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Linear perturbations for one parameter family of stationary, closed Nambu-Goto strings winding around
a flat torus in the five-dimensional Schwarzschild spacetime have been studied. It has been shown that this
problem is solvable in the sense that frequency spectra and perturbation modes can be expressed only with
arithmetic operations and radicals. It has been proven that the Nambu-Goto strings belonging to this family
are always unstable, no matter how they are located in an almost flat region distant from the event horizon.
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I. INTRODUCTION

One promising direction in which to get a better grasp of
the effect of gravitation is brought about by the inves-
tigation of test objects in curved spacetimes, such as test
particles, strings, or membranes. Among these, the motion
of a test particle is described by the geodesic equations
consisting of ordinary differential equations, which are
easily accessible. Accordingly, the analysis of the test
particles has been worked out in various background
gravitational fields.
A natural generalization of the geodesic equation is given

by the Nambu-Goto equation for test strings or membranes
describing such test objects [1,2]. While the motion of
geodesic particles is described by the world line with the
extremal spacetime interval, the Nambu-Goto strings or
membranes are characterized by their extremal area or
volume for world sheets. In fact, these geodesic particles,
Nambu-Goto strings/membranes are regarded as the har-
monic mappings for isometric embeddings from lower-
dimensional spacetimes into the spacetime. In a unified
view, the Nambu-Goto strings or membranes are considered
to arise naturally in ourUniverse. They correspond to the thin
wall approximation of the topological defect produced via
the symmetry breaking of the gauge interactions in the
standard model of elementary particles. Their analytic
solutions are less known since they are subject to partial
differential equations. In cosmological applications, themain
approach relies on numerical simulations, which are very
useful for getting insight into the scenario for the structure
formation in our Universe [3].
It is known that considerable simplification occurs for

the equation of motion of Nambu-Goto strings when the
isometry of the background spacetime acts on the string
world sheet, in which case the system reduces to that of
particle motion in a certain lower-dimensional manifold
[4–6]. In this direction, many interesting analytic solutions

for the Nambu-Goto equation have been found. In par-
ticular, stationary string solutions in stationary black hole
spacetimes are extensively studied [7–10]. These are
regarded as final equilibrium configurations of Nambu-
Goto strings in the presence of a black hole [11]. Initially
dynamical strings would radiate their energy due to some
dissipative processes such as the emission of Nambu-
Goldstone bosons, which, however, are effects that are
neglected in the test string approximations. Namely, some
strings would fall into the black hole, and others, via such
dissipative processes, would settle down to final stable
configurations, which would be described by stationary
solutions. Hence, we are interested in the stability of these
stationary string configurations in curved background
spacetimes.
Since the Nambu-Goto equation reduces to the linear

wave equation in flat backgrounds, its linear perturbation is
also subject to the linear wave equation. So, any stationary
strings in flat backgrounds would be stable under small
fluctuations. In the presence of a black hole, we could,
however, not expect stability for stationary strings. Hence,
we have to check the stability of stationary solutions
separately.
The linear perturbations of the Nambu-Goto strings are

formulated by Guven [12], and the stability problem for
Nambu-Goto strings has been analyzed by many authors
[13–16]. We also follow Guven’s approach in order to study
the stability problem of stationary strings.
The subject of this paper is the stability problem of a

closed string winding around a flat torus embedded in five-
dimensional nonrotating black hole background, which is a
nontrivial solution of Nambu-Goto equations recently
discussed by Ref. [17]. This string solution is characterized
by a parameter corresponding to the distance between the
string and the event horizon. We show that this class of
string solutions allows fully symbolic treatment for linear
perturbations and that it can be proven that these
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configurations are always unstable. This means that the
presence of a black hole may switch on the instability of
strings even if they are localized in an almost flat region
distant from the event horizon, which might be unexpected
with naive considerations.
This paper is organized as follows. Section II reviews the

linear perturbation formalism developed by Guven for self-
contained-ness. Section III studies the stability of corre-
sponding closed string solutions in the five-dimensional flat
spacetime as a reference. Section IV, which includes our
main result, investigates the closed string solutions in five-
dimensional Schwarzschild spacetime and gives a proof
that they are all unstable. Finally, Sec. V presents our
conclusions.

II. REVIEW OF LINEAR PERTURBATIONS
OF NAMBU-GOTO MEMBRANES

First, we review the formulation of linear perturbation for
Nambu-Goto membranes in general settings developed by
Guven [12].
Let M be an m-dimensional spacetime, and let g be a

Lorentzian metric on M with the signature (−, þ, � � �, þ).
We consider the isometric embedding of an n-dimensional
differentiable manifold N intoM, where 2 ≤ n ≤ m − 1. In
terms of the local coordinates, this embedding would be
expressed as

xμ ¼ XμðξaÞ;

where xμ’s (μ ¼ 1;…; m) are local coordinates onM, while
ξa’s (a ¼ 1;…; n) are those on N. We consider only the
timelike embeddings so that the spacetime metric g induces
the Lorentzian metric

Gab ¼ gμνðDaXμÞDbXν ð1Þ

on N, where Da denotes the G connection on N.
The Nambu-Goto membranes are defined as the embed-

dings those extremize the action

S½Xμ� ¼ −T
Z

dnξ
ffiffiffiffiffiffiffi
jGj

p
;

where T is a positive constant that does not play any special
roles in the present argument and G is abbreviation for
detG. This leads to the Euler-Lagrange equation,

DaDaXμ þ Γμ
νλðDaXνÞðDbXλÞGab ¼ 0;

where Γμ
νλ denotes the restriction of the Christoffel symbol

for the g connection on N. Note that DaXμ corresponds to
the xμ component of the coordinate basis ∂=∂ξa of the
tangent space of N.
The extrinsic curvature of the embedding N ↪ M is

measured in terms of the second fundamental form

Kμ
ab ¼ DaDbXμ þ Γμ

νλðDaXνÞDbXλ; ð2Þ

defined on N. This is a symmetric tensor field on N, i.e.,

Kμ
ab ¼ KμðabÞ;

holds, and this can also be seen as a normal vector of N
parametrized by (a, b) in the sense that

gμνKμ
abDcXν ¼ 0

holds on N, as is easily confirmed. The Nambu-Goto
equation just says that the trace of the extrinsic curvature
vectors is zero:

Kμ
abGab ¼ 0:

Denote by Xμ the unperturbed solution to the Nambu-
Goto equation. Our purpose here is to write down the
linearized Nambu-Goto equation for small deviation δXμ

from Xμ. Obviously, it is sufficient to assume that δXμ

should be normal to N, since the tangential component of
δXμ with respect toN corresponds to diffeomorphism onN,
which is uninteresting. Hence, we set

δXμ ¼ fAnAμ

in terms of m − n differentiable functions fA

(A ¼ 1;…; m − n) on N, where nAμ’s constitute an
orthonormal frame field for the normal bundle on N,
i.e., such that

gμνnAμDaXν ¼ 0;

gμνnAμnBν ¼ ηAB;

ηAB ¼ diagð1;…; 1Þ:

Note that there is Om−n gauge freedom choosing nA’s so
that the resultant equation for fA’s should be covariant
under the Om−n action.
Here, we need to introduce some more geometric

quantities associated with the embedding, which does
not appear in the case of the codimension-1 embeddings
(see, e.g., Ref. [18]). Define the covariant vector field on N,
parametrized by (A, B), by

μABa ¼ gμνnAμDanBν þ ΓαβγnAαnBβDaXγ;

which is essentially the projection of nAμ∇νnBμ onto the
cotangent space on N, i.e., a part of the Cartan’s connection
coefficients appearing in the structure equations for the
orthonormal frame in M. Note that nAμ is regarded as a
scalar function on N in the above expression so that Da
denotes just a partial derivative with respect to ξa. These
μABa’s are not independent but subject to
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μABa ¼ μ½AB�a:

It appears in the orthogonal decomposition of DanAμ as

DanAμ ¼ −KA
b
aDbXμ − μA

B
anBμ − Γμ

νλðDaXνÞnAλ; ð3Þ

as readily confirmed (see, e.g., Ref. [18]), where we have
defined KAab ≔ nAμKμ

ab.
According to the small displacement Xμ ↦ Xμ þ fAnAμ,

the induced metric on the membrane undergoes a variation
δGab, which in the first order of fA ’s is given by

δGab ¼ −2KAabfA:

The variation of
ffiffiffiffiffiffiffijGjp

DaDaXμ becomes

δð
ffiffiffiffiffiffiffi
jGj

p
DaDaXμÞ ¼

ffiffiffiffiffiffiffi
jGj

p
fnAμDaDafA

þ ½2KA
abðDbXμÞþ 2ðDanAμÞ�DafA

þ ½2ðDaKA
abÞðDbXμÞ

þ 2KA
abðDaDbXμÞþ ðDaDanAμÞ�fAg:

ð4Þ

Thus, we need the expression for the d’Alembertian of nAμ,
which becomes

DaDanAμ ¼ ½−ðDaKA
abÞ þ μA

B
aKB

ab�DbXμ − KA
abKμ

ab

þ 2Γμ
αβðDaXαÞ½KA

abDbXβ þ μA
BanBβ�

þ ½−DaμA
Ca þ μA

B
aμB

Ca�nCμ
þ ð−Γμ

αγ;β þ Γμ
γδΓδ

αβ þ Γμ
βδΓδ

αγÞGαβnAγ; ð5Þ

where

Gαβ ¼ GabðDaXαÞDbXβ

is the component of Gab written in terms of the spacetime
coordinate system.
Next, the first variation of the second terms of the

Nambu-Goto equation results in

δð
ffiffiffiffiffiffiffi
jGj

p
Γμ
αβG

αβÞ ¼
ffiffiffiffiffiffiffi
jGj

p
f2Γμ

αβðDaXαÞnAβDafA

þ Γμ
αβ½KA

abðDaXαÞðDbXβÞ
− 2μA

BaðDaXαÞnBβ�fA
þ ½ðΓμ

αβ;γ − 2Γμ
αδΓδ

βγÞGαβnAγ�fAg: ð6Þ

Finally, from Eqs. (4) and (6), using Eqs. (2), (3), and (5),
we obtain

δð
ffiffiffiffiffiffiffi
jGj

p
ðDaDaXμþΓμ

αβG
αβÞ¼

ffiffiffiffiffiffiffi
jGj

p
ðLfCÞnCμ; ð7Þ

where

LfC ¼DaDafC− 2μA
CaDafA

þ
h
KA

abKC
ab −DaμA

CaþμA
B
aμB

Ca

þRαβnAαnCβ −RαβγδnAαnDβnCγnDδ
i
fA; ð8Þ

which involves the spacetime Riemann and Ricci curva-
tures defined by

Rμ
νλρ ¼ Γμ

νρ;λ − Γμ
νλ;ρ þ Γμ

λδΓδ
νρ − Γμ

ρδΓδ
νλ;

Rνρ ¼ Rμ
νμρ:

Hence, the linear perturbation equation for the Nambu-
Goto membranes are governed by

LfC ¼ 0:

For consistency, let us confirm the covariance of
LfC ¼ 0 under the local Om−n transformation

nAμ ↦ OA
BnBμ

in terms of an orthogonal matrix field OA
B on N. This is

regarded as the gauge transformation in the principal Om−n
bundle over N. The quantities fA and KA

ab transforms like
tensors as

ðfA; KA
abÞ ↦ OA

BðfB; KB
abÞ;

while μABa transforms like the principalOm−n connection as

μA
B
a ↦ OA

CDaOB
C þOA

CμC
D
aOB

D;

where the first term can be regarded as the pure gauge.
These guarantees the covariance of the perturbation
equation:

LfC ↦ OC
DLfD:

With this interpretation of μABa as the connection on the
principal Om−n-bundle, which is an om−n-valued 1-form on
N, it turns out that the perturbation equation can be written
more compactly as

LfB ¼ DaDafB þ ðKA
abKB

ab þ RαβnAαnBβ

− RαβγδnAαnCβnBγnCδÞfA ¼ 0; ð9Þ
where the covariant derivative

DafB ¼ DafB − μA
B
afA

acting on sections of the associated vector bundle is
defined. This expression for the perturbed Nambu-Goto
equation is manifestly covariant under the Om−n gauge
transformation and the diffeomorphism on N.
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III. STATIONARY CLOSED STRINGS IN
5-DIMENSIONAL FLAT SPACETIMES

Here, we consider stationary Nambu-Goto strings
winding around a flat torus in the five-dimensional flat
spacetime as a reference for a later section.
Starting with the line element

g ¼ −ðdx0Þ2 þ ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2 þ ðdx4Þ2;
we take a coordinate system (t, r, ϕ, ρ, ψ) determined by

x0 ¼ t; x1 ¼ r cosϕ; x2 ¼ r sinϕ;

x3 ¼ ρ cosψ ; x4 ¼ ρ sinψ :

Here and in what follows, we set the speed of light to unity.
Then, the line element takes the form

g ¼ −dt2 þ dr2 þ r2dϕ2 þ dρ2 þ ρ2dψ2

with these coordinates. It admits a simple solution to the
Nambu-Goto equation,

t ¼ pqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p Rτ; r ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p R;

ρ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p R; ϕ ¼ pσ; ψ ¼ qðσ þ τÞ;

where τ ∈ R and σ ∈ R=2πZ are world sheet coordinates,
p and q are coprime integers, and R is a positive real
number. This describe a closed string winding around a
torus at ðr; ρÞ ¼ const. with the winding number charac-
terized by the coprime pair (p, q), and the closed string is
stationarily scrolling on the torus.
We consider the linear perturbation of this solution.

Since the Nambu-Goto equation in flat space reduces to a
linear wave equation,

DaDaXμ ¼ 0;

its perturbation δXμ is also subject to the same equation:

DaDaδXμ ¼ 0:

Its solution generally contains diffeomorphism on the
world sheet, which is unphysical. On the other hand,
Eq. (9) describes only physical modes contained in δXμ.
Now, we set

n1 ¼ ∂r;

n2 ¼ ∂ρ;

n3 ¼ ∂t −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
pqR

ðp∂ϕ − q∂ψ Þ

as an orthonormal frame (n1, n2, n3) for the normal space
to the world sheet. We need the following geometric
quantities:

Gab ¼
p2q2R2

p2 þ q2

�
0 1

1 2

�
;

K1
ab ¼ −

p2qRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p �
0 0

0 1

�
;

K2
ab ¼ −

pq2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p �
1 1

1 1

�
; K3

ab ¼ 0;

μA
B
τ ¼

0
B@

0 0 0

0 0 −q
0 q 0

1
CA; μA

B
σ ¼

0
B@

0 0 p

0 0 −q
−p q 0

1
CA:

Then, assuming fA ∝ e−iωτþikσ (k ∈ Z), the perturbation
equation (9) reduces to the algebraic equation

A

0
B@

f1

f2

f3

1
CA ¼ 0;

A ¼

0
B@

ωðωþ kÞ pq −ipω
pq ωðωþ kÞ −iqðωþ kÞ
ipω iqðωþ kÞ ωðωþ kÞ

1
CA:

The condition that this equation admits a nontrivial solution
for fA’s is determined by

detA¼ωðωþkÞðωþkþpÞðωþk−pÞðωþqÞðω−qÞ¼0;

and hence, it is given by

ω ¼ 0; −k; −k� p; �q:

All these modes show the stability of the Nambu-Goto
strings in flat background, as expected.

IV. STATIONARY CLOSED STRINGS IN
5-DIMENSIONAL BLACK-HOLE SPACE-TIMES

As a straightforward extension to the example given in
the previous section, we consider the stationary closed
strings winding around a flat torus in the five-dimensional
Schwarzschild spacetime. This turns out to be one of
simplest cases allowing the analytic treatment of the
perturbation equation, which is one of reasons why we
describe it here in this paper. Here, we show that this type of
closed strings is generally unstable under the small per-
turbation in the presence of the black holes.
The line element of the five-dimensional Schwarzschild

spacetime is given by
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g ¼ −
�
1 −

r20
r2

�
dt2 þ

�
1 −

r20
r2

�−1
dr2

þ r2½dθ2 þ ðsin θÞ2dϕ2 þ ðcos θÞ2dψ2�;
where r0 > 0 corresponds to the Schwarzschild radius of
the event horizon, θ ∈ ð0; π=2Þ, ϕ ∈ R=2πZ, ψ ∈ R=2πZ
are the coordinates on the 3-sphere given by t; r ¼ const.
This admits a Nambu-Goto string solution,

t ¼ sr0τffiffiffi
2

p ; r ¼ sr0; θ ¼ π

4
;

ϕ ¼ σ; ψ ¼ σ þ τ; ð10Þ
where τ ∈ R and σ ∈ R=2πZ are world sheet coordinates
and s >

ffiffiffi
2

p
is a unique parameter of this solution char-

acterizing the distance between the string and the black
hole. This describes a stationarily scrolling closed string
winding around a flat torus embedded in the Schwarzschild
spacetime, with the winding number ðp; qÞ ¼ ð1; 1Þ. We
note that this Nambu-Goto string is just a special case of the
solutions considered by Igata and Ishihara [19,20].
We choose

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p

s
∂r;

n2 ¼
1

sr0
∂θ;

n3 ¼
s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2 − 2Þðs2 − 1Þ
p ∂t −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs2 − 1Þ

p
sr0

ffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 2

p ð∂ϕ − ∂ψÞ

as an orthonormal frame (n1, n2, n3) for the normal space of
the world sheet.

The geometric quantities required to compute the per-
turbation equation are

Gab ¼
r20
2

�
1 s2

s2 2s2

�
;

K1
ab ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
r0

2s2

�
s2 − 1 s2

s2 2s2

�
;

K2
ab ¼

sr0
2

�
1 1

1 0

�
; K3

ab ¼ 0;

μA
B
τ ¼

0
BBBBB@

0 0 −
ffiffiffiffiffiffiffi
s2−2

p ffiffi
2

p
s

0 0
ffiffiffiffiffiffiffi
s2−1

pffiffiffiffiffiffiffiffiffiffiffiffi
2ðs2−2Þ

pffiffiffiffiffiffiffi
s2−2

p ffiffi
2

p
s

−
ffiffiffiffiffiffiffi
s2−1

pffiffiffiffiffiffiffiffiffiffiffiffi
2ðs2−2Þ

p 0

1
CCCCCA;

μA
B
σ ¼

0
BBB@

0 0 0

0 0

ffiffiffiffiffiffiffiffiffiffiffiffi
2ðs2−1Þ

p ffiffiffiffiffiffiffi
s2−2

p

0 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2ðs2−1Þ

p ffiffiffiffiffiffiffi
s2−2

p 0

1
CCCA;

RαβnAαnBβ ¼ 0;

RαβγδnAαnCβnBγnCδ ¼ 2

s4ðs2 − 2Þr20

0
B@

2− 3s2 0 0

0 s2 0

0 0 −s2

1
CA:

Assuming fA ∝ e−iωτþikσ (k ∈ Z), Eq. (9) becomes

A

0
B@

f1

f2

f3

1
CA ¼ 0;

A ¼

0
B@

2s2ω2 þ 2s2kωþ k2 þ 2s2 − 2 0 −is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs2 − 2Þ

p
ð2ωþ kÞ

0 2s2ω2 þ 2s2kωþ k2 − 2s2 ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs2 − 2Þðs2 − 1Þ

p
is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs2 − 2Þ

p
ð2ωþ kÞ −ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs2 − 2Þðs2 − 1Þ

p
2s2ω2 þ 2s2kωþ k2

1
CA:

Then, fA’s have nontrivial solutions when ω solves the polynomial equation

detA ¼ 8s6ω6 þ 24s6kω5 þ ½12s4ð2s2 þ 1Þk2 − 8s4ð2s2 − 3Þ�ω4 þ ½8s4ðs2 þ 3Þk3 − 16s4ð2s2 − 3Þk�ω3

þ ½6s2ð2s2 þ 1Þk4 − 12s4ð2s2 − 3Þk2 þ 8s4ðs2 − 3Þ�ω2 þ ½6s2k5 − 4s4ð2s2 − 3Þk3 þ 8s4ðs2 − 3Þk�ω
þ ½k6 − ð4s4 − 10s2 þ 6Þk4 þ ð4s4 − 16s2 þ 8Þk2� ¼ 0:

Substituting ω ¼ ffiffiffi
x

p
− k=2, this reduces to

pðxÞ ¼ 8s6x3 þ ½6s4ð2 − s2Þk2 þ 8s4ð3 − 2s2Þ�x2 þ
�
3

2
s2ðs2 − 2Þ2k4 þ 8s4ðs2 − 3Þ

�
x

þ 1

8
ð2 − s2Þ3k6 þ 1

2
ðs2 − 2Þ2ð2s2 − 3Þk4 − 2ðs2 − 2Þ2ðs2 − 1Þk2 ¼ 0: ð11Þ
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This is a cubic polynomial equation; hence, it is solvable
via Cardano’s method.
Therefore, the present Nambu-Goto string is unstable

if and only if the polynomial pðxÞ has two complex-
conjugate roots or a negative root, which depends on the
parameters s and k.
It is easily seen that pðxÞ has a negative root, when the

string is sufficiently close to the r ¼ ffiffiffi
2

p
r0 surface. Setting

s2 ¼ 2þ ϵðϵ > 0Þ, Eq. (11) becomes

pðxÞ¼8x½ð8þ12ϵÞx2−ð4þ3k2ϵþ12ϵÞx−4�þOðϵ2Þ¼0;

hence, pðxÞ has roots

x ¼ 0; 1þ k2

4
ϵ; −

1

2
þ k2 þ 6

8
ϵ

up to first order in ϵ. The third root corresponds to the
unstable mode behaving like

fA ∝ exp

��
1ffiffiffi
2

p −
6þ k2

8
ffiffiffi
2

p ϵþ i
k
2

�
τ

�
eikσ:

For s ≫ 1, since the geometry around the string
approaches the flat spacetime, one might expect that such
strings are always stable. We, however, show that it is not
the case.
To see this, consider the expansion

pðxÞ ¼ 8s6
�
x−

k2

4

��
x−

ðk− 2Þ2
4

��
x−

ðkþ 2Þ2
4

�
þOðs4Þ

¼ 0:

From this expression, the approximate roots for pðxÞ can be
read off from the leadingOðs6Þ term. It can be seen that for
jkj ≥ 2 they are given by three distinct positive roots k2=4,
ðk� 2Þ2=4, which are consistent with the results in the
previous section. Although the exact roots might slightly
differ from these under small corrections, these would still
give positive roots, showing the stability of strings under
these modes. The cases k ¼ 0;�1 should be considered
separately, when approximate roots include multiple one,
since it possibly becomes nonreal roots under small
corrections.
The expression for small corrections fromOðs4Þ terms is

readily obtained thanks to Cardano’s formula. For k ¼ �1,
we can see that pðxÞ has two complex-conjugate roots,

x ¼ 1

4
−
3

8
s−2 � i

ffiffiffiffiffi
15

p

8
s−2 þOðs−4Þ;

which correspond to the unstable modes

fA ∝ exp

�� ffiffiffiffiffi
15

p þ 3i
8

s−2 þOðs−4Þ
�
τ

�
e�iσ;

fA ∝ exp
��

iþ
ffiffiffiffiffi
15

p
− 3i
8

s−2 þOðs−4Þ
�
τ

�
e�iσ;

These instabilities, however, are exposed after a relatively
long latent period τ ∼ s2, so strings might be possibly
stabilized taking into account dissipative effects, such as
the emission of Nambu-Goldstone bosons, which are not
considered in the present analysis of test strings. We also
find out that the uniform k ¼ 0 modes do not show such
instabilities, where pðxÞ has exact roots 0, 1, 1 − 3s−2.
We finally show that k ¼ �1modes are always unstable.
Theorem 1: The Nambu-Goto string solutions given by

Eqs. (10) are unstable under the linear perturbation.
Proof.—The statement of Theorem 1 is proven by

showing that the cubic polynomial pðxÞ has two complex-
conjugate roots and otherwise has at least one negative root,
when k ¼ �1.
We can easily see that pðxÞ always has the local

maximum at

x ¼ x1 ≔
11

12
−

3

2s2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16s4 − 54s2 þ 72

p

6s2

when k ¼ �1.
This is an increasing function of s for s >

ffiffiffi
2

p
, so it can

be shown that x1 is negative for
ffiffiffi
2

p
< s < s1, where s1 is

given by

s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30þ 4

ffiffiffiffiffi
42

p

19

s
≈ 1.7:

On the other hand, the corresponding local maximum
value of pðxÞ is given by

pðx1Þ ¼ −
128

27
s6 þ 24s4 − 56s2 þ 48

þ
�
32

27
s4 − 4s2 þ 16

3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16s4 − 54s2 þ 72

p
:

As a function of s, the zeros of pðx1Þ can be determined by
solving a quartic equation for s2. Then, we find that pðx1Þ
has only one zero for s >

ffiffiffi
2

p
at

s ¼ s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

�
2

5

�
2=3

ð5þ 3
ffiffiffi
5

p
Þ1=3 − 2

�
2

5

�
1=3

ð5þ 3
ffiffiffi
5

p
Þ−1=3

s
≈ 1.6:
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It turns out that the local maximum value pðx1Þ
is negative for s > s2, In particular, s2 is less
than s1.
Then, it can be concluded that pðxÞ has two

complex-conjugate roots for s > s2 and that pðxÞ
has at least one negative root (in fact, it always has
exactly two negative roots) for

ffiffiffi
2

p
< s ≤ s2, when

k ¼ �1.
Therefore, the Nambu-Goto strings given by Eqs. (10)

are always unstable. ▪

V. CONCLUSIONS

We have studied the stability of stationary closed strings
winding around a flat torus embedded in the five-dimensional
Schwarzschild spacetime. The Nambu-Goto strings belonging
to this class are characterized by a real parameter s >

ffiffiffi
2

p
,

with which the location of the closed string is written as
r ¼ sr0, where r0 denotes the Schwarzschild radius. We have
shown that the perturbation modes are calculable only with
algebraic manipulations. We have proven that all the solutions
belonging to this class are unstable under linear perturbations.
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