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We consider the first order connection formulation of 4D general relativity in the “orthogonal” gauge.
We show how the partial gauge fixing of the phase space canonical coordinates leads to the appearance of
second class constraints in the theory. We employ the gauge unfixing procedure in order to successfully
complete the Dirac treatment of the system. While equivalent to the inversion of the Dirac matrix, the gauge
unfixing allows us to work directly with the reduced phase space and the ordinary Poisson bracket. At the
same time, we explicitly derive the new set of residual first class constraints preserving the partial gauge
fixing, which are linear combinations of the original constraints, and these turn out to contain nonlinear
terms. While providing an explicit example of how to consistently recast general relativity in a given partial
gauge, the main motivation of this classical analysis is the application of the Quantum Reduced Loop
Gravity program to a Schwarzschild black hole geometry.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) in its canonical
formulation is a constrained system. The phase space is
parametrized by the symmetric 3-metric tensor and its
conjugate momentum components, which together amount
to 6þ 6 local degrees of freedom (d.o.f.). However, only 4
of them are physical. The extra 8 components represent
gauge d.o.f. and they are accounted by the 4 diffeomorphism
constraints, 1 timelike and 3 spacelike, resulting from the
canonical analysis of the Einstein-Hilbert action after the
Arnowitt-Deser-Misner decomposition of the spacetime
manifold. The fact that each constraint kills 2 d.o.f. follows
from the first class nature of their algebra, and it is related to
the fact that the constraints are, at the same time, the
generator of the local gauge symmetry (diffeo invariance
in this case).
In the first order Ashtekar connection formulation [1],

an extra gauge redundancy is introduced. In fact, in this case,
the phase space configuration variable becomes a gauge
connection and its conjugate momentum is a densitized triad
(out of which the induced metric of the 3D spacelike hyper-
surface of the foliation is reconstructed) for a total of
18 d.o.f. The additional (with respect to the metric formu-
lation) 6 components are taken care of by 3 extra first class
constraints associated to the local rotational invariance of the
triad, yielding again a total of 4 physical d.o.f.

The presence of all this gauge symmetry is what makes it
so difficult to find explicit general solutions of GR and the
reason why physical applications are often times limited to
symmetry reduced cases, where exact solutions represent-
ing good approximations to real physical situations can
explicitly be found. In the quantum theory, these difficulties
are further amplified by the presence of ordering ambi-
guities in the quantization procedure and anomalies in the
resulting constraint algebra. Therefore, also in the quantum
theory one would like to implement a symmetry reduction
scheme for physical applications. For instance, quantum
dynamics in canonical Loop Quantum Gravity (LQG) is
implemented by the imposition of the Hamiltonian con-
straint on the states of the kinematical Hilbert space.
However the Hamiltonian constraint is notoriously not
tractable in practice, and this fact has stimulated investiga-
tions of symmetry reduced sectors of the theory, inwhich the
dynamics may become more tractable.
However, the symmetry reduction strategy is crucially

affected by an important choice: the order in which we
perform the symmetry reduction and the quantization
procedures. It is indeed well known that the two steps in
general do not commute and the relation between the
quantum theories outcome of the two alternative choices
(first reduction and then quantization or the other way
around) is often hard to assess.
The easiest path to follow is usually the one of a classical

symmetry reduction, since it is conceptually clearer (the
notion of classical, continuum symmetry becomes often
times fuzzy, or at least subtle, at the quantum level, where
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discrete structures emerge) and it makes the quantization
process considerably easier. This is indeed the choice
commonly explored in canonical quantum gravity when
one applies LQG techniques to cosmology and black hole
physics (see [2–6] and references therein). However,
performing the symmetry reduction at the classical level
usually hides the field theory aspects and it yields a
quantum system with less d.o.f. than the one obtained
by the second choice of symmetry reduction at the quantum
level following a Dirac approach (when this is possible to
accomplish). This can cast some shadows on the reliability
of the physical results obtained through the former choice.
In the context of LQG, these shadows manifest themselves
in the ambiguity about the precise relation between Loop
Quantum Cosmology and the full theory, in the cosmo-
logical case (see [7–11] for an ongoing investigation of
this issue), and about the role of the Immirzi parameter
in the recovery of the Bekenstein–Hawking entropy-area
law, in the black hole case (for different proposals see, e.g.,
[12–21]).
Recently, motivated by its application in a LQG frame-

work, a new strategy has been proposed which interpolates
between the two alternatives of reduction first or quantiza-
tion first.1 This new approach, dubbed “Quantum Reduced
Loop Gravity” (QRLG), comprises two main steps, corre-
sponding to a classical and a quantum analysis, and it was
originally applied in a cosmological setting [9,10,29–35].
Wewant to extend the program to the spherically symmetric
sector of GR in the first order connection formulation, in
order to apply it to the quantization of a Schwarzschild black
hole geometry with LQG techniques. In this manuscript
we concentrate on the first part of the analysis and we recast
the classical phase space in a “orthogonal” gauge (defined
below), compatible with a spherical symmetry reduction, by
completing the Dirac analysis; the quantization part will be
carried out in a following work.
Before entering the technical part of the paper, let us

summarize in a bit more detail the main aspects of our
program. Firstly, the partial gauge fixing conditions that
one would like to impose in order to eventually implement
the classical symmetry reduction are written down explic-
itly and added to the original set of constraints (this is done
in Sec. II); we then study the algebra of this new set, and, if
second class constraints appear, we use the gauge unfixing
procedure [36–39] to impose them. This allows us to work

directly with the reduced phase space2 and the ordinary
Poisson bracket, however we will now be left with a new set
of residual first class constraints preserving the gauge
fixing, which will be linear combinations of the original
constraints. As it will be explicitly shown in Sec. III, the
gauge unfixing procedure is completely equivalent to the
Dirac bracket treatment of second class constraints; how-
ever, the price to pay is that the new form of the (first class)
constraints left to impose will now be more complicated
and, in particular, it will contain nonlocal terms (the explicit
expressions are derived in Sec. IV). This is the most
relevant result of the classical analysis performed here.
In fact, the second part of our program does not intend to

quantize the symmetry reduced phase space, butwewill start
with the standard LQG quantization of the full GR phase
space and proceed to theweak imposition of the gauge fixing
conditions at the quantum level by means of the standard
holonomy-flux algebra representation [40–42]. This will
yield the partially (orthogonal) gauge fixed kinematical
Hilbert space of LQG. The dynamics of the theory will now
be encoded in the new expression of the Hamiltonian
constraint obtained in the first part of the analysis; this will
contain the gauge fixed version of the original Hamiltonian
constraint plus extra, nonlinear termswhich are fundamental
in order to guarantee the consistency the of partial gauge
fixing procedure under time evolution of the system. The
main goal of this second part of the program is to obtain
quantum corrections to physical semiclassical results by
solving the evolution equations for initial data.At a first level
of approximation, such effective equations can be obtained
through expectation values on coherent states constructed
out of reduced spin network states adapted to our choice of
gauge fixing and encoding the information of a given
semiclassical geometry. It is thus at the level of the quantum
states that the symmetry reduction is implemented.3

The gauge unfixing procedure for the “radial” gauge
applied to the case of spherical symmetry, as well as full 4d
general relativity in the metric formulation was previously
considered in [45,46]. While our implementation of the
gauge unfixing procedure closely parallels that of [46], the
main difference is represented by our use of Ashtekhar
variables and in how we gauge fix the radial sector of the
spatial metric. In fact, what the authors call “radial” gauge
in these works is slightly, but crucially (for the resulting
final form of the Hamiltonian constraint) different from our
gauge choice. That is why, to avoid confusion with
previous literature, we have decided to refer to our gauge

1Let us point out that an example of symmetry reduction
implementation at the quantum level is provided by the Group
Field Theory (GFT) reformulation of LQG in a second quantiza-
tion language. This has been obtained by modeling cosmological
[22–25] and black hole [26–28] quantum spacetimes in terms of
quantum gravity condensates within the full theory. The results
achieved through the construction of GFT condensates have
allowed recovery of the outcome of the previous LQG treatment
and, at the same time, to clarify some of the ambiguities present in
the literature.

2It is important to clarify that, at this stage, by “reduced” we
intend “partially gauge fixed”, not “symmetry reduced”.

3The first complete treatment of a vacuum Schwarzschild
spacetime in a geometrodynamical setting is due to the seminal
work of Kuchař [43], although a previous canonical analysis in
the Ashtekar formalism was performed by Thiemann and Kastrup
in [44], containing very similar results for the parametrization of
the symmetry (see footnote 2) reduced phase space.
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choice as “orthogonal” rather than “radial”. The construc-
tion of connection variables for the spherically symmetric
case was sketched in [45] and then investigated in much
more detail in [47] (see also Appendix B of [8]), in order to
apply LQG techniques to implement reduction to spherical
symmetry at the quantum level. In these other works the
authors introduce a Peldan hybrid spin connection, differ-
ent from the Ashtekar–Barbero connection considered
here, and they partially relax the gauge restriction on the
radial part of the metric with respect to the one of [45,46].
This choice of radial gauge is more similar to the one
adopted in this work. However, the authors of [47] as well
as [8] introduce an extra gauge condition on the radial shift,
imposing that this does not depend on the angular coor-
dinates; in this way, the correction terms to the radial diffeo
constraint are not computed explicitly since those would
depend exactly on the angular derivatives of the radial shift,
as will be the case also in our analysis (see the results of
Sec. IV). Moreover, the Hamiltonian constraint is not
included in the analysis of those works and no extended
version for it is derived. Therefore, it is not possible for us
to explicitly compare our results with those of [8,47]. In
light of these differences with previous applications of the
gauge unfixing procedure to implement some version of
partial gauge in full GR, the results we derive in Sec. IV for
the extended radial diffeo and Hamiltonian constraints
represent the main original results of this manuscript.
Concerning the quantization scheme of [47] for a

spherically symmetric spacetime, the use of a Peldan
hybrid spin connection leads to the construction of a
kinematical Hilbert space where techniques of the full
LQG framework are applied, but still relying also on the
notion of point holonomy for some of the d.o.f. Point
holonomies are used also in [8] in order to quantize some of
the phase space configuration variables (although different
ones with respect to [47]). This allows for some technical
simplifications in the quantum theory, yielding for instance
a diagonal volume operator, but it represents as well a
departure from the standard LQG Hilbert space built on a
full SU(2) Ashtekar–Barbero connection. This different
kinematical structure would eventually reflect on the kind
of quantum corrections that can be derived for an effective
Hamiltonian, for instance. We are not going to present any
result concerning the application of our classical analysis
of the gauge unfixing procedure performed here to the
quantum reduction of full LQG to spherical symmetry
(see Sec. V, though, for some details on our quantization
strategy and [48] for its explicit implementation); however,
we anticipate that application of QRLG techniques to a
spherically symmetric spatial manifold will still rely on the
SU(2) Ashtekar–Barbero connection for all of the kin-
ematical d.o.f., with proper restrictions applied in order to
implement the quantum reduction. In this way, we still have
only SU(2) holonomies, although just a restricted set of
representation matrix elements will be allowed, so that the

reduced flux operators become diagonal in the QRLG
Hilbert space for our orthogonal gauge. Similarly to the
formulation of [47], this has the advantage of greatly
simplifying calculations involving the Hamiltonian con-
straint operator. However, since in the QRLG construction
we will not have to rely on point holonomies, there will be
more d.o.f. captured by the reduced kinematical Hilbert
space, making our construction closer to the one of the full
theory and yielding different quantum corrections in the
effective dynamics. The classical investigation performed
here is tailored for this briefly sketched quantum con-
struction, which differs from previous attempts; this thus
provides further motivation for the analysis of this manu-
script. We will spell out and comment on these differences
more in detail at several points through the paper.
Let us stress that while our main motivation is to apply

the results obtained here to the LQG quantization of a black
hole [48], the classical analysis we perform is interesting on
its own, since it represents a successful treatment of a
second class Hamiltonian system according to the Dirac
procedure, allowing us to recast full 4D general relativity in
the first order formulation in a partial gauge.

II. CONSTRAINTS AND GAUGE CONDITIONS

We want to impose gauge conditions in vacuum GR
compatible with a reduction to spherical symmetry. Let us
assume that the spacetime admits a foliation by smooth 3D
hypersurfaces Σt. We will work in the Ashtekar canonical
formulation of vacuum GR, in which, after imposition of
the time gauge, the action takes the form

S ¼ 1

16πG

Z
dt

Z
Σt

d3x

�
2

γ
Ea
i £tA

i
a − NH − NaVa − ΛiGi

�
;

ð1Þ

where γ is the Immirzi parameter. The action (1) defines the
phase space coordinates in terms of an SU(2) connection
configuration variable A and its conjugate momentum E
(densitized triad), and it describes a pure constraint theory,
with N, Na, Λi playing the role of Lagrange multipliers.
The explicit expressions of the constraints are

Gi ¼ ∂aEa
i þ ϵij

kAj
aEa

k; Gauss constraint ð2aÞ

Va ¼ Fi
abE

b
i ; Vector constraint ð2bÞ

H ¼ γEa
i E

b
j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp ½ϵijkFk

ab − 2ð1þ γ2ÞKi
½aK

j
b��;

Hamiltonian constraint; ð2cÞ

where
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Fi
ab ¼ ∂aAi

b − ∂bAi
a þ ϵijkA

j
aAk

b ð3Þ

is the curvature of the Ashtekar connection Ai
a.

Let us now introduce a local set of coordinates to
parametrize a neighborhood of a point in a given constant
time slice Σt. Relying on the geometrical construction of
[49], we coordinate Σt by spherical coordinates (r, θ, ϕ).
Such a set of coordinates, which relies of the use of radial
geodesics, can always be defined locally and, in general,
they can only take value in a finite range. In the following,
we do not need to specify the finite interval for the angular
coordinates, and we assume the radial coordinate to take
values in the finite range r ∈ ½0; r̄� (in the case of a
spherically symmetric geometry one can extend the validity
of these spherical coordinates to their full range, up to
nontrivial topologies). Moreover we make the further
restricting requirement that the radial evolution vector
has vanishing shift; this implies that ra, the unit spacelike
radial vector, is proportional to δar.
Given the above setup, the spatial index a takes values

a ¼ r, θ, ϕ, and the integration element in (1) is
d3x ¼ drdθdϕ. The SU(2) internal index i takes, as usual,
values i ¼ 1, 2, 3. The canonical Poisson brackets (PB)
induced by (1) are

fAi
aðx⃗Þ; Eb

j ðy⃗Þg ¼ 8πGγδbaδijδðx⃗ − y⃗Þ; ð4Þ

where δðx⃗ − y⃗Þ ¼ δðrx − ryÞδðθx − θyÞδðϕx − ϕyÞ. The
algebra of the constraints determined by (4) turns out to
be first class.
We want to fix the system in a gauge conveniently

adapted to the foliation of Σt. We choose an “orthogonal”
gauge defined by Ea

3 being aligned with ra, which, by the
previous discussion, is equivalent to require

Er
I ¼ 0; I ¼ 1; 2; ð5aÞ

EA
3 ¼ 0; A ¼ θ;ϕ; ð5bÞ

where we made a decomposition along radial and tangential
indices. In particular, we use capital letters I; J; K;… to
label internal indices 1, 2. Similarly, we use capital letters
A;B;C;… to label tangential coordinates θ, ϕ. We can
understand Eqs. (5) as a set of four gauge conditions for our
original theory (1).
The block-diagonal structure of the gauge choice (5) can

be better appreciated by rewriting the fluxes in a matrical
form with internal indices 3, I labeling rows and space
indices labeling columns, namely

2
64
Er
3 0 0

0 Eθ
1 Eϕ

1

0 Eθ
2 Eϕ

2

3
75: ð6Þ

It is then evident, the similarity with the radial gauge
choice structure of the spatial metric hab adopted in [45,46],
where hab is a block diagonal 3 × 3 matrix of the form2

664
hrr 0 0

0 hθθ hθϕ
0 hϕθ hϕϕ

3
775: ð7Þ

However, the block-diagonal structure (5) leaves more
freedom than the conventional “radial” gauge considered in
[45,46], in which the component hrr is fixed to 1. In fact, Er

3

is left unconstrained and thus hrr is still a d.o.f. in our
constraint system.4 As we will point out below, this
apparently minor difference in gauge choice can actually
lead to quite different extended Hamiltonian constraints in
the GU procedure, thus a comparison with the analysis of
[45,46] in the general full GR case is not straightforward
(however, we will comment on the differences when
specializing to the spherically symmetric case at the end
of the paper). In light of these differences, we use the
expression “orthogonal” gauge to denote the block-diagonal
in the sense explained above.
We must check the PB algebra between the gauge

conditions (5) and the constraints (2). To this aim, it is
convenient to replace the vector constraint Va with the
diffeomorphisms constraint

Ha ¼ Va − Ai
aGi; ð8Þ

which generates spatial diffeomorphisms on Σt
5:

fEa
i ;H⃗½N⃗�g¼ γ£N⃗E

a
i ¼ γðNb∂bEa

i −Eb
i ∂bNaþ∂bNbEa

i Þ;
ð9aÞ

fAi
a; H⃗½N⃗�g ¼ γ£N⃗A

i
a ¼ γðNb∂bAi

a þ Ai
b∂aNbÞ; ð9bÞ

where Ai
a transforms as an ordinary covector while Ea

i

transforms as a vector density. Here H⃗½N⃗� denotes the
smeared diffeomorphisms constraint

H⃗½N⃗� ¼
Z

d3xNaHa: ð10Þ

In order to facilitate the computation of the PB between
the constraints and the gauge conditions, we adopt the

4The condition hrr¼1 implies, in terms of fluxes, Er
3 ¼

ϵ3
IJEθ

IE
ϕ
J .5From now on we work in units 8πG ¼ 1.
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following notation: We denote by N⃗a a smearing vector
field having a nonvanishing component only along
the a-th direction, ðNaÞb ¼ ηaδab.6 Correspondingly the
smearing H⃗½N⃗a� selects only the a-th component of Hb;

e.g., Nθ ≡ ð0; ηθ; 0Þ, and H⃗½N⃗θ�≡ R
ηθHθ. Similarly we

denote by Λ⃗i a vector in the internal space with the
nonvanishing component only along the i-th internal

direction, ðΛiÞj ¼ λiδij. Therefore, G⃗½Λ⃗i� selects only
the i-th component of Gj; e.g., Λ1 ≡ ðλ1; 0; 0Þ
and G⃗½Λ⃗1�≡ R

λ1G1.
With these conventions we find that on the gauge surface

selected by (5), (9a) gives7

fEr
I; H⃗½N⃗A�g ≈ −γEB

I ∂Bη
AδAr ¼ 0; ð11aÞ

fEr
I; H⃗½N⃗r�g ≈ −γEA

I ∂Aη
r; ð11bÞ

and

fEA
3 ; H⃗½N⃗B�g ≈ −γEr

3∂rη
BδAB; ð12aÞ

fEA
3 ; H⃗½N⃗r�g ≈ −γEr

3∂rη
rδAr ¼ 0; ð12bÞ

where the symbol ≈ denotes projection of the phase
space onto the gauge surface (5). We thus see that Er

I is
second class only with Hr, while EA

3 is second class only
with HA.
Regarding the Gauss constraint, G3 is first class with

both Er
I and EA

3 . This was already expected from the
geometrical meaning of G3, since it generates internal
rotations orthogonal to the third internal direction. On the
other hand, we have

fEr
I; G⃗½Λ⃗J�g ≈ −γλJϵJIEr

3; ð13aÞ

fEA
3 ; G⃗½Λ⃗J�g ≈ γλJϵJIEA

I ; ð13bÞ

meaning that both Er
I and EA

3 are second class with GI .
The PB between the gauge conditions and the

Hamiltonian constraint are not explicitly needed in the rest
of the paper, but we show them here just for completeness.
They read

fEr
I; H½N�g ≈ −γ2ϵJI∂A

�
NEA

JE
r
3ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp �

þ γ2
NEA

I E
r
3ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp �
A3
A −

ð1þ γ2Þ
γ

K3
A

�
; ð14aÞ

fEA
3 ; H½N�g ≈ −γ2ϵIJ∂B

�
NEA

I E
B
Jffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp �

þ γ2
NEA

I E
r
3ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp �
AI
r −

ð1þ γ2Þ
γ

KI
r

�
: ð14bÞ

III. IMPLEMENTATION OF THE
SECOND CLASS CONSTRAINTS

The treatment of a second class Hamiltonian system
follows the Dirac procedure [50]. This consists of splitting
the set of the original constraints and of the gauge con-
ditions, all of which we collectively refer to as “the
constraints”, in two subsets: the first class subset, consisting
of those constraints that commute with each other and with
the second class constraints; and the second class subset, in
which every member does not commute with at least
another one.
There is some ambiguity in this splitting. However, it is

clear that in order to preserve the number of physical d.o.f.
of the phase space, the second class constraints must be
twice as many as the gauge conditions. In our case this
implies that since (5) are four conditions, four and only four
out of the original seven constraints Gi, Ha and H are
second class with them.
In turn, this leaves three residual first class constraints.

They do not necessarily coincide directly with three con-
straints from the initial set, but they can come in linear
combinationswith the others (this is the source of the splitting
ambiguity). Indeed, from (11)–(13), only G3 is directly first
class. Therefore, the remaining two first class constraints
must be expressed as linear combinations of the original ones.
Once this splitting is completed, one must invert the

Dirac matrix, i.e., the antisymmetric matrix whose elements
are the PB of the second class constraints. The inverse of
the Dirac matrix then allows us to implement the second
class constraints by deforming the Poisson brackets into the
so called Dirac brackets. The remaining first class con-
straints and the dynamics of the theory can be finally
imposed with the Dirac brackets.
However, finding a representation of the Dirac brackets

can be problematic, introducing serious obstructions to the
completion of the quantization process. It is hence useful to
follow an alternative, but equivalent, route to impose the
second class constraints. One possibility is represented by
the so-called “gauge unfixing” (GU) procedure introduced
in [36–38] (see also [39]). The advantage of the GU is that
one works directly with the reduced phase space variables,
while still using the ordinary Poisson brackets. Moreover, it
gives a direct way to compute the gauge invariant residual
first class constraints.

A. The gauge unfixing procedure

The GU consists of finding an extension of the phase
space invariant under the flow of the gauge conditions.

6As usual, indices in the same positions are not summed over,
unless otherwise specified.

7In this paper we assume vanishing boundary conditions for
the smearing functions.
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In the case of (5), this amounts to finding extensions of AI
r

and A3
A. To avoid confusion, these extensions are denoted

with a tilde: ÃI
r and Ã3

A. They are obtained by adding to AI
r

and A3
A terms proportional to the original constraints.

Before going into the details, let us explain the procedure
in a more formal way. Our application of the GU procedure
is somehow the reverse of what is usually done. Usually,
the GU is applied to an original second class system of
constraints in order to turn a subset of them into a first class
system. In our case, we start with a first class system and we
transform it into an auxiliary second class one by imposing
a set of gauge fixing conditions for some of the phase space
coordinates. At this point, by applying the GU procedure
to the auxiliary second class system we can obtain a new
first class system, in which we have traded some of the
original constraints with the gauge fixing conditions that
we have chosen.
More precisely, let Qa and Pa be, respectively, the

configuration and momentum fields of our field theory
with Poisson brackets

fPaðx⃗Þ; Qbðy⃗Þg ¼ γδabδðx⃗ − y⃗Þ; ð15Þ

where now a; b; c;… stand both for internal and tangential
indices.
The theory is supposed to be equipped with a set of first

class constraints fVig:

fViðx⃗Þ; Vjðy⃗Þg ¼ 0; ð16Þ
where i; j; k;… are constraint labels.
We impose as gauge conditions

χa ≈ 0; ð17Þ

that a subset of the configuration fields fQag vanishes. The
enlarged set of constraints fVi; χag is now second class. At
this point we run the GU machinery to turn the fχag into
first class constraints, while interpreting a subset fCig of
equal number of the original constraints fVig as gauge
conditions for the fχag.
In order to do so, we have to find gauge invariant

extensions of the corresponding momenta fPa
χg.

Let P̃a
χ be

P̃a
χðx⃗Þ ¼ Pa

χðx⃗Þ þ
Z

dy⃗Ciðy⃗ÞNiaðy⃗; x⃗Þ þ…; ð18Þ

where the dots indicate terms of higher powers of the Ci’s.
In (18) Nia is a distributional matrix and, together with its
higher power counterparts, it must be fixed by requiring
the gauge invariance of P̃a

χ , i.e.,

fχaðx⃗Þ; P̃b
χðy⃗Þg ≈ 0: ð19Þ

Finally, by replacing Pa
χ with P̃a

χ in the other remaining
constraints, we manage to promote the auxiliary second
class constraints fVi; χag to a new first class set.
In general, imposing (19) gives recursive relations for

Nia, and for its higher power counterparts, that are not easy
to solve. However a great simplification occurs when the
Ci’s depend on the momenta Pχ at most linearly: in this
case the higher power terms in (18) drop out, and Nia

becomes independent of the Pχ’s. We will see in a moment
a direct example of such simplifications. In fact, observe
that the constraints Gi and Ha are all linearly dependent on
the fields Ai

a; therefore, if we choose the Ci’s among them,
as we will actually do, these simplifications apply. This is
the main reason why we replaced the vector constraint Va
with the diffeomorphisms constraint Ha.

B. Extended phase space

With these simplifications in mind, combining (18) and
(19) we obtain

0 ≈ −γδabδðx⃗ − z⃗Þ þ
Z

dy⃗fχbðz⃗Þ; Ciðy⃗ÞgNiaðy⃗; x⃗Þ; ð20Þ

from which we see that Nia is the inverse of the matrix

Aai ¼ γ−1fχaðz⃗Þ; Ciðy⃗Þg: ð21Þ

The application of the GU procedure thus boils down to
finding the inverse matrix ðA−1Þia and replacing Nia ¼
ðA−1Þia inside (18). Finally, promoting Pa

χ to P̃a
χ , we end up

with a theory invariant under the gauge conditions, and we
canwork onlywith the physical d.o.f. and the eventual gauge
residual ones.
Notice that once the replacement Pa

χ → P̃a
χ is performed

inside the remaining constraints, these are mapped into
linear combinations of the original ones with the Ci’s. This
is a direct way of obtaining the true gauge invariant first
class constraints.
In order to invert the matrixAai, it is convenient to define

its smeared version

Aðx⃗; αÞai ¼ γ−1fχaðx⃗Þ; Ci½α�g; ð22Þ

where all the Ci’s are smeared with the same smearing
function αðx⃗Þ. Then the inverse ðA−1Þia is the matrix
such that Z

dy⃗ðA−1Þiaðx⃗; y⃗ÞAðy⃗; αÞaj ¼ δijαðx⃗Þ: ð23Þ

Let us now have a closer look at the matrixAai and show
how to invert it in the case of interest described in the
previous section. First of all, we must choose the constraints
Ci. Guided by the physical meaning of the constraints,
we observe that, to implement the gauge, two rotations

ALESCI, PACILIO, and PRANZETTI PHYS. REV. D 98, 044052 (2018)

044052-6



generated byG1 andG2 align rI along the third internal axis,
while two diffeomorphisms generated by Hθ and Hϕ make
the angular components of ra vanish.Henceforth,we choose
Ci ¼ GI , HA. The matrix Aðx⃗; αÞai then becomes

Aðx⃗; αÞ ¼
�
cAJ aAB
bIJ ∅IB

�
; ð24Þ

where

aABðx⃗Þ ¼ fEA
3 ðx⃗Þ; HB½α�g ¼ −Er

3ðx⃗Þ∂rαðx⃗ÞδAB; ð25aÞ

bIJðx⃗Þ ¼ fEr
Iðx⃗Þ; GJ½α�g ¼ αðx⃗ÞϵIJEr

3ðx⃗Þ; ð25bÞ

cAJðx⃗Þ ¼ fEA
3 ðx⃗Þ; GJ½α�g ¼ αðx⃗ÞϵJKEA

Kðx⃗Þ; ð25cÞ

∅IBðx⃗Þ ¼ fEr
Iðx⃗Þ; HB½α�g ¼ 0; ð25dÞ

and we used Eqs. (11)–(13).
The inverse matrix ðA−1Þia, that we derive in the

Appendix, reads

A−1ðx⃗; y⃗Þ ¼
"

∅I
B ðb−1ÞIJ

ða−1ÞAB dAJ

#
; ð26Þ

where

ða−1ÞABðx⃗; y⃗Þ ¼
δAB
Er
3ðy⃗Þ

Θðry − rxÞδðθx − θyÞδðϕx − ϕyÞ;

ð27aÞ

ðb−1ÞIJðx⃗; y⃗Þ ¼ −
ϵIJ

Er
3ðy⃗Þ

δðx⃗ − y⃗Þ; ð27bÞ

dAJðx⃗; y⃗Þ ¼ δJKEA
Kðy⃗Þ

ðEr
3ðy⃗ÞÞ2

Θðry − rxÞδðθx − θyÞδðϕx − ϕyÞ;

ð27cÞ

and Θ is the Heaviside step distribution.
We can now compute the extended momenta:

Ã3
Aðx⃗Þ ¼ A3

Aðx⃗Þ þ
Z

dy⃗HBðy⃗Þða−1ÞBAðy⃗; x⃗Þ

¼ A3
Aðx⃗Þ þ

1

Er
3ðx⃗Þ

Z
dr0HAðr0ÞΘðr − r0Þ

¼ 1

Er
3ðx⃗Þ

Z
r

0

dr0½DA þ Er
3∂AA3

r �r0 ; ð28Þ

where we have defined

DA≡EB
I ∂AAI

B−∂BðAI
AE

B
I Þ: ð29Þ

In the last step of (28) we have used the boundary
condition A3

Aðr ¼ 0; θ;ϕÞ ¼ 0.
Similarly,

ÃI
rðx⃗Þ ¼ AI

rðx⃗Þ þ
Z

dy⃗HAðy⃗ÞdAIðy⃗; x⃗Þ

þ
Z

dy⃗GJðy⃗Þðb−1ÞJIðy⃗; x⃗Þ

¼ AI
rðx⃗Þ þ

δIJEA
J ðx⃗Þ

ðEr
3ðx⃗ÞÞ2

Z
r

0

dr0HAðr0Þ þ
ϵIJ

Er
3ðx⃗Þ

GJðx⃗Þ

¼ ϵIJ∂AEA
J ðx⃗Þ

Er
3ðx⃗Þ

þ δIJEA
J ðx⃗Þ

ðEr
3ðx⃗ÞÞ2

Z
r

0

dr0½DA þ Er
3∂AA3

r �r0 ;

ð30Þ

where again in the last step we have used
A3
Aðr ¼ 0; θ;ϕÞ ¼ 0.
We have thus obtained the extended phase space. The

next step consists of replacing (28) and (30) into the
remaining constraints, in order to generate their extended
representation.
Before going on, let us observe that Eqs. (28) and (30)

are equivalent to solve directly the constraints on the gauge
surface, i.e.,

HA ≈ 0 ⇒ A3
Aðx⃗Þ ≈

1

Er
3ðx⃗Þ

Z
r

0

dr0½DA þ Er
3∂AA3

r �r0 ; ð31Þ

which, in turn, implies

GI ≈ 0

⇒ AI
r ≈

ϵIJ∂AEA
J ðx⃗Þ

Er
3ðx⃗Þ

þ δIJEA
J ðx⃗Þ

ðEr
3ðx⃗ÞÞ2

Z
r

0

dr0½DA þ Er
3∂AA3

r �r0 :

ð32Þ

However, the main advantage of the GU with respect to the
direct solution of the second class constraints is the
possibility to obtain the expression of the gauge invariant
operators in a straightforward manner. Indeed, through the
replacement Pa

χ → P̃χ
a and using (18), it is easy to

distinguish the original operator from the corrections
induced by the requirement of gauge invariance, which
are proportional to the second class constraints.
Moreover, notice also that we have the freedom to

choose the Dirac matrix as

D ¼
� ∅ A

−AT ∅

�
; ð33Þ

where A is the same as in (33). Indeed, this corresponds to
select GI and HA as the second class constraints.
We easily see that such a choice is compatible with the

counting of the phase space d.o.f. In the ungauged original
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theory one starts with 18 phase space d.o.f. minus 2×(7 first
class constraints), which gives 4 physical d.o.f.8 When
we impose the gauge fixing, we have 18 d.o.f. minus
2×(3 irreducible first class constraints) minus 4 second
class constraints minus 4 gauge conditions, which gives
again 4 physical d.o.f.
Therefore the GU procedure is equivalent to the inver-

sion of the Dirac matrix. In this case, the main advantage
of the GU is that the Poisson brackets are not modified,
while in the Dirac method the correction of the Poisson
brackets makes it harder to implement them at the
quantum level.

IV. EXTENDED REPRESENTATION OF THE
REMAINING CONSTRAINTS

The extended representation of the remaining constraints
(G3, Hr and H) is obtained from the original ones, by
promoting A3

A and AI
r to their extended versions Ã

3
A and ÃI

r,
and specifying the result to the gauge surface (5).
The Gauss constraint G3½Λ3� is not affected, as it is clear

from its geometrical meaning.
The radial diffeomorphism constraint Hr½Nr� acquires

extra terms in the form of linear combinations of HA and
GI , namely,

H̃r½Nr� ≈Hr½Nr� þHA½γA� þ GI½γI�; ð34Þ

where

γA ¼
Z

dr⃗0ðEB
I ∂BNrÞr0dAIðr⃗0; x⃗Þ

¼
Z

r̄

r
dr0

�
δIJEA

I E
B
J

ðEr
3Þ2

∂BNr

�
r0
; ð35Þ

and

γI ¼
Z

dr⃗0ðEB
J ∂BNrÞr0 ðb−1ÞIJðr⃗0; x⃗Þ

¼ −
ϵIJEA

J

Er
3

∂ANr: ð36Þ

Alternatively, let us define the reduced radial diffeomor-
phisms Hr, consisting of those parts of Hr that do not
contain A3

A and AI
r, explicitly,

Hr ¼ ð∂rAI
AÞEA

I − A3
r∂rEr

3: ð37Þ

Then, using the last line of (30), we obtain

H̃r½Nr� ≈Hr½Nr� þ
Z

dx⃗ð∂ANrÞ

×

�
ϵIJEA

I ∂BEB
J

Er
3

þ δIJEA
I E

B
JIB

ðEr
3Þ2

�
; ð38Þ

where, to shorten the notation, we have defined

IA ≡
Z

r

0

dr0½DA þ Er
3∂AA3

r �r0 : ð39Þ

Notice that the extension of the radial diffeomorphism
constraint above depends on the angular partial derivatives
of the radial shift, as pointed out also in [47]; however, in
that analysis a further partial gauge fixing was introduced
so that the radial shift does not depend on the angular
coordinates and, therefore, no explicit form of the nonlocal
terms was derived.
The Hamiltonian constraint splits into its Lorentzian and

Euclidean parts. In the quantum theory, the Lorentzian part
is traditionally treated by rewriting it in terms of commu-
tators of the Euclidean part with the volume operator.
Therefore let us focus here only on the Euclidean part
HE. The extended Euclidean Hamiltonian can be written in
the form

H̃E ≈HE½N� þHA½γA� þGI½γI�; ð40Þ

where now

γA ¼
Z

r̄

r
dr0

�∂B

Er
3

�
NE½A

I E
B�
J ϵ

IJffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp �

þ EA
I ∂B

ðEr
3Þ2

�
NϵIJEB

J E
r
3ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp �

−
NEA

Iffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp �

EB
J δ

IJA3
B

Er
3

þ AI
r þ

ϵIJ

Er
3

GJ

�

−
NEA

I E
B
J δ

IJffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp ðEr

3Þ2
Z

r0

0

dr00HBðr00Þ
�
r0
; ð41Þ

and

γI ¼ −
∂A

Er
3

�
NδIJEA

JE
r
3ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp �
−
NϵIJEA

JA
3
Affiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp : ð42Þ

Observe that, since the Hamiltonian is quadratic in the
momenta, the second class constraints appear also as argu-
ments of the smearings in (41).
As in the case of the radial diffeomorphisms, we can also

define a reduced Euclidean Hamiltonian HE, neglecting
the terms containing A3

A and AI
r, explicitly,

HE ≈
γffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp
× ðEr

3E
A
I ϵ

I
J∂rAJ

A þ EA
I E

B
J A

I
½AA

J
B� þ Er

3E
A
I A

3
rAI

AÞ:
ð43Þ

8Recall that a first class constraint freezes two phase space
d.o.f., while a second class constraint freezes only one.
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Then, the extended representation of the Euclidean
Hamiltonian constraint, written in its unsmeared version,
reads

H̃E ≈HEþ
γffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp �
EA
I E

B
J

�
−δIJ

IAIB

ðEr
3Þ2

þ ϵIJ∂A

�
IB

Er
3

��

−Er
3E

A
I

�
ϵIJð∂BEB

J ÞIA

ðEr
3Þ2

þ ∂A

�
ϵIJEB

J IB

ðEr
3Þ2

−
δIJ∂BEB

J

Er
3

���
:

ð44Þ

Notice that detðEÞ reduces to

detðEÞ ≈ 1

2
ðϵrABϵIJEA

I E
B
J ÞEr

3: ð45Þ

The expression (44) for the extended Euclidean
Hamiltonian constraint, or equivalently (40), (41), (42),
represents the main result of this work.
We could now try to compare our final result for the

extended Hamiltonian constraint with the one obtained in
[46] through the use ofmetric variables.However, as pointed
out above, due to the imposition of the further gauge
restriction hrr ¼ 1 in [46], we do not expect the final
expressions to be equivalent. A possible way to see this is
to restrict to the spherically symmetric case. If we replace the
spherically symmetric connection and flux components that
one can find, for instance in [51],we can see that all the extra,
nonlocal terms in (44) simplify, yielding the local term of the
symmetry reduced Hamiltonian encoding the connection
componentA3

ϕ; this is what we expected since this is the only
connection component conjugate to a gauge fixed flux
appearing in the spherically symmetric Hamiltonian con-
straint. On the other hand, due to the extra gauge condition
hrr ¼ 1, the spherically symmetric Hamiltonian derived in
[46] still contains nonlocal terms; only upon relaxing this
constraint one recovers the standardHamiltonian of [43] and
the two results match.

V. CONCLUSIONS

We have considered the canonical coordinates of GR
phase space parametrized by the Ashtekar–Barbero SUð2Þ
connection and its conjugate momentum and introduced
some partial gauge fixing conditions. These conditions
bring in second class constraints in the theory, which we
have implemented in our canonical analysis by means of
the gauge unfixing procedure. As clarified above, such
treatment of second class constraints is equivalent to the
inversion of the Dirac matrix, as well as to the direct
solution of the constraints; however, it presents the advan-
tage that we can still use the standard Poisson bracket
between the remaining (reduced) phase space coordinates,
thus avoiding the complications of having to deal with the
quantum representation of the Dirac bracket, at the price of
introducing some nonlocal extra terms in the remaining

first class constraints. We have thus shown that the Dirac
program for second class constraint systems can be
completed in order to reduce the gauge freedom of general
relativity.
This analysis lays the basis for the quantum description

of black holes performed in [48]. More precisely, the
orthogonal gauge fixing performed here is useful to deal
with the spherical symmetry reduction of a 3D spatial
geometry. The strategy is to generalize techniques intro-
duced for cosmological applications within the framework
of Quantum Reduced Loop Gravity [9,10,29–34] to impose
the gauge fixing conditions in terms of expectation values
on kinematical quantum states of the full theory. We can
then use these reduced spin networks to build coherent
states for a Schwarzschild quantum geometry, thus imple-
menting the spherical symmetry reduction at the quantum
level. The proper quantum dynamics will be encoded in the
operatorial version of the extended Euclidean Hamiltonian
constraint (44) (and its Lorentzian contribution as well).
Time evolution of the Schwarzschild geometry initial data
according to resulting modified semiclassical Hamiltonian
is expected to generate an effective quantum corrected
metric.
Let us point out that for the nice property of the volume

operator to be diagonal with a simple spectrum on the
quantum reduced states, as mentioned in Sec. I and at the
base of all the great simplifications when dealing with
the quantum constraint operators, it is crucial to employ the
orthogonal gauge. This is a previous and separate step with
respect to the symmetry reduction, which allows us to build
reduced spin network basis states out of which coherent
states can then be defined [48]. In this sense, the classical
analysis performed here for the GU procedure applied to
the case of orthogonal gauge is a necessary step in order to
then have a correct implementation of the remaining first
class (extended) constraints, consistent with the quantum
gauge reduction. This gives us access to technical tools
crucial to go beyond the previous application of coherent
state construction to the spherically symmetric case, see for
instance [52], where the difficulty to deal with the quantum
dynamics (like, e.g., the explicit evaluation of the volume
operator expectation value) prevented the derivation of an
effective Hamiltonian coming from the full theory.
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APPENDIX: DERIVATION OF A− 1

The matrix

Aðx⃗; αÞ ¼
�
cAJ aAB
bIJ ∅IB

�
ðA1Þ

has the symbolic structure

A ¼
�
c a

b 0

�
: ðA2Þ

If a, b, c were just numbers, the inverse would be

A−1 ¼
�

0 b−1

a−1 −a−1cb−1

�
: ðA3Þ

We must then find a distributional equivalent of (A3). The
equivalent of a−1 is a distribution ða−1ÞABðx⃗; y⃗Þ such thatZ

dy⃗ða−1ÞABðx⃗; y⃗ÞaBCðy⃗Þ ¼ δACαðx⃗Þ: ðA4Þ

Similarly,

Z
dy⃗ðb−1ÞIJðx⃗; y⃗ÞbJKðy⃗Þ ¼ δIKαðx⃗Þ: ðA5Þ

From (25a) and (25b), and from the fact that αðx⃗Þ is a
smearing function obeying vanishing boundary conditions,
it is straightforward to verify that the expressions (27a) and
(27b) are the correct inverses.
The distributional equivalent of −a−1cb−1 is the matrix

dAJðx⃗; y⃗Þ

¼ −
Z

dz⃗
Z

dw⃗ða−1ÞABðx⃗; w⃗Þc̃BIðw⃗; z⃗Þðb−1ÞIJðz⃗; y⃗Þ;

ðA6Þ

where c̃AI is the distributional matrix such thatZ
dy⃗c̃AIðx⃗; y⃗Þαðy⃗Þ ¼ cAIðx⃗Þ: ðA7Þ

Then, from (25c),

c̃AIðx⃗; y⃗Þ ¼ ϵI
JEA

J ðx⃗Þδðx⃗; y⃗Þ: ðA8Þ

Inserting (A8) into (A6), and using (A3)–(A5), it is
immediate to show that dAJðx⃗; y⃗Þ corresponds to Eq. (27c).
This completes our derivation of A−1.
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