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The two LAGEOS and LARES are laser-ranged satellites tracked with the best accuracy ever achieved.
Using their range measurements many geophysical parameters were calculated and some general relativity
effects were directly observed. To obtain precise and refined measurements of the effects due to the
predictions of general relativity on the orbit of these satellites, it is mandatory to model with high precision
and accuracy all other forces, reducing the free parameters introduced in the orbit determination. A main
category of nongravitational forces to be considered are those of thermal origin, whose fine modeling
strongly depends on the knowledge of the evolution of the spin vector. We present a complete model,
named LASSOS, to describe the evolution of the spin of the LAGEOS and LARES satellites. In particular,
we solved Euler equations of motion considering not-averaged torques. This is the most general case, and
the predictions of the model well fit the available observations of the satellites spin. We also present the
predictions of our model in the fast-spin limit, based on the application of averaged equations. The results
are in good agreement with those already published, but with our approach we have been able to highlight
small errors within these previous works. LASSOS was developed within the LARASE research program.
LARASE aims to improve the dynamical model of the two LAGEOS and LARES satellites to provide very
precise and accurate measurements of relativistic effects on their orbit, and also to bring benefits to
geophysics and space geodesy.
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I. INTRODUCTION

The two LAGEOS (LAser GEOdynamics Satellite) and
LARES (LAser RElativity Satellite) are passive Earth
orbiting satellites. They are almost spherical in shape,
with a diameter of about 60 cm and a mass of about 407 kg
and 405 kg, respectively for LAGEOS and LAGEOS II,
and a diameter of 36.4 cm and a mass of about 387 kg in
the case of LARES. A large number of retroreflectors,
the so-called cube-corner retro-reflectors (CCRs), is dis-
tributed in the form of rings over the satellites’ surface.
These CCRs allow a precise tracking of the orbit of the
satellites by means of a network of Earth bound stations
coordinated by the International Laser Ranging Service
(ILRS), see [1].
The older LAGEOS was launched by NASA in 1976, on

May 14, LAGEOS II by NASA/ASI in 1992, on October
22 and finally LARES was launched by ASI in 2012, on
February 13.
The ground stations of the ILRS assure, by means of the

satellite laser ranging (SLR) technique, almost continuous
measurements of the round trip time of narrow laser pulses

and, consequently, of the satellites’ distance, which is
usually called range.
The orbital parameters, obtained from range data (see

[2]) are compared—through a least squares fit of the
orbit—with those calculated using parametric dynamical
models allowing, on one side an accurate evaluation of
many geophysical parameters (see for instance [3–10]) and,
on the other side, a direct measurement of the relativistic
gravitational effects acting on the orbit of the satellite, see
for instance [11–15].
The dynamical model used to calculate the orbit of these

geodetic satellites must include also forces related with
gravitational and nongravitational perturbations (NGP).
A main disturbing role is played by the surface forces
strictly connected with the evolution of the satellites’ spin
vector (orientation and rate), we refer to [16–20] for details.
These are the Earth-Yarkovsky and Yarkovsky-Schach
thermal effects (see [21–33]).
The two LAGEOS satellites and LARES were injected

in their orbit with an initial rotation that slows down in time
under the magnetic torque, and with an initial orientation of
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their spin that were subject to an evolution from the
precession due to the combined action of three main forces:
magnetic, gravitational and surface forces. Several spin
models were introduced in the past. Among these models,
those that better describe the experimental data are the ones
valid in the so called fast-spin approximation. In this
approximation, the solutions of the models are valid as
long as the satellite rotation period is much shorter than the
orbital one. Nowadays, while LARES spins with a period
of 1000 s, about one order of magnitude smaller then the
orbital period, the two LAGEOS’ spin periods are, respec-
tively, about 3 × 105 s for the older satellite and about
3 × 104 s for the younger one. Both satellites spin less than
one revolution during each orbit, therefore a more general
model is needed beyond the fast-spin approximation.
The aim of the present work is to introduce our spin

model. This model has been developed within the activities
of the LAser RAnged Satellites Experiment (LARASE)
[34–36]. The main new characteristic of our model is its
capacity to simulate completely the spin trend of LAGEOS
and LARES satellites in the general case, with no restric-
tion to the mentioned fast-spin approximation. In other
words, the model is valid for any rotational period of the
satellite. After a brief summary about the models developed
in the past (see Sec. II), in Sec. III we focus on the
equations we used and the different torques we considered.
Starting from these formulas we have been also able to
calculate the solution valid for averaged equations in the
limit of the fast-spin approximation. In Sec. IV we describe
the numerical integration methods used to solve the
equations in the general case and we compare the obtained
results with the available experimental observations. In
Sec. V we provide a discussion on the importance of a
refined modeling for the spin evolution, and we also focus
on the order of magnitude of other torques that are however
negligible with respect to those taken into account in
previous sections. Finally, in Sec. VI our conclusions
and recommendations are provided together with the work
needed to further improve the free parameters that char-
acterize our model for the spin of LAGEOS-like satellites.

II. PREVIOUS MODELS FOR THE SPIN
OF THE TWO LAGEOS SATELLITES

The problem of the comprehension of the rotational
behavior of the older of the two LAGEOS satellites was
first studied by [16]. In that paper the authors, in order to
model the spin of LAGEOS, considered two torques acting
over the satellite. The first torque is the one produced by the
interaction of the magnetic moment of the satellite with the
Earth’s geomagnetic field. The magnetic moment is the one
produced by the eddy currents (or Foucault currents)
induced in the conductive body of the satellite from its
rotation and motion in the same field. The second torque
arises from the action of the Earth gravitational field,

because of the nonspherical mass distribution of the
satellite.
Reference [16] solved the problem in the fast-spin

approximation by averaging the torques on the satellite
orbital period and on the Earth rotational period. In that
work for the first time the measured decay of the spin of
LAGEOS was explained with a good accuracy and, at the
same time, the complexity and variety of the results in
different regions of the space of parameters were shown.
An additional significant result of the model developed in
[16] was that, with respect to the inversion of the initial
sense of rotation of the satellite, the evolution of both the
direction and rate of the spin are not invariant.
The analysis of the spin model of LAGEOS—as well as

the results of this first successful work—were successively
extended by [18,19]. In [18], some small errors present in
the formulas published by [16] were corrected and, most
importantly, these authors extended the model in order to
take in account of a possible misalignment between the spin
and symmetry axes. They also showed that the [16] spin
model leads to a successful fit of the along–track residuals
of the two LAGEOS related with the orbital perturbation
produced by the main thermal effects, once the force
mechanisms related with the direction of the satellite spin
vector were properly modeled.
Finally, [18] considered other possible torques connected

to atmospheric skin forces and radiation pressure: one first
torque related to the difference of reflectivity between the
two LAGEOS’ hemisphere [25] and the second arising
from the non coincidence between the geometric center and
the center of mass of the satellite. However, they wrongly
concluded that likely these torques would not play an
important role in the evolution of the spin of the two
LAGEOS satellites, because negligible and that, at first
order, they should be ignored. We refer to [19] for details.
This conclusion was probably dictated by the fact that these
authors have not tuned their spin model with the available
(at that time) observations of the spin of the two LAGEOS
satellites, but, conversely, with the residuals in their semi-
major axis.
These two (much smaller) torques were inserted later in

the LOSSAM (LageOS Spin Axis Model) model (see
[20,37]), that till now was the most complete and reliable
model to describe the spin behavior of LAGEOS satellites
in the fast-spin approximation [38] and recently it was also
applied with success to LARES, see [39]. Indeed, the
LOSSAM model has represented a huge improvement in
modelling the evolution of the spin of the two LAGEOS
satellites with respect to previous models, even if the bulk
of the characteristics of the torques considered are exactly
the one previously developed by [16]—for the magnetic
and gravitational torques—and by [18] for what concerns
the additional (minor) torques related with the radiation
pressure asymmetry and the possible offset between the
satellites geometric center and their center of mass.
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The key aspects that have led to the development of a so
successful model can be summarized in the following main
points:
(1) the collection of all available observations (up to

2007) of the spin of the two LAGEOS satellites,
both in their rate and orientation, see [40–43];

(2) a careful analysis of all the parameters that enter in
the models, i.e., in the mathematical expressions of
the various torques;

(3) the tuning of a suitable subset of these parameters by
means of a least-squares fit of the LOSSAM model
to all the available observations.

It is important to underline that, in order to analyze the
spin evolution under the most general conditions, the
torques expressions used in the equations should not be
averaged. In this case it is handy to work in the rotating
frame of the satellite and use the Euler’s equations. [17]
were the first to formulate the problem in this way. Their
aim was to qualitatively analyze the time evolution of the
satellites rotation, and they did not care if their solution did
not fit to the experimental data. Anyway, their model was
too much simplified to replicate the measured data because
of several assumptions. In fact: (i) the expression adopted
for the polarizability of the satellite is too far from reality,
(ii) the expression of the magnetic torque is the same of
[16,18], that is valid only in the fast-spin approximation,
(iii) the Earth magnetic field is simplified as a pure dipole
field along the Earth rotation axis, finally (iv) the equations
of motion are written in a non inertial reference frame,
neglecting the precession of the orbital plane with respect to
an inertial reference frame.
However, despite of these excessive oversimplifications,

[17] have correctly introduced the general approach to be
followed and based on the resolution of the Euler dynami-
cal equations, and they also introduced the correct general
expression for the rate of precession in the case of the
gravitational torque, correcting the expression given by
[16] (that was anyway used later by [18]).
The [17] approach based on the numerical solution of the

full set of the Euler equations was resumed a few years later
by [44], removing the simplifications of the previous model
but, at the end, still with an unsuccessful fit to the available
observational data. Later on, this more general model was
also considered by [45,46], that developed the so called
“real-time” LOSSAM formulation. We could not find in

literature any example of practical application of these
models. In fact, Andrés de la Fuente wrote in his PHD
thesis work [20] that “real-time” LOSSAM had not given a
better result than the model developed by [44], giving
implicitly a negative judgment on the results obtained by
both models.

III. THE LASSOS MODEL FOR THE
EVOLUTION OF THE SPIN

In the following we present our new model for the spin of
LAGEOS and LARES satellites, that aims to be general
and complete. All the main known torques were considered
and their mathematical expressions were written in a
general (not averaged) way in the rotating frame of the
satellite adopting the Euler’s rotational equations.

A. Reference frames

For our analysis, in the following, we will adopt two
different reference frames:

(i) the Earth Mean Equator and Equinox of Date Frame
(J2000.0)

(ii) the satellite Body Frame (BF).
The J2000.0 is identified by three axes (x̂E; ŷE; ẑE). The

origin of this Cartesian reference frames coincides with the
Earth’s center, the (x̂E; ŷE) plane coincides with the Earth’s
mean equatorial plane. The x̂E axis is directed to the vernal
equinox ♈, intersection between the mean equator and
the mean equinox of date. The J2000.0 represents a quasi-
inertial frame.
The BF (also known as body-fixed reference frame) is

centered in the body’s center of mass with the axes
(x̂b; ŷb; ẑb) aligned along the principal axes of inertia.
The position of the BF can be conveniently expressed with
respect to the J2000.0 reference frame as function of the
three Euler’s angles θ, ϕ and ψ . The nutation angle θ is the
angle between ẑE and ẑb, the spin angle ψ is the angle
between the nodal line and x̂b axis, the precession angle ϕ
is the angle between x̂E axis and the nodal line, where the
nodal line is the intersection between the two planes
(x̂E; ŷE) and (x̂b; ŷb). The transformations of a vector V
from J2000.0 to BF reference frame Vb ¼ RVE is given
by the rotation matrix R, that in terms of Euler’s angles
is [47]:

R ¼

0
B@

cosϕ cosψ − cos θ sinϕ sinψ sinϕ cosψ þ cos θ cosϕ sinψ sin θ sinψ

− cosϕ sinψ − cos θ sinϕ cosψ cos θ cosϕ cosψ − sinϕ sinψ sin θ cosψ

sin θ sinϕ − cosϕ sin θ cos θ

1
CA: ð1Þ

The satellite motion along its orbit, supposed to be quasicircular with radius a, will be identified by the Keplerian orbital
parameters measured in the J2000.0 frame: Ω, the right ascension of the ascending node, I, the orbit inclination over the
Earth’s equator, ω, the argument of pericenter, and M0, the mean anomaly.
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B. Equations of motion

The spin evolution can be conveniently described by the
Euler’s equations

Ix _ωb
sx − ωb

syω
b
szðIy − IzÞ ¼ Mx

Iy _ωb
sy − ωb

sxω
b
szðIz − IxÞ ¼ My

Iz _ωb
sz − ωb

sxω
b
syðIx − IyÞ ¼ Mz ð2Þ

where Ix, Iy, Iz are the moments of inertia with respect to
the principal axes of inertia of the satellite body, while Mx,
My andMz are the components of total torqueM along the

same axes. The components of the angular velocity
measured with respect to the body axes, ωb

sx, ωb
sy and

ωb
sz can be substituted by their expressions in term of the

Euler angles in the J2000.0 reference frame [47]:

ωb
sx ¼ _ϕ sin θ sinψ þ _θ cosψ

ωb
sy ¼ _ϕ sin θ cosψ − _θ sinψ

ωb
sz ¼ _ϕ cos θ þ _ψ : ð3Þ

We finally obtain the Euler’s equations in term of Euler’s
angles measured in the J2000.0 reference frame:

θ̈ ¼ Mx

Ix
cosψ −

My

Iy
sinψ −

Iz
Iy

_ϕ _ψ sin θ þ Iy − Iz
Ix

_ϕ2 sinð2θÞ
2

þ Ix − Iy
Ix

Λ
Iy

�
_θð _ψ þ _ϕ cos θÞ sinð2ψÞ

2
þ _ϕ2 sinð2θÞ

2
sin2ψ − _ϕ _ψ sin θ

�
Iy − Iz
Λ

− sin2ψ

��
ð4Þ

ϕ̈ ¼ My

Iy

cosψ
sin θ

þMx

Ix

sinψ
sin θ

þ Iz
Iy

_ψ _θ

sin θ
−
Λ
Ix

cos θ
sin θ

_ϕ _θ

þ Ix − Iy
Iy

Λ
Ix

�
1

sin θ

�
sin2ψ −

Ix
Λ

�
_ψ _θ−

sinð2ψÞ
2

ðcos θ _ϕþ _ψÞ _ϕ −
cos θ
sin θ

_ϕ _θ cos2ψ
�

ð5Þ

ψ̈ ¼ Mz

Iz
−
cosðθÞ
sinðθÞ

�
My

Iy
cosðψÞ þMx

Ix
sinðψÞ

�
þ _ϕ _θ

1

sin θ

�
Iy − Iz
Ix

cos2θ þ 1

�
−
Iz
Iy

_ψ _θ
cos θ
sin θ

þ ðIx − IyÞ
�
1

Iz
_ϕ _θ

1

sin θ

�
sin2θ cosð2ψÞ þ Λ

IxIy
cos2ψcos2θ

�
− _θ2

1

2Iz
sinð2ψÞ − _ϕ2 1

2Iz
sinð2ψÞ

�
ΛIz
IxIy

cos2θ − sin2θ

�

− _ψ _θ
1

Iy

cos θ
sinðθÞ

�
Λ
Ix
sin2ψ − 1

�
þ Λ
2IxIy

_ϕ _ψ cos θ sinð2ψÞ
�
; ð6Þ

where Λ ¼ Ix þ Iy − Iz.
These equations were written without hypothesizing any

peculiar symmetry for the satellite, that is we assumed Ix ≠
Iy ≠ Iz differently from [17], who instead have adopted an
axial symmetry for the satellite. Coherently, our expres-
sions (4)–(6) converge, in the limit of Ix ¼ Iy (cylindrical
symmetry), to expressions (9)-(14) of [17]. We underline
that even if in this limit the formal expressions are equal,
our Euler angles are expressed in the J2000.0 reference,
while [17] adopted as main reference frame the orbital one.
In our analysis, for the torques to be included in

Eqs. (4)–(6) we considered four contributions:
(i) Mmag, i.e., the torque from the Earth magnetic field

(Sec. III C 1)
(ii) Mgrav, i.e., the torque from the Earth gravitational

field (Sec. III C 2)
(iii) Moff , i.e., the torque arising from radiation pressure

acting on the geometric center of the satellite,
if it does not coincide with its center of mass
(Sec. III C 3)

(iv) Masy, i.e., the torque from radiation pressure acting
on the two opposite hemispheres of the two
LAGEOS satellites, which have a different reflec-
tivity (Sec. III C 4)

therefore M ¼ Mmag þMgrav þMoff þMasy.

C. Torques in time domain

In the following subsections we will calculate the
expressions of the main torques, to be inserted in previous
Eqs. (4)–(6), as function of time.

1. Torque from the Earth magnetic field

Both LAGEOS satellites [5,48] and LARES [49] are
made of conductive material, and even if they are supposed
to be uncharged, they assume a magnetic moment while
they are spinning inside the Earth magnetic field, the
value and the direction of which change along their
orbit. The induced magnetic moment m, because of the
Earth magnetic field B, produce a torque on the satel-
lites (Mmag ¼ m × B).
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In the previously quoted papers, to describe such a
phenomena, the LAGEOS satellite was modeled [16–18]
as a conductive sphere rotating in a static magnetic field.
The value of this constant magnetic field was calculated
averaging the magnetic field of the Earth over the entire
orbit of the satellite. The solution to this problem is well
known in the literature, see for instance [50].
This solution, which is completely valid in a quasista-

tionary field, can be suitably used as long as the rotation
period of the satellite is much shorter than its orbital period
as well as of the Earth’s rotation period, but it could
produce wrong results when is used in slow-spin

conditions, as in [17]. These authors have probably adopted
this simplification due to the lack of an handy model for a
sphere rotating in an alternating magnetic field. The only
solution apparently available till now in the literature is the
one by [51] that unfortunately is not easy to deal with.
In order to obtain a more general expression of the

magnetic torque we faced the problem to find an easily
integrable expression for the torque acting on a conducting
sphere rotating in an alternating magnetic field. We found
an expression for the torque that was applied to the
satellites (modeled like perfect conducting spheres) while
rotating and moving along their orbit:

ME
mag ¼ V

X8
i¼0

jBij2
2jωsj

f−A00
i ½1þ cosð2ωitþ 2φiÞ� þD0

i sinð2ωitþ 2φiÞgωE
s

þ V
X8
i¼0

Bi · ωs

2jωsj2
f½α0ðωiÞ − A0

i�½1þ cosð2ωitþ 2φiÞ� − ½D00
i þ α00ðωiÞ� sinð2ωitþ 2φiÞgðωE

s ×BiÞ

þ V
X8
i¼0

Bi · ωs

2jωsj
fA00

i ½1þ cosð2ωitþ 2φiÞ� −D0
i sinð2ωitþ 2φiÞgBi; ð7Þ

where

A0
i ¼

α0ðωE
s − ωiÞ þ α0ðωE

s þ ωiÞ
2

D0
i ¼

α0ðωE
s − ωiÞ − α0ðωE

s þ ωiÞ
2

A00
i ¼

α00ðωE
s − ωiÞ þ α00ðωE

s þ ωiÞ
2

D00
i ¼

α00ðωE
s − ωiÞ − α00ðωE

s þ ωiÞ
2

: ð8Þ

In the above expressions, αðωÞ ¼ α0 þ jα00 is the com-
plex fourier transform of the magnetic polarizabilty per
unity of volume of the satellite, V is the satellite volume, ωi
are the angular velocities of the harmonic components of
the magnetic field, while ωE

s is the satellite spin angular
velocity in J2000.0 frame, whose components can be
expressed in term of the Euler angles [47]:

ωE
s x ¼ _θ cosϕþ _ψ sin θ sinϕ

ωE
s y ¼ _θ sinϕ − _ψ sin θ cosϕ

ωE
s z ¼ _ψ cos θ þ _ϕ: ð9Þ

In the Appendix we calculated the magnetic field experi-
enced by the satellite as function of time along its
orbit using the dipole approximation for the Earth’s
magnetic field (see Appendix for explicit expressions
of Bi):

B ¼
X8
i¼0

Bi cosðωitþ φiÞ; ð10Þ

where

ω0 ¼ 0

ω1 ¼ ω2 ¼ ω⊕ − 2n

ω3 ¼ ω4 ¼ ω⊕ þ 2n

ω5 ¼ ω6 ¼ 2n

ω7 ¼ ω8 ¼ ω⊕; ð11Þ

and

φi ¼
�− π

2
for i ¼ 2; 4; 6; 8

0 for i ¼ 0; 1; 3; 5; 7:

In the previous expressions ω⊕ represents the Earth’s
rotational angular velocity, while n represents the satellite
mean motion in the hypotheses of a circular orbit having
radius a:

n ¼
ffiffiffiffiffiffiffiffiffiffiffi
GM⊕

a3

r
ðsin I sinΩ;− sin I cosΩ; cos IÞ; ð12Þ

whereM⊕ andG are, respectively, the Earth’s mass and the
gravitational constant.
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The torque that originated from Earth magnetic field (7)
shows components at the magnetic field harmonics (11) and
their multiples. The torque is expressed as the sum of several
contributions: (i) along the satellite angular speed direction
(ωE

s ), (ii) along themagnetic field directionsBi and (iii) along
directions orthogonal to the previous ones ðωE

s ×BiÞ.
The expression (7) is calculated in J2000.0 frame, the

matrixR transforms it into the equivalent expression in body
frame, to be used in the equations of motion (3): Mb

mag ¼
RME

mag. We have not determined an analytic expression for
Mb

mag, because it is calculated numerically while solving the
Euler’s equations. The complex fourier transform of the
magnetic polarizability of the satellite αðωÞ can be approxi-
mated with the expression valid for a perfect sphere: we
adopted theone included in [52] calculated for a sphere having
radiusR, electrical conductivity σ, in amagnetic uniform field
changing with an angular frequency ω:

αðωÞ ¼ α0 þ jα00

¼ 3

8π

�
2μr½1 − k · cotðkÞ� þ ½1 − k2 − k · cotðkÞ�
μr½1 − k · cotðkÞ� − ½1 − k2 − k · cotðkÞ�

�
;

ð13Þ

where

kðωÞ ¼ R
δðωÞ ð1þ jÞ; ð14Þ

δðωÞ ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πωσμr

p : ð15Þ

This expression contains the dependence from the relative
magnetic permeability μr, that was ignored by all the other
authors [16–18,20]. Even if μr can be very close to 1 (for
instance for aluminum μr − 1 ≅ 2.2 × 10−5), its contribu-
tion could be non-negligible at very low frequencies,
where it represents the residual magnetic polarizability
of a nonspinning satellite.
Past experience with the two LAGEOS [16,18,20,53]

has shown that the calculated values of the time evolution
of the spin of LAGEOS satellites fit well the experimental
data only if a low frequency approximation is chosen
for (13):

αðωÞ ¼ α0 þ jα00

¼ ≃
�
3

4π

μr − 1

μr þ 2
−

9

350π

μrðμr þ 9Þ
ðμr þ 2Þ3

�
R
δ

�
4
�
β0

þ j
9

20π

μr
ðμr þ 2Þ2

�
R
δ

�
2

β00; ð16Þ

β0 and β00 are dimensionless constants to be determined
experimentally in order to take in account the differences of
the satellite’s shape with respect to an ideal sphere.

There is no trivial explanation to justify such a simplified
empirical model. It was hypothesized that the composite
structure of LAGEOS, an inner cylindrical core made of
brass inserted in two hollow aluminum hemispheres, would
invalidate the assumption of a uniform sphere as a model
for LAGEOS. We will devote a forthcoming paper to
discuss in detail this case that, for now, we adopt as a matter
of fact. In the case of LARES, made of a unique block of
metal, we believe that it is more correct to apply the
expression (13).
The first term of the real part of (16) is introduced for the

first time in this work, and it is an important term, because it
represents the residual polarizability at zero frequency.
This term dominates the real part of the polarizability at
frequencies lower than ωc:

ωc ¼
5c2

12πR2σ

ðμr þ 2Þ
μr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42ðμr − 1Þ
μrðμr þ 9Þ

s
: ð17Þ

This bound frequency corresponds for the two LAGEOS
to a period of about Tc ¼ 2π=ωc ∼ 400 s, that was already
reached by both satellites.
We underline that there is a big difference between the

formula we have used for the torque of magnetic origin
(7), and that valid for static magnetic fields used till now
by the others authors (see for instance (2), (5) and (6) of
[18]). In formula (7), the torque along the satellite
angular velocity ωs could change sign when ωs ¼ ωi,
depending on A00

i that switch from negative to positive. In
this case the angular velocity ωs could be maintained
equal to ωi by the magnetic force. This resonant
condition, however, appears only if the ratio R

δðωiÞ is

greater than a threshold value that is not reached anyway
by LAGEOS or LARES. A more detailed discussion
around these very important issues will be included in a
forthcoming work.
We point out that two possible exponents can be used in

the Fourier transform (i.e., jω or −jω) and, consequently,
we can have two different expressions with different
complex conjugate for α. One must be careful to maintain
the same convention in the inversion formula in order to
antitransform in the time domain.

2. Torque from the Earth’s gravitational field

In this section we calculate the components of the torque
of gravitational origin Mgrav, also known as gravity
gradient torque, to be included in Eqs. (4)–(6). In fact,
because the satellites do not have a perfect spherical
symmetry in their mass distribution, the Earth gravitational
field produces a torque on them. We restrict our analysis to
the monopole component of this field, whose general
expression is given by ([54]):
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Mb
grav ¼ 3n2fŝb × ½Ixðŝb · x̂bÞx̂b þ Iyðŝb · ŷbÞŷb þ Izðŝb · ẑbÞẑb�g ¼ 3n2

2
64
ðIy − IzÞsbysbz
ðIz − IxÞsbxsbz
ðIx − IyÞsbxsby

3
75; ð18Þ

where ŝb is the unit vector Earth-to-satellite, having
components sbx , sby , sbz in the BF reference frame.
To be conveniently included in the equations of motion

(4)–(6), (18) must be expressed as a function of the Euler
angles with respect to the J2000.0 reference frame.

The expression of the three components of the Earth-to-
satellite unit vector can be easily calculated in the J2000.0
reference frame (see for instance [55]) and can be further
converted into the BF reference frame using (1) for the
rotation matrix R, finally obtaining:

sbx ¼ cosðωþM0 þ n · tÞ½cosðϕ −ΩÞ cosðψÞ − cosðθÞ sinðϕ − ΩÞ sinðψÞ�
þ sinðωþM0 þ n · tÞfsinðϕ −ΩÞ cosðIÞ cosðψÞ þ ½sinðθÞ sinðIÞ þ cosðθÞ cosðϕ −ΩÞ cosðIÞ� sinðψÞg

sby ¼ − cosðωþM0 þ n · tÞ½cosðθÞ sinðϕ −ΩÞ cosðψÞ þ cosðϕ −ΩÞ sinðψÞ�
þ sinðωþM0 þ n · tÞf½sinðθÞ sinðIÞ þ cosðθÞ cosðϕ −ΩÞ cosðIÞ� cosðψÞ − sinðϕ −ΩÞ cosðIÞ sinðψÞg

sbz ¼ cosðωþM0 þ n · tÞ sinðθÞ sinðϕ −ΩÞ
þ sinðωþM0 þ n · tÞ½cosðθÞ sinðIÞ − sinðθÞ cosðϕ −ΩÞ cosðIÞ�: ð19Þ

Obviously, from Eq. (18) it follows that the gravitational
torque is zero if the satellite has a perfect spherical
symmetry (i.e., Ix ¼ Iy ¼ Iz). Moreover, the unit vectors
of Eqs. (19) are periodic with the satellite mean motion
frequency n, therefore their product in the expression (18)
for the gravitational torque produces a constant component
plus one periodic component with a frequency 2n.

3. Offset torque

The radiation pressure on the satellite surface acts, at the
end, on the geometric center of the satellite. If the geometric
center does not coincide with the center of mass of the
satellite, the radiation pressure produces a torque [19]. If
the vector hb identify the geometric center position respect
to the center of mass in the body reference frame, the torque
expression is:

Mb
off ¼ νπR2

Φ⊙

c
CRðhb × ŝb⊙Þ: ð20Þ

In this equation R is the radius of the satellite, CR
represents its radiation coefficient (related with the

reflectivity of its surface), Φ⊙ is the solar flux at the
Earth-Sun distance, ŝb⊙ is the satellite-to-Sun unity vector,
finally ν (with 0 ≤ ν ≤ 1) represents the shadow function.
This function measures the percentage of solar flux that
reaches the satellite during the eclipses by Earth (with
ν ¼ 1 when there is not an eclipses, and ν ¼ 0 when
the eclipse is complete; see for instance [55]). The
expression (20) is more general of the one by [19], that
hypothesized the coincidence between the rotation and
symmetry axes.
To include the torque coming from the offset (20) into

the equations of motion (4)–(6), the unit vector ŝb⊙ must be
expressed in the BF reference frame in term of the Euler
angles with respect to the J2000.0 reference frame.
If the motion of the Sun in the J2000.0 reference frame is

considered circular with constant angular velocityω⊙ along
the ecliptic, by denoting with ϵ the angle between the plane
of the ecliptic and the Earth’s equator, and with λ⊙ the
Sun’s ecliptic longitude at t ¼ 0, the three components sb⊙x,
sb⊙y and sb⊙z of the Earth-to-Sun unit vector in the BF
reference frame are

sb⊙x ¼ sinðλ⊙ þ ω⊙ · tÞ½cosðϵÞðsinðϕÞ cosðψÞ þ cosðθÞ cosðϕÞ sinðψÞÞ þ sinðϵÞ sinðθÞ sinðψÞ�
þ cosðλ⊙ þ ω⊙ · tÞ½cosðϕÞ cosðψÞ − cosðθÞ sinðϕÞ sinðψÞ�

sb⊙y ¼ − sinðλ⊙ þ ω⊙ · tÞ½cosðϵÞðsinðϕÞ sinðψÞ − cosðϕÞ cosðψÞ cosðθÞÞ − cosðψÞ sinðϵÞ sinðθÞ�
− cosðλ⊙ þ ω⊙ · tÞ½cosðϕÞ sinðψÞ þ cosðψÞ cosðθÞ sinðϕÞ�

sb⊙z ¼ sinðλ⊙ þ ω⊙ · tÞ½sinðϵÞ cosðθÞ − cosðϵÞ cosðϕÞ sinðθÞ� þ cosðλ⊙ þ ω⊙ · tÞ sinðθÞ sinðϕÞ: ð21Þ
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This torque, slowly changing with a period of one solar
year, is modulated by the shadow function ν.

4. Anisotropic reflection torque

A difference in the reflectivity of the two hemisphere of
LAGEOS was hypothesized by [25] in order to explain the
observed along-track residuals in acceleration of the
satellite. This empirical result was reasonably explained
by [56,57] as due by a possible asymmetry in the satellite’s
reflection of the visible solar radiation introduced by the
four germanium CCRs. If the relative difference between
the reflectivity of North and South hemispheres is Δρ ¼
ðCN

R − CS
RÞ=CR with CR ¼ ðCN

R þ CS
RÞ=2 the following

torque is produced [19]:

Mb
ar ¼ ν

2

3
R3

Φ⊙

c
ΔρCRðẑb × ŝb⊙Þjẑb × ŝb⊙j

¼ ν
2

3
R3

Φ⊙

c
ΔρCR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsb⊙xÞ2 þ ðsb⊙yÞ2

q 2
64
−sb⊙y

sb⊙x

0

3
75: ð22Þ

The difference in reflectivity between the two hemi-
spheres has as consequence the noncoincidence of the
center of mass of the satellite with the point of application
of the solar radiation pressure. Therefore, we could have
described the effect within the torque (20) analyzed in the
previous Sec. (III C 3). However, we preferred to maintain
the expressions for two distinct torques, as done by
previous authors, in order to better connect the torque to
the measurable parameters, as Δρ for this second torque.

As we can see from Eq. (22), also this torque is slowly
changing with a period of one solar year and it is modulated
by the shadow function ν.

D. The solution with averaged equations

The numerical solution of the Eqs. (4)–(6) can be more
quickly found, if averaged expressions are adopted for the
torques. This simplification does not modify the result until
the satellite spins with a time scale shorter (or comparable)
than the orbital period of the satellites’s and of the Earth
rotational period. The averaged values for the torques are
calculated by integration on these longer periods. In this
case, both the magnetic (7) and the gravitational (18)
torques can be averaged since these torques vary with time
scales that are related with the pulsation of the satellite
mean motion n and of the Earth’s angular speed ω⊕, as well
as with their combinations.
The averaged solution is also useful to compare our

model with others developed in the past and, in particularly,
with LOSSAM, the best model available in the literature
before LASSOS.

1. Averaged magnetic torque

The averaged magnetic torque can be easily calculated
starting from expression (7), and integrating each one of the
harmonic components over its characteristic period.
Therefore, in this limit, the variables introduced in (8)
become: D0 ¼ D00 ¼ 0, A0

i ¼ α0 and A00
i ¼ α00. For the

magnetic (averaged) torque expression we obtain:

hMmagi ¼ −VhjBj2iα00ðωsÞ
ωs

jωsj
þ V

α0ð0Þ − α0ðωsÞ
jωsj2

hðB · ωsÞðωs ×BÞi þ V
α00ðωsÞ
jωsj

hðB · ωsÞBi

¼ −Vα00ðωsÞ
ωs

jωsj
ðhjBj2i − hBBTiÞ þ V

α0ð0Þ − α0ðωsÞ
jωsj2

ωs × ðhBBTiωsÞ; ð23Þ

where we used the two relations:

hðB · ωsÞðωs ×BÞi ¼ ωs × ðhBBTiωsÞ; ð24Þ

hðB · ωsÞBi ¼ hBBTiωs: ð25Þ

By averaging on the frequencies characteristic of the magnetic field, see Eq. (11), we get the different terms to be inserted
in (23), that is

hBiBji
�
a6

d2

�
¼ αi;j ¼

1

8
·

�
9sin2I þ 1

2
sin2θpð20 − 27sin2IÞ

�
δi;j −

1

8
ð1 − 3cos2θpÞEiEj

þ 3

8
cos Ið1 − 3cos2θpÞðEin̂j þ Ejn̂iÞ −

3

8
n̂in̂j

�
3ð1 − 3cos2IÞ − 1

2
sin2θpð5 − 27cos2IÞ

�
; ð26Þ
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hB2δi;j − BiBji
�
a6

d2

�
¼ βi;j ¼

�
1þ 1

8
·

�
3sin2I þ 1

2
sin2θpð4 − 9sin2IÞ

��
δi;j þ

1

8
ð1 − 3cos2θpÞÞEiEj

−
3

8
cos Ið1 − 3cos2θpÞðEin̂j þ Ejn̂iÞ

þ 3

8
n̂in̂j

�
3ð1 − 3cos2IÞ − 1

2
sin2θpð5 − 27cos2IÞ

�
; ð27Þ

hjBj2i ¼
	X8

i¼0

jBij2



¼
X3
1

αi;i ¼ −
1

4
½10 − 6cos2I − sin2θpð3 − 9cos2IÞ�; ð28Þ

where E ¼ ½0; 0; 1� is the unit vector along the Earth
rotation axis, δi;j is kronecker’s delta and n̂ is the mean
motion unit vector normal to the orbital plane of the
satellite. We introduced αi;j and βi;j to use the same
notation of expressions (7a) and (7b) of [18]. We emphasize
that these equations are those adopted also in the LOSSAM
model. The first line of Eq. (27) differs from the analogous
expression (7a) and also the last line of Eq. (28) differs from
the correspondent line of (7b). We are confident in our
calculations, that follow a very different path with respect
to those of [18], and we believe that the expressions (7a)

and (7b) by [18] contain some small errors, as they do not
satisfy some obvious conditions. In fact, βi;j þ αi;j has to be
diagonal and equal to

P
3
1 αi;i. Conversely, these conditions

are satisfied by our expressions.

2. Averaged gravitational torque

The gravitational torque (18) has one constant compo-
nent and one varying at a frequency twice of the satellite
mean motion n. Integrating on the corresponding period is
therefore possible to calculate the averaged torque, we
obtain:

hMgravi ¼
3

32
n2

������
ðIy − IzÞðM1 cosðψÞ −M2 sinðψÞÞ
ðIz − IxÞðM1 sinðψÞ þM2 cosðψÞÞ
ðIx − IyÞð−M3 sinð2ψÞ −M4 cosð2ψÞÞ

������; ð29Þ

where

M1 ¼ 2f3 cosð2IÞ þ cosð2ϕ − 2ΩÞ½cosð2IÞ − 1� þ 1g sinð2θÞ − 8 sinð2IÞ cosðϕ −ΩÞ cosð2θÞ
M2 ¼ 4½cosð2IÞ − 1� sinð2ϕ − 2ΩÞ sinðθÞ − 8 sinð2IÞ sinðϕ − ΩÞ cosðθÞ
M3 ¼ ½1þ 3 cosð2IÞ�½cosð2θÞ − 1� þ cosð2ϕ − 2ΩÞ½cosð2IÞ − 1�½cosð2θÞ þ 3� þ 4 sinð2IÞ cosðϕ −ΩÞ sinð2θÞ
M4 ¼ 4 sinð2ϕ − 2ΩÞ½cosð2IÞ − 1� cosðθÞ þ 8 sinðϕ −ΩÞ sinð2IÞ sinðθÞ: ð30Þ

Expression (29) is equivalent to the expression (9) of
[18], used also in LOSSAM. The differences are actually
three. Farinella et al. (1996) uses a cylindrical symmetry
for the satellite and an Earth centered reference system.
Further, they adopted for the misalignment between the
symmetry axis and the spin axis a simplified model based
on a tilt angle υ, supposed to change very slowly over time.
The first two differences are irrelevant, the third does not
lead to discrepancies in the results until the spin period is
much shorter than the orbital one.

IV. SOLUTIONS OF THE EQUATIONS
FOR THE TORQUES

The Eqs. (4)–(6) cannot be integrated analytically. We
built a code based on MATLAB routines in order to solve

for the differential equations. We used as independent
variables the three Euler angles θ, ϕ, ψ and their time
derivatives _θ, _ϕ and _ψ , in such a way to transform the
solution into that of a system of six first-order differential
equations.

A. Physical quantities and initial conditions

A very critical point in solving the equations is in
choosing the most likely initial conditions and in defining,
with the highest possible precision, the parameters that
appear in them.
The moments of inertia Ix, Iy, Iz of the two LAGEOS

were not directly measured before their launch, but were
estimated with a careful analysis by [48]. Unfortunately, we
could not found any document containing the values for the
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moments of inertia of LARES. In this regard, [39] com-
puted the moment of inertia of LARES in the hypothesis
that the satellite is an homogeneous and symmetrical sphere
(with no oblateness). They obtained I ¼ 5.125 kgm2. With
an approach similar to the one adopted for the two
LAGEOS in [48], we built also for LARES a 3D-model
and we calculated the values reported in Table I. The
reported error is calculated considering that the structure of
LARES was designed with the possibility to add small
masses to tune the moments of inertia. In the simulations
we opted for a very small oblateness, but a spherical
symmetry is nevertheless possible within the errors.
In Table II we report the values of the electromagnetic

quantities we used in our analyses and simulations. We
started from the range of possible changes of the values
reported in [20], modifying them within their errors with
the aim to minimize the residuals between the predictions
of our model and the available observations.
In Table III, the overall optical properties of the surface

of each satellite are reported. These values are the ones that
we found to be the most likely in the literature, and that we
confirmed with an independent analysis.
The data of Table IV relative to the initial conditions for

the spin vector of the two LAGEOS satellites are taken
from [20], and modified within their variability interval to
fit the experimental data. Finally, in Table V, the values of
the keplerian parameters of the orbit of the three satellites
are shown. Some of these values were calculated averaging
the output values from a precise orbit determination (POD)
that we made using the GEODYN II software [58,59].

B. Numerical solution and experimental data

In this section we present our results for the time
evolution of the spin of the two LAGEOS and LARES
satellites. This evolution has been calculated using the
equations of motion previously introduced, namely
Eqs. (4)–(6).
The expressions that we used for the torques were of two

types: the more general one, that we have discussed in
Sec. III C, and the averaged one (see Sec. III D). This last
solution differs from the general one for the magnetic and
gravitational torques. For the other two torques that we
considered, that vary with the periodicity of one year and
are locally modulated by the Earth’s shadow function, we
adopted the general expressions (20) and (22).
The parameters and the initial conditions we used are

those reported in Tables I–V. For each satellite it has been
calculated and drawn the period of rotation and the
orientation (right ascension and declination) of the spin
as function of time. In Figs. 1–2 we show the results for the
older LAGEOS, while in Figs. 3–4 and in Figs. 5–6 we
show, respectively, the results in the case of LAGEOS II
and for the newly LARES.
In all these plots the results for both the general model

(red continuous line) and the averaged model (blue dashed
line) are shown. These results are compared with all the
available measurements. All these comparisons validate
very well our models. As specified at the beginning of
Sec. III, we refer to our new general model as to LASSOS,
that is the acronym of LArase Satellites Spin mOdel
Solutions.
The bulk of the experimental measurements are of two

kind for the two LAGEOS: those obtained using Sun’s light
reflected during night by the CCR mirrors (see [41]), and
those obtained observing the modulation of the laser light
reflected back by the satellite’s CCR (see [42]). The last
measurements are indeed available for all three satellites

TABLE I. Mechanical parameters used in the equations: mo-
ments of inertia I, ray R and offset h of the satellites.

LAGEOS LAGEOS II LARES

Ix½kgm2� 10.96� 0.03 11.00� 0.03 4.76� 0.03
Iy½kgm2� 10.96� 0.03 11.00� 0.03 4.76� 0.03
Iz½kgm2� 11.42� 0.03 11.45� 0.03 4.77� 0.03
R½cm� 30.0 30.0 18.2
hx½cm� 0.000 0.000 0.000
hy½cm� 0.000 0.000 0.000
hz½cm� 0.040 0.055 0.000

TABLE II. Electromechanical parameters used in the equa-
tions: dimensionless magnetic factors β0 and β00, electrical
conductivity σ and the relative magnetic permeability μr.

LAGEOS LAGEOS II LARES

β0 <10−2 <10−2 1
β00 0.22 0.23 1
σ½s� 2.37 × 1017 2.38 × 1017 5.1 × 1016

μr − 1 2.2 × 10−5 2.2 × 10−5 3.3 × 10−7

TABLE III. Optical parameters used in the equations: radiation
coefficient CR and reflectivity difference between the hemi-
spheres Δρ of the satellites.

LAGEOS LAGEOS II LARES

CR 1.13 1.12 1.07
Δρ 0.013 0.012 0

TABLE IV. Spin initial conditions: reference epoch in Modified
Julian Date (MJD), rotational period Ps, right ascension RA and
declination dec.

LAGEOS LAGEOS II LARES

Epoch [MJD] 42913.5 48918 55970
Ps [s] 0.48 0.81 11.8
RA [degree] 150 230 186.5
dec [degree] −68 −81.8 −73
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(see [38,53]). The latter method has increased a lot in
efficiency after the introduction of high frequency (kHz)
repetition laser in several SLR stations, the first of these
stations has been in 2003 Graz.
In the comparison between models and observations, a

disagreement is present for LAGEOS’s declination in the
years 1983-1987, see Fig. 2. The reason for this disagree-
ment with the data analyzed by [38] could come from the
still low quality of the laser used by the ILRS stations in
that years. Another disagreement is present in the case of
LAGEOS in the measurements after 1996 (Fig. 2), and for
LAGEOS II after 2008 (Fig. 4). These periods correspond
to the decrease of the spin frequency of the satellites, close
to the limit of the possible measurements with kHz laser.
We notice that the same disagreements between experi-
mental measurements and model are present when the
LOSSAM model is applied, see Fig. 1 of [38].
Comparable results between LASSOS and LOSSAM are

expected until the spin has a shorter rotational period than

the orbital period. As long as this condition is fully
satisfied, as shown in Sec. III D, the expressions of the
torques in the two models have negligible differences, and
the numerical results are expected to be equal within few
percents.
Using our model LASSOS we have also computed the

time evolution of the absolute value and of the components
of the different torques acting on the satellites in the
J2000.0 reference frame. For instance, in the case of
LAGEOS in Fig. 7 we show the modulus of the torques
due to the Earth’s gravity gradients and magnetic field, both
when they are averaged and when they are not averaged,
while in Fig. 8 the values of the two torques due to radiation
pressure are shown for the same period. The amplitude of
these torques is modulated by the eclipses, that bring these
torques to zero value. During the first period the dominat-
ing torque is the magnetic one, later it is overcome by the
torque from gravity gradients. In the last years, the effect of

TABLE V. Orbital parameters used in the equations.

LAGEOS LAGEOS II LARES

Day of reference [MJD] 48989 49003 55975
Semimajor axis a [cm] 1.2270 × 109 1.2162 × 109 7.82035 × 108

Eccentricity e 0.004 0.014 0.001
Inclination I [degree] 109.84 52.66 69.49
RA of the ascending node Ω [degree] 313.72 60.62 236.4
RA of the ascending node rate _Ω [degree/day] 0.34 −0.63 −1.71
Argument of pericenter ω [degree] 39.90 251.82 296.055
Argument of pericenter rate _ω [degree/day] −0.21 0.44 −0.95
mean anomaly M0 [degree] 79.51 103.36 63.933

1975 1980 1985 1990 1995 2000
Time [year]

10-1

100

101

102

103

104

Pe
ri

od
 [

s]

Kucharski (2013)
Andres (2007)
LASSOS model
LASSOS averaged model

FIG. 1. Spin period of LAGEOS. The continuous red line is
the result of the numerical integration using our new model
LASSOS, which is based on general expressions for the torques.
The dashed blue line represents the solution obtained using
averaged torques. The black points are measurements got from
Fig. 3 of [38]. The red crosses are measurements reported by [20].
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FIG. 2. Right ascension (top) and declination (bottom) of
LAGEOS. The continuous red line is the result of the numerical
integration using our new model LASSOS, which is based on
general expressions for the torques. The dashed blue line
represents the solution obtained using averaged torques. The
black points are measurements reported by [38]. The red crosses
are measurements reported by [20].
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the torques that arises from radiation pressure becomes
comparable with that of the other two torques. Finally, in
Figs. 9–10, the three components of the considered torques
on LAGEOS during the first 20 years of its life, and in the
body reference frame, are shown. The torque due to the
Earth magnetic field is the only one acting on the ẑb axis
with a despinning effect. If the geometric center, where the
radiation pressure force is applied, has coordinates hx or hy

different from zero, a further component of the torque along
the ẑb axis will appear; in this case the torque could also
have an effect in increasing the spin rate of the satellite.
Similar considerations to those obtained in the case of

LAGEOS are also valid for LAGEOS II and LARES.

V. DISCUSSION ABOUT THE RESULTS

In this work we have faced the problem of the knowledge
of the spin evolution of LAGEOS-like satellites. The
knowledge of the right spin evolution for these satellites,
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FIG. 3. Spin period of LAGEOS II. The continuous red line is
the result of the numerical integration using our new model
LASSOS, which is based on general expressions for the torques.
The dashed blue line represents the solution obtained using
averaged torques. The black points are measurements reported by
[38]. The red crosses are measurements reported by [20].
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FIG. 4. Right ascension (top) and declination (bottom) of
LAGEOS II. The continuous red line is the result of the
numerical integration using our new model LASSOS, which is
based on general expressions for the torques. The dashed blue
line represents the solution obtained using averaged torques. The
black points are measurements reported by [38]. The red crosses
are measurements reported by [20].
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FIG. 5. Spin period of LARES. The continuous red line is the
result of the numerical integration using our new model LAS-
SOS, which is based on general expressions for the torques. The
dashed blue line represents the solution obtained using averaged
torques. The black points are measurements from [39].
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FIG. 6. Right ascension (top) and declination (bottom) of
LARES. The continuous red line is the result of the numerical
integration using our new model LASSOS, which is based on
general expressions for the torques. The dashed blue line
represents the solution obtained using averaged torques. The
black points are measurements from [39].
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both in rate and orientation, is of fundamental importance
in order to correctly model the thermal thrust forces acting
on their surface, as well as the asymmetric reflectivity
observed in the case of the two LAGEOS. The ability to
manage these nongravitational perturbations through reli-
able models is, consequently, of utmost importance. This is
not only for studies focused on measurements of funda-
mental physics by means of the analysis of the orbit of these
satellites, but also for the potential benefits in the fields of
space geodesy and geophysics.
For instance, in this regard, the ILRS determinations of

the tracking station coordinates and of the Earth orientation
parameters (EOP), represent the starting point for the
determination of the Earth’s geocenter and the definition

of the Earth’s international terrestrial frame (ITRF). These,
and other geophysical products, require a careful orbit
determination of the two LAGEOS and LARES satellites.
Indeed, a POD should be based on the continuous refine-
ment of the perturbations included in the dynamical model
of each satellite.
In Sec. III we have introduced the main torques acting on

the two LAGEOS and LARES satellites. Of course, the
four effects there considered are not the only physical
effects able to produce a torque on a spacecraft in orbit
around our planet. However, these torques are the most
important to take into account at the current level of the
orbit modelling of the LAGEOS and LARES satellites and
also of the corresponding POD, that depends not only by
the models implemented in the software but also from the
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FIG. 7. Absolute value (modulus) of the gravity gradient and
magnetic torques acting on LAGEOS during the first 20 years of
its life in J2000.0 reference frame.
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FIG. 8. Absolute value (modulus) of the two torques due to
radiation pressure acting on LAGEOS during the first 20 years of
its life in J2000.0 reference frame.
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FIG. 9. The three components of the gravity gradients and
magnetic torques acting on LAGEOS during the first 20 years of
its life in the body reference frame.
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FIG. 10. The three components of the radiation pressure
torques acting on LAGEOS during the first 20 years of its life
in the body reference frame.
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tracking observations and the reference frames accuracy. In
fact, the other possible torques that we can take into
consideration are negligible, at least by two or three order
of magnitude, with respect to the torque due to the
asymmetric reflectivity and the one due to the offset
between the satellite center of mass and the center of
pressure (i.e., the geometric center), that is the current
smallest torques that have a maximum magnitude of about
10−9Nm, see Fig. 8.
For these reasons we have not performed a complete

analysis to model torques that a priori should be orders of
magnitude smaller than those considered, but we simply
estimated the order of magnitude of the effects not included
in our model. In particular, we evaluated the order of
magnitude of five additional torques originated by: neutral
drag, charged drag, Earth Yarkovsky effect, Yarkovsky-
Schach effect, inner eddy currents.
We show in Table VI the order of magnitude of the

acceleration and of the corresponding torque produced by
these physical effects in the case of LAGEOS. These orders
of magnitude are still valid in the case of LAGEOS II. The
first four torques are in principle null for a satellite with a
perfectly spherical in shape mass distribution. Deviations
from this distribution are due to an offset between the
geometrical center of the satellite and its center of mass. In
the estimation of the torques that arise from these effects a
very conservative value of 1 mm for the offset of the three
satellites was adopted. The margin adopted in the estima-
tion can be evaluated comparing the value of the offset of
1 mm with those used in the current work that were
estimated on the basis of our fit of the available spin
observations of the satellites, see previous Table I.
The accelerations acting on the satellite in the case of

neutral drag have been obtained from [34], and from [20]—
as a very pessimistic upper bound—in the case of the drag
produced by the Coulomb interaction of the charged
spacecraft with the surrounding charged particles. The
thermal drag acceleration produced by the Earth-
Yarkovsky effect has been obtained as an upper limit of
the acceleration estimated by [22], while in the case of the
solar Yarkovsky-Schach effect the value is the one esti-
mated by [31].
These last two torques have to be considered as torques

related to a thermoelastic deformation of the satellites, and

are operative only if the temperature distribution across
the satellite surface is effective in changing the spacecraft
mass distribution. Finally, the last effect is related with the
electrodynamical force produced by the eddy currents
generated by the photoelectric emission of the satellite,
see also [20,60].
In Table VII the order of magnitude of possible addi-

tional torques are shown in the case of LARES. Among the
nongravitational perturbations acting on this satellite, the
effects of the neutral atmosphere drag need a special
attention, since the relatively low orbit of the satellite, at
an height of about 1,450 km where the residual Earth
atmosphere cannot be neglected (see [61]).
The neutral drag produces on LARES an acceleration of

about 1 × 10−11½m=s2� and a torque, in the presence of the
cited offset, of about 4 × 10−12 ½Nm�, a factor ≈40 larger
than that obtained in the case of the two LAGEOS, but still
negligible with respect to the smaller torque of those
considered within the LASSOS model.
The last line of Table VII accounts for the possible

cumulative contribution to the torque in the presence of an
offset of about 1 mm from the other smaller perturbing
effects.

VI. CONCLUSIONS AND FUTURE WORK

The work here presented falls in the LARASE research
program, whose ultimate goal is to provide refined mea-
surements of relativistic physics on the orbit of laser-ranged
satellites, as the ones considered in the present paper: the
two LAGEOS and LARES. Indeed, a very important
prerequisite in order to reach refined measurements of
the tiny gravitational effects on the orbit of a satellite, as
those predicted by Einstein’s theory of general relativity, is
the inclusion of accurate models for the handling of both
gravitational and nongravitational perturbations in the
data reduction of the orbit of a satellite. In particular, the
nongravitational perturbations are responsible of very
subtle effects on the orbit, really quite complex to model
in a reliable fashion. Their modeling will first impact the
orbit determination of the satellites considered for the
relativistic measurements of interest and, finally, will have
a deep impact in the robustness of the final error budget of
the measurements.
In the present work we have described the effects of the

torques due to:
(i) Earth’s magnetic field
(ii) Earth’s gravitational field

TABLE VI. Additional torques and their order of magnitude in
the case of the two LAGEOS satellites.

Perturbing effect Acceleration ½m=s2� Torque [Nm]

Neutral drag 3 × 10−13 1 × 10−13

Charged drag 5 × 10−12 2 × 10−12

Thermal drag 7 × 10−12 3 × 10−12

Yarkovsky-Schach 1 × 10−10 4 × 10−11

Inner eddy currents 4 × 10−13 3 × 10−11

TABLE VII. Additional torques and their order of magnitude in
the case of the LARES satellite.

Perturbing effect Acceleration ½m=s2� Torque [N m]

Neutral drag 1 × 10−11 4 × 10−12

Other effects 2 × 10−13 8 × 10−14
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(iii) no coincidence between geometrical center and
center of mass of the satellite

(iv) asymmetries in the reflectivity of the satellite
surface.

The model for the spin presented in this paper, i.e.,
LASSOS, is, to our knowledge, the only model—among all
the models developed so far—that has succeeded at the
same time in answering to all the following aspects:
(1) it implements not-averaged torques
(2) it can be used for any orientation of the satellite

rotation axis
(3) it is valid for any spin rate
(4) it has produced results compatible with the available

observations.
The good agreement with the experimental measure-

ments is also consequence of the independent evaluation
of the moments of inertia of the satellites [48]. A further
innovation is the introduction of a description of the torque
from Earth’s magnetic field using its local values along the
satellites’ orbit, and not simply by means of a static average
value for the magnetic field. Indeed, this represents a very
important result.
A step forward of LASSOS with respect to previous

models is also represented by the expression that we used
for the magnetic polarizability per unit of volume α of the
satellite. In particular, we considered the dependence of α
from the relative magnetic permeability μr, that provides
the residual magnetic polarizability in the case of a non-
spinning satellite. This aspect is quite important for the
considered satellites. Indeed, the rotational period of
LAGEOS is quite long, probably of the order of about
1 day, while for LAGEOS II it is probably of the order of its
orbital period. In the case of LARES the rotational period is
probably of a few thousands of seconds, but its slowing
down is much faster than that of the two LAGEOS. An
average of our solution on the day and the orbital period, in
such a way to reproduce the limit of the spin evolution valid
in the so-called fast-spin approximation, has allowed us to
point out also some errors present in previous works, which
are based on simplified averaged models.
In order to further improve (if possible) the knowledge of

the parameters that enter in our spin model, in the near
future we plan to develop a more sophisticated tool
regarding the fit procedures that we used for the compari-
son of the available observations (i.e., the measurements of
the orientation and rate) of the spin and the corresponding
predictions by the LASSOS model. We retain that this tool
will be fundamental in order to increase the robustness for
the prediction of the spin evolution in the periods not
covered by measurements, and during which the spin rate is
so low that only our spin model, and not one model based
on averaged equations, is able to provide a reliable fore-
sight. Of course, the possibility of comparing the predic-
tions of LASSOS with new observations of the spin would
be very interesting. Considering the techniques applied till

now for the determination of the spin of the satellites, this is
not an easy task in the case of the two LAGEOS, since their
very low rotational rate, but it is still possible for LARES
with a spectral analysis of the range data obtained by means
of kHz lasers.
A further and very important step to be performed in the

near future is to include the contribution of the predictions
of the spin provided by LASSOS in a thermal model of the
satellites and compute the changes in their orbit. These
changes should then be compared with the corresponding
orbital residuals of the satellites obtained within a dedicated
POD, in order to see how well these residuals will be
reduced by modeling the thermal effects.
The development of a new thermal model for the

considered satellites is one of the main targets of
LARASE, and we are confident to present soon the model
and the results that can be obtained applying the model to a
POD. Nevertheless, we preliminary tested the LASSOS
model in this direction with a POD performed for the two
LAGEOS with GEODYN in the case of the Yarkovsky
thermal drag. We obtained a slightly reduction in the RMS
of the satellites range residuals over a time span of several
years: from 2.8 to 2.5 cm in the case of LAGEOS and from
2.5 to 2.2 cm for LAGEOS II. It is important to underline
that the thermal model included in Geodyn is a very old
model not up-to-date, and it is valid only in the case of the
fast spin approximation. Moreover, the starting epoch of
the data reduction was that of LAGEOS II launch, con-
sequently LAGEOS was not rotating fast, while LAGEOS
II was in the condition of fast rotation only during the first
years of the analysis.
However, this preliminary result represents an argument

in favour of the fact that we are on the right path with the
LASSOS model.
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APPENDIX: THE EARTH’S MAGNETIC FIELD
CALCULATED ALONG THE ORBIT

OF A SATELLITE

If the Earth magnetic field is approximated by a dipole
dE (with dE > 0) tilted with respect to the Earth rotational
axis in such a way that αp and θp are the longitude and
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colatitude of the magnetic north pole, the dipole in the
J2000.0 reference frame evolves in time as:

dEðtÞ ¼ dE

2
64
cos ðαp þ ω⊕tÞ sinðθpÞ
sin ðαp þ ω⊕tÞ sinðθpÞ

cosðθpÞ

3
75: ðA1Þ

The satellite motion is approximated on a circular orbit
with Keplerian parameters measured in J2000.0 frame:M0,
the mean anomaly at t ¼ 0; Ω, the right ascension of the
ascending node, I, the orbit inclination, ω, the argument of
pericenter and a, the semimajor axis. Than the satellite
motion in the J2000.0 frame is

s ¼ a cos ðM0 þ ntÞ

2
64
cosΩ cosω − cos I sinΩ sinω

sinΩ cosωþ cos I cosΩ sinω

sin I sinω

3
75

þ −a sin ðM0 þ ntÞ

2
64
cosΩ sinωþ cos I sinΩ cosω

sinΩ sinω − cos I cosΩ cosω

− sin I cosω

3
75:

ðA2Þ

The magnetic field as function of time over the satellite
orbit is therefore given by:

BE ¼ 3sðdE · sÞ
a5

−
dE

a3
¼

X8
i¼0

Bi cosðωitþ φiÞ; ðA3Þ

where

ω0 ¼ 0

ω1 ¼ ω2 ¼ ω⊕ − 2n

ω3 ¼ ω4 ¼ ω⊕ þ 2n

ω5 ¼ ω6 ¼ 2n

ω7 ¼ ω8 ¼ ω⊕ ðA4Þ

φi ¼
�− π

2
for i ¼ 2; 4; 6; 8

0 for i ¼ 0; 1; 3; 5; 7
ðA5Þ

B0 ¼ −
3dE cos θp

4a3

2
64
− sinð2IÞ sinΩ
sinð2IÞ cosΩ
− 1

3
þ cosð2IÞ

3
75 ðA6Þ

B1 ¼ −
3dE sin θpð1þ cos IÞ

8a3

2
64
ð1 − cos IÞ sinð2ωþ 2M0 − ϕpÞ þ ð1þ cos IÞ sinð2Ωþ 2ωþ 2M0 − αpÞ
ð1 − cos IÞ cosð2ωþ 2M0 − ϕpÞ − ð1þ cos IÞ cosð2Ωþ 2ωþ 2M0 − αpÞ

−2 sin I · cosðΩþ 2ωþ 2M0 − αpÞ

3
75 ðA7Þ

B2 ¼ −
3dE sin θpð1þ cos IÞ

8a3

2
64
ð1 − cos IÞ cosð2ωþ 2M0 − ϕpÞ þ ð1þ cos IÞ cosð2Ωþ 2ωþ 2M0 − αpÞ
−ð1 − cos IÞ sinð2ωþ 2M0 − ϕpÞ þ ð1þ cos IÞ sinð2Ωþ 2ωþ 2M0 − αpÞ

2 sin I · sinðΩþ 2ωþ 2M0 − αpÞ

3
75 ðA8Þ

B3 ¼ −
3dE sin θpð1 − cos IÞ

8a3

2
64
−ð1þ cos IÞ sinð2ωþ 2M0 þ ϕpÞ þ ð1 − cos IÞ sinð2Ω − 2ω − 2M0 − αpÞ
ð1þ cos IÞ cosð2ωþ 2M0 þ ϕpÞ − ð1 − cos IÞ cosð2Ω − 2ω − 2M0 − αpÞ

2 sin I · cosðΩ − 2ω − 2M0 − αpÞ

3
75 ðA9Þ

B4 ¼ −
3dE sin θpð1 − cos IÞ

8a3

2
64
ð1þ cos IÞ cosð2ωþ 2M0 þ ϕpÞ þ ð1 − cos IÞ cosð2Ω − 2ω − 2M0 − αpÞ
ð1þ cos IÞ sinð2ωþ 2M0 þ ϕpÞ þ ð1 − cos IÞ sinð2Ω − 2ω − 2M0 − αpÞ

−2 sin I · sinðΩ − 2ω − 2M0 − αpÞ

3
75 ðA10Þ

B5 ¼ −
3dE cos θp sin I

2a3

2
64

cosΩ cosð2ωþ 2M0Þ − cos I sinðΩÞ sinð2ωþ 2M0Þ
sinΩ cosð2ωþ 2M0Þ þ cos I · cosðΩÞ sinð2ωþ 2M0Þ

sin I sinð2ωþ 2M0Þ

3
75 ðA11Þ

B6 ¼ −
3dE cos θp sin I

2a3

2
64
cosΩ sinð2ωþ 2M0Þ þ cos I sinðΩÞ cosð2ωþ 2M0Þ
sinΩ sinð2ωþ 2M0Þ − cos I cosðΩÞ cosð2ωþ 2M0Þ

− sin I cosð2ωþ 2M0Þ

3
75 ðA12Þ
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B7 ¼ −
3dE sin θp

8a3

2
64

ð1 − cosð2IÞÞ sinð2Ω − ϕpÞ − sinðϕpÞð13 þ cosð2IÞÞ
−ð1 − cosð2IÞÞ cosð2Ω − ϕpÞ þ cosðϕpÞð13 þ cosð2IÞÞ

2 sinð2IÞ cosðΩ − ϕpÞ

3
75 ðA13Þ

B8 ¼ −
3dE sin θp

8a3

2
64
ð1 − cosð2IÞÞ cosð2Ω − ϕpÞ þ cosðϕpÞð13 þ cosð2IÞÞ
ð1 − cosð2IÞÞ sinð2Ω − ϕpÞ þ sinðϕpÞð13 þ cosð2IÞÞ

−2 sinð2IÞ sinðΩ − ϕpÞ

3
75: ðA14Þ
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