investigate both of them.

A. The simplest structure; c= 2=5

With the value c ¼ 2=5, the solution to Eq. (29)
would be

K̃g ¼ ½0; 1=27; 1=3� þ κΛ∘; ð34Þ

where κ is an arbitrary constant, and Λ∘ is a function inside
E that verifies

ðQ1 þ 6ÞΛ∘ ¼ 0: ð35Þ

This solution is given up to a multiplicative constant, as
follows

Λ∘ ¼ ½1;−1=3; 3�: ð36Þ

It should be noted that, due to the appearance the arbitrary
Λg in Kg, the term κΛ∘ can be dropped. We here, however,
consider the most general case, which allows us to clarify
the group theoretical meaning of K̃g. In this regard, we need
to find the equation satisfied by K̃g. First of all, Λ∘ is
divergenceless, K̃g however is not,

∂̄ · Λ∘ ¼ 0; D1∂̄ · K̃g ¼ ½0; 1=3; 0�: ð37Þ4Note that, x · K ¼ 0 implies that ∂ · K ¼ ∂̄ · K.
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The latter is compatible with (20) (when it is combined with
(27)). On the other hand, we have

Lð2Þ
αβ ðH2D2D1Z · KÞ ¼ H2D2D1MαβZ · K:

This equation reveals that, inside the solutions to (18), the
term H2D2D1Z · K carries the same representation as ϕ1.
More exactly, H2D2D1Z · K does not carry any spin; it is
completely determined by its scalar content. We denote this
scalar part of K̃g by K̃1g and call K̃2g what is left from
it; K̃1g þ K̃2g ¼ K̃g.
Now, let us make K̃2g explicit. ApplyingQ1 on K̃2g, with

regard to Eq. (34), results in

Q1K̃2g ¼ ½−2=3 − 6κ; 2κ;−2 − 18κ�: ð38Þ

To calculate the above equation, relation (30), (31), and
(32) have been utilized. K̃2g is not divergenceless, there-
fore, we have to combine (38) with (37) (note that,
∂̄ · K̃1g ¼ ∂̄ · ðH2D1Z · KÞ ¼ −H2Q0Z · K ¼ 0). In this
sense, setting κ ¼ −1=9, we obtain

Q1K̃2g þ 2

3
D1∂̄ · K̃2g ¼ 0: ð39Þ

Now, the group theoretical meaning of K̃2g is obvious. It
carries the massless representations with spin-1 and gauge
fixing parameter c ¼ 2=3. This value exactly corresponds
to the minimal structure. See [28], for detailed discussions.
Consequently, in the case of c ¼ 2=5 and κ ¼ −1=9,

the general solution to Eq. (25) would be Kg ¼ K̃1g þ
K̃2g þ Λg, in which

K̃1g ¼ ½0; 2=27; 0�; K̃2g ¼ ½−1=9; 0; 0�: ð40Þ

On this basis, the general solution to the field equation (18),
in the simplest case, can be written as

Kcd;c¼2
5 ¼ θϕ1þSZ̄Kþ 2

27
H2D2D1Z ·KþD2ðK̃2gþΛgÞ:

ð41Þ

Note that, the gauge solutions Kg ¼ D2Λg obey

D2ðQ1 þ 6ÞΛg ¼ 0: ð42Þ

For the sake of simplicity and with respect to our group
theoretical approach, however, we choose

ðQ1 þ 6ÞΛg ¼ 0: ð43Þ

It is now interesting to identify the divergencelessness
part of the solutions. Utilizing (17), (21), and (22), we have

∂2 ·Kcd;c¼2
5 ¼ 1

1− 2
5

�
TZ · ∂̄K−

1

3
H2D1Z ·Kþ3H2x ·ZK

�
:

ð44Þ

By comparing (44) with (36), it is obvious that Λ∘ ¼
ð1 − 2

5
Þ∂2 ·Kcd;c¼2

5.
Now, combining (44) and (41), we have

Kcd;c¼2
5¼

�
θϕ1þSZ̄Kþ 1

27
H2D2D1Z ·Kþ1

3
H2D2x ·ZK

�

þ
�2

5
−1

9
D2∂2 ·Kcd;c¼2

5

�

≡Kciþ
2
5
−1

9
D2∂2 ·Kcd;c¼2

5: ð45Þ

The divergencelessness solutions Kci are interestingly
c-independent; indeed, the notation “ci” stands for this
fact. Note that, the gauge solutions appears coupled to the
scalar part H2D2D1Z · K.

B. The general structure; c ≠ 2=5

Now, let us study the case c ≠ 2=5, for which there exists
no solution K̃g inside E. To have a solution, it is necessary
to add an extra term K̃0g to K̃g, so that

ðQ1 þ 6ÞK̃0g ¼ 2 − 5c
3ð1 − cÞΛ

∘; ð46Þ

where Λ∘ fulfills Eq. (35). Therefore, it is obvious that

ðQ1 þ 6Þ2K̃0g ¼ 0: ð47Þ

K̃0g then can be written as

K̃0g ¼ 2 − 5c
3ð1 − cÞ ðQ1 þ 6Þ−1Λ∘: ð48Þ

Accordingly, the general solution for c ≠ 2=5 is

Kcd;c≠2
5 ¼ θϕ1þSZ̄Kþ 2

27
H2D2D1Z ·KþD2ðK̃2gþΛ0gÞ;

ð49Þ

with

Λ0g ¼ Λg þ 2 − 5c
3ð1 − cÞ ðQ1 þ 6Þ−1

×

�
TZ · ∂̄K −

1

3
H2D1Z · K þ 3H2x · ZK

�
: ð50Þ

It is worth mentioning that the term ½ð2−5cÞ=
ð1−cÞ�ðQ1þ6Þ−1H2x ·ZK is responsible for the appearance
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of logarithmic divergences in the theory. To see the point, let
us take a close look at this term. A general solution of K is a
linear combination of two scalar fields [29]

K ¼ Z̄0ϕ2 þD1ϕ3; ð51Þ

where Z0 is another constant five-vectors. By inserting (51)
into (24) and using the condition ∂̄ · K ¼ 0 and the following
identities

Q1D1ϕ3 ¼ D1Q0ϕ3; ð52Þ
Q1Z̄0ϕ2 ¼ ðZ̄0ðQ0 − 2Þ − 2H2D1x · Z0Þϕ2; ð53Þ

we have

Q0ϕ2 ¼ 0; ð54Þ
ϕ3 ¼ −ð1=2ÞðZ0 · ∂̄ þ 2H2x · Z0Þϕ2: ð55Þ

Consequently, the general solution (51) can be expressed as
follows

K ¼ ½Z̄0 − ð1=2ÞD1ðZ0 · ∂̄ þ 2H2x · Z0Þ�ϕ2; ð56Þ

in which, according to (54), ϕ2 corresponds to a MCS field.
Here and subsequently, for simplicity of notation, we write ϕ
instead of ϕ2.
The solution to (54) can be written in terms of the so-

called dS massless waves [30,31]

ϕðxÞ ¼ ðHx · ξÞσ; σ ¼ 0;−3 ð57Þ

where this 5-vector ξ lies on the positive null cone
Cþ ¼ fξ ∈ R5; ξ2 ¼ 0; ξ0 > 0g. The vector field K, (56),
then takes the following form

K ¼ −
σ

2

�
Z̄0 þ

�
ðσ − 1Þ Z0 · ξ

ðHx · ξÞ2 þ ðσ þ 2Þ x · Z
0

x · ξ

�
ξ̄

�
ϕ:

ð58Þ

We now turn to the term ðQ1 þ 6Þ−1H2x · ZK in (49).
Utilizing (58) and (32) and imposing Z0 · ξ ¼ 0 (for
simplicity), one can show that

ðQ1 þ 6Þ−1H2x · ZK

¼ −ð1=2σÞH2x · ZK þ ð1=2ÞðQ1 þ 6Þ−1f; ð59Þ

where

f ≡H2

�
ðσ þ 3Þx · Z0Z̄ þ ðσ þ 2ÞH−2 Z · Z0

x · ξ
ξ̄

�
ϕ:

Actually, the first term in the right-hand side of (59) bears a
singularity for σ ¼ 0. This implies that the massless spin-2

particles propagate in the interior of the light cone. Of
course, setting c ¼ 2=5, this singularity can be eliminated.
Here, it is interesting to clarify the relationship between

the general case, Kcd;c≠2
5, and the simplest one, Kcd;c¼2

5. In
the case c ≠ 2=5, one can easily show that

∂2 ·Kcd;c≠2
5 ¼ 1

1−c

�
TZ · ∂̄K−

1

3
H2D1Z ·Kþ3H2x ·ZK

�

¼ 1− 2
5

1−c
ð∂2 ·Kcd;c¼2

5Þ: ð60Þ

Combining (60) with (49), we have

Kcd;c≠2
5 ¼Kcd;c¼2

5þ c− 2
5

c−1
D2ðQ1þ6Þ−1∂2 ·Kcd;c¼2

5: ð61Þ

Considering (45) and the (61), once again, reveals that the
divergencelessness solutions are c-independent, and inter-
estingly, no logarithmic divergence appears in these sol-
utions. This means the propagation of these modes is
confined to the light cone.
We end this section by noting that the above procedure to

obtain the general solution to the dS massless spin-2 field
equation (18) first developed in [19] for the fields with
arbitrary integral spin in Anti-dS spacetime. In our study,
however, quite contrary to its Anti-dS counterpart, the
invariance of the solutions under the action of the isometry
group cannot be preserved in the usual manner utilizing the
ordinary positive frequency solutions (with respect to the
conformal time). The difference is indeed lied behind
the behavior of the structure function, the dS MCS field
ϕ [see Eq. (56)]. This is the subject of our discussion in the
next section.

IV. THE KGB STRUCTURE

Thus far, the general solution to the field equation (18)
has been given. We have shown that the simplest structure
would appear in the case c ¼ 2=5, for which no logarithmic
divergent term appears. Of course, the divergencelessness
solutions are c-independent, and for any choice of the
gauge-fixing parameter c, they are free of logarithmic
divergences.
From now on, for the sake of simplicity, we work with

the simplest structure, for which, the formula (45) conveys
that there exists a corresponding chain in the space of
solutions of (18), i.e.,5

Vg ¼ spanfKgg ⊂ Vci;

Vci ¼ spanfKcig ⊂ Vcd;

Vcd ¼ spanfKcdg: ð62Þ

5We here simplify our notations by considering Kcd;c¼2
5 ≡Kcd

and Vcd;c¼2
5 ≡ Vcd.

MASSLESS SPIN-2 FIELD IN DE SITTER SPACE PHYS. REV. D 98, 045007 (2018)

045007-7



The last term in (45) belongs to the quotient space Vcd=Vci.
We will see in the following that the physical modes lie
among the quotient space Vci=Vg (the central part).
In this section, we study the behavior of each of these

three spaces of the solutions under the action of the dS
group. On this basis, we present a Gupta-Bleuler type
structure, which remarkably provides a causal, dS and
gauge covariant quantization of the massless spin-2 field.

A. The emergence of a Krein space

We begin our study with the space of the gauge solutions.
Under the action of the dS group, the elements of Vg

transform as follows

Lð2Þ
αβK

g ¼ Lð2Þ
αβD2Λg ¼ D2L

ð1Þ
αβ Λg: ð63Þ

Using (17), one can easily show that (63) verifies the
divergencelessness condition as it is expected for any gauge

solutions. The point is that, Lð1Þ
αβ commutes withQ1. On the

other hand, putting (63) into the field equation (18), one can
also show that it leads to the same equation as (43). These
facts show that the subspace of gauge solutions, Vg, is
invariant.
The preceding discussion is actually different for the

solutions associated with the divergencelessness part,
Kci ∈ Vci. They satisfy the following equation

ðQ2 þ 6ÞKci ¼ 0: ð64Þ

Considering Kci in (45) combined with (56), one can
describe these solutions in terms of the polarization tensor
Dci acting on the MCS field ϕ,

Kci ¼ Dciϕ; ð65Þ

where

Dci ¼
�
−
2

3
θZ ·þSZ̄ þH2

3
D2

�
x · Z þ 1

9
D1Z·

��

×

�
Z̄0 −

1

2
D1½Z0 · ∂̄ þ 2H2x · Z0�

�
: ð66Þ

Under the action of the dS group, therefore, they simply
transform as follows

Lð2Þ
αβK

ci
γδ ¼ ðLð2Þ

αβD
ci
γδÞϕþDci

γδðMαβϕÞ: ð67Þ

It is trivial that the first term on the right-hand side remains

invariant. Indeed, since Lð2Þ
αβ commutes withQ2, ðLð2ÞDciÞϕ

is a solution to Eq. (64) as well. Moreover, this term fulfills
the divergencelessness condition. One can easily check this
fact through the following identity

∂2 · ðLð2ÞDciÞϕ ¼ Lð1Þð∂2 ·DciÞϕ: ð68Þ

The second term, however, needs to be evaluated more
precisely. In this regard, it is convenient to utilize the
bounded global intrinsic coordinates known as conformal
coordinates (Xμ, μ ¼ 0, 1, 2, 3),

X ¼ ðX0 ¼ H−1 tan ρ; ðH cos ρÞ−1ΩÞ≡ ðρ;ΩÞ; ð69Þ

with Ω ∈ S3 and −π=2 < ρ < π=2. This system is suitable
to describe the compactified dS≃ Lie sphere S3 × S1.
Respecting the conformal coordinates and the field

equation (18), the following dS-invariant bilinear form
(or inner product) can be defined

hK1;K2i¼
i
H2

Z
S3;ρ¼0

½ðK1Þ� · ·∂ρK2

−
4

5
ðð∂ρxÞ ·ðK1Þ�Þ ·ð∂ ·K2Þ−ð1�⇋2Þ�dΩ; ð70Þ

where K1 and K2 are two arbitrary modes. The above inner
product becomes c-independent and Klein-Gordon-like if
the field verifies the divergencelessness condition

ðK1;K2Þ ¼
i
H2

Z
S3;ρ¼0

½ðK1Þ� · ·∂ρK2 −K2 · ·∂ρðK1Þ��dΩ:

ð71Þ
Now, according to (3), the intrinsic counterpart of the

solution Kci would be

Kci
μνðXÞ ¼ Δci

μνðρ;Ω; LlmÞϕLlmðρ;ΩÞ≡Kci;Llm
μν ; ð72Þ

with Δci
μν ¼ xαμx

β
νDci

αβ. The “strictly positive” solutions to
the structure function, the dS MCS field, are given by

ϕLlm ¼ χLðρÞYLlmðΩÞ; ð73Þ
with L ¼ 1; 2;…; 0 ≤ l ≤ L; 0 ≤ jmj ≤ l. The YLlm are the
spherical harmonics on S3. The χLðρÞ are obtained by the
massless limit of the usual Bunch-Davies modes [32]

χLðρÞ ¼ ALðLe−iðLþ2Þρ þ ðLþ 2Þe−iLρÞ; ð74Þ

where AL ¼ H
2
½2LðLþ 1ÞðLþ 2Þ�−1=2.

The modes (72) form an orthonormal system with
respect to the inner product (71). Take a close look at
the above formula, however, reveals that the normalization
constant AL breaks down at L ¼ 0; this is known as the
“zero-mode” problem [33]. This difficulty arises due to the
fact that the set constructed over the strictly positive modes
is not invariant under the action of the dS group [34,35]. If
one insists on the full dS invariance, it would be required to

deal with the L ¼ 0 solutions. There are two of them, ϕð1Þ
0;0;0

and ϕð2Þ
0;0;0, where
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ϕð1Þ
0;0;0 ¼ constant ¼ H

2π
;

ϕð2Þ
0;0;0 ¼ −i

H
2π

�
ρþ 1

2
sin 2ρ

�
: ð75Þ

However, both are null norm modes, with respect to the
natural Klein-Gordon inner product associated with the
MCS field (we refer to this inner product as ð; ÞMCS). To fix
this degeneracy, one should define [34,35]

ϕ0;0;0 ¼ ϕð1Þ
0;0;0 þ ϕð2Þ

0;0;0=2: ð76Þ

It is the “true zero-mode” of Allen [33]. The constants of
normalization are chosen to have ðϕ0;0;0;ϕ0;0;0ÞMCS ¼ 1.
Considering this mode, we have a complete set of strictly

positive norm modes for L ≥ 0, but the space constructed
over these modes is not dS invariant; under the dS group
actions, the zero-mode produces negative modes (ϕ�

Llm)
as well as positive modes (ϕLlm). Indeed, if we consider
the following categories of the space of solutions,

ϕLlm;L>0∈Vþ, ϕ�
Llm;L>0∈V−, ϕð1Þ

0;0;0 ∈ N and ϕð2Þ
0;0;0 ∈ M,

under the action of the dS group, we have [34,35]

Ug∶N → N ;

Ug∶M → M ⊕ Vþ ⊕ V− ⊕ N ;

Ug∶Vþ → Vþ ⊕ N ;

Ug∶V− → V− ⊕ N : ð77Þ

For any g in the dS group, Ug stands for the dS natural
representation on the space of solutions. Therefore, it seems
that the smallest, complete, nondegenerate, and invariant
inner product space for the MCS field would be
Vþ ⊕ V− ⊕ N ⊕ M.
It is obvious that the same argument appears for the

general solutions. The invariance of the divergencelessness
space and also the total space of solutions, therefore,
inevitably necessitates extending Vcd to a Krein space,
which includes all the negative frequency solutions to the
field equation (18),

Vcd ¼ H ⊕ H�; ð78Þ

where

H ¼
� X

Llm;L≥0
cLlmK

cd;Llm
μν ;

X
Llm;L≥0

jcLlmj2 < ∞
�
: ð79Þ

Accordingly, we have a chain of invariant subspaces
Vg ⊂ Vci ⊂ Vcd carry an indecomposable group represen-
tation structure; a Krein-Gupta-Bleuler triplet. The gauge
solutions are orthogonal to the ones belong to Vci including
themselves. They constitute the invariant subspace Vg

which is not invariantly complemented in Vci. There is a
similar situation for the divergencelessness solutions. They
build up the invariant subspace Vci which is not invariantly
complemented in Vcd. In summary, the indecomposable
group representation structure associated with the massless
spin-2 field is simply demonstrated as follows

Π2;0|{z}
Vcd=Vci

⟶ Πþ
2;2 ⊕ Π−

2;2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Vci=Vg

⟶ Π2;0|{z}
Vg

ð80Þ

Note that, from Eq. (63), one can easily conclude that the
gauge solutions Kg ¼ D2Λg are completely characterized
by Λg, which respecting Eq. (43) obeys ðQ1 þ 6ÞΛg ¼
ðQ0 þ 4ÞΛg ¼ 0 (since x · Λg ¼ ∂̄ · Λg ¼ 0). The gauge
solutions, therefore, can be associated with Π2;0. The same
argument appears for the solutions belong to Vcd=Vci. This
is indeed the point lying behind the above formula.

B. The physical subspace

With respect to the above statements, the space of the
physical modes (denoted by Hp) of the massless spin-2
field would be

Hp ¼
� X

Llm;L>0

cLlmK
ci
g ;Llm
μν ;

X
Llm;L>0

jcLlmj2 < ∞
�
; ð81Þ

in which K
ci
g ;Llm
μν ∈ Vci=Vg. Regarding this definition, it is

obvious that the physical modes are c-independent. They
propagate only on the dS light cone. Moreover, Hp is
closed under the action of the dS group. In this regard, it
must be underlined that the massless spin-2 mode with
L ¼ 0, does not belong to the space of the physical
solutions, because if it was considered, the subspace of
the positive norm modes would be transformed into the
subspace of the negative norm modes violating unitarity
[see (77)]. Indeed, when we study any physical quantity,
only the strictly positive solutions with L > 0 are taking
into account.

V. THE QUANTUM FIELD

In this section, we proceed with the KGB quantization of
massless spin-2 field in dS space. Indeed, we define a new
representation of the canonical commutation relations
which lead to a covariant field. This field, as expected,
is a distribution for which the values are operators on the
bosonic Fock space constructed upon the total space (see
Sec. IV and [36] for a review of the theory of Fock spaces
on Krein spaces).
Before we go further, let us simplify the previous

notation by means of the following definition
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J ¼fj≡ðL;l;mÞ∈N×N×Z;L≥0;0≤ l≤L;−l≤m≤ lg:
ð82Þ

Therefore, from now on, we have Kcd;Llm ≡Kcd;j.
In the KGB structure, given any Vcd, we denote by Vcd

the corresponding Fock space, for which, the annihilator of
a solution Kcd is defined by

ðaðKcd;jÞΨÞðX1;…;Xn−1Þ

¼ ffiffiffi
n

p i
H2

Z
ρ¼0

�
ðKcd;jÞ�ðρ;ΩÞ · ·∂ρΨððρ;ΩÞ;X1;…;Xn−1Þ

−
4

5
ðð∂ρxÞ ·ðKcd;jÞ�ðρ;ΩÞÞ ·ð∂ ·ΨÞððρ;ΩÞ;X1;…;Xn−1ÞÞ

−ð1�⇋2Þ
�
dΩ; ð83Þ

for any square-integrable n-symmetric function Ψ. As
usual, we define the creator by

ða†ðKcd;jÞΨÞðX1;…;Xnþ1Þ

¼ 1ffiffiffiffiffiffiffiffiffiffi
nþ1

p
Xnþ1

i¼1

Kcd;jðXiÞ · ·ΨðX1;…; X̃i;…;Xnþ1Þ; ð84Þ

where X̃i indicates the omission of this term.
We can now define the quantum field Kcd

μνðXÞ on Vcd by

Kcd
μνðXÞ ¼

X
j

ajK
cd;j
μν þ

X
j

a†jðKcd;j
μν Þ�

−
X
j

bjðKcd;j
μν Þ� −

X
j

b†jK
cd;j
μν ; ð85Þ

in which aj ≡ aðKcd;jÞ and bj ≡ aððKcd;jÞ�Þ are, respec-

tively, the annihilators of the modes Kcd;j
μν and ðKcd;j

μν Þ�. For
any K1;K2 ∈ Vcd, these operators obey the following
commutation relation

½aðK1Þ; a†ðK2Þ� ¼ hK1;K2i; ð86Þ

and we have

UgaðK1ÞU�
g ¼ aðUgK1Þ; Uga†ðK1ÞU�

g ¼ a†ðUgK1Þ:
ð87Þ

Note that,U is the extension of the natural representation
U of the dS group on Vcd to the Fock space Vcd.
At this point, we would like to investigate the causality

and covariance of the above quantum field. Actually, for
any real test function fμν in the space of functions C∞ with
compact support in MH, there exists a unique element
pðfÞ ∈ Vcd for which

pμνðfÞ ¼
Z
MH

KðfÞKμνðXÞdσðXÞ; ð88Þ

where dσðXÞ is the dS-invariant measure and the smeared
form of the modes KðfÞ is

KðfÞ ¼
Z
MH

K�
μνðXÞfμνðXÞdσðXÞ: ð89Þ

From (89) and noticing this fact that the space of solutions
Vcd is nondegenerate and invariant, one can immediately
conclude that

UgpðfÞ ¼ pðUgfÞ: ð90Þ

On this basis, the smeared field is

KcdðfÞ ¼ aðpðfÞÞ þ a†ðpðfÞÞ; ð91Þ

and its unsmeared form becomes

KcdðXÞ ¼ aðpðXÞÞ þ a†ðpðXÞÞ: ð92Þ

We are now in the position to check the covariance of the
quantum field. Indeed, we have

UgKcdðXÞU−1
g ¼ aðUgpðXÞÞ þ a†ðUgpðXÞÞ

¼ aðpðg · XÞÞ þ a†ðpðg · XÞÞ
¼ Kcdðg · XÞ; ð93Þ

where we use (87) and the unsmeared form of (90).
Let us now investigate the causality of the theory. The

kernel of the distribution p is the so-called propagator
G̃μνμ0ν0 ¼ Gadv

μνμ0ν0 − Gret
μνμ0ν0 , that is to say

hpμνðXÞ; pμ0ν0 ðX0Þi ¼ −iG̃μνμ0ν0 ðX;X0Þ:

Using (90), one can easily show that the propagator is
invariant under the action of the dS group. Furthermore,
one finds directly the commutation relation between the
fields as follows

½Kcd
μνðXÞ;Kcd

μ0ν0 ðX0Þ� ¼ 2hpμνðXÞ; pμ0ν0 ðX0Þi
¼ −2iG̃μνμ0ν0 ðX;X0Þ: ð94Þ

As a consequence, the fields satisfy causal commutation
relation because G̃ vanishes when X is spacelike separated
from X0.
Now, we can accurately identify the KGB Fock vacuum

as follows
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ajj0i ¼ bjj0i ¼ 0; ∀ j ∈ J : ð95Þ

It is obviously dS invariant.
At the end, it must be underlined that the KGB vacuum

does not depend on Bogolyubov transformations which
merely modify the set of physical states. This is not
however surprising, because in our formalism not only is
the vacuum different but so is the field itself. We do insist
here, this does not imply that Bogolyubov transformations
are not valid any more. Indeed, under the Bogolyubov
transformations the space H ¼ spanðKcd;j

μν Þ would trans-
form to H̃ ¼ spanðK̃cd;j

μν Þ, based upon which we have a new
representation for the first two terms on the right-hand side
of (85). The crucial point, however, is that the total space
and correspondingly the field representation remain
unchanged,

H̃ ⊕ H̃� ¼ H ⊕ H�; K̃cd;j
μν ¼ Kcd;j

μν :

Again, our quantization scheme is of Gupta-Bleuler type, in
the sense that one should distinguish the total space from
the subspace of the physical states based upon which,
respectively, the observables and the mean values of them
are determined. This is the subject of our discussion in the
following section.

VI. PHYSICAL CONTENT OF THE THEORY

Thus far, the quantum field has been constructed which
is causal and has all the covariance properties of the
classical field. The price to pay is, however, the presence
of some nonphysical states in our construction. In order to
have a meaningful interpretation, therefore, it is essential to
select the subspace of physical states and also prove that the
presence of nonphysical states will not result in any
negative energies. These issues are discussed in detail in
this section.
We first start by identifying the gauge states space. The

space of the dS-invariant states of Vcd is Vg, the space
defined by a†gj0i (a†g ≡ a†ðKgÞ). We denote by Vci the
corresponding subspace of divergenceless states which is
generated from the Fock vacuum by ða†gÞn0ða†j1Þn1 · · ·
ða†jlÞnl j0i. Here, we also designate by Vg the subspace of
Vci orthogonal to Vci, Vg ¼ Vci ∩ ðVciÞ⊥, so that, Vg ⊂ Vg.
Vg is indeed the set of unobservable gauge states and defined
as follows

K∈Vg if K∈Vci and ðK;K0Þ ¼ 0 ∀K0 ∈Vci: ð96Þ

For any stateK ∈ Vci, the state a†gK ∈ Vg; these two states
are equal up to an element of Vg. So, including the Fock
space Vcd built on Vcd, the second-quantized Gupta-Bleuler
triplet is obtained

Vg ⊂ Vci ⊂ Vcd;

that is apparently invariant under the de Sitter group action.
With respect to the definition of the dS-invariant space

Vg presented above, it is of infinite dimension subspace of
Vg. As a result, it seems that the Fock vacuum is not the
only dS-invariant state. However, it is crucial to refer the
reader to the definition of physical equivalence, according
to which, all these states are equal to an element of that
dimensional space. This is indeed called quasi-uniqueness
of the KGB Fock vacuum and understood that the vacuum
transforms into a physically equivalent state under gauge
transformation (simply, the vacuum is gauge invariant).
We maintain that the physical states belong to the central

space Vci=Vg, where a gauge transformation maps an
element into an equivalent element of the central space.
Nonetheless, in order to determine the subspace of physical
states, as pointed out in the previous sections, we require to
impose an extra condition; due to the structure function of
the theory, theMCS field, some states in the central part have
negative norm. One has to exclude these states [see (81) and
the associated explanations] to obtain the true physical states
space, more precisely, the Hilbert space carrying the
physical representation of themassless spin-2 field equipped
with positive invariant inner product. We denote this space
byHp. Two physical statesP andP0 are called equivalent if
P − P0 ∈ Vg. Physical states are particularly important
since in a Gupta-Bleuler formalism mean values of observ-
ables, which will be defined below, are determined by them.
On this basis, an observableO (e.g., the stress tensor Tμν)

is a symmetric operator on Vcd such that for two equivalent
physical states P and P0 defined above, we must have

hPjOjPi ¼ hP0jOjP0i:
This means that expectation values of observables are
gauge independent. In this regard, it is not difficult to
show that the field Kcd itself does not justify the definition
of observables. This fact directly results in gauge depend-
ency of two-point functions which are written in terms of
the field, such as Wightman or Hadamard functions,

h0jKðXÞKðX0Þj0i; h0jKðXÞKðX0Þ þKðX0ÞKðXÞj0i;
Therefore, in this quantization scheme, it is not expected
that the symmetric two-point function, Hadamard function,
has significant physical interpretation and a simple calcu-
lation reveals that it vanishes. Of course, it is a direct
consequence of demanding the full dS covariance of the
theory, which unavoidably necessitates negative norm
states (the KGB structure).6 In this construction, therefore,

6A straightforward calculation reveals that the only full
dS-covariant and causal two-point function which naturally
appears is the commutator, but it is not of positive type
[24,25] (see also [37]).
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two-point functions and the vacuum are not linked as the
standard QFT; as opposed to the usual QFT for which
choosing a vacuum is equivalent to choosing a physical
states space and a two-point function, in this context, the
KGB vacuum is unique and cannot identify the space of
physical states. This space, however, is still linked to the
two-point functions [35]. This means that a two-point
function with Hadamard property is available but with
another meaning (for electromagnetic field on globally
hyperbolic spacetimes, see [38,39]).
Now, we show that although the stress tensor is defined

on the total space which includes negative norm states, no
negative energy would be yielded; in general, we have

h0jTμνj0i ¼
X
j∈J

Tμν½Kcd;j
μν ; ðKcd;j

μν Þ��

−
X
j∈J

Tμν½ðKcd;j
μν Þ�;Kcd;j

μν � ¼ 0; ð97Þ

where Tμν½K;K� denotes the bilinear expression of the
stress tensor Tμν. Note that, the cancellation in (97) is due to
the unusual second term on the right-hand side which
comes from the terms of the field containing bj and b†j .
Similarly we can compute the mean values of the stress

tensor on physical states, jP⃗i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
n1!…nl!

p ða†jðP1Þ Þ
n1…

ða†jðPlÞ Þ
nl j0i,

hP⃗jTμνjP⃗i ¼ 2Re
Xl

j¼1

njTμν½Kcd;j
μν ; ðKcd;j

μν Þ��: ð98Þ

As a consequence we have

hP⃗jT00jP⃗i ≥ 0: ð99Þ
The KGB formalism indeed provides an automatic and

covariant renormalization of the stress tensor, which
remarkably, fulfills the so-called Wald axioms;

(i) First, the field is causal and covariant, therefore, the
causality and the covariance of the stress tensor are
guaranteed.

(ii) Second, considering the physical states, the formal-
ism gives the formal results.

(iii) Third, computing the mean values of the stress tensor
in the physical states, the procedure is equivalent to
reordering. The crucial point here is that

½aj; a†j � ¼ −½bj; b†j �;

which implies

aja
†
j þ a†jaj þ bjb

†
j þ b†jbj ¼ 2a†jaj þ 2b†jbj:

With respect to the above statements, one can easily see
that, considering the KGB quantum field, no trace anomaly
appears in the computation of the energy-momentum

tensor; the expected value of all components of the stress
tensor vanish in the KGB vacuum. Of course this is not very
surprising, because the KGB quantization method pre-
serves covariance and conformal covariance of the theory
in a rather strong sense, and therefore, the theory does not
exhibit any trace anomaly which, after all, can appear only
by breaking the conformal invariance.

VII. SUMMARY AND DISCUSSION

In this paper, we have dealt with a subject that has been
controversial for a rather long period of time: the quanti-
zation of the massless spin-2 (graviton) field in dS space.
Together with the quantization of the MCS field in dS
space, they form a doublet of cases where quantization can
lead to surprises.
The case of the MCS was analyzed by Allen and Folacci

[33] and their results seemed definitive; dS invariance was
broken and infrared divergences were present due to the
ever-increasing number of modes exiting the horizon.
Nevertheless, thanks to a new representation of the canoni-
cal commutation relations based on the KGB method,
quantization of the MCS field which satisfies full covari-
ance as well as causality has been proposed in [34,35]. It
must be emphasized that there is no contradiction with
Allen’s point of view since in this formalism vacuum and
the field itself are different.
The case of the graviton and the associated dS symmetry

breaking, however, are more complicated among other
things because of the local invariance present, in contra-
distinction to the scalar case. Debate over this issue has
gone on for decades with the particle physics community
(see, for instance, [40–43]) maintaining that gravitons
inherit the dS breaking long recognized for the MCS field
and the mathematical physics community (see, for instance,
[44–49]) maintaining that there is no physical breaking of
dS invariance. In this section, we briefly discuss the place
of our approach amongst them.
Recently, based on a rigorous group theoretical approach

and in consistency with the particle physics community
viewpoint, we have shown that there exists no natural
dS-invariant vacuum state (the Bunch-Davies state) for the
graviton field in dS space [37] and correspondingly the
associated infrared divergences cannot be gauged away
[24,25]. Indeed, it seems that within the framework of usual
QFT, one has to consider a restrictive version of covariance
with respect to some maximal subgroup of the dS group
only [SOð4Þ, SOð1; 3Þ or Eð3Þ]. From the perspective of
the mathematical physics community to which we belong,
however, dS space has a privileged status as the unique,
maximally symmetric solution to the Einstein equation
with positive cosmological constant. It provides the oppor-
tunity of controlling the transition to the flat space by
the procedure known as contraction procedure [50].
Accordingly, dS space should at least be respected as an
excellent laboratory. On the other hand, being the most
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serious candidate for a complete quantum theory of gravity,
string theory should admit dS vacua. Indeed, there are
several reasons, such as a full understanding of holography
for dS gravity [51] and clarifying the microscopic origin of
dS entropy [52], that make it desirable to embed dS space in
string theory. From this point of view, it seems that a crucial
step to take would be constructing a fully covariant QFT in
dS space.
Motivated by all the above reasons and following our

previous work [37], in this paper, we have constructed
a causal and dS-covariant (more exactly, SO0ð1; 4Þ-
covariant) free massless spin-2 quantum field (graviton
field) on dS spacetime admitting a dS-invariant vacuum in
an indefinite inner product space. Quite similar to the
reasoning given in [34,35] for the MCS field, the causality
and the covariance of the theory are assured thanks to a
suitable adaptation (Krein spaces) of the Wightman-
Gärding axiomatic for massless fields (the Gupta-Bleuler
structure). Our KGB quantization scheme is, therefore, free
of any infrared divergence. Again, it is indeed because of
our choice of the Krein vacuum not the gauge-fixing
procedure. Pursuing our quantization scheme, we have
also specified the space of physical states. The theory,
despite the appearance of the non-physical negative norm
states in the quantization procedure, gives the correct sign
for the energy on the physical states (note that, the so-called
Wald axioms are already well preserved).
Here, it must be underlined that, when interaction is

present, with respect to the procedure given in [53],
determining the space of physical states is the critical step
in defining the unitary condition of the theory. Applying the
unitary condition, it is proved that this quantization scheme
in Minkowski space when interaction is taken into account

truly yields the common results; the so-called radiative
corrections are indeed the same as usual QFT (see the
mathematical details in [53]). It also allows us to obtain the
exact usual result for the black hole radiation, even
regarding that the free field vacuum expectation value of
the energy-momentum tensor is zero [54] (in this regard,
see also [55–57]). On the other hand, following Wald, there
exists a case where this quantization method seems in a
very natural way. According to the statement given byWald
([58] p. 66): “For a spacetime which is asymptotically
stationary in both the past and the future we have two
natural choices of vacua, and the S matrix should be a
unitary operator between both structures”, as he mentioned
this is not possible if the two vacua are not equivalent.
Remembering the Krein vacuum is unique [53], it seems
that the Krein quantization method provides a stage where
all these objects can be respected together.
Now, the natural question which arises is that can one

formulate perturbative field theory for quantum gravity in
dS space through the KGB method? We think it is too early
to answer this, and much more work is still necessary,
specially in constructing interacting field theory on dS
space. As already pointed out, the Hadamard property still
needs to be restored somehow (for electromagnetic field on
globally hyperbolic spacetimes, see [38,39]). The correct-
ness of this approach will ultimately be decided by
experiment and observation.
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