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The Eisenhart lift of a Paul trap used to store ions in molecular physics is a linearly polarized periodic
gravitational wave. A modified version of Dehmelt’s Penning trap is, in turn, related to circularly polarized
periodic gravitational waves, sought in inflationary models. Similar equations also govern the Lagrange
points in celestial mechanics. The explanation is provided by anisotropic oscillators.
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I. INTRODUCTION

The memory effect of gravitational waves concerned,
originally, the motion of test particles after the passage of a
sudden burst of gravitational wave. See [1–11] and refer-
ences therein for a nonexhaustive list. Later, the meaning of
the expression was extended to include also the effect of
periodic gravitational waves [12] sought in inflationary
models [13,14]. Recent studies [12,15–17] reveal striking
similarities with that of storing molecular ions, considered
half a century ago [18–22]. In this paper, we argue that this
similarity is not a coincidence: Paul traps [18,19] corre-
spond indeed to linearly polarized periodic (LPP) gravita-
tional waves; Dehmelt’s Penning trap [20–22] is in turn
reminiscent of circularly polarized periodic (CPP) gravi-
tational waves [12], sought in inflationary models [13,14].
A CPP wave is also the “double copy” of Białynicki-
Birula’s electromagnetic vortex [15,23]. Similar consider-
ations apply to the Lagrange points in the 3-body problem
in Celestial Mechanics [24,25].
The similarity between these at first sight far remote

physical phenomena, observed on so different scales, is
explained mathematically by tracing back to anisotropic
oscillators. The motion of a test particle in a CPP GW boils
down, in particular, to Hill’s equations for a harmonic
oscillator in a constant magnetic field.
Time-dependent (or not), anisotropic (or not) oscillators,

described by Hill’s equations and their particular case

studied by Mathieu have indeed a huge literature impos-
sible to cite here. Their general study goes beyond our
scope; here, our interest is limited to those cases which have
direct relevance for the memory effect for periodic gravi-
tational waves.
Apart of pointing out the far-reaching analogies men-

tioned above, we argue that applying those well-elaborated
tools of ion physics to gravitational waves sheds some new
light on the memory effect. To make our paper self-
contained, we include some facts which are familiar for
specialists of either of the fields, but, perhaps, not for every
reader.

II. PAUL TRAPS

The intuitive explanation of the working of Paul’s
ingenious Ionenkäfig (now called the Paul trap) to capture
ions [18,19] has been given by Paul himself in his Nobel
Lecture [18]. Let us consider indeed an electric field in the
Xþ − X− plane, given by an anisotropic harmonic electric
(quadrupole) potential

Φ ¼ Φ0

2
ððXþÞ2 − ðX−Þ2Þ; Φ0 ¼ const: ð2:1Þ

Putting a ¼ ðe=mÞΦ0, the equations of motion of a spinless
ion with charge e and mass m are

Ẍ� � aX� ¼ 0; ð2:2Þ

where the dot ð:Þ_ means d=dt with t denoting non-
relativistic time. The opposite signs in (2.2) come from
the relative minus sign in (2.1), required by the Laplace
condition ΔΦ ¼ 0 which expresses the fact that there are
no sources (charges) inside the trap. For a > 0 (say), the
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electric force is thus attractive in the Xþ, and repulsive in
the X− coordinate, yielding bounded oscillations in the
first, but escaping motion in the second direction. Then
Paul proposed stabilizing the position by adding a peri-
odical perturbing electric force, i.e., to consider,1

F ¼ −eðΦ0 − Γ0 cosωtÞ
�

Xþ

−X−

�
; ð2:3Þ

whereΦ0 and Γ0 are constants and ω is the frequency of the
perturbation. The time dependent inhomogeneous rf volt-
age changes the sign of the electric force periodically. In a
certain range of parameters, this yields stable motions both
in the Xþ and X− directions.
Mathematically, the planar Paul trap is described by the

modified equations

Ẍ� ¼∓ ða − 2q cosωtÞX�; ð2:4Þ

where a and q ¼ eΓ0=2m are constants determined by the
applied dc and rf voltages, respectively. In Eqs. (2.4), we
recognize two uncoupled the Mathieu equations, whose
standard form is

d2ξ
dτ2

þ ða − 2q cosð2τÞÞξ ¼ 0 ð2:5Þ

and whose solutions are combinations of the (even/odd)
Mathieu cosine/sine functions Cða; q; τÞ and Sða; q; τÞ,
respectively. Mathieu functions have a rather complicated
behavior; in a suitable range of the parameters, the
solutions of (2.5) remain bounded, while in another one
they are unbounded.
Returning to the Eqs. (2.4), we note that ω, the frequency

of the oscillation, does not have (as long as it does not
vanish) any influence on what will happen, only on when
will it happen. Redefining indeed the time as

t → U ¼ 1

2
ωt ⇒ Ẍi → ðω2=4Þd2Xi=dU2 ≡ ðω2=4ÞX00

ð2:6Þ

takes (2.4) into the standard Mathieu form (2.5) with
redefined parameters, d2Xi=dU2�ðâ−2q̂cos2UÞXi¼0,
â ¼ ð4=ω2Þa, q̂ ¼ ð4=ω2Þq. Thus ω simply sets the time
scale. Henceforth we shall use the redefined “time” co-
ordinate U; d=dU will be denoted by prime, ð:Þ0 ¼ d=dU.

III. PERIODIC GRAVITATIONAL WAVES

Equations similar to (2.4) have been met recently in a
rather different context, namely for the memory effect,
more precisely, for particle motion in the spacetime of a
periodic gravitational wave [12], which is our main interest
in this paper, and this is not a coincidence, as we now
explain.
A convenient way to study nonrelativistic motion in

ðd; 1Þ dimensions with coordinates ðX; UÞ is indeed
to consider null geodesics in (dþ 1,1)-dimensional
“Bargmann” space with coordinates ðX; U; VÞ, with the
potential ΦðX; UÞ entering into the UU component of the
metric [26]. In detail, for the planar Paul trap, we have

dX2 þ 2dUdV − 2ΦðX; UÞdU2; ð3:1aÞ

ΦðX; UÞ ¼ 1

2
ða − 2q cos 2UÞððXþÞ2 − ðX−Þ2Þ; ð3:1bÞ

whose null geodesics project to nonrelativistic spacetime
with coordinates ðX�; UÞ precisely following Eqs. (2.4).
Let us stress that the anisotropy of the profile follows from
the requirement of Ricci-flatness of the metric: Rμν ¼ 0 for
(3.1a) which impliesΔΦ ¼ 0. In conclusion, the Bargmann
metric of the planar Paul trap is an exact plane gravita-
tional wave.
More generally, an exact plane wave metric in four

dimensions can be brought to the form

ds2 ¼ gijdXidXj þ 2dUdV þ KijðUÞXiXjdU2; ð3:2aÞ

KijðUÞXiXj ¼ 1

2
AþðUÞððXþÞ2− ðX−Þ2ÞþA×ðUÞðXþX−Þ;

ð3:2bÞ
where Aþ and A× are the þ and × polarization-state
amplitudes [6,27,28]. The geodesic equations,

d2X
dU2

− KðUÞX ¼ 0;

KðUÞ ¼ ðKijðUÞÞ ¼ 1

2

�
Aþ A×

A× −Aþ

�
; ð3:3aÞ

d2V
dU2

þ1

4

dAþ
dU

ððXþÞ2−ðX−Þ2ÞþAþ

�
XþdX

þ

dU
−X−dX

−

dU

�

þ1

2

dA×

dU
XþX−þA×

�
X−dX

þ

dU
þXþdX

−

dU

�
¼0; ð3:3bÞ

are decoupled: after solving (3.3a) for the transverse
motion, (3.3b) can be integrated.
Equations (3.3a) belong to family of Hill-type equations

which describe (possibly time-dependent and/or aniso-
tropic) oscillators. Their general study goes well above
our scope here. Having established the fundamental rela-
tion we focus henceforth our study to those cases which are

1The magnetic field induced by the time-varying electric field
is neglected. In his Nobel lecture Paul illustrated his idea by to
putting a ball on a rotating saddle surface [18], materially realized
in glass; a photo is reproduced in Bialynicki-Birula’s lecture [25].
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directly relevant for us—namely to the motion of test
particles initially at rest in a circularly polarized gravita-
tional wave.
Henceforth we focus our attention at the transverse

motion.
(i) The Bargmann metric of the Paul trap, (3.1), is a

linearly polarized gravitational wave with periodic
profile. Its properties for a ¼ 0, i.e., for the periodic
profile

Aþ ¼ A0 cos 2U; A× ¼ 0 ð3:4Þ

were studied in [12] (see also e.g., [6]), shown in
Fig. 1 above. For particular values of the parameters,
one obtains bound motions. The intuitive explan-
ation is precisely that of Paul recalled in Sec. II: in a
given “moment” U, one of the oscillators is attrac-
tive and the other is repulsive, with strength
Aþ ¼ A0 cos 2U. However, as “time” goes on, the
strength varies, and when the cosine changes sign,
the attractive and repulsive sectors are interchanged,
as mentioned in Sec. II.
A sufficiently strong wave breaks up the bound

motion.
(ii) The general form in Eq. (3.2b) allows, however, for

more general profiles, and now we turn to waves
with circularly polarized periodic profile (CPP),
considered before e.g., in [12],

K ¼ ðKijÞ ¼
A0

2

�
cos 2U sin 2U

sin 2U − cos 2U

�

A0 ¼ const > 0: ð3:5Þ

The transverse equations of motion,X00 ¼ KX, should be
supplemented by appropriate initial conditions. In the
sandwich case one usually considers particles which are
at rest in the before zone. But a periodic wave has no before
zone, and here we propose the initial condition,2

rest at U ¼ 0 i:e:; X0ð0Þ ¼ 0: ð3:6Þ
Then numerical calculations [12] yield Fig. 2: for a
sufficiently weak wave, all motions remain confined to a
toroidal region; for a strong wave the trajectory becomes
instead unbounded: the particle is ejected. Below we show
that the problem admits an exact analytic solution.
Following a suggestion of Kosinski [29], the first step is
to switch to a rotating frame by setting�

Xþ

X−

�
¼
�
cosU − sinU

sinU cosU

��
Yþ

Y−

�
: ð3:7Þ

In terms of the new coordinates Y� the harmonic force
becomes U-independent—at the price of introducing the
cross terms ∓ 2ðY∓Þ0,3

ðY�Þ00 ∓ 2ðY∓Þ0 −Ω2
�Y

� ¼ 0 where Ω2
� ¼ 1� A0=2:

ð3:8Þ

Our initial condition (3.6) is valid in Brinkmann-
coordinates (3.2a); from Eq. (3.7), we infer instead

Y 0ð0Þ ¼
�

0 1

−1 0

�
Y0 ¼

�
0 1

−1 0

�
X0; ð3:9Þ

i.e., Y 0ð0Þ is obtained from Yð0Þ ¼ X0 by a 90-degree
rotation, which corresponds precisely to rotating the
coordinate system.
The equations of motion can be conveniently solved by

chiral decomposition [32,33]. Equations (3.8) belong
indeed to a Hamiltonian system in the plane, whose phase
space is thus four-dimensional; it has coordinates Y� and
Π� ¼ ðY�Þ0. Then the idea is to choose “smart” phase-
space coordinates we denote here by Zaþ, Zb

−, a, b ¼ 1, 2
such that the system decouples onto uncoupled one-
dimensional oscillators [32,33]. Searching for real coef-
ficients α� and β�,

Πþ ¼ αþZ2þ þ α−Z2
−; Π− ¼ −βþZ1þ − β−Z1

−;

ð3:10aÞ

FIG. 1. In a weak linearly polarized periodic (LPP) wave, (3.4),
the transverse coordinate XðUÞ oscillates in a bounded “bow
tie”-shaped domain. The initial conditions are _XþðU ¼ 0Þ ¼
_X−ðU ¼ 0Þ ¼ 0 (at rest for U ¼ 0), at initial position
XþðU ¼ 0Þ ¼ 1, X−ðU ¼ 0Þ ¼ 0.

2Ions issued from accelerators and injected into the “Ionenkä-
fig” require different initial conditions.

3In Y-coordinates, U-translational symmetry is restored
due to the manifest U-independence of the metric (4.11).
Expressed in the original coordinates, the sixth “screw” sym-
metry [12,15,28,30,31] is recovered.
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Yþ ¼ Z1þ þ Z1
−; Y− ¼ Z2þ þ Z2

−; ð3:10bÞ

in terms of which both the symplectic form and the
Hamiltonian separate, we find that for αþ ¼ 1, α− ¼ Ω2

−,
βþ ¼ Ω2þ, β− ¼ 1, for example,4

σ¼ σþ−σ−¼−
A0

2
½dZ1þ ∧ dZ2þ−dZ1

− ∧ dZ2
−�; ð3:11aÞ

H ¼ Hþ −H− ¼ A0

4
½ðΩ2þZ1þZ1þ þ Z2þZ2þÞ

− ðZ1
−Z1

− þ Ω2
−Z2

−Z2
−Þ�: ð3:11bÞ

The relative negative signs between the terms reflect here
the chiral nature: the two oscillators turn in the opposite
direction [34]. The Poisson brackets associated with the
symplectic structure (3.11a) are

fZ1þ; Z2þg ¼ 2

A0

; fZ1
−; Z2

−g ¼ −
2

A0

;

fZ1þ; Z2
−g ¼ fZ2þ; Z1

−g ¼ 0: ð3:12Þ

Working out the Hamilton equations, we end up with
uncoupled oscillator equations,

ðZa
�Þ00 þ Ω2

�Z
aþ ¼ 0; ð3:13Þ

(a ¼ 1, 2), whose solutions (when none of the Ω�
vanishes5) are

Z1þ ¼ A cosðΩþUÞ þ B sinðΩþUÞ; ð3:14aÞ

Z2þ ¼ −ΩþðA sinðΩþUÞ − B cosðΩþtÞÞ; ð3:14bÞ

Z1
− ¼ C cosðΩ−UÞ þD sinðΩ−UÞ; ð3:14cÞ

Z2
− ¼ −

1

Ω−
ðC sinðΩ−UÞ −D cosðΩ−UÞÞ; ð3:14dÞ

where A, B, C, D are constants. Proceeding backwards, we
obtain, using (3.10b),

YþðUÞ ¼ A cosðΩþUÞ þ B sinðΩþUÞ þ C cosðΩ−UÞ
þD sinðΩ−UÞ; ð3:15aÞ

Y−ðUÞ ¼ −ΩþðA sinðΩþUÞ − B cosðΩþUÞÞ

−
1

Ω−
ðC sinðΩ−UÞ −DðcosΩ−UÞÞ: ð3:15bÞ

For a weak wave, i.e., whose amplitude is A0 < 2, both
frequencies Ω� in (3.8) are real, implying that the motion,
although complicated, remains bounded. A typical trajec-
tory is shown in Figs. 7 and 8 of [12]. However, for a strong
wave with amplitude A0 > 2, one (and only one) of the Ω�

FIG. 2. (a) In a sufficiently weak circularly polarized gravitational wave (3.5) the transverse trajectory of a particle initially
at rest remains confined in a toroidal region. (b) For a strong wave the trajectory becomes unbounded. The initial conditions are
_XþðU ¼ 0Þ ¼ _X−ðU ¼ 0Þ ¼ 0 and XþðU ¼ 0Þ ¼ 1, X−ðU ¼ 0Þ ¼ 0.

4Both the symplectic structure and the Hamiltonian are
proportional to the wave amplitude, A0, which drops seemingly
out therefore from the equations of motion. It is, however, still
hidden in the frequencies Ω�, cf., (3.8).

5The choice of the coefficients is not unique; another choice
would interchange Ωþ and Ω−. When one of the Ω�s vanishes
the corresponding motion is free [12,33,34].
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becomes imaginary and the corresponding motion is
unbounded: a sufficiently strong wave ejects the particle
and makes it escape. Between those two regimes i.e., for
A0 ¼ 2, one of the Ω’s vanishes, and the motion in the
corresponding direction is free; we recover Eq. (5.11) of
[12], illustrated in Fig. 9 of that paper.
The solutions (3.15) are plotted for A0 < 2 in Fig. 3. The

one which has smaller real (or imaginary) frequency can be
viewed (somewhat arbitrarily) as a guiding center, around
which the one with the larger frequency winds around. For
A0 ¼ 2 one of the frequencies vanishes, Ω− ¼ 0, and the
Y-trajectory is an ellipse drifting with constant speed
[33,34]. A further rotation (3.7) backward would yield
the trajectories X�ðUÞ.
As noticed by Ilderton [15], Eqs. (3.8) are actually

identical to Eqs. (10a)–(10b) of Białynicki-Birula for a
charged particle in the field of an electromagnetic vortex
[23], and (3.15) above just reproduces his solution # (14)—
with some additional insight, though. The relation will be
further discussed elsewhere.
So far we studied classical motions only. However, the

system could readily be quantized, courtesy of the chiral

decomposition [23,32–34]. The Poisson brackets (3.12) are
promoted to commutation relations,

½Ziþ; Z
j
þ� ¼

2iℏ
A0

ϵij; ½Zi
−; Zj

−� ¼ −
2iℏ
A0

ϵij; ð3:16Þ

where we denoted, with a light abuse of notations, the
classical and quantum observables by the same symbols.
Creation and annihilation operators can now be introduced,

a† ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A0Ωþ
4

r �
Z1þ −

i
Ωþ

Z2þ

�
;

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A0Ωþ
4

r �
Z1þ þ i

Ωþ
Z2þ

�
; ð3:17aÞ

b† ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A0Ω−

4

r �
Z2
− −

i
Ω−

Z1
−

�
;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A0Ω−

4

r �
Z2
− þ i

Ω−
Z1
−

�
; ð3:17bÞ

whose nonvanishing commutators are, by (3.16),

½a; a†� ¼ 1 ¼ ½b; b†�: ð3:18Þ

In their terms, the Hamiltonian is

H ¼
�
Ωþ

�
a†aþ 1

2

�
−Ω−

�
b†bþ 1

2

��
: ð3:19Þ

The number operators a†a and b†b commute and have
[ℏ-times] integer eigenvalues. The bound-state spectrum is,
therefore,

Enþ;n− ¼ ℏ

�
Ωþ

�
nþ þ 1

2

�
−Ω−

�
n− þ

1

2

��
; n� ¼ 0;1…:

ð3:20Þ
Let us observe that the spectrum is not bounded from
below, consistently with the relative minus sign of Hþ and
H− in the Hamiltonian (3.11b) reflecting the shape of the
saddle potential.

IV. STURM-LIOUVILLE PROBLEM AND
SWITCHING TO BJR

The key to study the memory effect for gravitational
waves is to solve the Sturm-Liouville equation with an
auxiliary condition [5,35,36],

P00ðUÞ ¼ KðUÞPðUÞ; ð4:1aÞ

PðUÞTP0ðUÞ ¼ ðP0ðUÞÞTPðUÞ: ð4:1bÞ

This system should be supplemented by initial conditions.
Let us recall that in the sandwich case, for which the wave

FIG. 3. In the circularly polarized periodic gravitational wave
(3.5) the trajectory unfolded into “time” (in heavy blue) winds
about the guiding center (dotted in red). If the wave is weak,
A0 < 2, the trajectory remains bounded, projecting to the plane
consistently with Fig. 2.
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vanishes outside an interval ½Ui; Uf�, we required in the
before zone U ≤ Ui the initial conditions

PðUÞ ¼ I and P0ðUÞ ¼ 0 for U ≤ Ui: ð4:2Þ

Below, we extend our study to the periodic case, which has
no before zone. First we note that having solved the SL
Eq. (4.1) for the 2 × 2 matrix PðUÞ,
(1) allows us to switch to Baldwin-Jeffery-Rosen (BJR)

coordinates ðx; u; vÞ: setting

Xi ¼ PijðuÞxj; ð4:3aÞ

U ¼ u ð4:3bÞ

V¼ v−
1

4
yiðGijÞ0ðuÞxj; whereG¼PTP ð4:3cÞ

carries the metric (3.2a) with gij ¼ δij to the BJR
form

GijðuÞdxidxj þ 2dudv: ð4:4Þ

(2) The metric admits a five-parameter isometry
[28,30,31,35,37,38]. The system is in particular
symmetric with respect to translations and boosts,
with associated conserved momenta

pi ¼ Gij _xj ð4:5aÞ

ki ¼ xiðuÞ −HijðuÞpj ð4:5bÞ

where HðuÞ is the 2 × 2 matrix HðuÞ ¼R
u
u0
G−1ðwÞdw [5,31,38].

(3) Remember that, in the sandwich case, the usual
assumption is that the particle is at rest in the before

zone, X0ðUÞ ¼ 0 forU < Ui. Then exporting to BJR
by (4.3a),

x ¼ P−1X ⇒ x0ð0Þ ¼ ð−P−1P0ðP−1Þð0ÞXð0Þ
þ ðP−1ÞX0ð0Þ ¼ 0;

and thus the BJR coordinate also has vanishing
initial velocity, x0ðuÞ ¼ 0. Consequently the linear
momentum vanishes, p ¼ 0 by (4.5a); then (4.5b)
implies that xðuÞ ¼ x0 for all u. Returning to
Brinkmann coordinates allows us to conclude, using
(4.2), that the trajectory is simply

XðUÞ ¼ PðUÞX0: ð4:6Þ
Now we extend our theory by replacing the initial
conditions (4.2) by requiring that it holds at a chosen
initial moment, e.g.,

Pð0Þ ¼ I; and P0ð0Þ ¼ 0: ð4:7Þ
Then (4.6) remains true also in our case: the SL
Eqs. (4.1) imply that it satisfies the equations of
motion with the initial conditions Xð0Þ ¼ X0 and
X0ð0Þ ¼ 0. Conversely, following the same argu-
ment as in the sandwich case, we observe that
inverting (4.3a) shows that X0ð0Þ ¼ 0 implies
x0ð0Þ ¼ 0 and therefore p ¼ 0 by (4.5a) from which
(4.5b) allows us to infer xðuÞ ¼ x0 ¼ const, so that
(4.3a) yields once again (4.6).

A. Linearly polarized periodic (LPP) waves

In the linearly polarized case (3.4), MATHEMATICA tells
us that Eq. (4.1a) can be solved: Using the shorthands
cA0

ðUÞ≡ Cð0; A0; UÞ and sA0
ðUÞ≡ Sð0; A0; UÞ, cf.,

Sec. II, we get

PðUÞ ¼
�

A11cA0
ðUÞ þ B11sA0

ðUÞ A12cA0
ðUÞ þ B12sA0

ðUÞ
A21c−A0

ðUÞ þ B21s−A0
ðUÞ A22c−A0

ðUÞ þ B22s−A0
ðUÞ

�
ð4:8Þ

with Aij and Bij constants of integration. Then Eq. (4.1b)
yields the compatibility constraints

A11B12 ¼ A12B11 and A22B21 ¼ A21B22: ð4:9Þ

Assuming that, e.g., A11 ≠ 0 and A22 ≠ 0 we obtain B12

and B21. The solution thus depends on 6 integration
constants. Then it follows that from the parity-properties
of the Mathieu functions that the initial conditionX0ðUÞ¼0
in (3.6) can only be satisfied if all Bij vanish (and then the
auxiliary conditions (4.9) hold also). Then, consistently
with Eq. (IV.3) of [12], the trajectory is given by pure

Mathieu cosines with labels �A0 and coefficients depend-
ing on the initial conditions,

X�ðUÞ ¼ D�c�A0
ðUÞ; ð4:10Þ

where the constants D� are determined by the Aij in (4.8)
and the initial position X0.

B. Circularly polarized periodic (CPP) waves

Now we turn to the circularly polarized wave (3.5).
Switching to a rotating frame by (3.7) allows us to present
the metric as
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ds2 ¼ dY2 þ 2dUðdV þ AÞ − 2ΨdU2; ð4:11aÞ

A ¼ −Y−dYþ þ YþdY−;

Ψ ¼ −
1

2
ðΩ2þðYþÞ2 þ Ω2

−ðY−Þ2Þ: ð4:11bÞ

The only nonvanishing component of the Ricci tensor of
(4.13) is

RUU ¼ −∂Uð∇ · AÞ − 1

2
B2 − ΔΨ ð4:12Þ

where B ¼ ∂iAj − ∂jAi. Ricci-flatness is thus confirmed
for (4.11).6

This metric is consistent with the Bargmann description
of a particle with charge ¼ mass in a combined anisotropic
oscillator plus a “magnetic” (alias Coriolis) field. The
appearance of the new metric component implies that
the potential term Ψ alone does not contain all information.
The metric (4.11) has the form of a pp metric sometimes
called “gyratonic”,7

dY2 þ 2dUðdV þ AÞ − 2ΨdU2; ð4:13Þ

where now Ψ ¼ − 1
2
HijYiYj and where the 1-form A ¼

AμdYμ is a vector potential. It has a gauge freedom: Ai →
Ai − ∂iΛ can be compensated by the “vertical” coordinate
transformation V → V þ ΛðYÞ.
Switching to BJR coordinates by replacing X by Y and

x by y in (4.3a), the new term in (4.13) becomes

2dUAjðYÞdYj ¼ 2dudðAjðYÞYjÞ−2du∂iAjðYÞdYiYj

¼ 2dudðAjðYÞYjÞ−2ððP0ÞT∂APÞðijÞyiyjdu2
−2ðPT∂APÞijyjdudyi;

where we used the shorthand ∂A for the matrix ½∂Aj=∂Yi�.
The first term here can be reabsorbed into the V-change
in (4.3c),

V ¼ v −
1

4
yiðaijÞ0ðuÞyj − 2AjðYÞPjkyk:

The two other terms modify the Sturm-Liouville equa-
tions (4.1)8: the auxiliary condition (4.1b) becomes

PTP0 − ðP0ÞTP ¼ 2ðPT∂APÞ;
whose consistency requires ∂A ¼ −∂AT . Then the SL
equation (4.1a) becomes

−
1

2
ððP00ÞTPþ PTP00Þ þ PTHP ¼ ðP0ÞT∂AP − PT∂AP0:

When ∂Uð∂AÞ ¼ 0, both equations are solved by
P00 ¼ KPþ 2∂AP0. To sum up, changing our notations
to emphasize that the new system concerns the metric
obtained after applying the rotational trick, X → Y,
K ¼ ðKijÞ → H ¼ ðHijÞ and P → Q, Eqs. (4.3) for the
Brinkmann ⇔ BJR transcription should be replaced by

Yi ¼ QijðuÞyj; ð4:14aÞ

U ¼ u ð4:14bÞ

V ¼ v −
1

4
yiðGijÞ0yj − 2AjQjkyk; G ¼ QTQ: ð4:14cÞ

Note that Eqs. (4.3a) are formally unchanged while
(4.3c) picks up a new term; however, the SL equations to be
solved are now rather

Q00 ¼ HQþ 2∂AQ0; ð4:15aÞ

∂A ¼ −∂AT; ð4:15bÞ

∂Uð∂AÞ ¼ 0: ð4:15cÞ

Spelling out our formulas for the circularly polarized
periodic wave, from (4.11) we infer that

∂A ¼
�

0 1

−1 0

�
; H ¼

�
Ω2þ 0

0 Ω2
−

�
; ð4:16Þ

which are both U-independent. Thus our modified Sturm-
Liouville equation becomes

Q00 þ 2

�
0 −1
1 0

�
Q0 −

�
Ω2þ 0

0 Ω2
−

�
Q ¼ 0 ð4:17Þ

which is precisely Eq. (3.8) with the vector Y replaced
by the 2 × 2 matrix Q. Replacing X by Y in (4.6), it
follows that

YðUÞ ¼ QðUÞY0 ð4:18Þ

is a solution of the equations of motion (3.8). Moreover, the
initial condition (3.9) is satisfied provided,9

Qð0Þ ¼ I; Q0ð0Þ ¼
�

0 1

−1 0

�
: ð4:19Þ

6This is hardly surprising: switching from X to Y is a mere
coordinate change.

7Considered by Brinkmann back in 1925 [27] and used e.g., in
[39]. Here, we deliberately changed our notations, Φ → Ψ,
K → H, to underline the difference with the previous discussion.

8Our formulas are valid in four dimensions. 9Q0ð0Þ is the matrix of a planar rotation by π=2.
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Our new equation (4.17) has constant coefficients and
can be solved analytically. Putting Q ¼ ðQijÞ (4.17) is
mapped indeed into two sets of equations of type (3.8), with
the identifications Q11 ↔ Yþ, Q21 ↔ Y−, Q12 ↔ Yþ,

Q22 ↔ Y−: the columns of Q are vectors of the form
ðYþY− Þ both of which satisfy (3.8). Therefore the general
solution is, by (3.15), a combination with eight constants
Ai;…; Di, i ¼ 1, 2, cf., (4.8),

Q11ðUÞ ¼ A1 cosðΩþUÞ þ B1 sinðΩþUÞ þ C1 cosðΩ−UÞ þD1 sinðΩ−UÞ; ð4:20aÞ

Q21ðUÞ ¼ −ΩþðA1 sinðΩþUÞ − B1 cosðΩþUÞÞ − 1

Ω−
ðC1 sinðΩ−UÞ −D1 cos ðΩ−UÞÞ; ð4:20bÞ

Q12ðUÞ ¼ A2 cos ðΩþUÞ þ B2 sinðΩþUÞ þ C2 cosðΩ−UÞ þD2 sinðΩ−UÞ; ð4:20cÞ

Q22ðUÞ ¼ −ΩþðA2 sinðΩþUÞ − B2 cos ðΩþUÞÞ − 1

Ω−
ðC2 sinðΩ−UÞ −D2 cosðΩ−UÞÞ; ð4:20dÞ

The number of constants is halved by the initial con-
dition (4.19) which require,

C1 ¼ 1 −Ω2þA1; D1 ¼ −
Ωþ
Ω−

B1; C2 ¼ −Ω2þA2;

D2 ¼
1

Ω−
−
Ωþ
Ω−

B2:

Requiring in addition also Qð0Þ ¼ I which follows from
(4.18) eliminates all constants with the exception of
B2 ¼ Ω−1þ , leaving us with10

Q ¼
 
cosðΩ−UÞ sinðΩþUÞ

Ωþ

− sinðΩ−UÞ
Ω−

cosðΩþUÞ

!
: ð4:21Þ

V. ION TRAPS IN THREE DIMENSIONS

A. Paul trap in three dimensions

Real traps are three-dimensional: ions are Paul-trapped
by a time-dependent quadrupole potential, written, in
appropriate units, as [18,19]

Φ ¼ 1

2
ðaþ 2q cos 2UÞððXþÞ2 þ ðX−Þ2 − 2z2Þ; ð5:1Þ

where a and q are parameters and we used again the
notation U ¼ ωt=2. (5.1) is clearly an axi-symmetric
anisotropic oscillator potential with time-dependent
frequencies. The motion of an ion is described therefore
by three uncoupled Mathieu equations,

ðX�Þ00 þ ðaþ 2q cos 2UÞX� ¼ 0; ð5:2aÞ

z00 − 2ðaþ 2q cos 2UÞz ¼ 0: ð5:2bÞ

The interaction in the X� plane is attractive, while the one
in the z direction is repulsive and has a factor 2. The
oscillating term produces bounded motions in an appro-
priate range of parameters. For details the reader is referred
to the literature, e.g., [19]. Some bounded trajectories are
shown in Fig. 4.
The three-dimensonal Paul trap can again be lifted to

Bargmann space—but one in five dimensions. The recipe is
the same as before [26]: the Bargmann metric is (3.2a) but
now we have three transverse components; the UU
component is −2ΦðX�; z; UÞ given in (5.1). The quadratic
form is traceless and therefore the metric still satisfies the
vacuum Einstein equations Rμν ¼ 0: it is a gravitational
wave in five dimensions.

B. Penning trap

A similar ion trap was proposed by Dehmelt, who called
it the Penning trap [20–22] (and shared the Nobel prize with
Paul). It combines an anisotropic but time-independent
quadrupole potential with a uniform (constant) magnetic
field B ¼ Bẑ directed along the z axis,

ΨðYþ; Y−; zÞ ¼ −
�
ωz

2

�
2

ððYþÞ2 þ ðY−Þ2 − 2z2Þ; ð5:3aÞ

Aþ ¼ −
1

2
BY−; A− ¼ 1

2
BYþ; Az ¼ 0: ð5:3bÞ

The Lagrangian

L ¼ 1

2
_Y2 þ ωc

2
ð _Y−Yþ − _YþY−Þ þ 1

4
ω2
zðY2 − 2z2Þ; ð5:4Þ10The transverse metric in BJR form, GijðuÞ ¼ QTðuÞQðuÞ is

not illuminating and is therefore omitted.
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where ωc ¼ B in our units is the cyclotron frequency,11

yields, for a particle of unit charge and mass,

Ÿ� ∓ ωc
_Y∓ −

1

2
ω2
zY� ¼ 0 ð5:5aÞ

̈zþ ω2
zz ¼ 0; ð5:5bÞ

cf., Eqs. (2.5)–(2.7) of Ref. [40].
Let us observe, for further reference, that the upper

Eqs. (5.5a) are reminiscent of the circularly polarized

periodic (CPP) form (3.8) (as suggested by our notations),
while the z-equation is that of a decoupled harmonic
oscillator. In terms of the complex coordinateΥ¼Yþþ iY−

Eq. (5.5a) is solved by [40],

ϒ�ðtÞ ¼ e−iγ�t; γ� ¼ 1

2

�
ωc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c − 2ω2

z

q �
: ð5:6Þ

The constants γþ and γ− here are the modified cyclotron
frequency and the magnetron frequency, respectively.
Periodic solutions require ω2

c − 2ω2
z > 0. Solutions are

shown in Fig. 5; bound motions arise when ω2
z > 0. In

experimentally realistic cases ωc ≫ ωz [21,40]. However, a
special case arises when the Penning trap has equal
modified-cyclotron and magnetron frequencies,

FIG. 5. Trajectory of a charged particle in a Penning trap (a) in three dimensions. (b) its projection on the Y� plane. The initial
conditions are Yþð0Þ ¼ 1.0, _Yþð0Þ ¼ 0.0, Y−ð0Þ ¼ 0, _Y−ð0Þ ¼ 1.0, zð0Þ ¼ 0, _zð0Þ ¼ 0.2.

FIG. 4. Motion in a three-dimensional Paul trap for (a) a ¼ 0.1 (axial symmetry) (b) a ¼ 0 (periodic profile). The initial conditions
Xþð0Þ ¼ 0, _Xþð0Þ ¼ 1, X−ð0Þ ¼ 5, _X−ð0Þ ¼ 0, zð0Þ ¼ 0, _zð0Þ ¼ 1.

11Once again, the dot means here d=dt where t is non-
relativistic time.
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γþ ¼ γ− ¼ 1

2
ωc; i:e: for Δ ¼

�
ωz

ωc

�
2

−
1

2
¼ 0: ð5:7Þ

Then both motions in (5.6) coincide (are purely cyclo-
tronic) whereas the new independent solution spirals out-
ward as shown in Fig. 6, reminiscent of the maximally
anisotropic case Ω− ¼ 0 in Fig. 9 of [12],

ϒðperÞ
0 ðtÞ ¼ e−i

1
2
ωct; ϒðescÞ

0 ðtÞ ¼ te−i
1
2
ωct: ð5:8Þ

The toroidal region shrinks to a circle and we get also a
new, escaping solution. The general solution of the three-
dimensonal system (5.5), a combination of those in (5.6)
completed with z ¼ E cosðωztÞ þ F cosðωztÞ, can be also
obtained by chiral decomposition.
For a discussion of the quantum aspects the reader is

referred, e.g., [21] to for details. Here we just mention that
the spectrum is [21],

Eðnþ;n−;kÞ ¼ℏ

�
γþ

�
nþþ1

2

�
− γ−

�
n−þ

1

2

�
þωz

�
kþ1

2

��
;

n�;k¼ 0;1;… ð5:9Þ
as it can also be confirmed by the chiral decomposition
method. In the special case (5.7) the bound-state spectrum
is that of the z component alone, consistently with (5.8)
and Fig. 6.
Now we turn to the GW aspect of three-dimensional

traps. As said above, Paul traps correspond to linearly
polarized periodic (LPP) waves; now we inquire if the
analogy can be extended by relating the Penning trap to
CPP waves. We first recall how a nonrelativistic particle
in an external electromagnetic field can be described by a
five-dimensional Bargmann space [39]. In terms of the
coordinates ðY; z; t; sÞ we have,

ds2 ¼ dY2 þ dz2 þ 2dtðdsþ AidYiÞ − 2Ψ dt2; ð5:10aÞ

whose null geodesics project consistently with (5.5). Note
that the metric is not Ricci-flat: the potential (5.3a) is
harmonic, ΔΨ ¼ 0, and therefore RUU ¼ − 1

2
B2 ≠ 0, cf.,

(4.12). The metric (5.10) is, thus, not vacuum Einstein.
To get further insight, we now eliminate the vector

potential in (5.10) by the rotational trick (3.7) [backward]
extended to three dimensions,

0
B@

Xþ

X−

z

1
CA ¼

0
B@

cosωt − sinωt 0

sinωt cosωt 0

0 0 1

1
CA
0
B@

Yþ

Y−

z

1
CA; ð5:11Þ

where ω is a constant. The cross terms dX�dt cancel if
ω ¼ ωc=2 and we end up with

ds2 ¼ dX2 þ 2dtds − 2Φ dt2; ð5:12aÞ

Φ ¼ 1

8
ðω2

c − 2ω2
zÞ½ðXþÞ2 þ ðX−Þ2� þ 1

2
ω2
zz2; ð5:12bÞ

which is the Bargmann metric of an axially symmetric
[attractive or repulsive, generally anisotropic] oscillator.12

Therefore, despite the similarity between the upper two
Penning Eqs. (5.5a) and the CPP equations (3.8), the
Bargmann lift of a Penning trap is not a CPP GW: it is
not Ricci-flat (as confirmed again by ΔΦ ¼ ω2

c=2≡ B2=2)
and is not brought to the CPP form by the rotational trick.

FIG. 6. In the fine-tuned case (5.7) and for initial conditions Yþð0Þ ¼ 1.0, _Yþð0Þ ¼ 0.0, Y−ð0Þ ¼ 0, _Y−ð0Þ ¼ 1.0, zð0Þ ¼ 0,
_zð0Þ ¼ 0.2, the 2d projection (b) of the 3d trajectory (a) spirals outward with expanding radius. The z coordinate oscillates with
frequency ωz ¼ ωc=

ffiffiffi
2

p
.

12For the special value (5.7) the oscillator is maximally
anisotropic: X-motion is free. Another extreme case would
be ωz ¼ 0 when the z-motion is free. When ω2

c ¼ 6ω2
z , the

X-oscillator (5.12b) is isotropic.
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C. Modified Penning trap

Below, we propose instead a modified Penning trap,
closer to CPP GWs. We first note a subtle, however
important, difference between the two systems: in (5.5a)
the Y� terms have identical frequencies ωz, whereas in the

CPP case (3.8) the frequencies are different, Ω2þ ≠ Ω2
−,

except when A0 ¼ 0—i.e., when there is no wave.
Therefore we propose to generalize the scalar Penning
potential (5.3a) while keeping the same vector poten-
tial (5.3b),

Ψ → Ψ̃ ¼ −
�
ωz

2

�
2
��

1þ A0

2

�
ðYþÞ2 þ

�
1 −

A0

2

�
ðY−Þ2 − 2z2

�
ð5:13aÞ

A� ¼ ∓ 1

2
ωcY∓; Az ¼ At ¼ 0; ð5:13bÞ

where A0 is a perturbation parameter. The new term clearly breaks the axial symmetry whenever A0 ≠ 0. Spelling out for
completeness, the Lagrangian

L ¼ 1

2
ð _Y2 þ _z2Þ þ ωc

2
ð _Y−Yþ − _YþY−Þ þ ω2

z

4

��
1þ A0

2

�
ðYþÞ2 þ

�
1 −

A0

2

�
ðY−Þ2 − 2z2

�
; ð5:14Þ

cf., (5.4) yields the equations of motions,

Ÿ� ∓ ωc
_Y∓ −

ω2
z

2

�
1� A0

2

�
Y� ¼ 0; ̈zþ ω2

zz ¼ 0: ð5:15Þ

cf., (5.5). Lifting to five-dimensional Bargmann space ðYþ; Y−; z; t; sÞ, our modification amounts to considering

ds2 ¼ ðdYþÞ2 þ ðdY−Þ2 þ ðdzÞ2 þ 2dtðdsþ AidYiÞ − 2Ψ̃dt2 ð5:16Þ
where the vector potential is still (5.3b). Then applying once again the three-dimensional rotational trick (5.11) allows us to
conclude along the same lines as above that choosing ω ¼ B=2≡ ωc=2 and putting U ¼ ωct=2, V ¼ 2s=ωc, we get

ds2 ¼ ðdXþÞ2 þ ðdX−Þ2 þ ðdzÞ2 þ 2dUdV − 2Φ̃dU2; ð5:17aÞ

Φ̃ ¼
�
1

2
−
�
ωz

ωc

�
2
�
½ðXþÞ2 þ ðX−Þ2� þ 2

�
ωz

ωc

�
2

z2

−
�
ωz

ωc

�
2 A0

2
½cos 2UððXþÞ2 − ðX−Þ2Þ þ 2 sin 2UðXþX−Þ�; ð5:17bÞ

which is a rather complicated mixture of a time-dependent oscillator with a periodic correction term. However, when

Δ ¼
�
ωz

ωc

�
2

−
1

2
¼ 0; ð5:18Þ

cf., (5.7), the isotropic part is turned off, leaving us with a CPP GW embedded into five-dimensional Bargmann space,

Φ̃spec ¼ −
1

2
K̃ijXiXj ¼ −

A0

4
½cos 2UððXþÞ2 − ðX−Þ2Þ þ 2 sin 2UðXþX−Þ� þ z2; ð5:19Þ

which identifies the constant A0 as the amplitude of the CPP GW in five dimensions, the Bargmann space of the modified
Penning trap. For A0 ¼ 0, we recover the maximally anisotropic Penning case Φ ¼ ðω2

c=4Þz2, cf., (5.12b). In the special
case (5.18), the chiral decomposition of the system (5.14)–(5.15) is found as

H ¼ Hþ −H− þHz

¼ 1

2

�
ω2
cA0

8
ðð1þ A0=2ÞZ1þZ1þ þ Z2þZ2þÞ −

ω2
cA0

8
ðð1 − A0=2ÞZ2

−Z2
− þ Z1

−Z1
−Þ þ p2

z þ
ω2
c

2
z2
�
; ð5:20aÞ
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σ ¼ σþ − σ− þ σz ¼ −
ωcA0

4
½dZ1þ ∧ dZ2þ − dZ1

− ∧ dZ2
−� þ dpz ∧ dz: ð5:20bÞ

cf., (3.10)–(3.11). The resulting uncoupled equations,

Z̈1;2
� þ ω2

c

4
ð1� A0=2ÞZ1;2

� ¼ 0; ̈zþ ω2
c

2
z ¼ 0; ð5:21Þ

are solved at once; in Y-coordinates, we get,

Yþ ¼ A cos

�
ωc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A0

2

r
t

�
þ B sin

�
ωc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A0

2

r
t

�

þ C cos

�
ωc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

A0

2

r
t

�
þD sin

�
ωc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

A0

2

r
t

�
ð5:22aÞ

Y− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A0

2

r �
B cos

�
ωc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A0

2

r
t

�
− A sin

�
ωc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A0

2

r
t

��

þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − A0

2

q �
D cos

�
ωc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

A0

2

r
t

�
− C sin

�
ωc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

A0

2

r
t

��
; ð5:22bÞ

The quantum spectrum can be obtained using creation/annihilation operators,

Enþ;n−;k ¼ ℏ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A0=2

p �
nþ þ 1

2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A0=2

p �
n− þ 1

2

�
þ

ffiffiffi
2

p
kþ 1ffiffiffi

2
p
�

ð5:23Þ

where n� ¼ 0; 1… are the eigenvalues of the appropriate number operators, and k ¼ 0, 1 is that of the z-oscillator.13 For a
weak wave, A0 ≪ 1, we have,

Enþ;n−;k ≈ ℏ

�
ðnþ − n−Þ þ

A0

4
ð1þ ðnþ þ n−ÞÞ þ

ffiffiffi
2

p
kþ 1ffiffiffi

2
p
�
: ð5:24Þ

VI. LAGRANGE POINTS IN
CELESTIAL MECHANICS

In [24,25] Białynicki-Birula et al. discuss the stability of
Lagrange points in the Newtonian 3-body problem using a
linearized Hamiltonian [41]. In the co-rotating x–y plane
defined by the two main orbiting bodies the Hamiltonian
takes the form

Hosc ¼
p2
x þ p2

y

2
þ aω2x2 þ bω2y2

2
− ωðxpy − ypxÞ;

ð6:1Þ

where the values of ω and the dimensionless a and b
depend on the parameters of the original problem. The
authors discuss in particular islands of stability in the space

of parameters. The equations of motion arising from (6.1)
are,14

ẍ − 2ω_y ¼ ω2ð1 − aÞx; ÿþ 2ω_x ¼ ω2ð1 − bÞy:
ð6:2Þ

The values of a and b can be found by comparing with
the results in textbooks such as [41]. In this reference units
are chosen so that distances, time, and masses are expressed
by dimensionless quantities. Distances are measured from
the center of mass of the two main rotating bodies, and
rescaled by their relative distance. In the co-rotating frame
the two rotating bodies lie on the x axis, and the unit of time
is chosen so that the angular velocity of rotation of the co-
rotating frame is ω ¼ 1. Our “big masses” are labeled so
that M1 ≤ M2, which implies that

13ωc ¼ 2 in our units.

14The “one-sided” “Hill” case studied in [33] corresponds to
a ¼ −2 and b ¼ 1 and was found unstable.
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0 < μ≡ M1

M1 þM2

≤ 1=2: ð6:3Þ

Here we are interested in the two Lagrangian points,
traditionally denoted by L4 and L5. The displacements ξ, η
in the x–y plane satisfy the coupled equations:

ξ00 − 2η0 ¼ 3

4
ξþ 3

ffiffiffi
3

p

4
ð1 − 2μÞη; ð6:4aÞ

η00 þ 2ξ0 ¼ 9

4
ηþ 3

ffiffiffi
3

p

4
ð1 − 2μÞξ; ð6:4bÞ

from which we can read off a scalar potential Vðξ; ηÞ ¼
− 3

8
ξ2 − 3

ffiffi
3

p
4
ð1 − 2μÞξη − 9

8
η2, whose Hessian ∂i∂jV has

eigenvalues

λ1;2 ¼
3

2

�
−1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3μþ 3μ2

q �
: ð6:5Þ

The potential can be diagonalized by a rotation,
�
ξ̂
ŷ

�
¼ RðξηÞ

which brings the equations of motion to the form,

ξ̂00 − 2η̂0 ¼ −λ1ξ̂; ð6:6aÞ

η̂00 þ 2ξ̂0 ¼ −λ2η̂: ð6:6bÞ

Then by comparison with (6.2) we get ω ¼ 1, λ1 ¼ a − 1,
λ2 ¼ b − 1. Equation (6.5) implies aþ b ¼ −1, cf., [24],
which allows us to infer that

a ¼ −
1

2
−
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3μþ 3μ2

q
;

b ¼ −
1

2
þ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3μþ 3μ2

q
; ð6:7Þ

A naïve argument for stability for all possible values of μ
would be to observe that replacing the −λi by Ω2

� Eq. (6.6)
go over to our Eqs. (3.8) for which we found stability
(trigonometric functions) provided that they are both posi-
tive. But λi < 0, i ¼ 1, 2 requires only μð1 − μÞ > 0, which
is always satisfied in the range 0 < μ ≤ 1=2, seemingly
contradicting the stability condition given in [24],

μð1 − μÞ < 1=27; ð6:8Þ

which is however confirmed both numerically (cf., Fig. 7)
and as follows. Let us test our equations on simple expo-
nential solutions, ξ̂ðτÞ ¼ eατ. Nontrivial solutions arise only
if α4þα2þ27

4
μð1−μÞ¼0 by (6.5). The solution is bounded

only if α2 > 0 which requires precisely (6.8).15

The apparent contradiction is resolved by noting that the
λis in (6.5) were tacitly assumed to be real, which requires

either μ ≤ μ1 ¼ 3−
ffiffiffiffi
21

p
6

< 0 or μ ≥ μ2 ¼ 3þ ffiffiffiffi
21

p
6

> 1—and
neither of these conditions can be satisfied for μ in the
range (6.3).

VII. CONCLUSION

The striking similarities of the apparently far remote
topics discussed in this paper have, from the mathematical
point of view, a simple explanation: in all cases, the
problem boils down to study an anisotropic oscillator
[32–34]. In the Paul [alias linearly polarized GW] case, the
solution is expressed in terms of Mathieu functions
[6,12,18]; in the circularly polarized periodic GW case,
they involve trigonometric/hyperbolic functions.
Previous investigations of the memory effect focused on

sudden bursts of sandwich waves which vanish outside a
short “wave zone”. It was advocated [42] that their
observation would (theoretically) be possible due to the
velocity memory effect: in the flat “afterzone” the particles
move indeed with constant velocity, as required by …
Newton’s 1st law [5,11,12].
In this paper we study instead periodic waves sought in

inflationary models [13,14]. Such waves have no “before
and after zone,” and their observation would require a
different technique. Here, we argue that, by analogy with
ion trapping [18,20], one might study bound motions.

FIG. 7. Motions around a Lagrange point are bounded for μ ¼ 0.02 < 1=27 and unbounded for μ ¼ 0.4 > 1=27.

15For the Sun-Jupiter system μ ≈ 10−3 ≪ 1=27 ≈ 0.037037,
consistently with the observed stability of the “Greek/Trojan”
minor planets (asteroids). For the Earth-Moon system μ≈
0.012 ⇒ μð1 − μÞ ≈ 0.0118 < 1=27. The discovery of the first
Earth-Trojan, 2010 TK7, was announced by NASA in 2011. For
the Sun-Earth system μ ≈ μð1 − μÞ ≈ 3.10−6–stable. This has its
importance for, say, LISA, with GW detectors planned to be sent
to the Lagrange points.

ION TRAPS AND THE MEMORY EFFECT FOR PERIODIC … PHYS. REV. D 98, 044037 (2018)

044037-13



The Eisenhart lift of the three-dimensional Paul trap is a
linearly polarized periodic gravitational wave in five
dimensions. For three-dimensional Penning traps, we find
that, despite strong similarity with the equations which
govern circularly polarized gravitational waves, their
Eisenhart lift is not a CPP wave. However, a slight
modification (see Sec. V C) allows for anisotropy and
for a special value (5.18) of the frequencies we do get
circularly polarized gravitational waves in five dimensions.
Such perturbations were actually considered before as due
to imperfections; see Eq. (2.71) of Ref. [21].
It is remarkable that molecular physicists, who worked

on ion traps decades ago, were, like Molière’s Monsieur
Jourdain, studying gravitational waves.
While our investigations here are classical, the chiral

decomposition, (3.11b), makes it easy to study the quantum
problem. Observing, in particular, the bound-state spectrum
(5.23) could, theoretically, lead to the detection of such a
wave. We mention that ion traps have also been studied
recently in connection with (space)time crystals [43].
It is worthwhile to emphasize that these kinds of analogies

extend very generally, even for nonperiodic waves: the
geodesic deviation equation in a vacuum background always
looks like ̈ξ ¼ Rξ in a parallel-propagated frame, where R is
an appropriate matrix. But this is an anisotropic oscillator

equation, and such equations are ubiquitous in physics.
Moreover, time dependence in R can give parametric
resonance and similar things, as is well known in other
contexts. Geodesic motion in curved spacetimes is, there-
fore, generically linked to time-dependent anisotropic oscil-
lators. Plane wave spacetimes are special here because (i) it’s
not awkward to let R have any time dependence you like,
and (ii) the geodesic deviation equation is exact even for
finite separations.
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