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We consider a procedure for directly constructing general tree-level four-particle scattering amplitudes
of massive spinning particles that are consistent with the usual requirements of Lorentz invariance,
unitarity, crossing symmetry, and locality. There are infinitely many such amplitudes, but we can isolate
interesting theories by bounding the high-energy growth of the tree amplitudes within the effective field
theory. This allows us to set model-independent lower bounds on the growth of tree-level amplitudes in any
effective field theory with a given particle content and any interaction terms with an arbitrary but finite
number of derivatives. In certain common cases this corresponds to finding the highest possible strong
coupling scale. When applied to spin 2, we show that the only amplitudes that saturate this bound are
generated by the known ghost-free theories of a massive spin-2 particle, namely de Rham, Gabadadze and
Tolley massive gravity and the pseudolinear theory. We also make a conjecture for the allowed growth of
tree amplitudes in a theory with a single massive particle of any integer spin.
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I. INTRODUCTION

Interacting massive higher-spin particles exist—both
theoretically and in nature—as ingredients in consistent
fundamental theories. In nature, the heavy hadronic reso-
nances in quantum chromodynamics (QCD) carry high spin
and interact strongly with each other. In string theory, the
higher vibrational modes of the string are massive higher-
spin particles, and can be weakly interacting if the string
coupling is small.
In all known cases, however, a theory containing a finite

number of interacting massive high spin fields is always an
effective theory; there is some intrinsic strong coupling
scale beyond which tree amplitudes violate perturbative
unitarity bounds, meaning that strong coupling effects or
new particles must come in at a scale not greater than the
scale of unitarity violation. In the case of the higher spin
hadrons they become strongly coupled at the QCD scale,
the intrinsic size of the hadrons, where they fail to be
pointlike and require strong dynamics to complete the
description. But this is also the scale that sets the mass of
the hadrons, so there is no regime in which they are well
described by a point-particle effective field theory (EFT)

with a strong coupling scale parametrically larger than the
mass. In the case of string theory, the higher-spin states can
be weakly interacting, but the description requires an
infinite tower of higher spins, and the masses within the
tower are not parametrically separated from each other, so
that again there is no pointlike description of a finite
number of massive fields with a cutoff parametrically
higher than the mass itself.
The fact that these particular ultraviolet (UV) complete

examples fail to have clean EFT descriptions which include
a finite number of massive states does not imply that any
possible UV theory will fail in the same way. There are
strong no-go results against massless high spins in flat
space (as reviewed in, e.g., [1,2]), but these do not apply to
massive particles, and comparatively little is known about
constraints on possible massive high spin interactions.
Purely at the level of EFTs, it is not difficult to write

down examples of massive interacting higher-spin particles
with strong coupling scales parametrically higher than the
cutoff. In the case of spin 1, a canonical example is the self-
interacting theory of massive spin-1 particles, like the W
and Z bosons of the standard model. In the Abelian case,
the tree-level amplitude for four-point scattering of longi-
tudinal modes grows with energy like E4. This growth
comes with the scale Λ ∼m=g, where g is a dimensionless
coupling constant andm the mass of the spin-1 particle. If g
is small, then the strong coupling scale is parametrically
larger than the mass and we have a consistent EFT
description of the massive spin-1 particle up to at most
the scale Λ. In the Abelian Higgs model [3,4], a weakly
coupled Higgs boson comes in at a mass scale μ ∼ λ1=2Λ,
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where λ is the coupling constant characteristic of the
weakly coupled UV completion (the Higgs quartic cou-
pling). To the extent that λ is small, the Higgs boson comes
in before the strong coupling scale and prevents perturba-
tive unitarity violation.
One might wonder if it is possible to tune the effective

theory in some way, by adding the right interactions, but
without adding new degrees of freedom (d.o.f.), to reduce
the growth of the amplitude. As we see, this is not possible:
the E4 behavior of the amplitude is both the generic and the
best possible for an EFTof a single massive spin-1 particle.
Moving to spin 2, there are some new subtleties and

possibilities for the effective theory, and it is indeed
possible to improve the growth of the amplitude somewhat.
As in the spin-1 case, it is easy to write effective theories
with strong coupling scales parametrically higher than the
mass. For example, simply adding generic zero-derivative
mass terms to the Einstein-Hilbert action results in an
EFT whose tree-level four-particle amplitude grows with
energy as E10. With standard choices for scalings of the
fields and derivatives, this implies a strong coupling scale
of Λ5 ≡ ðMPm4Þ1=5, where MP is the Planck mass and m
the spin-2 mass [5]. However, it was shown in Refs. [5,6]
that there exist particular choices of mass terms that
improve the growth of the amplitude to E6, with a con-
comitant raised strong coupling scale Λ3 ≡ ðMPm2Þ1=3.
This choice leads to the ghost-free massive gravity theories
of de Rham, Gabadadze and Tolley (dRGT) [7,8].
The improved behavior of the dRGT amplitudes occurs

because of a cancellation between the high-energy parts of
the exchange diagrams and contact diagrams. This has no
analog in the case of a single spin-1 particle. It was shown
in Ref. [9] that if a theory is constructed by adding zero-
derivative terms to the Einstein-Hilbert term, with no
additional derivative interactions, then the E6 behavior is
in fact the best possible for the amplitude; i.e., the dRGT
choice produces amplitudes with the slowest growth among
theories whose derivative interations are fixed to the
Einstein-Hilbert form.
However, this E6 behavior has not yet been shown to be a

truly model-independent lower bound, because there is still
the possibility that other derivative interactions, beyond
those of the Einstein-Hilbert form, could be used to further
slow the growth of the amplitude.1 Here we rule out this
possibility and show that E6 is a true lower bound on the
growth of amplitudes for EFTs of a single interacting
massive spin-2 field with a finite number of interactions.
We show that regardless of the choice of interaction terms
with any finite number of derivatives, ghostly or not, parity

violating or not, there is no way to further reduce the
growth of the four-point amplitude without it vanishing
completely. Furthermore, we see that the only way to
saturate the lower bound of E6 is through dRGT massive
gravity or the pseudolinear interactions of Refs. [11,12].
This conclusion means that dRGT is unique up to quartic
order in the fields, insofar as it is the only effective theory of
a single massive spin-2 particle with an Einstein-Hilbert
limit that achieves the lower bound on the growth. Any
claims of nonuniqueness or additional interactions [13,14]
must either not describe a pure massive spin-2 particle in
flat spacetime, have amplitudes that grow faster with
energy, or differ only at the quintic order and above.
The caveat of a finite number of derivatives is an

important one. Given a UV complete theory with only
massive particles, the growth of the amplitude at high
energies is bounded above by the Froissart-Martin bound
[15,16]. Integrating out a particle with a large mass
produces an effective theory for the lighter particles. The
effective theory is organized in part by a derivative
expansion, with higher powers of derivatives suppressed
by powers of the mass of the particle that was integrated
out. As far as the scattering of light particles is concerned,
keeping this entire tower of derivative interactions is
equivalent to keeping the intermediate massive state, and
so the amplitude as calculated with the entire tower does
not grow too much with energy. As we go up in order in the
derivative expansion the amplitude behaves worse and
worse at high energies, but once the entire tower is
resummed the amplitude becomes consistent with the
Froissart-Martin bound. Thus by allowing for an infinite
number of derivatives we would expect to be able to get an
amplitude consistent with this bound by arranging for a
resummation into a function of energy that falls off at
infinity, which would be saying something about the UV
completion. We are instead concerned with cancellations
that may occur with only a finite number of derivatives, i.e.,
in a truncated EFT. Thus the high-energy growth is always
polynomial and we are saying nothing about the existence
or properties of a putative UV completion (except that the
theory cannot be completed by adding a finite number of
terms to the effective theory).
Our results are in the same spirit as Refs. [17,18], where

model-independent strong coupling scales are found for
theories of massive higher-spin particles coupled to electro-
magnetism. In these works, the model-independent cutoff
Λ ∼me−1=ð2l−1Þ is found for a spin-l particle with mass m
interacting with electromagnetism with strength e, assum-
ing the presence of the minimal coupling interaction. This
analysis was done at the level of the Lagrangian, by looking
for the scale suppressing various possible nonremovable
interaction terms. Our approach is instead to study directly
the on-shell scattering amplitudes by writing down the
most general amplitude consistent with the requirements
of Lorentz invariance, unitarity, crossing symmetry, and

1It was shown in Ref. [10] that there are no additional parity-
conserving ghost-free terms that can be added to the dRGT
interactions, so the Einstein-Hilbert kinetic term is known to be
unique from the point of view of ghost freedom. Our analysis
with amplitudes is insensitive to ghosts.
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locality. This method of constructing amplitudes directly,
without recourse to a Lagrangian, can be thought of as a
kind of bootstrap procedure, and it may prove useful for
other problems beyond the specific application of finding a
lower bound on the growth that we focus on here.

A. Summary and outline

We now briefly summarize the problem we want to solve
and outline our approach. Given some particles in an EFT
with operators containing derivatives up to some arbitrary
but finite order, the general problem is to find the minimum
nonzero value of

n≡ lim
E→∞

d lnAðEÞEFT
d lnE

; ð1:1Þ

where AðEÞEFT is the 2-to-2 tree amplitude calculated in
the EFTas a function of the center-of-mass energy E. When
there are multiple d.o.f., we minimize n for any choice of
external states. Of course, in an EFT the tree-level
amplitudes containing only the low-energy d.o.f. are not
valid up to arbitrarily high energies. The exponent n
measures the high-energy behavior of the amplitude
inferred from the EFT, whereas the actual physical ampli-
tude above the cutoff is described by some unknown UV
completion. Minimizing n in Eq. (1.1) thus corresponds to
improving the inferred high-energy behavior of the ampli-
tude as much as possible in the EFTwith a finite number of
operators.2 If n ≤ 0 then the amplitudes are perturbatively
unitary and can make sense at high energies.
In principle we can solve this problem by writing down

all possible cubic and quartic terms in the Lagrangian with
arbitrary coefficients, calculating the amplitude, and then
choosing the coefficients to minimize n. However, the
challenge is that we want to be completely general,
allowing for any interactions with an arbitrary (but finite)
number of derivatives. It is therefore advantageous to
bypass the Lagrangian and calculate amplitudes directly
so that we can avoid redundancies due to field redefinitions
and total derivatives. This allows us to consider general
interactions and thus gives a model-independent bound.

A rough outline of our procedure is the following: first
we construct all possible Lorentz-invariant on-shell cubic
vertices following the presentation in Ref. [19]. From the
point of view of the Lagrangian, these cubic vertices
correspond to cubic interactions which cannot be removed
by integration by parts or field redefinitions. For any
collection of spins, there are only a finite number of these
cubic vertices. We then use these vertices to construct the
exchange amplitudes for four-point tree-level scattering.
Because the cubic vertices are finite in number, there is
some maximal growth in energy for the corresponding
exchange amplitudes. Next we construct all possible
Lorentz-invariant on-shell quartic vertices that are analytic
in momenta. These correspond to quartic contact terms in
the Lagrangian that cannot be removed by integration by
parts or field redefinitions. There are an infinite number of
such terms, but they come in a finite number of tensor
structures multiplied by polynomials in the Mandelstam
invariants. Adding the exchange and contact amplitudes
gives the full tree-level four-particle amplitude consistent
with locality. We then look for the subset of amplitudes that
minimize n in Eq. (1.1). Various technical issues associated
with implementing this procedure are discussed in the main
text. Some preliminary versions of the results in this paper
were presented in a thesis by one of the authors [20].
The rest of the paper is set up in the following way: in

Sec. II we review a procedure for constructing all the cubic
and quartic vertices for a given collection of particles. We
then work out these vertices in several examples with a
single massive particle. In Sec. III we define our kinematics
and discuss some properties of transversity amplitudes that
are needed to simplify our calculation. In Sec. IV we give a
detailed algorithm for finding the most general tree
amplitudes with a given high-energy growth. We then
present our results for a lower bound on the growth of
amplitudes containing a single massive particle. We finish
with some discussion in Sec. V. The Appendices contain
some explicit spin-1 tensor structures and amplitudes.
Conventions: We work in four spacetime dimen-

sions with the mostly plus Lorentzian signature, ημν ¼
diagð−1; 1; 1; 1Þ. The four-dimensional epsilon symbol is
defined with ε0123 ¼ 1.

II. CONSTRUCTING ON-SHELL VERTICES

The first step in our procedure is to list the possible on-
shell cubic and quartic vertices which we use to construct
scattering amplitudes. Constructing such a list amounts to
finding all the inequivalent scalar contractions of a given
collection of tensors. This problem also appears in the
conformal bootstrap literature, as there is a correspondence
between conformal correlators in CFTd and scattering
amplitudes in QFTdþ1 [19,21,22]. We thus start by review-
ing a method for constructing on-shell vertices for a
collection of bosonic fields following the approach of

2If the amplitude is such that higher powers of energy are
suppressed by smaller scales, then minimizing n also corresponds
to maximizing the strong coupling scale of the effective theory.
This is the case, e.g., if we have a nonzero cubic vertex for a
massive particle schematically of the form ∂2h3=Mp, where m is
the mass of the particle and Mp is some mass scale such that
m ≪ Mp. By dimensional analysis, it follows that for E ≫ m the
four-point amplitude can be expanded as a sum of terms of the
form En=M2

pmn−2. Terms with larger n are suppressed by smaller
scales since they have additional factors of m, so the largest
power of n sets the strong coupling scale. Raising the strong
coupling scale then requires including additional interactions of
the form ∂kh3=Mpmk−2 and ∂kh4=M2

pmk−2, where the scales
suppressing these interactions are fixed by the requirement that
they help cancel the existing terms.
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Ref. [19]. A similar method was used to construct ampli-
tudes for massless particles in Ref. [23].
We write on-shell vertices in terms of Lorentz-invariant

contractions of the polarization vectors and momenta of the
external particles. An external particle, labeled by i, with
spin li, mass mi, and ingoing momentum pi, is associated
with a rank-li symmetric, transverse, and traceless polari-
zation tensor ϵiμ1…μli

,

ϵiμ1…μli
¼ ϵiðμ1…μli Þ

; ð2:1Þ

pμ1
i ϵ

i
μ1…μli

¼ 0; ð2:2Þ

ημ1μ2ϵiμ1…μli
¼ 0: ð2:3Þ

To keep track of index contractions, it is convenient to
replace each polarization tensor with a product of li
auxiliary vectors ziμ when writing the amplitude,

ϵiμ1…μli
→ ziμ1…ziμli : ð2:4Þ

A vertex coming from a local contact interaction can then
be written as a polynomial in the contractions of z’s and
p’s. We denote these contractions by

pij ≡ pi
μpj;μ; zij ≡ ziμzj;μ; zpij ≡ ziμpj;μ: ð2:5Þ

We have the conditions

zij ¼ zji; pij ¼ pji; ð2:6Þ

zpii ¼ 0; zii ¼ 0; ð2:7Þ

pii ¼ −m2
i : ð2:8Þ

Here (2.6) comes from the symmetry of the scalar product,
(2.7) comes from the transverse, traceless conditions (2.2),
(2.3), and (2.8) comes from the fact that the external
momenta are on shell. (Note that repeated instances of the
particle labels i; j;… are never summed over.)
Vertices built solely from products of zij, zpij, and pij

are parity even. There can also be parity-odd terms that
come from contractions involving a single antisymmetric
epsilon tensor, εμ1μ2μ3μ4 , which we denote by, e.g.,

εðp1p2z1z2Þ≡ εμ1μ2μ3μ4p1
μ1p

2
μ2z

1
μ3z

2
μ4 : ð2:9Þ

A theory with a single particle can contain parity-odd cubic
terms and still be parity conserving if the particle has odd
intrinsic parity and there are no parity-even cubic terms or
parity-odd quartic terms. In any case, we do not assume that
parity is a symmetry.
If some of the particles interacting at a vertex are

identical, then the vertex must be invariant under

permutation symmetries of these particles. There are also
dimensionally dependent identities that introduce redun-
dancies between various vertices, which we need to
account for.

A. Cubic vertices

We start by constructing on-shell cubic vertices.
Consider a three-point interaction of particles with spins
ðl1; l2; l3Þ and for each li > 0 introduce a null vector zi.
Momentum conservation with all momenta incoming
gives3

p1 þ p2 þ p3 ¼ 0: ð2:10Þ

Equation (2.10) and pii ¼ −m2
i imply that 2pij ¼ m2

i þ
m2

j −m2
k for distinct i, j, k, so all of the contractions pij can

be written in terms of masses. Contracting (2.10) with zi

gives the three relations

zp12 þ zp13 ¼ 0; ð2:11aÞ

zp21 þ zp23 ¼ 0; ð2:11bÞ

zp31 þ zp32 ¼ 0: ð2:11cÞ

This means that there are only three independent contrac-
tions zpij, rather than six. From the point of view of the
Lagrangian, this reduction comes from the freedom to
integrate by parts.

1. Parity even

In total, there are therefore six independent Lorentz
scalars that can be used to construct the on-shell parity-even
cubic vertices, which can be taken to be

z12; z13; z23; zp12; zp23; zp31: ð2:12Þ

Each zi must appear li times in the cubic vertex, since each
polarization vector appears once. The amplitude is thus a
linear combination of terms of the form

zn1212 z
n13
13 z

n23
23 zp

m12

12 zpm23

23 zpm31

31 ; ð2:13Þ

where the exponents nij and mij are non-negative integers
satisfying

n12 þ n13 þm12 ¼ l1; ð2:14aÞ

n12 þ n23 þm23 ¼ l2; ð2:14bÞ

3In general the momenta must be complex for an on-shell
cubic amplitude to be nonvanishing. The cubic amplitudes can
then be analytically continued to real off-shell momenta to
calculate exchange diagrams.
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n13 þ n23 þm31 ¼ l3: ð2:14cÞ

There are a finite number of solutions to Eqs. (2.14) for a
given triplet of spins. For identical particles we must
additionally look for combinations of the vertices that
are invariant under the action of the symmetric group S3 of
particle permutations.

2. Parity odd

There can also be parity-odd cubic vertices containing
one of the terms εðp1p2z1z2Þ, εðp1p2z1z3Þ, εðp1p2z2z3Þ,
εðp1z1z2z3Þ, or εðp2z1z2z3Þ. These may have to be multi-
plied by parity-even structures so that the result contains
enough z’s. The general parity-odd cubic vertex is a linear
combination of terms of the form

εðzη11 zη22 zη33 pη4
1 p

η5
2 Þzñ1212 z

ñ13
13 z

ñ23
23 zp

m̃12

12 zpm̃23

23 zpm̃31

31 ; ð2:15Þ

where ηi ∈ f0; 1g and ñij; m̃ij are non-negative integers
satisfying

ñ12 þ ñ13 þ m̃12 þ η1 ¼ l1; ð2:16aÞ

ñ12 þ ñ23 þ m̃23 þ η2 ¼ l2; ð2:16bÞ

ñ13 þ ñ23 þ m̃31 þ η3 ¼ l3; ð2:16cÞ

η1 þ η2 þ η3 þ η4 þ η5 ¼ 4: ð2:16dÞ

The number of solutions to Eqs. (2.16) is also finite, and for
identical particles we must again look for S3-invariant
combinations of these structures.

3. Dimensionally dependent identities

In four dimensions there can be redundancies amongst
the cubic vertices due to dimensionally dependent (Gram)
identities. These can be written as contractions of the five-
dimensional epsilon tensor. In the parity-even case we have
the four-dimensional identity

εðp1p2z1z2z3Þεðp1p2z1z2z3Þ ¼ 0; ð2:17Þ

where the epsilons taken together should be understood
here in terms of the generalized Kronecker delta tensor

δ½μ1ν1 …δμ5�ν5 . This identity eliminates one combination of the
cubic vertices for any collection of spin-2 particles [24].
In the parity-odd case we can obtain four-dimensional

identities by contracting a single five-dimensional epsilon
tensor with linearly dependent five-vectors

εðP1P2Z1Z2Z3Þ ¼ 0; ð2:18Þ

where

ZA
1 ¼

�
A1

zμ1

�
; ZA

2 ¼
�
A2

zμ2

�
; PA

1 ¼
�
A3

pμ
1

�
; PA

2 ¼
�
A4

pμ
2

�
; ZA

3 ¼
�P

4
i¼1 αiAi

zμ3

�
: ð2:19Þ

Here A1, A2, A3, A4 are any scalars and αi are defined by z3 ¼ α1z1 þ α2z2 þ α3p1 þ α4p2 [19]. For example, choosing
fA1; A2; A3; A4g ¼ fz1j; z2j; zpj1; zpj2g for j ¼ 1, 2, 3 and fA1; A2; A3; A4g ¼ fzp1j; zp2j; pj1; pj2g for j ¼ 1, 2 gives the
five four-dimensional identities

z13εðp1p2z1z2Þ − z12εðp1p2z1z3Þ − zp12εðp1z1z2z3Þ ¼ 0; ð2:20aÞ

z12εðp1p2z2z3Þ þ z23εðp1p2z1z2Þ − zp23εðp2z1z2z3Þ ¼ 0; ð2:20bÞ

z13εðp1p2z2z3Þ − z23εðp1p2z1z3Þ þ zp31ðεðp1z1z2z3Þ þ εðp2z1z2z3ÞÞ ¼ 0; ð2:20cÞ

zp23εðp1p2z1z3Þ þ zp31εðp1p2z1z2Þ þ p11εðp2z1z2z3Þ − p12εðp1z1z2z3Þ ¼ 0; ð2:20dÞ

zp12εðp1p2z2z3Þ − zp31εðp1p2z1z2Þ þ p12εðp2z1z2z3Þ − p22εðp1z1z2z3Þ ¼ 0: ð2:20eÞ

To obtain a structure with enough z’s from the identities
(2.18) or (2.17) we may have to multiple by additional zij
or zpij terms. There are more ways to do this in the parity-
odd case since the identities contain fewer z’s to begin with.
Together with the freedom to choose the scalars Ai, this
results in many more parity-odd identities than parity-even

ones. This is reflected below in the larger redundancy
of parity-odd cubic and quartic vertices as compared to
parity-even vertices. Accounting for these dimensionally
dependent identities, the independent tensor structures for
different collections of particles in various spacetime dimen-
sions have been nicely enumerated using the representation
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theory of stabilizer groups by Kravchuk and Simmons-
Duffin [22].4 For the case of identical particles in four
dimensions with integer spin l, their results for the number
of parity-even and parity-odd cubic structures can be written
as

NcubicðlÞ ¼
�
l
2

�
2

þ ð1þ ð−1ÞlÞðlþ 1Þ
2

ð2:21Þ

and

ÑcubicðlÞ ¼
�
l
2

���
l
2

�
þ 1

�
; ð2:22Þ

where b·c is the floor function.

B. Quartic vertices

Now consider a four-point interaction of particles
with spins ðl1; l2; l3; l4Þ. Momentum conservation with
all momenta incoming gives

p1 þ p2 þ p3 þ p4 ¼ 0: ð2:23Þ

Using the conditions (2.23) and pii ¼ −m2
i , it can be shown

that there are only two independent contractions pij for
i ≠ j, which we take to be p12 and p13. These correspond to

the two independent Mandelstam variables s and t for 2→2
scattering, which for all momenta incoming are defined by

s ¼ −2p12 þm2
1 þm2

2; t ¼ −2p13 þm2
1 þm2

3:

ð2:24Þ

Contracting Eq. (2.23) with zi gives the four relations

zp12 þ zp13 þ zp14 ¼ 0; ð2:25aÞ

zp21 þ zp23 þ zp24 ¼ 0; ð2:25bÞ

zp31 þ zp32 þ zp34 ¼ 0; ð2:25cÞ

zp41 þ zp42 þ zp43 ¼ 0: ð2:25dÞ

This means that there are only eight independent contrac-
tions of the form zpij, rather than 12. There are also six
contractions of the form zij.

1. Parity even

In total, there are 16 independent parity-even Lorentz
scalars. The parity-even quartic vertices are thus built from
tensor structures of the form

zn1212 z
n13
13 z

n14
14 z

n23
23 z

n24
24 z

n34
34 zp

m13

13 zpm14

14 zpm21

21 zpm24

24 zpm31

31 zpm32

32 zpm42

42 zpm43

43 ; ð2:26Þ

where the exponents nij and mij are non-negative integers
satisfying

n12 þ n13 þ n14 þm13 þm14 ¼ l1; ð2:27aÞ

n12 þ n23 þ n24 þm21 þm24 ¼ l2; ð2:27bÞ

n13 þ n23 þ n34 þm31 þm32 ¼ l3; ð2:27cÞ

n14 þ n24 þ n34 þm42 þm43 ¼ l4: ð2:27dÞ

There are a finite number of solutions to Eqs. (2.27). The
corresponding tensor structures encode the different
ways of contracting the polarization tensors. Each tensor
structure can also be multiplied by a function fðs; tÞ of
the Mandelstam variables, reflecting the fact that there
are on-shell quartic interactions with arbitrarily many
derivatives. (In a CFT this corresponds to the freedom to
multiply a four-point conformal correlator by a function of
the conformal cross ratios.) When a general four-point

amplitude is expanded in terms of these quartic tensor
structures, the coefficient fðs; tÞ can have nonanalytic
pieces due to contributions from, e.g., loops and exchange
diagrams. However, at tree level the contributions to fðs; tÞ
from local contact interactions are polynomial.
As in the cubic case, permutation symmetries impose

extra constraints on the quartic vertices. When the four
external particles are identical we should look for combi-
nations of the vertices that are invariant under the
symmetric group S4 of particle permutations. However,
some of these permutations interchange the Mandelstam
variables, which means that the functions appearing in
front of the different tensor structures satisfy additional
crossing relations. Instead of imposing S4 invariance and
solving the crossing relations in terms of the functions
fIðs; tÞ, our approach is to deal with tensor structures that
are invariant under the subgroup of permutations that do
not affect the Mandelstam variables, which are called
kinematic permutations [22]. The remaining permutation
symmetries then correspond to crossing symmetries of the
scattering amplitudes, which we later impose as an addi-
tional constraint.
For the case of four identical particles that we con-

sider, the group of kinematic permutations has four
4Another approach to counting independent operators is

through Hilbert series [25].
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elements and is isomorphic to Z2
2 [22]. In cycle notation it

is given by

Πkin ¼ fI ; ð12Þð34Þ; ð13Þð24Þ; ð14Þð23Þg ≅ Z2
2; ð2:28Þ

where I is the identity element. We denote the parity-even
Z2

2-invariant tensor structures by T I. The most general
parity-even four-point amplitude for identical particles
coming from tree-level contact diagrams is then given by

Acontact ¼
X
I

fIðs; tÞT I; ð2:29Þ

where fIðs; tÞ are arbitrary polynomials (up to crossing
constraints) and the sum runs over all of the Z2

2-invariant
tensor structures.5

2. Parity odd

There are also parity-odd quartic structures. These
contain one of the 35 independent contractions of the form
εðp1p2p3ziÞ, εðpipjzkzlÞ, εðpizjzkzlÞ, or εðz1z2z3z4Þ. The
general parity-odd quartic structure is made from terms of
the form

εðzη11 zη22 zη33 zη44 pη5
1 p

η6
2 p

η7
3 Þzñ1212 z

ñ13
13 z

ñ14
14 z

ñ23
23 z

ñ24
24 z

ñ34
34 zp

m̃13

13 zpm̃14

14 zpm̃21

21 zpm̃24

24 zpm̃31

31 zpm̃32

32 zpm̃42

42 zpm̃43

43 ; ð2:30Þ

where ηi ∈ f0; 1g and ñij; m̃ij are non-negative integers
satisfying

ñ12 þ ñ13 þ ñ14 þ m̃13 þ m̃14 þ η1 ¼ l1; ð2:31aÞ

ñ12 þ ñ23 þ ñ24 þ m̃21 þ m̃24 þ η2 ¼ l2; ð2:31bÞ

ñ13 þ ñ23 þ ñ34 þ m̃31 þ m̃32 þ η3 ¼ l3; ð2:31cÞ

ñ14 þ ñ24 þ ñ34 þ m̃42 þ m̃43 þ η4 ¼ l4; ð2:31dÞ

η1 þ η2 þ η3 þ η4 þ η5 þ η6 þ η7 ¼ 4: ð2:31eÞ

We denote the parity-odd Z2
2-invariant tensor structures by

T̃ Ĩ . The most general parity-odd four-point amplitude for
identical particles coming from tree-level contact diagrams
is thus given by

Ãcontact ¼
X
Ĩ

f̃Ĩðs; tÞT̃ Ĩ ; ð2:32Þ

where f̃Ĩðs; tÞ are arbitrary polynomials (up to crossing
constraints) and the sum runs over all of the Z2

2-invariant
tensor structures.

3. Dimensionally dependent identities

As for cubic vertices, there are redundant combinations
of quartic structures in four dimensions due to dimension-
ally dependent identities. These identities can be con-
structed from contractions of five-dimensional epsilon

tensors, as in Eqs. (2.17) and (2.18). There are now seven
vectors available for contraction, fz1; z2; z3; z4; p1; p2; p3g,
and additional z’s are required to form a quartic structure,
so there are more identities than in the cubic case.
Due to these identities, the sets of tensor structures

obtained by solving Eqs. (2.27) and (2.31) are generally not
independent. They satisfy relations of the form

X
I

cðnÞI ðs; tÞT I ¼ 0;
X
Ĩ

c̃ðñÞ
Ĩ
ðs; tÞT̃ Ĩ ¼ 0; ð2:33Þ

where cðnÞI ðs; tÞ and c̃ðñÞ
Ĩ
ðs; tÞ are polynomials in s and t.6

Ideally we would use these relations to eliminate redundant
tensor structures, e.g., by writing

T I0 ¼ −
1

cðn0ÞI0
ðs; tÞ

X
I≠I0

cðn0ÞI ðs; tÞT I ð2:34Þ

in the expansion (2.29) and then absorbing this by
redefining the coefficients,

fIðs; tÞ → fIðs; tÞ þ
fI0ðs; tÞcðn0ÞI ðs; tÞ

cðn0ÞI0
ðs; tÞ

; ð2:35Þ

for I ≠ I0. However, if c
ðn0Þ
I0

ðs; tÞ is not a constant then this
would result in the new coefficients becoming rational
functions if they started out as polynomials. This creates a
tension between writing contact amplitudes in terms of

5In (2.29) we have assumed that the Z2
2-invariant amplitudes

can be written in terms of Z2
2-invariant tensor structures. We

could also add combinations of unsymmetrized tensor structures
that vanish due to dimensionally dependent identities, but these
would be projected away when we substitute four-dimensional
kinematics in Sec. IVA, so we can ignore them without loss of
generality.

6Mathematically, before imposing permutation symmetries the
quartic contact amplitudes are elements of a module over the ring
of polynomials in s and t with real coefficients. This module is
generated by the set of tensor structures and the Z2

2-invariant
amplitudes form a submodule. Unlike vector spaces, modules do
not always have a basis due to the possibility of nontrivial
relations amongst the generators as in (2.33), which are called
syzygies. Modules that have a basis are called free modules.
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independent tensor structures and manifesting locality

through polynomial coefficients. When cðn0ÞI0
ðs; tÞ is a

nonzero constant, then it is possible to eliminate the
structure T I0 and still have polynomial coefficients,
although achieving this may require redefining some
structures. If it is possible to eliminate all syzygies in this
way then the resulting module is free. In practice it can be
difficult to find a basis, so it is sometimes easier to use
tensor structures that are not independent.
The numbers of independent parity-even and parity-odd

Z2
2-invariant quartic structures for bosonic spin-l particles

are given by

NquarticðlÞ ¼ 1þ 2lð1þ lÞð2þ lþ l2Þ; ð2:36Þ

ÑquarticðlÞ ¼ lð1þ lÞð1þ 2lþ 2l2Þ; ð2:37Þ

respectively [22]. So a basis of these tensor structures, if it
exists, has NquarticðlÞ or ÑquarticðlÞ elements.
One way to find syzygies is to search systematically

for combinations of tensor structures amongst a general
superposition of the dimensionally dependent identities.
Alternatively, we can evaluate the tensor structures using
explicit four-dimensional kinematics and search for com-
binations of the form (2.33) that vanish when written in
terms of s and t. A method to directly construct a basis
is the conformal/scattering frame approach of [22], as
employed for the 3d stress-tensor bootstrap in [26].
Further, a good check for whether a set of n-point tensor
structures is independent is to calculate the “P-matrix”
[23], defined by

PIJ ¼
X

τ1;…;τn

T�τ1…τn
I Tτ1…τn

J ; ð2:38Þ

where the sum runs over a basis of polarizations for
each external particle. This can be written in terms of
Mandelstam variables using the on-shell completeness
relation

X
τi

ϵðτiÞμ1…μli
ϵ�ðτiÞν1…νli

¼ Πμ1…μli ;ν1…νli
; ð2:39Þ

where ϵðτiÞμ1…μli
is a basis of polarization tensors for particle i

andΠμ1…μli ;ν1…νli
is the spin-li projector (see Sec. III). If the

determinant of PIJ is nonzero then the tensor structures are
independent.

C. Examples

We now apply this formalism to explicitly construct all
the cubic and quartic vertices for identical self-interacting
massive fields with integer spin ≤ 2 in four dimensions. We
also discuss the zero-derivative quartic vertices for higher-
spin particles.

1. Spin 0

Cubic vertices.—For scalar fields the only solution to the
cubic equations (2.14) is nij ¼ mij ¼ 0, which gives a
constant, λ. For a single self-interacting scalar, this corre-
sponds to the interaction λϕ3=6. Any other cubic inter-
actions in the Lagrangian can be written in terms of this one
and higher-order interactions after integrating by parts and
redefining fields. There are no parity-odd cubic vertices.

Quartic vertices.—At the quartic level there is only one
tensor structure for a scalar, the constant vertex T1 ¼ 1, so
the quartic contact amplitude is given by

Acontact ¼ f1ðs; tÞ; ð2:40Þ
where the function f1ðs; tÞ is an arbitrary polynomial (up to
crossing constraints). There are no parity-odd quartic
structures.

2. Spin 1

Cubic vertices.—The cubic vertices for spin 1 are found by
solving Eqs. (2.14) with li ¼ 1. There are four solutions,
giving the structures

z12zp31; z13zp23; z23zp12; zp12zp23zp31:

ð2:41Þ
No combination of these is invariant under all permutations
of the particles, so there are no on-shell parity-even cubic
amplitudes for a single vector.7 There are also no parity-odd
cubic terms for a single vector; the five parity-odd struc-
tures obtained by solving (2.16) are

εðp1p2z1z2Þzp31; εðp1p2z1z3Þzp23;

εðp1p2z2z3Þzp12; εðp1z1z2z3Þ; εðp2z1z2z3Þ;
ð2:43Þ

but no combination of these is invariant under the sym-
metric group S3.

Quartic vertices.—To find the parity-even quartic vertices
we must solve Eqs. (2.27) with li ¼ 1. Imposing the Z2

2

permutation symmetry leaves 19 structures T I , although by
Eq. (2.36) only 17 of these are independent. We can
eliminate two of the structures using the following dimen-
sionally dependent identities,

7This implies that there can be no cubic photon interactions.
There are cubic amplitudes for multiple vectors, e.g., the Yang-
Mills cubic vertex

fabcðzab12zpc
31 þ zac13zp

b
23 þ zbc23zp

a
12Þ; ð2:42Þ

where fabc is an antisymmetric structure constant.
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εðp1p2p3z1z2Þεðp1p2p3z3z4Þ ¼ 0; ð2:44Þ

εðp1p2p3z1z3Þεðp1p2p3z2z4Þ ¼ 0: ð2:45Þ

These are also the only independent identities that have the
form of a parity-even spin-1 quartic vertex, which explains
the initial amount of redundancy. We list explicitly our
basis of 17 parity-even structures in Appendix A.
We can similarly find the parity-odd quartic structures

by solving Eq. (2.30) with li ¼ 1. After imposing the Z2
2

symmetry we find 48 structures, but by (2.37) only ten of
these are independent. Despite this large redundancy, we
can find a basis of structures while preserving manifest
locality [keeping the coefficients f̃Ĩðs; tÞ as polynomials]
by using dimensionally dependent identities. Our basis of
ten parity-odd structures is given explicitly in Appendix A.
We have checked that the tensor structures in these parity-
even and parity-odd bases are independent by evaluating
the determinant of the matrix PIJ defined in Eq. (2.38).
To summarize, the general spin-1 tree-level quartic

contact amplitude can be written in the form

Acontact þ Ãcontact ¼
X17
I¼1

fIðs; tÞT I þ
X10
Ĩ¼1

f̃Ĩðs; tÞT̃ Ĩ ;

ð2:46Þ
where T I , T̃ Ĩ are the tensor structures listed explicitly in
Appendix A and fIðs; tÞ, f̃Ĩðs; tÞ are polynomials in the
Mandelstam variables.

3. Spin 2

Cubic vertices.—The parity-even cubic vertices for a spin-2
field are found by solving Eqs. (2.14) with li ¼ 2. There are
11 solutions in total. Five combinations of the correspond-
ing tensor structures are invariant under permuting the

particles, corresponding to the cubic vertices for identical
particles. These cubic vertices are given by

A1 ¼ z12z13z23; ð2:47aÞ
A2 ¼ z223zp

2
12 þ z213zp

2
23 þ z212zp

2
31; ð2:47bÞ

A3 ¼ z13z23zp12zp23 þ z12z23zp12zp31 þ z12z13zp23zp31;

ð2:47cÞ
A4 ¼ zp12zp23zp31ðz12zp31 þ z23zp12 þ z13zp23Þ;

ð2:47dÞ
A5 ¼ zp2

12zp
2
23zp

2
31: ð2:47eÞ

The dimensionally dependent identity (2.17) gives the
relation

4A4 − 2m2ðA2 þA3Þ þ 3m4A1 ¼ 0; ð2:48Þ
so we can eliminate the structure A4 in four dimensions by
writing it in terms of the others. This leaves four indepen-
dent structures, in agreement with (2.21). The most general
parity-even cubic vertex is given by

g1A1 þ g2A2 þ g3A3 þ g5A5; ð2:49Þ
where gn are cubic coupling constants. In dRGT massive
gravity the two-derivative cubic couplings satisfy g3=g2¼2,
which is a signature of the Einstein-Hilbert kinetic term,
whereas in the pseudolinear theory they satisfy g3=g2 ¼ 1.
Both of these theories also have g5 ¼ 0 and g1 as a free
parameter. See [27] for a detailed comparison of the struc-
tures (2.47) to those generated by familiar Lagrangian
interactions.
Nowconsider parity-oddcubicvertices. SolvingEqs. (2.16)

and symmetrizing gives the following five structures:

B1 ¼ z13z23εðp1p2z1z2Þ − z12z23εðp1p2z1z3Þ þ z12z13εðp1p2z2z3Þ; ð2:50aÞ
B2 ¼ z12zp31εðp2z1z2z3Þ − z13zp23εðp2z1z2z3Þ þ ðz12zp31 − z23zp12Þεðp1z1z2z3Þ; ð2:50bÞ
B3 ¼ z12zp2

31εðp1p2z1z2Þ þ z23zp2
12εðp1p2z2z3Þ − z13zp2

23εðp1p2z1z3Þ; ð2:50cÞ
B4 ¼ zp31ðz23zp12 þ z13zp23Þεðp1p2z1z2Þ þ zp12ðz13zp23 þ z12zp31Þεðp1p2z2z3Þ

− zp23ðz23zp12 þ z12zp31Þεðp1p2z1z3Þ; ð2:50dÞ
B5 ¼ zp12zp23zp31ðzp31εðp1p2z1z2Þ − zp23εðp1p2z1z3Þ þ zp12εðp1p2z2z3ÞÞ: ð2:50eÞ

Using the four-dimensional identities II A 3 we get the constraints

B4 ¼ 0; ð2:51aÞ

2B1 þ B2 ¼ 0; ð2:51bÞ

3m2B1 þ 2B3 ¼ 0: ð2:51cÞ
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This means that only two of the structures are independent,
in agreement with (2.22). We take B1 and B5 as a basis and
write the most general parity-odd cubic vertex as

g̃1B1 þ g̃5B5; ð2:52Þ

where g̃ñ are cubic coupling constants.
The vertex B5 is generated by the cubic part of the parity-

odd Riemann-cubed interaction

ffiffiffiffiffiffi
−g

p ðR̃μν
αβRαβ

λρRλρ
μνÞ; ð2:53Þ

where R̃μν
αβ ≡ εμνλρRλραβ. If the external particles are

massless, then B5 is gauge invariant and using the identities
(2.20d) and (2.20e) it can be written more simply as

3zp12zp23zp2
31εðp1p2z1z2Þ; ð2:54Þ

which agrees with the form of this structure presented
in [28]. The vertex B1 is generated by the Lagrangian
interaction

εμνλρ∂μhνα∂λhρβhαβ: ð2:55Þ

We do not know of any theory that utilizes this vertex. It has
two derivatives, is not gauge invariant, and exists only in
four dimensions, so it is a good candidate interaction for a
four-dimensional parity-odd theory of a massive spin-2
particle.8

Quartic vertices.—To find the parity-even quartic vertices
we must solve Eqs. (2.27) with li ¼ 2. After imposing the
kinematic permutations there are 201 parity-even struc-
tures, but only 97 of these are independent by Eq. (2.36).
We did not find a basis of these structures, so we work with
structures that are not independent.
We can similarly find all the quartic parity-odd structures

by solving (2.31) with li ¼ 2. After imposing the kinematic
permutations there are 1266 parity-odd structures, but only
78 of these are independent by Eq. (2.37). This huge
redundancy comes from the large number of dimensionally
dependent identities involving parity-odd structures. A
simple way to reduce the number of structures is to find
relations of the form (2.33) where all of the coefficients

c̃ðñÞ
Ĩ
ðs; tÞ are constants. There are 804 relations of this form,

so this reduces the number of structures to 462. This is
enough of a reduction to make the calculation of the general

amplitude feasible, so we do not attempt to find a
smaller set.
Overall, the general tree-level quartic contact amplitude

for a self-interacting spin-2 particle is given by

Acontact þ Ãcontact ¼
X201
I¼1

fIðs; tÞT I þ
X462
Ĩ¼1

f̃Ĩðs; tÞT̃ Ĩ ;

ð2:56Þ

where fIðs; tÞ and f̃Ĩðs; tÞ are polynomials. The spin-2
tensor structures are too numerous for us to list them
explicitly, but they can be generated using theMathematica
notebook attached as a Supplemental Material [31].

4. Spin l

We could repeat the previous construction for higher
spins, but actually calculating the general amplitude
becomes difficult as the number of tensor structures
increases. The general case for spins greater than 2 is
beyond the scope of this paper, but we instead consider the
simpler problem of finding all zero-derivative quartic
contact structures. It also seems plausible that these suffice
to determine a lower bound on the growth of the four-point
amplitude.
When constructing a local Lagrangian for massive

higher-spin particles, it is necessary to introduce auxiliary
fields to help enforce the required on-shell constraints [32].
These fields vanish on shell, so an advantage of working
directly with on-shell amplitudes is that we avoid having to
introduce auxiliary fields.

Zero-derivative quartic vertices.—To find the zero-
derivative quartic vertices for a singlemassive spin-l particle
we must solve

n12 þ n13 þ n14 ¼ l; n23 ¼ n14;

n24 ¼ n13; n34 ¼ n12: ð2:57Þ

There are ðlþ 1Þðlþ 2Þ=2 solutions to these equations, so
this is the number of structures before symmetrizing.
We next impose a permutation symmetry on these

structures. In this case we can impose the full S4 permu-
tation symmetry, rather than just the Z2

2 subgroup. This is
because we ignore derivative interactions, so the coeffi-
cients fIðs; tÞ are just constants. It is therefore straightfor-
ward to find S4-invariant combinations of vertices, which
means that the resulting amplitudes will automatically be
crossing symmetric.
Using Burnside’s lemma we get that the number of

S4-invariant structures is

6þ 3lþ l2 þ 6b2þl
2
cþ 4b1

2
cosð2πl

3
Þc

12
¼
�ðlþ 3Þ2

12

�
; ð2:58Þ

8There are no parity-odd cubic vertices for identical spin-2
particles in five dimensions since there is no S3-invariant
combination of structures containing εðp1p2z1z2z3Þ. In three
dimensions there is a well-known parity-odd theory of massive
gravity, namely topological massive gravity [29]. A parity-odd
interaction for massive gravity in the vielbein formulation was
discussed in [30].
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where ½·� is the nearest integer function. It is straightforward
to construct these vertices for any given l and they are
independent in four dimensions.
We can also write down the corresponding on-shell

Lagrangian interactions: schematically they are of the
form

ϕμ1…μlϕν1…νlϕλ1…λlϕρ1…ρlðημνÞn12ðημλÞn13ðημρÞn14
× ðηνλÞn23ðηνρÞn24ðηλρÞn34 ; ð2:59Þ

where ϕμ1…μl is the symmetric traceless rank-l tensor field
carrying the spin-l particle. All of the contractions in this
vertex are fixed once a choice is made for how the μ indices
are distributed over the other three tensors. Each vertex
thus corresponds to a distinct partition of l of length
at most three and the number of such partitions is given
by Eq. (2.58).
We focus on the parity-even zero-derivative vertices

for higher spins; however, we note that the parity-odd,
S4-invariant, zero-derivative vertices are given by the
parity-even vertices multiplied by

ðz14z23 − z13z24Þðz14z23 − z12z34Þðz13z24 − z12z34Þ
× εðz1z2z3z4Þ: ð2:60Þ

This means that zero-derivative parity-odd vertices exist for
spins ≥ 4 and for spin l there are ½ðl − 1Þ2=12� of them.

III. FOUR-POINT AMPLITUDES

Our goal is to find the most general four-point tree
amplitude with a certain energy scaling for some given
particle content, and consequently to find a lower bound on
the scaling. Now that we have all the relevant on-shell cubic
and quartic vertices from Sec. II, it is possible to calculate
the general 2-to-2 tree amplitude, impose crossing sym-
metry, and then look for the subset of amplitudes with a
certain energy scaling. However, in practice this is quite
difficult to implement for particles with spin due to the
complexity of the crossing equations and the dependence of
the amplitude on multiple free functions. It is thus helpful
to choose simplifying kinematics and to understand in
detail how vertices translate into four-point amplitudes. In
this section we detail our explicit kinematics and discuss
some properties of four-point transversity amplitudes that
are needed to organize our calculation.

A. Kinematics

We consider identical external particles with mass m, so
that pi · pi ¼ −m2. Particles 3 and 4 are now taken to be
outgoing, so momentum conservation gives

p1 þ p2 ¼ p3 þ p4: ð3:1Þ

In the center-of-mass frame with scattering in the xz-plane,
scattering angle θ, and center-of-mass energy E, the
momenta can be written as

pj
μ ¼ ðE; p sin θj; 0; p cos θjÞ; ð3:2Þ

where θ1 ¼ 0, θ2 ¼ π, θ3 ¼ θ, θ4 ¼ θ − π. The
Mandelstam variables are defined by

s ¼ −ðp1 þ p2Þ2; t ¼ −ðp1 − p3Þ2; u ¼ −ðp1 − p4Þ2;
ð3:3Þ

which satisfy sþ tþ u ¼ 4m2. These are related to θ
and E by

s ¼ 4E2; cos θ ¼ 1 −
2t

4m2 − s
¼ 2u

4m2 − s
− 1;

sin2θ ¼ 4tu
ðs − 4m2Þ2 : ð3:4Þ

The limit of high-energy fixed-angle scattering corresponds
to s, −t → ∞ with s=t fixed.
A massive vector has three d.o.f. For each momentum

pμ, we have a basis of polarization vectors ϵ
ðτÞ
μ , τ ¼ 0, �1,

that are transverse and orthonormal,

ϵðτÞμ pμ ¼ 0; ϵðτÞμ ϵ�ðτ0Þμ ¼ δττ
0
: ð3:5Þ

We use a polarization basis corresponding to states with
their spins projected on the axis orthogonal to the scattering
plane, which are known as transversity states [33]. We
could use any polarization basis, but transversity states
simplify our calculations due to their simple crossing
relations. In the center-of-mass frame (3.2), the vector
transversity polarizations for external particle j are given by

ϵð�1Þ
μ ðpjÞ

¼ iffiffiffi
2

p
m
ðp; E sin θj � im cos θj; 0; E cos θj ∓ im sin θjÞ;

ð3:6aÞ

ϵð0Þμ ðpjÞ ¼ ð0; 0; 1; 0Þ; ð3:6bÞ

where the parenthesized superscript labels the transversity
[34]. The four external polarization vectors are linear sums
of these basis polarizations,

ϵjμ ¼
X1
τ¼−1

αjτϵ
ðτÞ
μ ðpjÞ; ð3:7Þ

where αjτ are normalized coefficients,
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X1
τ¼−1

jαjτj2 ¼ 1: ð3:8Þ

The polarization vectors satisfy the completeness relation

Πμν ¼
X1
τ¼−1

ϵðτÞμ ϵðτÞ�ν ; ð3:9Þ

where the projection tensor Πμν appears in the numerator of
the massive vector propagator and is given by

Πμν ¼ ημν þ
pμpν

m2
: ð3:10Þ

More generally, the propagator for a massive spin-l particle
is given by

−iΠμ1…μl;ν1…νl

p2 þm2 − iϵ
; ð3:11Þ

where the numerator is a transverse, traceless projection
tensor that is separately symmetric in the μ and ν indices.
A massive spin-2 particle has five d.o.f. For each

momentum pμ, we have a basis of symmetric polarization

tensors ϵðτÞμν , τ ¼ 0, �1, �2, that are transverse, traceless,
and orthonormal,

eðτÞμν pμ ¼ 0; ϵðτÞμμ ¼ 0; ϵðτÞμν ϵ�ðτ
0Þμν ¼ δττ

0
: ð3:12Þ

In terms of the vector polarizations we can take

ϵð�2Þ
μν ¼ ϵð�1Þ

μ ϵð�1Þ
ν ; ð3:13aÞ

ϵð�1Þ
μν ¼ 1ffiffiffi

2
p ðϵð�1Þ

μ ϵð0Þν þ ϵð0Þμ ϵð�1Þ
ν Þ; ð3:13bÞ

ϵð0Þμν ¼ 1ffiffiffi
6

p ðϵð1Þμ ϵð−1Þν þ ϵð−1Þμ ϵð1Þν þ 2ϵð0Þμ ϵð0Þν Þ: ð3:13cÞ

The four external polarization tensors are linear sums of
these basis tensors,

ϵjμν ¼
X2
τ¼−2

αjτϵ
ðτÞ
μν ðpjÞ; ð3:14Þ

where αjτ are normalized coefficients,

X2
τ¼−2

jαjτj2 ¼ 1: ð3:15Þ

The polarization tensors satisfy the completeness relation

Πμ1μ2;ν1ν2 ¼
X2
τ¼−2

ϵðτÞμ1μ2ϵ
ðτÞ�
ν1ν2 ; ð3:16Þ

where the transverse traceless tensor Πμ1μ2;ν1ν2 appears
in the numerator of the massive spin-2 propagator and is
given by

Πμ1μ2;ν1ν2 ¼
1

2
Πμ1ν1Πμ2ν2 þ

1

2
Πμ1ν2Πμ2ν1 −

1

3
Πμ1μ2Πν1ν2 :

ð3:17Þ
We can similarly define polarization tensors for spins
greater than 2 by building higher-rank symmetrized trace-
less products of the vector polarizations.

B. Properties of transversity amplitudes

We now review some properties of 2-to-2 transversity
amplitudes that will be useful for our calculation. We
discuss parity, permutation symmetries, crossing sym-
metry, kinematical singularities, and the translation of
vertices into four-point amplitudes. Our discussion is not
general since we assume that the scattered particles are
identical bosons with spin l. For reviews of transversity
amplitudes, see [34,35].

1. Parity

First consider parity. We denote the four-point amplitude
for the scattering of identical particles with transversities τi
by Aτ1τ2τ3τ4. A nice feature of these transversity amplitudes
is that they have definite parity, unlike helicity amplitudes.
Under a parity transformation they transform as [34]

P∶ Aτ1τ2τ3τ4 → ð−1Þτ1þτ2−τ3−τ4Aτ1τ2τ3τ4 : ð3:18Þ
So amplitudes with an even or odd sum of transversities are
parity even or odd, respectively. The contributions from the
parity-odd and parity-even quartic structures thus decouple
in the transversity basis. If there are parity-even and parity-
odd cubic vertices then the even-even and odd-odd
exchange diagrams contribute to the parity-even four-point
amplitudes, whereas the even-odd and odd-even exchange
diagrams contribute to the parity-odd four-point ampli-
tudes. In a parity-invariant theory the amplitudes with an
odd sum of transversities must vanish.
The number of parity-even and parity-odd amplitudes is

NtotalðlÞ ¼
ð2lþ 1Þ4 þ 1

2
; ÑtotalðlÞ ¼

ð2lþ 1Þ4 − 1

2
;

ð3:19Þ
since the number of even transversity sums exceeds the
number of odd sums by 1. The number of independent
amplitudes is fewer than this due to the permutation
symmetries that we consider next.

2. Permutation symmetries

We now consider the action of permutation symmetries
on transversity amplitudes. As with the tensor structures, it
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is useful to consider separately the permutations that
leave the Mandelstam variables invariant—the kinematic
permutations—and those that do not, which lead to cross-
ing relations. The kinematic permutations act in a simple
way on the transversity amplitudes of identical integer-spin
particles,

ð12Þð34Þ∶ Aτ1τ2τ3τ4 ¼ Aτ2τ1τ4τ3 ; ð3:20aÞ

ð13Þð24Þ∶ Aτ1τ2τ3τ4 ¼ Aτ3τ4τ1τ2 ; ð3:20bÞ

ð14Þð23Þ∶ Aτ1τ2τ3τ4 ¼ Aτ4τ3τ2τ1 : ð3:20cÞ

The first relation follows from the invariance of the
amplitude under a rotation by π about the axis per-
pendicular to the center-of-mass scattering plane. To get
the second relation, note that invariance under time reversal
T gives [34]

T invariance ⇒ Aτ1τ2τ3τ4 ¼ ð−1Þτ1−τ2−τ3þτ4Aτ3τ4τ1τ2 :

ð3:21Þ

Time reversal is not a symmetry of our parity-odd ampli-
tudes, but charge conjugation C is a symmetry since our
particles are identical and uncharged. By the CPT theorem
we must therefore have PT as a symmetry, which from
Eqs. (3.18) and (3.21) implies Eqs. (3.20). The third
relation, Eq. (3.20b), follows by combining the other two.
These permutation relations reduce the number of

independent amplitudes. We can count the number of
independent parity-even and parity-odd amplitudes using
Burnside’s lemma, which gives

NampðlÞ ¼ 1þ 2lð1þ lÞð2þ lþ l2Þ; ð3:22Þ

ÑampðlÞ ¼ lð1þ lÞð1þ 2lþ 2l2Þ: ð3:23Þ

Notice that the number of independent amplitudes precisely
matches the number of independent quartic structures from
Eqs. (2.36) and (2.37),

NampðlÞ ¼ NquarticðlÞ; ÑampðlÞ ¼ ÑquarticðlÞ: ð3:24Þ

This equivalence is apparent from the explicit construction
of tensor structures in [22] and is explored more generally
in Appendix F of [25]. The implication of this is that there
is one functional d.o.f. in the amplitude per independent
scattering process. Placing an upper bound on the growth of
each process is thus constraining enough to determine the
functions up to a finite number of parameters.

3. Crossing symmetry

Now we consider the four-particle crossing symmetries,
which correspond to the permutation symmetries that

change the Mandelstam variables. The primary advantage
of transversity amplitudes is their simple crossing sym-
metry transformations. For the scattering of identical
bosons the crossing relations are [33,34]

Aτ1τ2τ3τ4ðs; tÞ ¼ eiðπ−χtÞ
P

j
τjA−τ1−τ3−τ2−τ4ðt; sÞ; ð3:25Þ

Aτ1τ2τ3τ4ðs; tÞ ¼ eiðπ−χuÞ
P

j
τjA−τ1−τ4−τ3−τ2ðu; tÞ; ð3:26Þ

where

e−iχt ¼ −st − 2im
ffiffiffiffiffiffiffi
stu

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þtðt − 4m2Þ

p ;

e−iχu ¼ −suþ 2im
ffiffiffiffiffiffiffi
stu

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þuðu − 4m2Þ

p : ð3:27Þ

The crossing relations (3.25) and (3.26) require analytically
continuing the amplitudes, since the left- and right-hand
sides correspond to physical scattering in different regions
of the complex Mandelstam plane. In practice we evaluate
everything in the physical s-channel region where s ¼
s0 þ iϵ, t ¼ t0 − iϵ, and u < 0 with s0 > 4m2, t0 < 0, and
ϵ → 0þ. We have checked that Eqs. (3.25) and (3.26) hold
for a few test amplitudes for self-interacting spin-1 and
spin-2 particles derived from Lagrangian interactions. For a
recent derivation and discussion of the crossing relations
for spinning particles, see [34].

4. Singularity structure

Amplitudes for spinning particles can contain singular-
ities beyond the usual poles and branch cuts of scalar
amplitudes. The structure of these kinematical singularities
depends on the relative masses of the external particles in
an intricate way [36,37]. In the case of identical integer-spin
particles we can extract the kinematical singularities by
writing the transversity amplitudes in the form

Aτ1τ2τ3τ4ðs; tÞ ¼
sξaτ1τ2τ3τ4ðs; tÞ þ i

ffiffiffiffiffiffiffi
stu

p
bτ1τ2τ3τ4ðs; tÞffiffiffi

s
p ξðs − 4m2Þj

P
i
τij=2

;

ð3:28Þ

where ξ ¼ 0 if the amplitude is parity even and ξ ¼ 1 if the
amplitude is parity odd. The

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p
,

ffiffiffi
s

p
, and

ffiffiffiffiffiffiffi
stu

p
singularities are called thresholds, pseudothresholds, and
“the border of the physical region,” respectively. The
threshold and pseudothreshold singularities factorize for
transversity amplitudes, as can be deduced from the
crossing relations, whereas the

ffiffiffiffiffiffiffi
stu

p
piece does not

factorize [35–37].
The functions aτ1τ2τ3τ4ðs; tÞ and bτ1τ2τ3τ4ðs; tÞ, which are

defined by Eq. (3.28), encode the amplitudes with the
kinematical singularities stripped off. They are not all
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independent due to kinematic permutations and the follow-
ing additional relation under flipping transversities:

A−τ1−τ2−τ3−τ4ðs; tÞ

¼ ð−1Þξðsξaτ1τ2τ3τ4ðs; tÞ − i
ffiffiffiffiffiffiffi
stu

p
bτ1τ2τ3τ4ðs; tÞÞffiffiffi

s
p ξðs − 4m2Þj

P
i
τij=2

: ð3:29Þ

This implies, e.g., that b0000ðs; tÞ ¼ 0. We can use
Burnside’s lemma to count the number of independent
parity-even and parity-odd functions aτ1τ2τ3τ4ðs; tÞ and
bτ1τ2τ3τ4ðs; tÞ,

NaðlÞ ¼
2þ lð1þ lÞð7þ 2lþ 2l2Þ

2
;

ÑaðlÞ ¼ NbðlÞ ¼ ÑbðlÞ ¼
ÑampðlÞ

2
: ð3:30Þ

The total number of these functions is equal to the number
of independent amplitudes,

NaðlÞ þ NbðlÞ ¼ NampðlÞ; ÑaðlÞ þ ÑbðlÞ ¼ ÑampðlÞ;
ð3:31Þ

so they correctly account for all of the functional d.o.f.

5. Translating vertices into amplitudes

To relate on-shell cubic and quartic vertices to these four-
point amplitudes, we can split the functions aτ1τ2τ3τ4ðs; tÞ
into pieces coming from tree-level exchange and contact
diagrams. We thus write

aτ1τ2τ3τ4ðs; tÞ ¼ aexchangeτ1τ2τ3τ4 ðs; tÞ þ acontactτ1τ2τ3τ4ðs; tÞ; ð3:32Þ

where aexchangeτ1τ2τ3τ4 ðs; tÞ is a rational function of s and t that has
simple poles corresponding to exchanged states going on
shell and depends quadratically on the cubic couplings gm,
g̃m̃, as fixed by factorization. Similarly, acontactτ1τ2τ3τ4ðs; tÞ is a
polynomial that depends linearly on the tensor structure
coefficients fIðs; tÞ, f̃Ĩðs; tÞ defined in Eqs. (2.29) and
(2.32),

acontactτ1τ2τ3τ4ðs; tÞ ¼

8>><
>>:

P
I
qIτ1τ2τ3τ4ðs; tÞfIðs; tÞ for

P
τ even;

P
Ĩ

q̃Ĩτ1τ2τ3τ4ðs; tÞf̃Ĩðs; tÞ for
P

τ odd;

ð3:33Þ

where qIτ1τ2τ3τ4ðs; tÞ, q̃Ĩτ1τ2τ3τ4ðs; tÞ are polynomials that
encode the quartic tensor structures.
We similarly write

bτ1τ2τ3τ4ðs; tÞ ¼ bexchangeτ1τ2τ3τ4 ðs; tÞ þ bcontactτ1τ2τ3τ4ðs; tÞ; ð3:34Þ

and

bcontactτ1τ2τ3τ4ðs; tÞ ¼

8>><
>>:

P
I
rIτ1τ2τ3τ4ðs; tÞfIðs; tÞ for

P
τ even;

P
Ĩ

r̃Ĩτ1τ2τ3τ4ðs; tÞf̃Ĩðs; tÞ for
P

τ odd;

ð3:35Þ

where rIτ1τ2τ3τ4ðs; tÞ, r̃Ĩτ1τ2τ3τ4ðs; tÞ are polynomials that
encode the quartic tensor structures.

IV. LOWER BOUNDS ON THE GROWTH
OF TREE AMPLITUDES

With the setup from the previous sections, we can now
describe a procedure for finding a lower bound on the
growth of tree amplitudes. We first explain our method in
detail and then present the results of applying this to
theories with a single massive particle.

A. Details of our method

Given all the relevant cubic and quartic vertices, an
algorithm for finding the general four-point tree amplitude
with an arbitrary but finite number of derivatives that grows
with energy as En for integer n is the following:
(1) If there are on-shell cubic vertices, calculate the

contribution to the four-point amplitude from tree-
level exchange diagrams using the general cubic
vertex. This determines the functions aexchangeτ1τ2τ3τ4 ðs; tÞ
and bexchangeτ1τ2τ3τ4 ðs; tÞ in terms of the cubic couplings
gm, g̃m̃.

(2) Write down an ansatz for acontactτ1τ2τ3τ4ðs; tÞ as a poly-
nomial in s and t of order

jmax ≡
�ðn − ξþ jP4

i¼1 τijÞ
2

�
ð4:1Þ

with arbitrary constant coefficients αkτ1τ2τ3τ4 ,

acontactτ1τ2τ3τ4ðs; tÞ ¼
Xjmax

j¼0

Xj

i¼0

α
iþjðjþ1Þ

2
τ1τ2τ3τ4s

itj−i: ð4:2Þ

(3) Take aexchangeτ1τ2τ3τ4 ðs; tÞ from step 1 and, if possible,
Taylor expand around s, −t ¼ ∞ with s=t fixed
down to order jmax þ 1,

aexchangeτ1τ2τ3τ4 ðs; tÞjhigh energy ¼
Xj0max

j¼jmaxþ1

Xj

i¼0

ᾱ
iþjðjþ1Þ

2
τ1τ2τ3τ4s

itj−i

þ lower order terms;

ð4:3Þ

where j0max is the maximum order that appears from
the finite number of cubic vertices and ᾱkτ1τ2τ3τ4 are
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coefficients that depend only on the cubic couplings
gm, g̃m̃.

9

(4) Update the ansatz for acontactτ1τ2τ3τ4ðs; tÞ by subtracting
from (4.2) the first term on the right-hand side of
Eq. (4.3),

acontactτ1τ2τ3τ4ðs; tÞ ¼
Xjmax

j¼0

Xj

i¼0

α
iþjðjþ1Þ

2
τ1τ2τ3τ4s

itj−i

−
Xj0max

j¼jmaxþ1

Xj

i¼0

ᾱ
iþjðjþ1Þ

2
τ1τ2τ3τ4s

itj−i: ð4:4Þ

This ensures that aτ1τ2τ3τ4ðs; tÞ in Eq. (3.32) is
bounded by order jmax in s and t at high energy,
since the contact terms now cancel off the high-
energy behavior of the exchange terms.

(5) Repeat the previous three steps with the replace-
ments a → b, n → n − 3, and ξ → −ξ. From
Eq. (3.28), this produces an ansatz for the total
amplitude Aτ1τ2τ3τ4ðs; tÞ with the desired En

behavior.
(6) Next impose crossing symmetry. Substitute the

ansatz for Aτ1τ2τ3τ4ðs; tÞ into the crossing equa-
tions (3.25) and (3.26). By separating the parts
that are and are not proportional to

ffiffiffiffiffiffiffi
stu

p
, the

crossing relations can be written as polynomial
equations in s, t with coefficients that depend
linearly on akτ1τ2τ3τ4 , b

k
τ1τ2τ3τ4 and quadratically on

the cubic couplings gm, g̃m̃. Solve these constraints at
each order in s and t and update the ansatz accord-
ingly. It is helpful to transform the constraints into a
linear system by replacing products of cubic cou-
plings with new variables, e.g., gmgn → gmn, and
then to impose the constraint gmn ¼ gmgn at the end
of step 8.

(7) Now make use of the explicit form of the Lorentz-
invariant quartic vertices. Calculate the four-point
amplitude from the general contact vertices (2.29) and
(2.32) to determine the polynomials qIτ1τ2τ3τ4ðs; tÞ,
q̃Ĩτ1τ2τ3τ4ðs; tÞ and rIτ1τ2τ3τ4ðs; tÞ, r̃Ĩτ1τ2τ3τ4ðs; tÞ in the
expansions (3.33) and (3.35).

(8) Finally, enforce consistency of the contact ansatz
with the explicit form of the quartic vertices. For
example, in the parity-even case the ansatz for
acontactτ1τ2τ3τ4ðs; tÞ must satisfy the consistency
condition

acontactτ1τ2τ3τ4ðs;tÞ¼
X
I

qIτ1τ2τ3τ4ðs;tÞ
X∞
j¼0

Xj

i¼0

f
iþjðjþ1Þ

2

I sitj−i;

ð4:5Þ

where we have Taylor expanded fIðs; tÞ. At each
order in s and t this gives a consistency condition
involving the Taylor series coefficients fkI and the
remaining quartic coefficients αkτ1τ2τ3τ4 and cubic
couplings gm, g̃m̃. There are similar conditions in
the parity-odd case and for bcontactτ1τ2τ3τ4ðs; tÞ. The last
step is to simultaneously solve these consistency
conditions and update the ansatz.10

Throughout we also require that all of the cubic couplings
and quartic coefficients are real (once the usual factors of i
are inserted in the vertices), as required by unitarity. This
algorithm then produces the most general four-point tree-
level amplitude with the required scaling at high energy that
is consistent with Lorentz invariance, locality, unitarity, and
crossing symmetry.11

B. Results

In this section we present the results of applying the
above procedure to a theory containing a single massive
particle with spin 0, 1, or 2. We also give a conjecture for a
lower bound on the growth of four-point amplitudes for a
single massive higher-spin particle.

1. Spin 0

We begin with the simple case of four-point scalar
scattering. Although the general algorithm is excessive
in this case and the result is well known, we apply it to
illustrate the procedure. There are no kinematical singu-
larities and the general amplitude is just

A0000ðs; tÞ ¼ a0000ðs; tÞ ¼ aexchange0000 ðs; tÞ þ acontact0000 ðs; tÞ:
ð4:6Þ

The constant cubic vertex λ contributes to aexchange0000 ðs; tÞ
through s-, t-, and u-channel exchange diagrams,

9Writing the exchange amplitude as in (4.3) may not be
possible for a given spectrum of particles since the expansion
eventually has nonpolynomial pieces. This means that the
exchange terms cannot be canceled by contact terms and we
must add additional particles to achieve the desired tree-level
high-energy behavior.

10There are an infinite number of these consistency conditions
if the set of tensor structures is not a basis since then the functions
fIðs; tÞ, f̃Ĩðs; tÞ can be unbounded, even though the sum in
Eq. (4.5) is bounded. In practice we then only solve the finite
number of constraints involving akτ1τ2τ3τ4 , b

k
τ1τ2τ3τ4 and gm, g̃m̃.

This gives necessary conditions on the amplitude and we know
that these conditions are sufficient if we can find a theory
realizing the amplitude.

11There are additional restrictions on EFT amplitudes that we
do not impose here, such as positivity constraints and the absence
of a Shapiro time advance [24,27,28,34,38–42]. Note also that
improved positivity bounds can imply that the EFT cutoff is much
lower than what would naively be inferred from the strong
coupling scale [43,44].
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aexchange0000 ðs; tÞ ¼ −λ2
�

1

s −m2
þ 1

t −m2
þ 1

u −m2

�
: ð4:7Þ

This does not grow with energy, so there is nothing that
needs canceling by contact terms.
There is a single constant quartic structure with coef-

ficient f1ðs; tÞ ¼ acontact0000 ðs; tÞ. Crossing symmetry requires
that f1ðs; tÞ is invariant under interchanging s, t and u. By
the fundamental theorem of symmetric polynomials, we
can write the general polynomial solution as

acontact0000 ðs; tÞ ¼
X
i;j≥0

2iþ3j≤n=2

αijðstþ suþ tuÞiðstuÞj; ð4:8Þ

where αij are constants and En is the desired energy
scaling. The best UV behavior is produced by an amplitude
with couplings λ and α00, corresponding to the renorma-
lizable theory with ϕ3 and ϕ4 couplings.

2. Spin 1

Next we consider amplitudes for a massive spin-1
particle. In this case there are multiple tensor structures
at quartic order but without the added complication of cubic
vertices. Since there are no exchange diagrams, the con-
tributions from parity-odd and parity-even vertices are
decoupled in the transversity basis.
Consider a massive vector theory with a quartic poten-

tial, given by the Lagrangian

L ¼ −
1

4
FμνFμν −

1

2
m2A2 þ λ1ðA2Þ2; ð4:9Þ

where A2 ≡ AμAμ. The amplitudes in this theory grow at
most as E4 (for scattering longitudinally polarized modes),
so we are mostly interested in theories with amplitudes that
grow at least this slowly.
Applying the algorithm described in Sec. IVA using the

general quartic amplitude (2.46), we find that there is a
seven-parameter family of amplitudes that have E4 scaling
and that improving this is impossible without additional
particles.12 Five of the free parameters are parity even, λk,
k ¼ 1;…; 5, and two are parity odd, λ̃k̃, k̃ ¼ 1, 2. Since we
have a basis of quartic structures, we can characterize the
solution by giving the coefficients of the tensor structures,
fIðs; tÞ and f̃Ĩðs; tÞ. We list these explicitly in Appendix B.
We can also summarize the result by writing down a
Lagrangian that generates the amplitude,

L ¼ λ1ðA2Þ2 þ λ2A2FμνFμν

þ λ3AμAνð∂μAλ∂νAλ − ∂λAμ∂λAνÞ
þ λ4ðFμνFμνÞ2 þ λ5Fμ

νFν
ρFρ

λFλ
μ þ λ̃1A2F̃μνFμν

þ λ̃2F̃μνFμνFαβFαβ; ð4:10Þ

where F̃μν ≡ εμναβFαβ. In addition to the quartic potential,
there are two parity-even two-derivative terms, the two
four-derivative Euler-Heisenberg terms, and two parity-odd
terms. The three four-derivative terms represent all quartic
gauge-invariant terms. These terms represent precisely the
quartic-order ghost-free terms from generalized Proca
theories [45–47], so ghost-freeness coincides with having
tree amplitudes that saturate the lower bound on the growth
up this order.13

We can also generalize this result by studying how the
number of free parameters changes as we alter n in the
scaling En. The numbers of parity-even and parity-odd
interactions with energy scaling at most En for different n
are given in the following table:

n 3 4 5 6 7 8

Parity-even interactions 0 5 5 12 13 21
Parity-odd interactions 0 2 2 6 7 10

3. Spin 2

Now we consider massive spin-2 scattering amplitudes.
This is the most computationally difficult case that we
consider due to the existence of cubic vertices and a large
number of quartic vertices. There are two known ghost-free
theories of a massive spin-2 particle, dRGT massive gravity
[7,8] and the pseudolinear theory [11,12]. These can be
thought of as massive spin-2 theories where the mass term
either breaks full or linearized diffeomorphism symmetry.
The dRGT theory consists of the Einstein-Hilbert
Lagrangian plus special zero-derivative potential terms,
which can be parametrized by two couplings convention-
ally called c3 and d5 (for reviews of massive gravity, see
[48,49]). The kinetic term in the pseudolinear theory is the
linear Fierz-Pauli Lagrangian [50] and the interactions are

Lpseudolinear
int ¼ 1

Mp
εμ1μ2μ3μ4εν1ν2ν3ν4

×

�
λ1∂μ1∂ν1 þm2λ2ημ1ν1 þ

m2

Mp
λ3hμ1ν1

�

× hμ2ν2hμ3ν3hμ4ν4 ; ð4:11Þ

where λ1, λ2, λ3 are coupling constants [12]. In both cases
the 2 → 2 amplitudes14 grow as E6 at high energy and
become strongly coupled at the scale Λ3 ¼ ðm2MpÞ1=3. We
are thus most interested in looking for amplitudes that grow
at least as slowly as E6.
Going through the general algorithm, we must include

the following ingredients: four parity-even cubic vertices,
two parity-odd cubic vertices, 201 parity-even quartic

12With multiple massive spin-1 particles it is possible to do
better; e.g., non-Abelian Yang-Mills theory with a mass term has
amplitudes that grow at worst like E2 [5].

13We thank Lavinia Heisenberg for pointing this out.
14The four-point dRGTamplitude can be found in the ancillary

file to Ref. [40].
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vertices, and 462 parity-odd quartic vertices. After a
lengthy calculation, we find two separate amplitudes with
E6 scaling. In these amplitudes the cubic couplings are
constrained to satisfy either

g3 ¼ 2g2; g5 ¼ g̃1 ¼ g̃5 ¼ 0; ð4:12Þ
or

g3 ¼ g2; g5 ¼ g̃1 ¼ g̃5 ¼ 0; ð4:13Þ
and each amplitude has three free parameters. Moreover, all
of the parity-odd amplitudes must vanish,

Aτ1τ2τ3τ4ðs; tÞ ¼ 0 for
X
i

τi odd; ð4:14Þ

so parity conservation follows automatically from the E6

requirement.
A comparison shows that the amplitudes correspond

precisely to dRGT massive gravity (which has the two
parameters c3 and d5 plus the freedom to rescale the Planck
mass) and the pseudolinear theory, with no additional
interactions. Since there is no choice of parameters in
these theories for which the amplitudes grow more slowly,
this is also the best possible behavior for a theory with a
single massive spin-2 particle. This suggests a close
connection between good inferred high-energy behavior
and the absence of ghosts. It also implies that no additional
interactions can be added to the ghost-free theories without
making the four-point amplitudes more divergent at high
energy.
We can also look for spin-2 amplitudes that are slightly

more divergent at high energies. At order E7 we find that
there are two families of amplitudes with either parity-even
cubic interactions (six free parameters) or parity-odd cubic
interactions (four free parameters). The amplitudes with
parity-even cubics have g5 ¼ 0 but g1, g2 and g3 can take
any relative value, so this becomes either dRGT or the
pseudolinear theory upon further restricting to E6. The case
with parity-odd cubic couplings has g̃1 ≠ 0 and g̃5 ¼ 0.
Each case also permits a single parity-violating quartic
interaction with two derivatives. Looking for the corre-
sponding Lagrangian interaction, we find that it is given by

Lparity-violating ¼ λ̃1ϵ
μ1μ2μ3μ4hμ1ν1hμ2ν2

× ð∂ν3hμ3
ν1∂ν3hμ4

ν2 − ∂ν1hμ3ν3∂ν2hμ4
ν3Þ:
ð4:15Þ

It would be interesting to look for a ghost-free spin-2 theory
that makes use of the parity-odd vertices in (2.55)
and (4.15).

4. Spin l

Lastly, we look for a lower bound on the growth of zero-
derivative quartic amplitudes for general integer spins.

Since we use S4-invariant quartic vertices, the crossing
relations are automatically satisfied. This means that we
can just calculate the quartic amplitude using any polari-
zation basis and fix the couplings so that the amplitude has
the slowest growth.
For spin-1 the only zero-derivative vertex is given by

M1 ¼ z12z34 þ z13z24 þ z14z23: ð4:16Þ
This corresponds to the ðA2Þ2 term in (4.10) and scales as
E4. For spin-2 there are two zero-derivative quartic struc-
tures and the amplitude that grows most slowly is

M2 ¼ 2ðz12z13z24z34 þ z12z14z23z24 þ z13z14z23z24Þ
− ðz212z234 þ z213z

2
24 þ z214z

2
23Þ; ð4:17Þ

¼ εðz1z2z3z4Þεðz1z2z3z4Þ: ð4:18Þ

This corresponds to the quartic pseudolinear interaction
from (4.11) and scales as E6.
We conjecture that for spin l the zero-derivative quartic

amplitudes with the slowest growth are given by products
of the low-spin amplitudes,

Ml ¼
(
Ml=2

2 for l even;

M1M
ðl−1Þ=2
2 for l odd;

ð4:19Þ

and that these scale with energy like E3l or E3lþ1 for even or
odd spin, respectively. We have explicitly checked that this
is true for l ≤ 4. We further speculate that this growth is the
slowest possible, even allowing for derivative interactions.
This is reasonable because derivatives tend to increase the
growth and this gives the correct general result for l ≤ 2.

V. DISCUSSION

We have presented a method for directly constructing
tree-level scattering amplitudes for massive particles with
spin, without recourse to a Lagrangian, by enforcing the
requirements of Lorentz invariance, locality, unitarity, and
crossing symmetry. We used this method to find model-
independent lower bounds on the growth of tree-level
amplitudes in effective field theories containing a single
massive particle with integer spin, allowing for all possible
self-interactions containing an arbitrary but finite number
of derivatives. We proved a general bound for spins ≤ 2 and
conjectured a bound for spins > 2. Although we worked in
four dimensions, the method we used works in arbitrary
dimensions. Our calculation in four dimensions could
likely be simplified by using the massive spinor-helicity
formalism discussed in Ref. [51].
Considering an EFT of a single massive spin-2 particle,

we have shown that E6 is a lower bound on the growth with
energy of the four-point amplitude. In a scheme where
fields are scaled with MP and derivatives with the mass m,
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this corresponds to a highest possible strong coupling scale
of Λ3 ¼ ðMPm2Þ1=3. This bound is saturated only by dRGT
massive gravity and the spin-2 pseudolinear theory. This
suggests that saturating the lower bound on energy growth
is a feature that characterizes dRGT scattering amplitudes,
which is analogous to how enhanced soft limits character-
ize amplitudes for certain massless scalar EFTs [52]. It
would be interesting to explore whether or not this holds for
higher-point amplitudes.
When looking for effective field theories for use in

cosmology, there is often an emphasis on nonperturbative
ghost freedom, meaning that the fully nonlinear theory
should propagate the same number of d.o.f. as the linear
theory around some standard background. From the point
of view of the perturbative S-matrix, the notion of ghost
freedom does not seem to be an intrinsic property, because
order-by-order field redefinitions that leave the S-matrix
invariant [53] can make a ghost-free theory look ghostly
and vice versa [54], and it is not always possible to field
redefine in this way to get a ghost-free structure [55].
However, in the context of interacting massive theories with
spin, nonlinearly ghost-free Lagrangians appear to be
associated with S-matrices that saturate the lower bound
on the amplitude growth. One example is dRGT massive
gravity and the pseudolinear theory: these are both non-
linearly ghost free [12,56–58] and, as we have seen, they
generate amplitudes with the lowest possible energy scaling
for a self-interacting massive spin-2 particle. Another
example is the Federbush Lagrangian describing a massive
spin-2 particle interacting with an Abelian gauge field [59],
which is also nonlinearly ghost free [60] and saturates the
lower bound for the energy growth of tree amplitudes
among these d.o.f. [17,18]. We expect that similar state-
ments apply to ghost-free bigravity [61] and multigravity
[62]. It would be useful to find a deeper explanation for this
connection and to know if it extends to higher-spin d.o.f.
We focused in this paper on theories that contain a single

massive particle, but our methods can easily be generalized

to include more complicated particle spectra. One example
would be to include cubic couplings of a massive spin-2
particle to additional low-spin states, as investigated for the
case of relevant and marginal operators in [63]. Such states
then contribute to massive spin-2 scattering through
exchange diagrams and could help cancel the high-energy
behavior of amplitudes beyond what we have found. This is
the mechanism by which the scalar Higgs field prevents
high-energy violation of perturbative unitarity in massive
spin-1 amplitudes. For a massive spin-2 particle there is no
known Higgs theory with a finite number of particles and
bounded high-energy behavior and there are arguments
against the existence of such a theory [51], although in
Kaluza-Klein theories the massive spin-2 amplitudes are
partially improved [9]. It may be necessary to include
infinitely many high spin intermediate states to obtain
amplitudes that decay in the UV, as in large-N QCD-like
theories and (if we include gravity) string theory. It is an
open problem whether tree-level string amplitudes are the
onlyweakly coupled completions of gravity amplitudes; for
recent work see, e.g., Refs. [64–66]. Making further
progress on this requires better understanding general
scattering amplitudes including massive external states
with spin, so some of the methods used in this paper could
be helpful for such calculations.
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APPENDIX A: SPIN-1 QUARTIC VERTICES

In this Appendix we give explicit bases for the spin-1
quartic tensor structures with all momenta incoming. A
basis of the 17 Z2

2-invariant parity-even spin-1 quartic
tensor structures is given by

T1 ¼ z14z23;

T2 ¼ z13z24;

T3 ¼ z12z34;

T4 ¼ −zp32zp42z12 þ zp31zp43z12 þ zp13zp21z34 − zp14zp24z34;

T5 ¼ zp32zp42z12 þ zp32zp43z12 þ zp14zp21z34 þ zp14zp24z34;

T6 ¼ zp31zp42z12 þ zp13zp24z34;

T7 ¼ zp24zp42z13 þ zp13zp31z24;

T8 ¼ zp14zp31z24 þ zp13zp32z24 þ zp21zp43z13 þ zp14zp32z24 − zp24zp42z13;

T9 ¼ zp21zp31z14 þ zp13zp43z23 þ zp21zp32z14 þ zp14zp43z23;

T 10 ¼ zp24zp31z14 þ zp13zp42z23;

T 11 ¼ zp21zp42z13 þ zp24zp42z13 þ zp21zp43z13 þ zp24zp43z13 þ zp14zp32z24;
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T12 ¼ zp21zp32z14 þ zp24zp32z14 þ zp14zp42z23 þ zp14zp43z23;

T13 ¼ zp13zp24zp31zp42;

T14 ¼ zp14zp21zp32zp42 þ zp14zp24zp32zp42 þ zp14zp21zp32zp43 þ zp14zp24zp32zp43;

T15 ¼ zp13zp21zp31zp43 þ zp14zp21zp31zp43 þ zp13zp21zp32zp43 þ zp14zp21zp32zp43;

T16 ¼ zp14zp24zp31zp42 þ zp13zp24zp32zp42 þ zp14zp21zp31zp42 þ zp13zp24zp32zp43;

T17 ¼ zp13zp21zp32zp42 þ zp14zp24zp31zp43 þ zp13zp21zp31zp42 þ zp13zp24zp31zp43:

A basis of the 10 Z2
2-invariant parity-odd spin-1 quartic tensor structures is given by

T̃1 ¼ εðz1z2z3z4Þ;
T̃2 ¼ z34εðp1p3z1z2Þ þ z34εðp2p3z1z2Þ þ z12εðp1p2z3z4Þ;
T̃3 ¼ z34εðp1p2z1z2Þ þ z12εðp1p3z3z4Þ þ z12εðp2p3z3z4Þ;
T̃4 ¼ z24εðp1p2z1z3Þ − z24εðp2p3z1z3Þ þ z13εðp1p3z2z4Þ;
T̃5 ¼ z14εðp1p2z2z3Þ þ z14εðp1p3z2z3Þ − z23εðp2p3z1z4Þ;
T̃6 ¼ z24εðp1p3z1z3Þ þ z13εðp1p2z2z4Þ − z13εðp2p3z2z4Þ;
T̃7 ¼ z23εðp1p2z1z4Þ þ z23εðp1p3z1z4Þ − z14εðp2p3z2z3Þ;
T̃8 ¼ zp13zp42εðp1p2z2z3Þ þ zp13zp42εðp1p3z2z3Þ − zp24zp31εðp2p3z1z4Þ;
T̃9 ¼ zp31zp42εðp1p3z1z2Þ þ zp31zp42εðp2p3z1z2Þ þ zp13zp24εðp1p2z3z4Þ;
T̃10 ¼ zp32ðzp42 þ zp43Þεðp1p3z1z2Þ þ zp32ðzp42 þ zp43Þεðp2p3z1z2Þ þ zp14ðzp21 þ zp24Þεðp1p2z3z4Þ:

APPENDIX B: SPIN-1 AMPLITUDE

In this Appendix we give the coefficients fIðs; tÞ and f̃Ĩðs; tÞ of the spin-1 tensor structures, which are defined such that

Acontact þ Ãcontact ¼
X17
I¼1

fIðs; tÞT I þ
X10
Ĩ¼1

f̃Ĩðs; tÞT̃ Ĩ ; ðB1Þ

for the general amplitude that grows like E4. We set m ¼ 1 and use s ¼ 2 − 2p12 and t ¼ 2 − 2p13 as the Mandelstam
variables for all incoming momenta. The parity-even coefficients are given by

f1 ¼ 2ð4λ1 − 4ð2þ s − tÞλ2 þ ðs − tÞð−λ3 þ 4ð4þ s − tÞλ4Þ þ ðð−4þ sÞsþ ð−4þ tÞtÞλ5 þ 8ð2λ4 þ λ5ÞÞ;
f2 ¼ 2ð4λ1 − 4ð−2þ tÞλ2 − ð−4þ tÞλ3 þ 4ð−2þ tÞ2λ4 þ 2ð4þ s2Þλ5 þ tð−4 − 2sþ tÞλ5Þ;
f3 ¼ 2ð4λ1 þ 4ð−2þ sÞλ2 þ sðλ3 þ 4ð−4þ sÞλ4Þ þ ðsð4þ sÞ − 2ð4þ sÞtþ 2t2Þλ5 þ 8ð2λ4 þ λ5ÞÞ;
f4 ¼ −4ð2λ2 þ 4ð−2þ sÞλ4 þ sλ5Þ;
f5 ¼ 2ð−4λ2 þ λ3 − 8ð−2þ sÞλ4 − 2ð6þ s − 2tÞλ5Þ;
f6 ¼ f8 ¼ −2ðλ3 þ 4ð1þ s − tÞλ5Þ;
f7 ¼ 8λ2 − 2ðλ3 þ 8ð−2þ tÞλ4Þ þ 4ð2 − 2sþ tÞλ5;
f9 ¼ 2ðλ3 þ 4ð−3þ tÞλ5Þ;
f10 ¼ f11 ¼ −2ðλ3 − 4ð−1þ sÞλ5Þ;
f12 ¼ 4ð−2λ2 þ 4ð2þ s − tÞλ4 þ ðs − tÞλ5Þ;
f13 ¼ f14 ¼ f15 ¼ 8ð4λ4 þ λ5Þ;
f16 ¼ f17 ¼ 0:
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The parity-odd coefficients are given by15

f̃1 ¼ 16ð2þ sð−4þ tÞÞλ̃2;
f̃2 ¼ 32ð−3þ tÞλ̃2;
f̃3 ¼ 16ðλ̃1 þ 2ð−3þ sÞλ̃2Þ;
f̃4 ¼ −32ð1þ s − tÞλ̃2;
f̃5 ¼ 32ð−1þ sÞλ̃2;
f̃6 ¼ 16ðλ̃1 − 2ð−1þ tÞλ̃2Þ;
f̃7 ¼ −16ðλ̃1 − 2ð3þ s − tÞλ̃2Þ;
f̃8 ¼ f̃9 ¼ f̃10 ¼ −64λ̃2:
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