
 

Dynamics of test particles in the five-dimensional Gödel spacetime
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We derive the complete set of geodesic equations for massive charged test particle and light motion in the
five-dimensional, rotating and charged solution of the Einstein-Maxwell-Chern-Simons field equations in
five-dimensional minimal gauged supergravity and present their analytical solutions. We study the polar
and radial motion, depending on the spacetime and test particle parameters, and characterize the test
particle motion qualitatively by the means of parametric plots and effective potentials. We use the analytical
solutions in order to visualize the test particle motion by three-dimensional plots.
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I. INTRODUCTION

The Gödel metric is an exact regular solution of the
Einstein field equations in the presence of a negative
cosmological constant, which was published in 1951 by
Kurt Gödel [1] as a gift to Einstein’s 70th Birthday. It
describes a homogeneous pressureless mass distribution.
This solution represents the best known example of an

universe model with causality violation (e.g., the existence
of closed timelike curves). Closed timelike curves are also
found in the van Stockum spacetime of a rotating dust
cylinder [2], the Kerr spacetime [3] and the Gott spacetime
of two cosmic strings [4].
Additionally, the Gödel spacetime was the first solution

of the Einstein field equations that modeled a globally
rotating universe, demonstrating that Mach’s principle [5,6]
is not fully incorporated in the theory of general relativity.
Although not serving as a viable model of our universe,

since it does not include any expansion as required by
Hubble’s law [7], Gödel’s solution gave rise to general
questions of causality and global properties of relativistic
spacetimes, which culminated in the postulation of the
chronology protection conjecture by Stephen Hawking [8].
As a promising candidate for a quantum theory of

gravity, string theory generated a growing interest in
higher-dimensional solutions, since it requires extra dimen-
sions of spacetime for its mathematical consistency. The
higher-dimensional generalization of the Schwarzschild
spacetime has been found in 1963 by F. R. Tangherlini
[9]. In 1986, R. Myers and M. Perry generalized the Kerr
solution to higher dimensions [10]. Further generalizations
include the general Kerr-de Sitter and Kerr-NUT-AdS
metrics in all higher dimensions [11,12]. Remarkably,
five-dimensional, stationary vacuum black holes are not

unique. Besides the Myers-Perry solution, a five-
dimensional rotating black ring solution with the same
angular momenta and mass but a nonspherical event
horizon topology has been found [13].
However, neither the four-dimensional Kerr-Newman

nor the Gödel solution of Einstein’s field equation could
be generalized to higher dimensions, yet. Nevertheless,
related solutions of both spacetimes were found for the
Einstein-Maxwell-Chern-Simons (EMCS) equations of
motion in the five-dimensional minimal gauged super-
gravity [14,15]. The maximally supersymmetric Gödel
analogue shares most of the peculiar features of its four-
dimensional counterpart (see e.g., [16]).
The test particle motion, governed by the geodesic

equations, is a valuable tool in order to gain insight into
the fundamental properties of a spacetime. Especially, exact
solutions of the geodesic equations can be used to calculate
spacetime observables to arbitrary accuracy. Further inter-
est into geodesics in anti-de Sitter spacetimes arises in the
context of string theory and the AdS=CFT correspondence
[17]. Therefore separability of the equations is an important
aspect. Much work has been done with respect to the
separability of higher-dimensional black holes (see e.g., the
review [18] and references therein). Besides the Myers-
Perry black holes and their NUTand (A)dS generalizations,
this includes, in particular, studies of the separability of the
Hamilton-Jacobi equation, the Klein-Gordon equation and
the Dirac equation in charged rotating black hole space-
times of D ¼ 5 supergravity [19–26]. The geodesic equa-
tions for the case of ungauged supergravity were solved
analytically in [27] (see also [28]).
The geodesic equations of the four-dimensional Gödel

spacetime have been investigated in [29]. The five-
dimensional Gödel spacetime possesses a 9 parameter
family of isometries [14,30]. As pointed out in [30], its
high symmetry allows to solve for the geodesics explicitly.
A 5 parameter subset of these isometries is retained for the
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nonextremal rotating charged black holes in the Gödel
universe of the five-dimensional minimal supergravity [31].
The further inclusion of charge then leads to the four
parameter charged rotating Gödel black hole found in [32],
for which the Hamilton-Jacobi equation remains separable,
since the symmetries of the chargeless case are retained.
In this paper, we want to explore the dynamics of

charged test particles coupled to the Uð1Þ field of the
five-dimensional Gödel spacetime and solve the geodesic
equations analytically. In Sec. II, we will present the basic
features of this spacetime and derive the geodesic equations
by solving the Hamilton-Jacobi equation. Section III con-
tains a qualitative discussion and a complete characteriza-
tion of the test particle dynamics, especially the radial
effective potentials are introduced. Section IV is dedicated
to the analytical solutions of the equations of motions
obtained in Sec. II, which will be used in Sec. V, in order to
illustrate some three-dimensional representations of the
related orbits.

II. THE FIVE-DIMENSIONAL GÖDEL UNIVERSE

We will briefly recall the basic properties of the five-
dimensional Gödel spacetime and derive the geodesic
equations describing the motion of massive and massless
test particles.

A. Metric

The bosonic part of the minimal supergravity theory in
4þ 1 dimensions consists of a metric and a one-form
gauge field obeying the Einstein-Maxwell-Chern-Simons
(EMCS) equations of motion [14]

Rμν −
1

2
gμνR ¼ 2

�
FμαFν

α −
1

4
gμνFρσFρσ

�
; ð1Þ

∇μ

�
Fμν þ 1ffiffiffi

3
p ffiffiffiffiffiffi−gp ϵμνλρσAλFρσ

�
¼ 0; ð2Þ

where Fμν ¼ ∂μAν − ∂νAμ represents the Abelian field-
strength tensor and ϵμνλρσ is the five-dimensional Levi-
Civita tensor density with ϵ01234 ¼ −1.
The five-dimensional Gödel universe is a solution to the

Eq. (1) with the line element

ds2 ¼ −ðdtþ jr2ðdϕþ cos θ dψÞÞ2 þ dr2

þ r2

4
ðdθ2 þ dϕ2 þ dψ2 þ 2 cos θ dϕdψÞ ð3Þ

and the one-form gauge field

Aμdxμ ¼
ffiffiffi
3

p

2
jr2ðdϕþ cos θ dψÞ; ð4Þ

with t ∈ ½0;∞Þ, r ∈ ½0;∞Þ and Euler angles θ ∈ ½0; π�,
ϕ ∈ ½0; 2π� and ψ ∈ ½0; 4π�. In this metric, the parameter j

defines the scale of the Gödel background and is respon-
sible for the rotation of the universe. For j ¼ 0 the
five-dimensional Minkowski spacetime is recovered.
Accordingly, the Kretschmann scalar

RμνρσRμνρσ ¼ 2176j4 ð5Þ

vanishes for j ¼ 0. The fact that the Kretschmann scalar is
constant reflects the homogeneity of the Gödel spacetime.
Calculating the energy-momentum tensor for the gauge
field of our solution

Tμν ¼ 12j2uμuν; ð6Þ
where u is the unit vector in time direction with contra-
variant components uμ ¼ ð1; 0; 0; 0; 0Þ, one finds that it has
vanishing pressure and constant energy density propor-
tional to j2, i.e., the electromagnetic field has the same
energy-momentum as pressureless dust. Obviously, the
sign of the gϕϕ component changes for r > 1

2j, yielding
closed timelike curves parametrized by ϕ keeping all other
coordinates fixed. Note that, since the Gödel spacetime is
homogeneous, there is a closed timelike curve through
every point in this spacetime.

B. Hamilton-Jacobi equation

The Hamilton-Jacobi equation for the action S, describ-
ing a test particle which is coupled to the gauge field (4) by
a charge q, is given by [33]

−
∂S
∂λ ¼ 1

2
gμν

� ∂S
∂xμ − qAμ

�� ∂S
∂xν − qAν

�
: ð7Þ

Therefore, we need the nonvanishing contravariant
metric elements

gtt ¼ 4j2r2 − 1; grr ¼ 1; gθθ ¼ 4

r2
;

gϕϕ ¼ 4

r2sin2θ
; gψψ ¼ 4

r2sin2θ
; gtϕ ¼ −4j;

gϕψ ¼ −
4 cos θ
r2sin2θ

: ð8Þ

Since the metric has three commuting Killing vectors ∂t,∂ϕ and ∂ψ , which are related to the conservation of the test
particle’s energy E and its angular momenta Φ and Ψ, we
search for a solution of the form

S ¼ 1

2
δλ − Etþ SrðrÞ þ SθðθÞ þΦϕþ Ψψ : ð9Þ

Here, we introduced δ as a mass parameter (δ ¼ 1 for
massive and δ ¼ 0 for massless test particles), λ as the
affine parameter along the geodesic and SrðrÞ, SθðθÞ as
being functions depending only on r and θ, respectively.
Inserting this ansatz into Eq. (7) yields
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− δr2 −
�∂Sr
∂r

�
2

r2 − 8EΦjr2 − ð4j2r4 − r2ÞE2

− 3j2q2r4 þ 4
ffiffiffi
3

p
jqr2ðEjr2 þΦÞ

¼ 4

�∂Sθ
∂θ

�
2

þ 4

sin2θ
ðΦ2 þΨ2 − 2 cos θΦΨÞ: ð10Þ

The Hamilton-Jacobi equation is separated into an
r-dependent left-hand and a θ-dependent right-hand side.
Thus, we can set both sides equal to a separation constant
K, known as the Carter constant [34], resulting in two
equations

r2
�∂Sr
∂r

�
2

¼ −K − δr2 − 8EΦjr2 − ð4j2r4 − r2ÞE2

− 3j2q2r4 þ 4
ffiffiffi
3

p
jqr2ðEjr2 þΦÞ≕R

ð11Þ

and

�∂Sθ
∂θ

�
2

¼K
4
−

1

sin2θ
ðΦ2þΨ2−2cosθΦΨÞ ≕ Θ; ð12Þ

where the right-hand side functions R and Θ have been
introduced for brevity. The Carter constant is related to a
second order Killing tensor Kμν via K ¼ Kμνpμpν, where
the pμ ¼ ∂S

∂xμ describe the test particle’s momenta. The
Killing tensor can therefore be directly read off Eq. (12) by
isolating K on one side of the equation and rewriting it in
terms of the pμ

K ¼ Kμνpμpν ¼ 4p2
θ þ

4

sin2θ
ðp2

ϕ þ p2
ψ − 2 cos θpϕpψÞ:

ð13Þ

Clearly, Kμν is a symmetric tensor with entries on the
diagonal (0, 0, 4, 4sin−2θ, 4sin−2θ) and the only non-
vanishing nondiagonal entries

Kϕψ ¼ Kψϕ ¼ −
4 cos θ
sin2θ

: ð14Þ

This Killing tensor is reducible, since it can be written in
terms of tensor products of Killing vectors. In fact,
denoting the generators of the right SUð2Þ subgroup on
S3 by R1, R2 and R3, the Killing tensor corresponds to

Kμν ¼ Rμ
i R

ν
i ; ð15Þ

i.e., it agrees with the corresponding Killing tensor known
for black holes in minimal D ¼ 5 supergravity with equal
angular momenta [19–21], and likewise with the one of the
Gödel black holes [31,32]. The fact, that we are considering

charged particles here instead of neutral particles does not
make a difference. The reason is that each of the Killing
vectors Ri is also a symmetry of the gauge potential A, i.e.,
the Lie derivative LRi

A ¼ 0 as in the case of black holes
[20]. The action (16) now takes the form

S¼1

2
δλ−Etþϵr

Z
r

ffiffiffiffi
R

p

r
drþϵθ

Z
θ ffiffiffiffi

Θ
p

dθþΦϕþΨψ ;

ð16Þ

where ϵr and ϵθ refer to the independent signs of the square
roots. Differentiating this action with respect to the con-
stants of motion K, δ, Φ, Ψ and E and setting the resulting
constants equal to zero yields the geodesic equations

�
dr
dτ

�
2

¼ Rr2; ð17Þ

�
dθ
dτ

�
2

¼ 16Θ; ð18Þ

�
dϕ
dτ

�
¼ 4jr2

�
E −

ffiffiffi
3

p

2
q

�
þ 4

Φ − Ψ cos θ
sin2θ

; ð19Þ

�
dψ
dτ

�
¼ 4

Ψ −Φ cos θ
sin2 θ

; ð20Þ

�
dt
dτ

�
¼ ð2

ffiffiffi
3

p
q − 4Ej2Þr4 þ ðE − 4ΦjÞr2; ð21Þ

where we introduced a new parameter τ along the geodesic
by [35]

dτ ¼ dλ
r2

: ð22Þ

Obviously, the θ and ψ motions are not affected by the test
particle’s charge q and the rotation parameter j. As well as
the r and t motions are not affected by the test particle’s
angular momentum Ψ.

III. DISCUSSION OF THE MOTION

The obtained geodesic equations (17)–(21) allow us to
investigate the motion of test particles qualitatively by
studying their right-hand sides.

A. θ motion

The θ motion is described by Eq. (18). Obviously, the
subspace θ ¼ 0 or θ ¼ π, respectively, can only be reached
if Φ ¼ �Ψ. Other constant θ motions are determined by
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Θðθ0Þ ¼ 0 and
dΘ
dθ

����
θ¼θ0

¼ 0: ð23Þ

In order to simplify the calculations, we transform
Eq. (18) by substituting

ξ ¼ cos θ; ξ ∈ ½−1; 1� ð24Þ

yielding a polynomial of the form

�
dξ
dτ

�
2

¼ a2ξ2 þ a1ξþ a0≕Ξ; ð25Þ

where

a2 ¼ −4K;

a1 ¼ 32ΦΨ;

a0 ¼ 4K − 16Φ2 − 16Ψ2; ð26Þ

with the discriminant

Dξ ¼ a21 − 4a2a0 ¼ 64ðK − 4Φ2ÞðK − 4Ψ2Þ: ð27Þ

Therefore, Eq. (23) are equivalent to

Ξðξ0Þ ¼ 0 and
dΞ
dξ

����
ξ¼ξ0

¼ 0: ð28Þ

For K ≠ 0 these equations can be fulfilled by

Dξ ¼ 64ðK − 4Φ2ÞðK − 4Ψ2Þ ¼! 0; ð29Þ

such that we obtain a constant θ motion if K ¼ 4Φ2 or
K ¼ 4Ψ2. For K ¼ 0 we use that Eq. (12) requires

1

sin2θ
ðΦ2 þ Ψ2 − 2 cos θΦΨÞ ≤ 0: ð30Þ

Since this term is non-negative, it must vanish, which is
fulfilled iff θ ¼ 0 and Φ ¼ Ψ or θ ¼ π and Φ ¼ −Ψ. A
non-constant θ motion is bounded by the zeros of Θ or Ξ,
respectively. For the motion to be physical we require that
the zeros ξ1;20 must be real, i.e., Dξ > 0 and ξ ∈ ½−1; 1� due
to the transformation (24). Furthermore, Ξ must be positive
between these zeros in order to yield a physical motion with
some real ξðτÞ and thus θðτÞ. We will investigate the
behavior of the zeros of Θ by its discriminant.
For K > 0, the roots of Ξ determine the turning points of

a nonconstant θ motion and, therefore, need to be real.
Consequently, the discriminant must be non-negative,
which is true for the two cases

K ≥ 4Φ2 ∪ K ≥ 4Ψ2 ð31Þ

or

0 < K < 4Φ2 ∪ 0 < K < 4Ψ2: ð32Þ
Figure 1 illustrates the discriminant as a function of Φ and
Ψ in case of K ¼ 2
The indicated regions are related to the zeros of Ξ in the

way shown in Table I, where we excluded the special cases
Φ ¼ �Ψ. The number of physical turning points is con-
fined by ξ1;20 ∈ ½−1; 1� due to Eq. (24)
Consequently, only the values of angular momenta in

region I are related to a physical θ motion, which are given
by Eq. (31). We can visualize the boundary of this region
for different values of K in a three-dimensional plot as
shown in Fig. 2.
Parameter values forK,Φ andΨ inside this boundary are

related to a nonconstant θ motion and those on the
boundary are related to a constant θ motion. Other values
do not yield a physical motion.

B. r motion

The radial motion is determined by Eq. (17)�
dr
dτ

�
2

¼ Rr2: ð33Þ

Again, we can conclude that R must be positive in
order to yield a physical motion, where the real zeros of the

FIG. 1. Parametric Φ-Ψ-plot of the Ξ discriminant for K ¼ 2.

TABLE I. Zeros of Ξ for different regions of the E-Φ-plots.

Region Number of real zeros Number of zeros ∈ ð−1; 1Þ
I 2 ∈ R 2
II 2 ∈ R 0
III 0 ∈ R 0
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right-hand side denote the radial turning points. Obviously,
r ¼ 0will always be a double zero, but for small values of r
the only relevant coefficient is given by −K. Since we have
already proven K ≥ 0, r ¼ 0 may only be reached with

positive R iff K ¼ 0. In case of K ≠ 0, there are either two
or zero positive roots of R, due to Descartes’ rule of signs.
Since r ∈ ½0;∞Þ, only the positive zeros are physically
valid. In the case of two radial turning points r1, r2 we have
bound orbits (BO) with range r ∈ ½r1; r2� and 0 < r1 < r2.
In the special case of

E ¼
ffiffiffi
3

p

2
q ð34Þ

the leading coefficient of R vanishes and therefore R
reduces to a quadratic polynomial. In this case, R either
has one or zero positive roots. In the case of a single radial
turning point r1 we have escape orbits (EO) with range
r ∈ [r1, ∞).
A very instructive way of investigating the radial motion

is given by the effective potential. Therefore we rewrite the
radial equation as follows�

dr
dτ

�
2

¼ γ2E2 þ γ1Eþ γ0; ð35Þ

FIG. 2. Parametric plot of the Ξ discriminant.

FIG. 3. Effective potentials (blue, red) for the radial test particle and light motion in the five-dimensional Gödel spacetime. The blue
dashed lines denote the energy of the related orbit and the blue dots mark the zeros of the radial polynomial R, which are the radial
turning points of the orbits. In the grey area no motion is possible since R < 0. The only possible orbit types are bound and escape orbits.
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where

γ2 ¼ r4 − 4j2r6;

γ1 ¼ 4
ffiffiffi
3

p
j2qr6 − 8Φjr4;

γ0 ¼ 4
ffiffiffi
3

p
Φjqr4 − 3j2q2r6 − δr4 − Kr2: ð36Þ

The zeros of this quadratic polynomial are given by

V�
eff ≔

−γ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 − 4γ2γ0

p
2γ2

ð37Þ

and they define the two branches of an effective potential
Veff for the test particle’s energy

_r2 ¼ γ2ðE − Vþ
effÞðE − V−

effÞ: ð38Þ
The radial turning points are now given by E ¼ V�

eff, so that
we may easily visualize and characterize the possible orbit
types as presented in Fig. 3
In Fig. 4 all possible types of orbits are summarized

C. t motion

The t equation is given by Eq. (21). Due to causality, the
right-hand side must be positive. Therefore, we calculate
the zeros

r1;2 ¼ 0; r3;4 ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − 4Φj

Ej2 −
ffiffi
3

p
2
q

s
ð39Þ

and conclude that either

E − 4Φj > 0 ∪ Ej2 −
ffiffiffi
3

p

2
q > 0 ð40Þ

or

E − 4Φj < 0 ∪ Ej2 −
ffiffiffi
3

p

2
q < 0 ð41Þ

must be fulfilled. The latter case results in a positive leading
coefficient for the right-hand side of the t equation yielding
_t < 0 between r ¼ 0 and r ¼ r3. In order to obtain a
physical motion, we will restrict the parameters to the first
case. The first case leads to a modified Gödel-radius r3,
which contains causal bound orbits (CBO). The bound

orbits which pass this radius are noncausal (NBO).
A detailed discussion lead to the existence of CTGs.
A detailled discussion is given in V. For q ¼ Φ ¼ 0 this
modified Gödel radius becomes exactly the classical one.

IV. ANALYTICAL SOLUTIONS

In this section, we will solve the geodesic
equations (17)–(21).

A. θ equation

In order to solve the θ equation we will use the
substitution ξ ¼ cos θ again, which led to Eq. (25)

_ξ2 ¼ a2ξ2 þ a1ξþ a0: ð42Þ

Separation of variables leads to an integral of the form

τ − τin ¼
Z

ξ

ξin

dξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ξ2 þ a1ξþ a0

p ; ð43Þ

where ξin ¼ ξðτinÞ. For a physical, nonconstant θ motion
we already showed that the discriminant Dξ should be
positive and the leading coefficient a2 should be negative.
In this case the integral (43) yields [36]

τ − τθin ¼ −
1ffiffiffiffiffiffiffiffi−a2

p arcsin

�
2a2ξþ a1ffiffiffiffiffiffi

Dξ

p �
; ð44Þ

where

τθin ¼ τin þ
1ffiffiffiffiffiffiffiffi−a2

p arcsin

�
2a2ξin þ a1ffiffiffiffiffiffi

Dξ

p �
: ð45Þ

Solving this equation for ξ and resubstituting ξ ¼ cos θ
gives the final solution

θðτÞ ¼ arccos
�
−

ffiffiffiffiffiffi
Dξ

p
2a2

sinð ffiffiffiffiffiffiffiffi
−a2

p ðτ − τθinÞÞ −
a1
2a2

�
: ð46Þ

B. r equation

In order to solve the r Eq. (17) analytically we perform a
substitution via

x ¼ 1

r2
ð47Þ

yielding �
dx
dτ

�
2

¼ b2x2 þ b1xþ b0≕X ; ð48Þ

where

b2 ¼ −4K;

b1 ¼ 4ðE2 − δÞ − 32EΦjþ 16
ffiffiffi
3

p
Φjq;

b0 ¼ −4ð2E −
ffiffiffi
3

p
qÞ2j2: ð49Þ

FIG. 4. Representation of the orbit types for massive (δ ¼ 1)
and massless (δ ¼ 0) test particles together with the number of
zeros in the respective region. The noncausal bound orbits (NBO)
cross the modified Gödel sphere which is given as a vertical bar in
the plots. The escape orbits (EO) are excluded for massless test
particle motion due to the vanishing charge.

KEVIN EICKHOFF and STEPHAN REIMERS PHYS. REV. D 98, 044050 (2018)

044050-6



Separation of variables leads to same integral as for the θ
Eq. (43) resulting in

xðτÞ ¼ −
ffiffiffiffiffiffi
Dx

p
2b2

sin ð
ffiffiffiffiffiffiffiffi
−b2

p
ðτ − τxinÞÞ −

b1
2b2

; ð50Þ

where Dx is the discriminant of X and

τxin ¼ τin −
1ffiffiffiffiffiffiffiffi
−b0

p arcsin
�
2b0xin þ b1ffiffiffiffiffiffi

Dx
p

�
: ð51Þ

Therefore, the r equation is finally solved by

rðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2b2ffiffiffiffiffiffi
Dx

p
sinð ffiffiffiffiffiffiffiffi

−b2
p ðτ − τrinÞÞ þ b1

s
; ð52Þ

where τrin is related to τxin by xin ¼ r−2in .

C. ϕ equation

The ϕ equation consists of a θ- and an r-dependent part.
Separation of variables and substituting (17) and (18) as
well as (25) and (48) yields

dϕ ¼ 4jr2
�
E −

ffiffiffi
3

p

2
q
�
dτ þ 4

Φ −Ψ cos θ
sin2θ

dτ

¼ 4j
�
E −

ffiffiffi
3

p

2
q
�

dx

x
ffiffiffiffi
X

p þ 4
Φ − Ψξ
1 − ξ2

dξffiffiffiffi
Ξ

p

≕ dϕx þ dϕξ: ð53Þ

The integration of dϕx is straightforward and yields [36]

ϕxðτÞ ¼
4jffiffiffiffiffiffiffiffi
−b0

p
�
E −

ffiffiffi
3

p

2
q

��
arcsin

�
2b0r2ðτÞ þ b1ffiffiffiffiffiffi

Dx
p

�

− arcsin

�
2b0r2in þ b1ffiffiffiffiffiffi

Dx
p

��
þ ϕx

in; ð54Þ

where rin ¼ rðτinÞ and ϕx
in are initial values. In order to

integrate dϕξ we need to perform a partial fraction
decomposition

dϕξ¼4
Φ−Ψξ
1−ξ2

dξffiffiffiffi
Ξ

p ¼2
ΨþΦ
ξþ1

dξffiffiffiffi
Ξ

p þ2
Ψ−Φ
ξ−1

dξffiffiffiffi
Ξ

p ð55Þ

yielding two integrable parts. Using the substitutions
u� ¼ � 1

ξ�1
> 0, for the first and the second term, respec-

tively, yields [36]

Z
ξ

ξin

ðΨ�ΦÞdξ
ðξ� 1Þ ffiffiffiffi

Ξ
p ¼∓

Z
u�

u�in

ðΨ�ΦÞdu�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2 ðu�Þ2 þ c�1 u

� þ c�0
p ; ð56Þ

where

c�0 ¼ a2;

c�1 ¼ a1 ∓ 2a2;

c�2 ¼ a0 −∓a1 þ a2: ð57Þ

Since the value of the discriminant remains unchanged,
we can apply the same solution method as used for the θ
and r equation, resulting in

ϕξðτÞ ¼ −
2ðΨþΦÞffiffiffiffiffiffiffiffiffi

−cþ2
p arcsin

�
2cþ2 u

þðτÞ þ cþ1ffiffiffiffiffiffi
Dξ

p �

þ 2ðΨþΦÞffiffiffiffiffiffiffiffiffi
−cþ2

p arcsin

�
2cþ2 u

þ
in þ cþ1ffiffiffiffiffiffi
Dξ

p �

þ 2ðΨ −ΦÞffiffiffiffiffiffiffiffiffi−c−2
p arcsin

�
2c−2 u

−ðτÞ þ c−1ffiffiffiffiffiffi
Dξ

p �

−
2ðΨ −ΦÞffiffiffiffiffiffiffiffiffi−c−2
p arcsin

�
2c−2 u

−
in þ c−1ffiffiffiffiffiffi
Dξ

p �
þ ϕξ

in; ð58Þ

with initial values u�in ¼ � 1
ξin�1

and ϕξ
in.

D. ψ equation

The ψ equation, which depends solely on the θ equation,
is given by Eq. (20). Separation of variables and sub-
stitution of (25) leads to

dψ ¼ 4
Ψ −Φ cos θ

sin2θ
dτ ¼ 4

Ψ −Φξ

1 − ξ2
dξffiffiffiffi
Ξ

p : ð59Þ

This differential is of the same form as (55) when Φ and
Ψ are exchanged. Consequently, we can give the solution
directly by

ψðτÞ ¼ −
2ðΦþ ΨÞffiffiffiffiffiffiffiffiffi

−cþ2
p arcsin

�
2cþ2 u

þðτÞ þ cþ1ffiffiffiffiffiffi
Dξ

p �

þ 2ðΦþΨÞffiffiffiffiffiffiffiffiffi
−cþ2

p arcsin
�
2cþ2 u

þ
in þ cþ1ffiffiffiffiffiffi
Dξ

p �

þ 2ðΦ −ΨÞffiffiffiffiffiffiffiffiffi−c−2
p arcsin

�
2c−2 u

−ðτÞ þ c−1ffiffiffiffiffiffi
Dξ

p �

−
2ðΦ − ΨÞffiffiffiffiffiffiffiffiffi−c−2
p arcsin

�
2c−2 u

−
in þ c−1ffiffiffiffiffiffi
Dξ

p �
þ ψ in; ð60Þ

with initial value ψ in.

E. t equation

The t equation depends solely on the radial motion and
can be solved by substituting x ¼ 1

r2 as well as (48) yielding

dt ¼
�
E − 4Φj

x
þ 2

ffiffiffi
3

p
q − 4Ej2

x2

�
dxffiffiffiffi
X

p : ð61Þ
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The second integrand can be simplified [36]

dt ¼
�
E − 4Φj

x
−

b1
2b0

2
ffiffiffi
3

p
q − 4Ej2

x

�
dxffiffiffiffi
X

p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x2 þ b1xþ b0

p
b0x

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x2in þ b1xin þ b0

p
b0xin

:

ð62Þ
and the resulting integral is solved analogously to Eq. (54)

tðτÞ ¼
�
E − 4Φjffiffiffiffiffiffiffiffi

−b0
p −

b1
2b0

2
ffiffiffi
3

p
q − 4Ej2ffiffiffiffiffiffiffiffi
−b0

p
�

×

�
arcsin

�
2b0r2ðτÞ þ b1ffiffiffiffiffiffi

Dx
p

�
− arcsin

�
2b0r2in þ b1ffiffiffiffiffiffi

Dx
p

��

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0r4ðτÞ þ b1r2ðτÞ þ b2

p
b0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0r4in þ b1r2in þ b2

p
b0

þ tin; ð63Þ
with an initial value tin.

V. ORBITS

The coordinates ðr; θ;ϕ;ψÞ are related to cartesian
coordinates in R4 via [14]

X þ iY ¼ r cos
θ

2
e

i
2
ðψþϕÞ

Z þ iW ¼ r sin
θ

2
e

i
2
ðψ−ϕÞ: ð64Þ

In order to obtain three-dimensional representations of
the test particle motion, we simply omit one cartesian
coordinate (e.g., the W-coordinate), which produces a
projection of the orbital motion.
In the following we present examples for bound orbits,

especially its spatial and spatial-timelike projections. For
the spatial-timelike projections we find Fig. 5, where the
projection of the motion on the X-Y-plane is presented with
its time-evolution. Moreover the orange circle represents
the modified and the grey one the classical Gödel radius.
In Fig. 6 we present several spatial projections for a

causal bound orbit. For the noncausal motion one finds
similar results.

A. Noncausal motion

In order to obtain such a noncausal motion, we follow
[37] and use the vanishing average of Eq. (21) over one
period which is given by��

dt
dτ

�	
T
¼ ð2

ffiffiffi
3

p
q − 4Ej2Þhr4i

T
þ ðE − 4ΦjÞhr2i

T
¼! 0;

ð65Þ

FIG. 5. Bound orbits in different spatial-timelike projections:
(a) and (b): Causal bound orbit (CBO) with δ ¼ 1, q ¼ 1.78,
j ¼ 0.5, K ¼ 2, Φ ¼ −0.3, Ψ ¼ 0.1, E ¼ 10. (c) and (d): Non-
causal bound orbit (NBO) with δ ¼ 1, q ¼ 2, j ¼ 2.2, K ¼ 2,
Φ ¼ −0.5, Ψ ¼ 0.1, E ¼ 5.

FIG. 6. Causal bound orbits in different spatial projections
using the parameter values δ ¼ 1, q ¼ 1.78, j ¼ 0.5, K ¼ 2,
Φ ¼ −0.3, Ψ ¼ 0.1, E ¼ 10.
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with

hrni
T
¼ 1

T

Z
T

0

rðτÞndτ ð66Þ

and T as the periodicity of rðτÞ. Application of Eq. (52)
and solving for q leads to

q
nc
¼

ffiffiffiffiffi
d1

p þ 4ðmþ 3
4
ÞE2 − 8jmΦEþ δ

2
ffiffiffi
3

p
jðjE − 4ΦmÞ ð67Þ

with m ¼ j2 − 1 and

d1 ¼ ð8mj2 þ 1ÞE4 þ 8

�
8m2Φ2j2 −

�
mþ 1

2

�
2

δ

�
E2

þ 32

�
mþ 1

2

�
jmΦEðδ − E2Þ þ δ2: ð68Þ

Choosing this special q
nc
, one obtains NBOs like the one in

Fig.7.TheX-Y-t andX-W-tprojections respectively showthe
closed time evolution. In these cases, the maximal radius of
the test particle for a noncausal motion, as shown in Figs. 5
and 7, exceeds the value of the modified Gödel radius.

VI. CONCLUSION AND OUTLOOK

In this paper we discussed the motion of massive and
massless test particles in the five-dimensional Gödel space-
time. We used the Hamilton-Jacobi formalism to derive the
geodesic equations of motion and investigated their general
properties. We also analyzed the effective potentials and
studied the qualitative structure of the resulting orbits.
According to this, we showed that the charge of the particle
and the rotation parameter does not affect every equation of
motion. Moreover we investigated the domain of the separa-
tion constantK and found especially the restriction ofK ≥ 0.
From the examination of causality,which could be found from
the tmotion, we obtained relations between the energy E and
the two parameters q and j, which must be satisfied for a
causal motion. The geodesic equations were integrated
analytically and the results were used to visualize the orbital
motion.We showed that escape orbits are only possible for the

special energy value of E ¼
ffiffi
3

p
2
q. Consequently, there are no

escape orbits in the case of (uncharged) lightlike motion.
As an outlook, one could think of calculating the orbits of

charged test particles around higher-dimensional black holes
in the Gödel universe, which are coupled to the U(1) field.
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