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By using a method improved with a generalized optical metric, the deflection of light for an observer and
source at finite distance from a lens object in a stationary, axisymmetric and asymptotically flat spacetime
has been recently discussed [Ono et al. Phys. Rev. D 96, 104037 (2017)]. By using this method, in the weak
field approximation, we study the deflection angle of light for an observer and source at finite distance from
a rotating Teo wormhole, especially by taking account of the contribution from the geodesic curvature of
the light ray in a space associated with the generalized optical metric. Our result of the deflection angle of
light is compared with a recent work on the same wormhole but limited within the asymptotic source and
observer [Jusufi, Övgün, Phys. Rev. D 97, 024042 (2018)], in which they employ another approach
proposed by Werner with using the Nazim’s osculating Riemannian construction method via the Randers-
Finsler metric. We show that the two different methods give the same result in the asymptotic limit. We
obtain also the corrections to the deflection angle due to the finite distance from the rotating wormhole.
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I. INTRODUCTION

Studies on wormholes can be dated back to the cel-
ebrated paper by Einstein and Rosen [1], in which they
investigated what is a particle in the theory of general
relativity, and consequently they noticed a spacetime bridge
connecting two distinct spacetime events, called Einstein-
Rosen bridges. Decades later, Wheeler argued that such
spacetime bridges should be unstable even for a traveling
photon [2]. Misner and Wheeler dubbed such a handle of
multiply connected spacetime wormholes [3]. Morris et al.,
nevertheless, discussed traversable wormholes by holding a
throat of the wormholes open with hypothetical exotic
matter (that must have negative energy in the framework of
general relativity) [4]. Later, other types of traversable
wormholes were found as allowable solutions to the
Einstein equation, especially in a 1989 paper by Matt
Visser [5], in which a spacetime tunnel through the
wormhole can be constructed where a shortcut path does
not pass through a region of such exotic matter. This type of
wormhole models are called thin-shell wormholes. See
Ref. [6] for comprehensive reviews on wormholes. In the
Gauss-Bonnet gravity (an alternative to the theory of
general relativity), however, exotic matter is not required
for wormholes to exist [7]. The latter wormhole model is
based on an idea of modifying the left-hand side (namely,
the geometrical side) of the Einstein equation, while the
former models are due to some modifications of the right-
hand side, especially inclusions of hypothetical exotic
matter.
Null and causal structures of such wormhole spacetimes

are expected to be very different from those around stellar

objects and even those in black hole spacetimes. Therefore,
the light propagation in wormhole spacetimes has attracted
a lot of interest. The deflection of light in an Ellis wormhole
was first discussed by Chetouani and Clement [8,9]. The
gravitational lensing as an observational probe of worm-
holes was investigated [10–21]. In the weak field approxi-
mation, the deflection angle of light was derived in terms of
the inverse power of the photon impact parameter, for
instance by Dey and Sen [22]. However, Nakajima and
Asada showed that this result breaks down at the next-to-
leading order, though the leading order term is correct [23].
This problem occurs due to the regularity at the center of
wormholes and therefore some methods valid for black
holes no longer work for wormholes. On the observational
side of wormholes, Takahashi and Asada showed that the
Sloan Digital Sky Survey Quasar Lens Search (SQLS) put
the upper bound on the cosmic abundance of Ellis worm-
holes [24].
Most of the work on the wormhole lensing mentioned

above is for nonrotating wormholes. Very recently, Jusufi
and Övgün [25] discussed the gravitational lensing by
rotating Teo wormholes [26], in which they use the
Gibbons-Werner approach based on the Gauss-Bonnet
theorem [27]. An extension of the Gibbons-Werner
approach for calculating the deflection of light for the case
of a Kerr black hole was done by Werner [28], in which he
used Nazim’s method of constructing the osculating
Riemannian manifold and computed the Randers-Finsler
form of the metric for the Kerr spacetime. To be more
precise, Jusufi and Övgün employed Werner’s method to
calculate the deflection angle of light for the asymptotic
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observer and source in the weak field approximation of a
rotating Teo wormhole. The condition that the observer and
source are located at the null infinity is a requirement for
using Werner’s method, because the Werner’s extension by
using the Nazim’s osculating Riemannian method needs
that two ends of the light ray (corresponding to the observer
and source, respectively) are in a Euclidean space. We
should note that it is an open issue how to define angles in
the Finsler geometry, though angles are well-defined in
Euclidean regions of the Finsler geometry.
The main purpose of this paper is to discuss the

deflection of light for an observer and source at finite
distance from a rotating Teo wormhole as the gravitational
lens. For this purpose, we shall use a formulation developed
in Ref. [29], which we shall call generalized optical metric
method henceforth.
The method for investigating the light propagation in a

static and spherically symmetric spacetime was reexamined
by Gibbons andWerner, who discussed a problem of how to
determine a curve on a spatial surface in the optical
geometry, where the metric used in the optical geometry
was first called the optical metric [27]. The idea of what
Gibbons and Werner call the optical geometry may be
related with the optical reference geometry that was used to
describe inertial forces in general relativity by Abramowicz
et al. [30], and may be connected also with the idea of the
optical 3-geometry that was introduced to discuss thermal
Green’s functions for black holes byGibbons and Perry [31].
The optical geometry may be also called the optical
reference geometry or Fermat geometry [28]. The merit
of the optical metric is that the arc length along the light ray
with this metric is directly related with the time associated
with the timelike Killing vector, when the spacetime is
stationary. Namely, the optical metric describes the Fermat’s
principle for the light propagation in a manner simpler than
other spatial projections of the four-dimensionalmetric such
as the intrinsic metric in the Arnowitt-Deser-Misner (ADM)
formulation. The generalized optical method is an improved
method for calculating the deflection angle of light espe-
cially for the nonasymptotic observer and source with the
Weyl-Lewis-Papapetrou metric form of a stationary, axi-
symmetric and asymptotically flat spacetime (but in the
polar coordinates, though it is usually described in the
cylindrical coordinates [32–34]), by extending an earlier
work on static, spherically symmetric and asymptotically
flat spacetimes [35]. The generalized optical metric method
has been used for discussions on the light deflection for the
case of Kerr black holes [29].
There are the pros and cons in the generalized optical

metric method. The merit of this method is that it enables us
to calculate the light deflection not only for an asymptotic
observer and source but also for nonasymptotic cases. As
stated already, Werner’s method, which was used by Jusufi
and Övgün, is currently limited within the case of an
asymptotic observer and source, because the observer and

source are needed to be in a Euclidean space of the Finsler
geometry. The price for using the generalized optical metric
method is that we have to take account of the geodesic
curvature of the light ray in the optical geometry and have
to do the path integral of the geodesic curvature. We note
that the light ray is not necessarily geodesic in the optical
geometry, though the light ray follows the null geodesic in a
four-dimensional spacetime [29]. In the present paper, we
shall explicitly calculate the geodesic curvature in the
optical geometry for rotating Teo wormholes and perform
its path integral. A point is that a light ray in Werner’s
approach is treated as a curve in a space described by the
Randers-Finsler type metric, while the generalized optical
metric approach discusses a light ray as a curve in a space
that is defined by introducing the optical metric. Two
spaces in the two methods are different from each other.
Therefore, it is important to ask whether both methods give
the same deflection angle of light, even if the same limiting
case as the asymptotic observer and source is taken. If the
deflection angle depended on these calculation methods, it
might not be useful for gravitational lensing observations.
We shall show that it is not the case. Corrections for the
finite distance cases will be also discussed.
In the rest of this paper, the observer is called the receiver

(R), in order to avoid a confusion in notations between the
observer and the origin of the coordinates (O). This paper is
organized as follows. Section II describes a rotating Teo
wormhole and its optical metric form. In Sec. III, we
perform detailed calculations of the Gaussian curvature and
geodesic curvature to obtain the deflection angle of light in
the weak field approximation of the rotating Teo wormhole.
A comparison with the earlier work [25] is also done.
Section IV is devoted to the conclusion. We use the unit of
c ¼ 1 throughout this paper.

II. GENERALIZED OPTICAL METRIC FOR
ROTATING TEO WORMHOLE

A. Rotating Teo wormhole

A general form of a static axially symmetric rotating
wormhole was first described by Teo in Ref. [26]. Its
spacetime metric reads

ds2 ¼ −N2dt2 þ dr2

1 − b0
r

þ r2H2½dθ2 þ sin2 θðdϕ − ωdtÞ2�;

ð1Þ
where the coordinates are −∞ < t < þ∞, b0 ≤ r < þ∞,
0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and we denote

N ¼ H ¼ 1þ dð4a cos θÞ2
r

; ð2Þ

ω ¼ 2a
r3

: ð3Þ
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The Teo wormhole by Eq. (1) is a rotating generalization
of the static Morris-Thorne wormhole. A rigidly rotating
wormhole would be a case of N ¼ H ¼ 1 and ω ¼ const.
The spacetime of Teo is stationary and axially symmetric
and asymptotically flat, and the spatial coordinates r, θ and
ϕ coincide asymptotically with the spherical coordinates of
a flat space. Here, b0 denotes the throat radius of the
wormhole where two identical asymptotically flat regions
are joined together at the throat r ¼ b0. The parameter a is
the total angular momentum of the wormhole, and the
parameterω is the angular velocity of the wormhole relative
to the asymptotic rest frame, which gives rise to the Lense-
Thirring effect in general relativity.
As already noticed by Teo [26], the wormhole metric in

Eq. (1) violates the null energy condition. The wormhole
(1) has no singularities in the curvature tensor and no event
horizon. The Teo wormhole metric is a purely geometrical
object in the sense that the metric does not take account of
the stress-energy tensor in the Einstein equation. As for the
possible matter source of a rotating wormhole, we refer to
[36], in which general requirements on the stress-energy
tensor were discussed to generate a uniformly rotating
wormhole. Here, we are just interested in the geometry of
spacetime (1) as being an exact solution of the gravitational
field equations.

B. Optical metric

Following Ref. [29], we define the generalized optical
metric γij (i, j ¼ 1, 2, 3) by a relation as

dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijdxidxj

q
þ βidxi; ð4Þ

which is immediately obtained by solving the null con-
dition (ds2 ¼ 0) for dt. Note that γij is not the induced
metric in the ADM formalism.
For the rotating Teo wormhole by Eq. (1), we find the

components of the generalized optical metric as

γijdxidxj ¼
r7

ðr−b0Þðr4− 4a2 sin2 θÞð16da2 cos2 θþ rÞ2 dr
2

þ r6

r4− 4a2 sin2 θ
dθ2þ r10 sin2 θ

ðr4− 4a2 sin2 θÞ2 dϕ
2:

ð5Þ

We obtain the components of βi as

βidxi ¼ −
2ar3 sin2 θ

r4 − 4a2 sin2 θ
dϕ: ð6Þ

In the rest of the paper, we focus on the light rays in the
equatorial plane, namely θ ¼ π=2. Then, the constant d in
the metric does not appear.

III. DEFLECTION ANGLE OF LIGHT
BY A ROTATING TEO WORMHOLE

A. Deflection angle of light

Let us begin this section with briefly summarizing the
generalized optical metric method that enables us to
calculate the deflection angle of light for a nonasymptotic
receiver (denoted as R) and source (denoted as S) [29].
We define the deflection angle of light as [29]

α≡ΨR −ΨS þ ϕRS: ð7Þ

Here, ΨR and ΨS are angles between the light ray tangent
and the radial direction from the lens object, defined in a
covariant manner using the generalized optical metric, at
the receiver location and the source, respectively. On the
other hand, ϕRS is the coordinate angle between the receiver
and source, where the coordinate angle is associated with
the rotational Killing vector in the spacetime. If the space
under study is Euclidean, this α becomes the deflection
angle of the curve. This is consistent with the thin lens
approximation in the standard theory of gravitational
lensing.
By using the Gauss-Bonnet theorem [37,38], Eq. (7) can

be recast into [29]

α ¼ −
Z Z

R
∞
□S

∞ KdSþ
Z

R

S
κgdl; ð8Þ

where K is defined as the Gaussian curvature at some point
on the two-dimensional surface, dS denotes the infinitesi-

mal surface element defined with γð2Þij where γð2Þij denotes
the two-dimensional metric in the equatorial plane

(θ ¼ π=2) and reads γð2Þij dx
idxj ¼ r5

ðr−b0Þðr4−4a2Þ dr
2 þ

r10

ðr4−4a2Þ2 dϕ
2. R

∞
□S

∞
denotes a quadrilateral embedded in a

curved space with γij, κg denotes the geodesic curvature of
the light ray in this space and dl is an arc length defined
with the generalized optical metric (see Fig. 2 in Ref. [29]).
It is shown by Asada and Kasai that this dl for the light ray
is an affine parameter [39]. Note that only the surface
integral term appears in the right-hand side of Eq. (8) if
βi ¼ 0 (see [35]), and the path integral term is proportional
to the total angular momentum of the wormhole (as shown
in Sec. III C), hence caused by rotational (i.e., Lense-
Thirring) effects of the spacetime. We shall make detailed
calculations of the rhs of Eq. (8) below.

B. Gaussian curvature

For the equatorial case of a rotating Teo wormhole, the
Gaussian curvature in the weak field approximation is
calculated as
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K ¼ Rrϕrϕ

det γð2Þij

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det γð2Þij

q
2
64 ∂
∂ϕ

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det γð2Þij

q
γð2Þrr

Γϕ
rr

1
CA

−
∂
∂r

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det γð2Þij

q
γð2Þrr

Γϕ
rϕ

1
CA
3
75

¼ −
b0
2r3

−
56a2

r6
þO

�
a2b0
r7

;
a4

r10

�
; ð9Þ

where a and b0 are bookkeeping parameters in the weak
field approximation. As for the first line of Eq. (9), please
see e.g., p. 263 in Ref. [40]. We note that the first term in
the second line of Eq. (9) does not contribute because
Γϕ
rr ¼ 0. It is not surprising that this Gaussian curvature

does not agree with Eq. (26) in Jusufi and Övgün [25],
because their Gaussian curvature describes another surface
that is associated with the Randers-Finsler metric different
from our optical metric.

In order to perform the surface integral of the Gaussian
curvature in Eq. (8), we have to determine the boundary of
the integration domain. In other words, we need the light
ray as a function of rðϕÞ. For the later convenience, we
introduce the inverse of r as u≡ r−1. The orbit equation in
this case becomes�

du
dϕ

�
2

¼ 1

b2
− u2 −

b0u
b2

þ b0u3

−
4au
b3

−
4aðb0u − b02u2Þ

b3
þO

�
a2

b6

�
; ð10Þ

where b is the impact parameter of the photon. See e.g.,
Ref. [29] on how to obtain the photon orbit equation in the
axisymmetric and stationary spacetime. The orbit equation
is iteratively solved as

u ¼ sinϕ
b

þ cos2 ϕ
2b2

b0 −
2

b3
aþO

�
b02

b3
;
ab0
b4

�
: ð11Þ

By using Eq. (11) as the iterative solution for the photon
orbit, the surface integral of the Gaussian curvature in
Eq. (8) is calculated as

−
Z Z

R
∞
□S

∞ KdS ¼
Z

rðϕÞ

∞
dr

Z
ϕR

ϕS

dϕ

�
−

b0
2r2

�
þO

�
b02

b2
;
ab0
b3

�

¼ b0
2

Z sinϕ
b þcos2ϕ

2b2
b0− 2

b3
a

0

du
Z

ϕR

ϕS

dϕþO
�
b02

b2
;
ab0
b3

�

¼ b0
2

Z
ϕR

ϕS

�
sinϕ
b

�
dϕþO

�
b02

b2
;
ab0
b3

�

¼ b0
2

�
−
cosϕ
b

�
ϕR

ϕ¼ϕS

þO
�
b02

b2
;
ab0
b3

�

¼ b0
2b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q �
þO

�
b02

b2
;
ab0
b3

�
; ð12Þ

where we used sinϕR ¼ buR þOðab−2; b0b−1Þ and
sinϕS ¼ buS þOðab−2; b0b−1Þ by Eq. (11) in the last line.

C. Geodesic curvature

The geodesic curvature provides an important contribu-
tion to our calculations of the light deflection, though it is
not usually described in standard textbooks on the general
relativity. Hence, we follow Ref. [29] to briefly explain the
geodesic curvature here. The geodesic curvature can be
defined in the vector form as (e.g., [38])

κg ≡ T⃗ 0 · ðT⃗ × N⃗Þ; ð13Þ

where we assume a parametrized curve with a parameter, T⃗
is the unit tangent vector for the curve by reparametrizing

the curve using its arc length, T⃗ 0 is its derivative with
respect to the parameter, and N⃗ is the unit normal vector for
the surface. Equation (13) can be rewritten in the tensor
form as

κg ¼ ϵijkNiajek; ð14Þ

where T⃗ and T⃗ 0 correspond to ek and aj, respectively. Here,
the Levi-Civita tensor ϵijk is defined by ϵijk ≡ ffiffiffi

γ
p

εijk,
where γ ≡ detðγijÞ, and εijk is the Levi-Civita symbol
(ε123 ¼ 1). In the present paper, we use γij in the above
definitions but not gij. Note that ai ≠ 0 in the three-
dimensional optical metric by nonvanishing g0i [29],
even though the light signal follows a geodesic in the
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four-dimensional spacetime. On the other hand, we notice
that if we would have a geodesics in the optical metric then
ai ¼ 0 and thus κg ¼ 0.
As shown first in Ref. [29], Eq. (14) is rewritten as

κg ¼ −ϵijkNiβjjk; ð15Þ

where we use γijeiej ¼ 1.
Henceforth, we focus on the equatorial plane (θ ¼ π=2).

Then, let us denote the unit normal vector as Np. This
vector is normal to the θ − constant surface. Therefore, it
satisfies Np ∝ ∇pθ ¼ δθp, where ∇p is the covariant
derivative associated with γij. Hence, Np is written in a
form as Np ¼ Nθδ

θ
p. By noting that Np is a unit vector

(NpNqγ
pq ¼ 1), we obtain Nθ ¼ �1=

ffiffiffiffiffiffi
γθθ

p
. Therefore, Np

can be expressed as

Np ¼ 1ffiffiffiffiffiffi
γθθ

p δθp; ð16Þ

where we choose the upward direction without loss of
generality.

For the equatorial case, one can show

ϵθpqβqjp ¼ −
1ffiffiffi
γ

p βϕ;r; ð17Þ

where the comma denotes the partial derivative, we use
ϵθrϕ ¼ −1= ffiffiffi

γ
p

and we note βr;ϕ ¼ 0 owing to the axisym-
metry. By using Eqs. (16) and (17), the geodesic curvature
of the light ray with the generalized optical metric becomes
[29]

κg ¼ −

ffiffiffiffiffiffiffiffi
1

γγθθ

s
βϕ;r: ð18Þ

For the Teo wormhole case, this is obtained as

κg ¼ −
2a
r3

þO
�
a3

r7
;
a3b0
r8

�
: ð19Þ

We examine the contribution from the geodesic curva-
ture. This contribution is the path integral along the light
ray (from the source to the receiver), which is computed as

Z
R

S
κgdl ¼

Z
S

R

2a
r3

dlþO
�
b02

b2
;
ab0
b3

�

¼
Z

π=2−ϕS

π=2−ϕR

2a cos ϑ
b2

dϑþO
�
b02

b2
;
ab0
b3

�

¼ 2a
b2

�
sin

�
π

2
− ϕS

�
− sin

�
π

2
− ϕR

��
þO

�
b02

b2
;
ab0
b3

�

¼ 2a
b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q �
þO

�
b02

b2
;
ab0
b3

�
; ð20Þ

for the retrograde case of the photon orbit. In the last line, we used sinϕR ¼ buR þOðab−2; b0b−1Þ and sinϕS ¼
buS þOðab−2; b0b−1Þ by Eq. (11). The above contribution becomes 4a=b2, as rR → ∞ and rS → ∞. The sign of the right-
hand side of Eq. (20) changes, if the photon orbit is prograde.

D. Deflection angle

By combining Eqs. (12) and (20), the deflection angle of light for the prograde case is obtained as

αprog ¼
b0
2b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q �
−
2a
b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q �
þO

�
b02

b2
;
ab0
b3

�
: ð21Þ

The deflection angle for the retrograde case is

αretro ¼
b0
2b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q �
þ 2a

b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uS2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2uR2

q �
þO

�
b02

b2
;
ab0
b3

�
: ð22Þ

For both cases, the source and receiver may be located at
finite distance from the wormhole. Equations (21) and (22)
show that the light deflection is increasing with decreasing
impact parameter and increasing throat radius. The light

deflection in the prograde (retrograde) direction is decreas-
ing (increasing) with increasing the angular momentum of
the Teo wormhole, because the local inertial frame (in
which the light propagates at the light speed c in general
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relativity) moves faster (slower), and hence the light signal
feels the gravitational pull for shorter (longer) time.
Regarding the light propagation around a rotating object,
similar physical explanations based on the dragging of the
inertial frame were done about the Shapiro time delay by
Laguna and Wolsczan [41].
One can see that, in the limit as rR → ∞ and rS → ∞,

Eqs. (21) and (22) become

αprog →
b0
b
−
4a
b2

þO
�
b02

b2
;
ab0
b3

�
;

αretro →
b0
b
þ 4a

b2
þO

�
b02

b2
;
ab0
b3

�
: ð23Þ

They agree with Eqs. (39) and (56) in Jusufi and Övgün
[25], in which they are restricted within the asymptotic
source and receiver (rR → ∞ and rS → ∞).

IV. CONCLUSION

In the weak field approximation, we have discussed the
deflection angle of light for an observer and source at finite
distance from a rotating Teo wormhole. We have shown

that both the Werner’s method and the generalized optical
metric method give the same deflection angle at the leading
order of the weak field approximation, if the receiver and
source are at the null infinity. We have also found
corrections for the deflection angle due to the finite distance
from the wormhole. It is left for the future to study higher
order terms in the weak field approximation of a rotating
Teo wormhole and to examine also the strong deflec-
tion limit.
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