
 

Shadows of exact binary black holes

Pedro V. P. Cunha,1,2 Carlos A. R. Herdeiro,1 and Maria J. Rodriguez3,4
1Departamento de Física da Universidade de Aveiro and Centre for Research and Development in

Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, Portugal
2Centro de Astrofísica e Gravitação (CENTRA), Departamento de Física, Instituto Superior Técnico (IST),
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Black hole (BH) shadows in dynamical binary BHs (BBHs) have been produced via ray-tracing
techniques on top of expensive fully nonlinear numerical relativity simulations. We show that the main
features of these shadows are captured by a simple quasistatic resolution of the photon orbits on top of the
static double-Schwarzschild family of solutions. While the latter contains a conical singularity between the
line separating the two BHs, this produces no major observable effect on the shadows, by virtue of
the underlying cylindrical symmetry of the problem. This symmetry is also present in the stationary BBH
solution comprising two Kerr BHs separated by a massless strut. We produce images of the shadows of the
exact stationary corotating (even) and counterrotating (odd) stationary BBH configurations. This allows us
to assess the impact on the binary shadows of the intrinsic spin of the BHs, contrasting it with the effect of
the orbital angular momentum.
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I. INTRODUCTION

Bound pairs of spinning black holes (BHs) orbiting
around each other, known as binary BHs (BBHs), have
only very recently been observed. The first gravitational
waves detected by LIGO [1] confirmed the existence of
BBHs in the Universe, by detecting the final stages of their
inspiral and their merger. The subsequent LIGO-Virgo
detections [2–5] confirmed an abundant BBHs population,
when one considers mildly cosmological distances. In our
galaxy, on the other hand, BBH mergers will be extremely
rare events, but indirect evidence from the electromagnetic
channel, supports the existence of BH binaries. For
instance, recent observations have detected an abundant
number of binary systems that contain stellar-mass BHs
in the central parsec of the Galactic Center, where the
supermassive BH, Sagittarius A* resides [6]. This finding
is in agreement with the current models of galactic stellar
dynamics, which also predicts a population of isolated BHs
and of BBHs in this central galactic region. Thus, BBHs are
expected to be common astrophysical systems.
Theoretical and phenomenological properties of BBHs

have been studied for a long time; see, e.g., [1,7–12]. A
particularly interesting feature is their strong lensing effect.
Like stationary isolated BHs, dynamical BBHs bend light
in their proximity creating deformed images, or even
multiple images of background bright objects. Moreover,
these dynamical sources cast shadows—regions in the local

sky lacking radiation, associated with null geodesics that,
when propagated backwards in time are absorbed by the
BHs (see [13,14] for reviews). Solving for the lensing
effects, including their shadows, of general-relativistic
BBHs is, however, more challenging than for isolated cases.
The spacetime geometry created by astrophysical binaries is
dynamical and not known analytically. Thus, the lensing
effects/shadows are typically resolved to high accuracy via
performing ray tracing on top of dynamical fully nonlinear
numerical simulations. Specific features of the shadows of
BBHs have been identified in these numerical studies. For
instance, in dynamical BBHs there are two prominent visible
shadows, each associated with one of the two BHs, with
narrow secondary “eyebrow” shadows close to the outside of
each primary shadow. Such eyebrows also occur in static
double BH configurations [15–18]. In this static binary
system one typically has axial symmetry, with the lensing
images that include aligned eyebrows and main shadows,
manifesting this symmetry. In dynamical BBHs, by contrast,
both the intrinsic spin of each BH and the orbital spin of the
binary are responsible for frame-dragging, producing a shift
of the eyebrow’s position in the direction opposite to the
spin, as shown in [19].
Motivated by the recent BBHs discoveries, in this paper

we report on a computationally simpler method to repro-
duce, as a proxy, what an observer in the vicinity of a BBH
would see, due to the strong lensing of light induced by the
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dynamical binary. In particular, this conceptually simple
method is able to reproduce the leading effects of the orbital
angular momentum of the binary.
The method presented herein is based on a quasistatic

approach to resolve the photon orbits for BBHs. The
strategy is to locally compute null geodesics on top of
an exact static or stationary BBH background, such as the
double Schwarzschild (a.k.a. Bach-Weyl) geometry [20],
and periodically adjust them by small rigid rotational
corrections along an axial vector field that does not
coincide with the axisymmetry of the exact solution, thus
mimicking the orbital spin of the BHs. These corrections
along the photon positions will be discrete rotations, with
the frame of the two BHs fixed. This procedure provides a
proxy to computing the paths of light rays that meet an
observer in the vicinity of a truly dynamical binary. A
snapshot of such a quasistatic evolution of the geodesics on
a static double-Schwarzschild BH solution [21], using an
image of the Milky Way as background, is depicted in
Fig. 1. Supplemental Material movies for the shadows and
lensing due to this quasistatic BBHs can be found in [22].
As we shall illustrate below the leading characteristic
features of the shadows of the full dynamical BBHs are
replicated by this procedure.
To study the effects of the intrinsic (rather than orbital)

angular momenta of the BHs in the BBHs system we also
compute the shadows of stationary (nondynamical) spin-
ning BBHs solutions of general relativity. We shall use the
double-Kerr BH solutions [24–28] that are known exactly.
These are asymptotically flat metrics that represent two
Kerr BHs with a conical singularity between them (in the

representation we use). Similar conical defects are found
in the double-Schwarzschild BH solutions. In the latter
case, it was observed in [18] that thanks to the underlying
cylindrical symmetry, of both the geometry and the
spatial part of the fundamental photon orbits, the conical
singularity has essentially no observable effect on the
shadows. Since a cylindrical symmetry is also present in
the double Kerr solution, we also expect no observable
effect in the shadows due to the conical singularities.
This is confirmed by computing the null geodesics in
these backgrounds: we are able to produce images of the
shadows of the corotating (even) and counterrotating
(odd) exact stationary BBHs configurations. Our result-
ing images show complex and in some cases self-similar
structure across different angular scales. Among the
stationary BBHs there is a set of extremal, maximally
spinning solutions. The extremal configurations have
finite size (event horizon area) and zero temperature.
While we present a few images of the shadows of
stationary BBHs spinning near extremality, images of
the first representations of the exactly extremal BBHs
will be presented in a forthcoming publication, where we
shall make contact with the recent analysis of the near
horizon geometry of these BH binaries [29].
In what follows we describe, in Sec. II, the shadows of

quasistatic BBHs, to address the effect of orbital angular
momentum on the lensing. We focus on explaining the
method we developed to trace light rays and present our
results. In Sec. III, we turn to the effect of the intrinsic spin
on the lensing, considering the double-Kerr BBHs where
we do not consider any kind of orbital spin. In Sec. III A,
we compute the shadows of the stationary double-Kerr
BH [25,26] with corotating (even) spins. And in Sec. III B
we find and analyze the shadows of the stationary counter-
rotating (odd) double-Kerr BH [27,28]. These more ana-
lytical approaches that we introduce (compared to ray tracing
on numerical simulations) will hopefully enable a better
understanding of the shadows of astrophysical BBHs.

II. QUASISTATIC BINARY BLACK HOLES

The double-Schwarzschild BH is a static solution of the
vacuum Einstein’s equations. Starting from it, however, we
can construct a rotation proxy that mimics the leading
effects of a fully dynamical BH binary, in what concerns
lensing effects. In this section we will describe such a
proxy, focusing on signatures at the level of the shadows.
The rotation of the binary will be assumed to be

adiabaticlike, i.e., the BHs will move rather slowly
when compared with the light ray travel time for a typical
photon reaching the observer. Under this approximation,
photons will locally follow null geodesics in the double-
Schwarzschild (static) background, with the trajectory
periodically suffering small corrections due to the rotation
of the BHs. These corrections will simply be discrete
(active) rotations of the photon position along their path,

FIG. 1. Shadows and lensing in a quasistatic binary BH, using
European South Observatory’s MilkyWay sky [23] as background.
The separation between the (equal mass) BHs is zo ¼ 3M, where
M is the mass of each component, and the counter-clockwise
rotation isωM ¼ 0.02 (see Sec. II). Supplemental Material movies
can be found in [22].
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with the frame of the two BHs fixed, with such a procedure
being straightforward to implement numerically. At the end
of the trajectory the photon position is rotated back into the
observer’s frame. This system will be dubbed a quasistatic
BH binary.
The static BH binary (the double Schwarzschild solu-

tion) will be described in Weyl coordinates xα¼ðt;ρ;φ;zÞ;
see [18] for the details of the solution. Consider then a map

Ω∶ M → M ð1Þ

xα → xα
0 ¼ Ωα0 ðxαÞ; ð2Þ

where xα
0 ¼ ðt0; ρ0;φ0; z0Þ, that takes each point of our

manifold M to another point in M. In order to naively
mimic a Cartesian rotation, the map Ω is defined as follows
(in Weyl coordinates):

8>>>>>>>>><
>>>>>>>>>:

t0 ¼ t

ρ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p

φ0 ¼
8<
:

asin y0
ρ0 if ðx0 ≥ 0Þ

π − asin y0
ρ0 if ðx0 < 0Þ

;

0
B@

x0

y0

z0

1
CA ¼

0
B@

1 0 0

0 cosωδt sinωδt

0 − sinωδt cosωδt

1
CA
0
B@

x

y

z

1
CA;

z0 ¼ z0;

and xþ iy ¼ ρeiφ. Hence, after a time interval δt, the
photon position is corrected by changing its initial location
P ¼ ðt; ρ;φ; zÞ to a new point P0 ¼ ðt0; ρ0;φ0; z0Þ under the
map Ω. We remark that Ω is well-defined even when
ðωδtÞ ≫ 1, although this will not be usually the case during
the numerical integration of the trajectory.
The next issue is how the photon’s 4-momentum should

be modified. The vector p ¼ pμ∂μ at point P can be
projected via Ω into the push-forward vector ðΩ�pÞ at
P0 [30,31]:

ðΩ�pÞ ¼ pμ∂μΩα0∂α0 ¼ pt∂t0 þ ðpi∂iΩa0 Þ∂a0 ;

where i ∈ fρ;φ; zg and a0 ∈ fρ0;φ0; z0g. However, restric-
tions have to be imposed to ðΩ�pÞ, in order for it to represent
the 4-momentum at P0. We impose the new momentum p̃
should satisfy the following two requirements:
(1) The photon’s local energy E is the same for a static

observer in P and P0, i.e., E ¼ ffiffiffiffiffiffiffiffi−gtt
p

pt ¼
ffiffiffiffiffiffiffiffi
−g0tt

p
p̃t0

[32]. This is reasonable because the physical rotation
is performed by the BHs, and an observer in P can
be identified with one in P0.

(2) The norm of p̃ vanishes, i.e., p̃α0p̃α0 ¼ 0.
It follows that the new momentum p̃ at P0 is then defined as

p̃ ¼
� ffiffiffiffiffi

gtt
g0tt

r
pt

�
∂t0 þ γðpi∂iΩa0 Þ∂a0 ;

where the (positive) factor γ enforces the vanishing of the
norm. We further remark that this procedure modifies the
values of the photon’s energy E ¼ −pt and axial angular
momentum L ¼ pφ with respect to infinity, which otherwise
would be Killing constants of motion. This implies that
a photon can in principle escape the system with more

(or less) energy than it started with. We stress that this
operation does not amount (generically) to a simple coor-
dinate transformation.
Although the angular frequency ω of the BH binary is a

free parameter that was introduced in the model, a
physically reasonable value of ω can be estimated from
the Keplerian orbital frequency:

ω ∼ ðΔzþ 1Þ−3=2M−1;

where M is the ADM mass, and Δz is the proper distance
between the two BHs. The latter can be computed with a
complete elliptic integral of the second kind (see [33]):

Δz ¼ ð2zo þ 1Þ
�
1 −

1

4z2o

�
E

�
2zo − 1

2zo þ 1

�
:

The parameter zo in the previous expression parametrizes
the BH distance and is the same that was used in [18].
Implementing the approach we have just described to

the double Schwarzschild solution, using the same setup as
used in [18], we obtain the lensing and shadows displayed
in Fig. 2. With the exception of the shadow (represented in
black), each color in the image represents the ray-tracing
endpoint on a far away sphere with four color quadrants,
all imprinted with a regular grid (see also [32,34,35]). The
first column of Fig. 2 displays the lensing and shadows
of a static double Schwarzschild BH with zo ¼ 3M,
already discussed in [18]. The second column displays
the corresponding quasistatic binary with ω ¼ 0.02 M−1,
with the BHs rotating counterclockwise in the image
(see Supplemental Material movie in [22]). Observe that
the shadows are twisted clockwise in the image with
respect to the static case. This can be interpreted as
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follows. The observation image was taken at coordinate
time t ¼ 0; at this time the binary had the same vertical
orientation as in the static case. Since light takes a finite
amount of time to get to the observer, the shadows are
actually recording the BH positions at a past time (t < 0),
when the BHs were rotated clockwise with respect to
t ¼ 0. The shadow eyebrows are a second order lensing
effect, related to a time even further into the past, thus
presenting an additional clockwise rotation with respect to
the main shadows. For illustration purposes we have
included Fig. 1 with the same lensing and shadows of
the rightmost image of Fig. 2, but replacing the colored
background with an image of the Milky Way (see
Supplemental Material movie in [22]).
To assess the accuracy of the method described above as

a proxy to the lensing in a dynamical BBH, we perform, in
Fig. 3, a lensing comparison of a fully dynamical binary in
[19] close to merger with a similar quasistatic binary.
Despite clear differences concerning specific details of the
lensing, the overall qualitative resemblance between both
cases at the level of the shadow structure is uncanny. Still,
in order to have a more quantitative comparison between
both images in Fig. 3, we define two parameters χ, ψ . The
first parameter, χ, is the ratio between the shadow area1 of
the main shadows and the one of the associated eyebrows;
one obtains χ ≃ f15; 20g, respectively, for the left (right)
image of Fig. 3. The second parameter, ψ , is an angle that

parametrizes the eyebrows’ angular displacement with
respect to the main shadows. By first computing the
average position of all points within each shadow element,
one can draw two straight lines connecting similar average
position points, e.g., eyebrow to eyebrow and main shadow
to main shadow. It is then possible to define ψ as the angle
formed between these two lines. We obtain ψ ≃ f42°; 33°g
respectively for the left (right) image of Fig. 3. We remark
that ψ ¼ 0 for the static BH binary, by symmetry (see left
image of Fig. 2).
Although the values χ, ψ are not exactly the same for

both images in Fig. 3, the quasistatic binary is here
displayed mainly as a proof of concept. In particular, the
values of fzo;ωg of the quasistatic binary are quite ad hoc,
leaving some room for optimization. Moreover, note that
we have chosen a binary BBH close to merger, in which
case the adiabatic approximation of the quasistatic binary is
starting to break down, as the BHs change their positions on
a timescale comparable to the light ray’s travel time towards
the observer. In addition, unusual effects at the level of the
shadow start to be noticeable, in particular a nonsmooth
edge (i.e., a cusp) due to the combination of the conical
singularity and rotation.

III. STATIONARY BINARY BLACK HOLES

The previous section illustrated the mimicked effect of
the orbital angular momentum of a dynamical binary in
the lensing of light, by using the double Schwarzschild
solution in a quasistatic approximation. Generically, how-
ever, dynamical binaries also have intrinsic BH spin. We
now show that the lensing effect of the intrinsic spin is taken
into account by considering a stationary binary, rather than
static, described by the double Kerr solution. We shall be
interested in the particular cases of the Kerr solution
describing two equal mass BHs with either equal (even
case) or opposite (odd case) spins. In both cases the double
Kerr solution has a conical singularity in between the BHs
and is described by the line element, in Weyl coordinates:

FIG. 3. Left: shadows and lensing of a fully dynamical binary
of equal-mass BHs with no spin. (Adapted from [19], ©IOP
Publishing. Reproduced with permission. All rights reserved.)
Right: quasistatic BH binary with zo ¼ 1.5M and ω ¼ 0.06 M−1.

FIG. 2. Top: lensing of a static (left) quasistatic (right) BH
binary with zo ¼ 3M and ωM ¼ f0; 0.02g. Bottom: shadows of
the previous images. The observer sits along the axis of orbital
rotation (the x axis). The BHs rotate counterclockwise in the
image for positive ω.

1The shadow area corresponds to a solid angle in the observer’s
sky.
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ds2 ¼ −fðdt − ωdφÞ2 þ e2γ

f
ðdρ2 þ dz2Þ þ ρ2

f
dφ2; ð3Þ

where the metric functions f, γ, ω only depend on the
coordinates ρ, z.

A. Equal-mass, aligned spins (even case)

For two equal mass and equal spin BHs, the metric
functions are defined as [25,26]

f ¼ AĀ − BB̄
ðAþ BÞðĀþ B̄Þ ;

e2γ ¼ AĀ − BB̄
K2

oR11R01R10R00

ω ¼ 4a −
2ImfðĀþ B̄ÞGg

AĀ − BB̄
;

where the overbar denotes complex conjugation and

A ¼ 4z2oðR11 − R01ÞðR10 − R00Þ − 4σ2ðR11 − R10ÞðR01 − R00Þ;
B ¼ 8zoσ½ðzo þ σÞðR01 − R10Þ − ðzo − σÞðR11 − R00Þ�;
G ¼ −zBþ 8zoσ½zoðR01R00 − R11R10Þ þ σðR11R01 − R10R00Þ − ðz2o − σ2ÞðR11 − R01 − R10 þ R00Þ�;

Rjkðρ; zÞ ¼
−2ðϵσ þ κzoÞ þ 2id

1þ 4ðκzo þ iaÞðϵσ þ iaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ κzo þ ϵσÞ2

q
; ϵ ¼ 2j − 1; κ ¼ 2k − 1;

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
− a2 þ d2ð4z2o − 1þ 4a2Þ−1

r
; Ko ¼ 16σ2

�ð2z2o þ zo þ 2a2Þ2 − a2

ðzo þ 1=2Þ2 þ a2

�
;

d ¼ að4z2o − 1þ 4a2Þ
ð4z2o þ 2zo þ 4a2Þ ;

with quantities normalized to the ADM mass M of the
solution. This solution has two free parameters, zo and a,
with zo denoting the coordinate position of each BH in the
z axis (see Fig. 4), whereas a is a spin parameter related to
ADM axial angular momentum J ¼ 2a − d.
The physical domain of the parameter space fzo; ag

obeys the condition zo ≥ σ ≥ 0, with σ and all metric
functions real. The domain with a ≥ 0 has the following
limits (see Fig. 5):

(I) Double-Schwarzschild solution (a ¼ 0 ⇒ J ¼ 0),
with zo ≥ 1=2.

(II) Single Kerr BH, given by σ ¼ zo; this leads to
a2 þ z2o ¼ 1=4 (blue dashed line in Fig. 5).

(III) Extremal limit, provided by σ ¼ 0 ⇒ vanishing
temperature (green solid line in Fig. 5).

(IV) Two isolated Kerr BHs with zo → ∞.
We remark that there is an additional independent region
which also satisfies zo ≥ σ ≥ 0 but for which the metric can
have closed-timelike-curves (CTCs) [31]; it is thus dis-
carded as unphysical.
The shadows and lensing of four solutions, marked in

Fig. 5 with red dots, are displayed in Fig. 6. There appear to

FIG. 4. Schematic representation of the equal double-Kerr
BH system with identical BHs. The solid black rods along the
z direction represent each a BH while the dashed line in between
these rods corresponds to the conical singularity. The quantity σ
is proportional to the horizon temperature [26].
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FIG. 5. Parameter space (zo, a) of the double-Kerr solution
with identical corotating BHs. The shaded regions are consid-
ered unphysical, with the dashed (solid) line representing the
limit II (III). The shadows of the configurations 1 → 4 are
displayed in Fig. 6.
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be no strikingly new features in the shadows. In particular
the D-like shadow profile, characteristic of a fast spinning
(single) Kerr BH, still holds in the double Kerr case
(namely solution 3), as one could have naively anticipated.
The third row of Fig. 6 also displays observations outside
the equatorial plane, with θo ¼ acosðz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p
Þ ¼ π=4.

B. Equal-mass, antialigned spins (odd case)

For two equal mass and opposite spin BHs, the metric
functions are defined as [36,27,28]

f ¼ AĀ − BB̄
ðAþ BÞðĀþ B̄Þ ;

e2γ ¼ AĀ − BB̄
ð4zoσÞ4R11R01R10R00

ω ¼ −
2ImfðĀþ B̄ÞGg

AĀ − BB̄
;

where the overbar denotes complex conjugation and

A ¼ σ2ðR11R01 þ R10R00Þ þ z2oðR11R10 þ R01R00Þ

þ ðR11R00 þ R01R10Þ
�
zo
2
þ σ2½8z2o − 1�

�
− 4iaσzoð2zo − 1ÞðR11R00 − R01R10Þ;

B ¼ 4σ2z2oðR11 þ R01 þ R10 þ R00Þ
− σzoð1þ 2ia½2zo − 1�ÞðR11 − R01 − R10 þ R00Þ;

G ¼ −zBþ 2σ2zoðR10R00 − R11R01Þ
þ 2σz2oðR01R00 − R11R10Þ
þ zoσðzo þ σÞðR11 − R00Þð4zoσ − 1 − 2ia½2zo − 1�Þ
þ zoσðzo − σÞðR01 − R10Þð4zoσ þ 1þ 2ia½2zo − 1�Þ;

Rjkðρ;zÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðzþκzoþϵσÞ2

q
; ϵ¼2j−1; κ¼2k−1;

FIG. 6. Lensing of configurations 1 → 4 of Fig. 5 (columns from left to right). The second (third) row displays only the shadows, as
observed with θo ¼ π=2 (θo ¼ π=4).
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FIG. 7. Parameter space (zo, a) of the double-Kerr (odd) solution
with counterrotating BHs. The shaded regions are considered
unphysical. The shadows of the configurations 1→6 are displayed
in Fig. 8.
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σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
− a2

�
2zo − 1

2zo þ 1

�s
;

with quantities normalized to the ADM mass M of the
solution. Again, this solution has two free parameters, zo and
a, with zo denoting the coordinate position of each BH in the
z axis (see Fig. 4), whereas a is a spin parameter proportional
to the (Komar) angular momentum of the lower BH
J− ¼ a=2. We further remark that the total ADM angular
momentum vanishes since the upper BH has Jþ ¼ −a=2.
Again, the physical domain of the parameter space

fzo; ag obeys the condition zo ≥ σ ≥ 0, with σ and all

metric functions real. The domain with a ≥ 0 has the
following limits (see Fig. 7):

(I) Double-Schwarzschild solution (a ¼ 0 ⇒ J� ¼ 0),
with zo ≥ 1=2.

(II) Single BH, given by σ ¼ zo ¼ 1=2; (vertical dotted
line in Fig. 7).

(III) Extremal limit, provided by σ ¼ 0 ⇒ a ¼
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2zo þ 1Þ=ð2zo − 1Þp
(blue line in Fig. 7).

(IV) Two isolated Kerr BHs with zo → ∞ and opposite
rotation.

The boundary II corresponds to a Schwarzschild BH when
a ¼ 0 and zo ¼ 1=2, whereas for a ≠ 0 and zo ¼ 1=2 the
horizon is singular [27]. Nevertheless, in terms of shadows

FIG. 8. Lensing of configurations 1 → 6 of Fig. 7 (from left to right and from top to bottom).
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and gravitational lensing, the boundary II appears to be
indistinguishable from the Schwarzschild case.
The shadows and lensing of six solutions, marked in

Fig. 7 with red dots, are displayed in Fig. 8.2 The lensing and
shadows appear to display a rotation effect, similar to that in
Fig. 2. However, despite the apparent similarities, both cases
are quite different, with the antisymmetry of the (odd)
double-Kerr only giving the appearance of an image rotation.
For instance, notice that the surface z ¼ 0 is not a totally
geodesic submanifold, i.e., a geodesic initially tangent to that
plane can leave the latter, going up or down the plane
depending on the sign of the geodesic angular momentum L.
This effect together with antisymmetric frame-dragging
leaves the perception of a rotation at the level of the lensing.
The image is stationary and not dynamical, in contrast to the
quasistatic case in Fig. 2. Another observation is that as
a → ∞ the shadows look increasingly Schwarzschild like,
although there is still some shadow inner structure that
quickly becomes imperceptible (see configuration 1 in
Fig. 8). In addition, the shadow topology changes along
the solutions, with configuration 3 displaying a shadow close
to a topological transition.

IV. DISCUSSION

In this paper we have studied the effect of the orbital and
intrinsic angular momentum in the lensing of light due to a
BH binary, by using analytically known solutions of
general relativity. In order to consider the effect of the
orbital angular momentum, we have studied the double-
Schwarzschild solution, which is static, under a quasistatic
procedure that mimics an orbital rotation. The correspond-
ing lensing is able to reproduce the main features of the
shadows observed in dynamical binaries, obtained through
a considerably more complex procedure which relies on
producing fully nonlinear numerical evolutions of BHs

and performing ray tracing on top of these numerical
evolutions.
To observe the effect of the intrinsic spin of the BHs in

the binary, we have considered the double-Kerr solution,
which is stationary, for two particular cases: equal masses
and equal or opposite spins. The lensing effects and shadow
structure can be quite different in these two cases. In
particular for the odd case, an effect on the shadows similar,
to some extent, to that of the orbital angular momentum can
be observed, that can be traced back to the opposite
dragging effects acting in the vicinity of the two BHs.
One obvious further step would be to apply the quasi-

static method of Sec. II to the double-Kerr stationary
binaries of Sec. III. Whereas the procedure should be
straightforward, the involved nature of the double-Kerr
metric makes it cumbersome. We expect the end result for
the shadows to be a superposition of the orbital effect seen
in Sec. II with the corresponding intrinsic spin effect seen
in Sec. III.
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