
 

A class of integrable metrics. II.

Gabriel Luz Almeida and Carlos Batista*

Departamento de Física, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-560, Brazil

(Received 25 May 2018; published 21 August 2018)

Starting with a subclass of the four-dimensional spaces possessing two commuting Killing vectors and a
nontrivial Killing tensor, we fully integrate Einstein’s vacuum equation with a cosmological constant.
Although most of the solutions happen to be already known, we have found a solution that, as far as we
could search for, has not been attained before. We also characterize the geometric properties of this new
solution, it is a Kundt spacetime of Petrov type II possessing a null Killing vector field and an isometry
algebra that is three-dimensional and Abelian. In particular, such solution becomes a pp-wave spacetime
when the cosmological constant is set to zero.
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I. INTRODUCTION

Due to the nonlinearity of Einstein’s equation, it is
virtually impossible to integrate it analytically without
imposing restrictions over the initial ansatz. The most
common way of doing so is by the imposition of sym-
metries. For instance, Schwarzschild solution has been
found assuming that the spacetime has spherical symmetry,
namely it has three Killing vectors whose Lie algebra is
soð3Þ. Likewise, Kerr solution has been obtained relying
on the existence of two commuting Killing vectors [1], i.e.,
the spacetime was assumed to be stationary and axisym-
metric. It is important to keep in mind that the hypothesis of
two commuting Killing vectors is not overrestrictive from
the physical point of view, since the rigidity theorem states
that the equilibrium state of an astronomical object should
be stationary and axisymmetric [2,3].
Besides the symmetries of the spacetime, which are

generated by Killing vectors, one can also impose sym-
metries on the geodesic motion, which are generated by
Killing tensors and Killing-Yano tensors [4,5]. Since the
metric is always a Killing tensor, the existence of an extra
Killing tensor along with two independent Killing vectors
leads to four first integrals for the geodesic motion, which
enables full integrability. Nevertheless, one might wonder
whether it is plausible to assume the existence of a Killing
tensor in physical spacetimes. The known examples tell us
that the answer is yes. For instance, four-dimensional Kerr
metric and, more generally, Kerr-NUT-(A)dS spacetimes in
arbitrary dimension [6], are all endowed with enough
Killing tensors to allow the integrability of the geodesic
motion [7,8]. Thus, some of the most physically important
exact solutions for Einstein’s vacuum equation are
endowed with Killing tensors. In addition to being related

to the integrability of the geodesic motion, these Killing
tensors are also related to the integrability of field equations
in such spacetimes, like scalar fields [9], electromagnetic
fields [10–12], and spin 1=2 fields [13]. Probably, the
existence of these objects might also be related to the
integrability of Einstein’s equation itself [14], as hinted by
the successful integration of gravitational perturbations
through the use of Killing tensors [15]. Moreover, these
Killing and Killing-Yano tensors can play an important role
in supersymmetric theories [16,17].
With these motivations in mind, in the present article

we will search for solutions of Einstein’s vacuum equation
with a cosmological constant within the class of spacetimes
possessing a Killing tensor and two commuting Killing
vectors. The general form of the spaces with such symmetry
properties has been found by Benenti and Francaviglia in
Ref. [18] and is given by:

gab∂a∂b ¼
1

SxþSy
½Gij

x ∂σi∂σj þGij
y ∂σi∂σj þΔx∂2

xþΔy∂2
y�;

ð1Þ
where functions with subscript x are arbitrary functions
of x, while those with subscript y are arbitrary functions of y.
For instance, Δx ¼ ΔxðxÞ. The indices i, j run through
f1; 2g and label the cyclic coordinates σ1 and σ2. Note that
we can assume that Gij

x ¼ Gji
x and Gij

y ¼ Gji
y , due to the

symmetry of the metric. The rank two Killing tensor
associated to this metric is given by

K¼ 1

SxþSy
½SxGij

y ∂σi∂σjþSxΔy∂2
y−SyG

ij
x ∂σi∂σj−SyΔx∂2

x�:

ð2Þ
In recent previous works we have already exploited the

integrability of Einstein’s equation of some spaces within*carlosbatistas@df.ufpe.br
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the class of metrics (1). In Ref. [19], one of us (C.B.) along
with A. Anabalón investigated the subcase in which the
determinants of the matrices Gij

x and Gij
y are both zero. It

has been found that Einstein’s vacuum equation with a
cosmological constant is fully integrable for such a sub-
case, with Kerr-NUT-(a)dS being a particular solution.
Latter, the present authors also considered the subcase of
vanishing determinant for Gij

x and Gij
y but, instead of

vacuum, a gauge field of arbitrary gauge algebra have
been considered as a source for the gravitational field [20].
In particular, new exact solutions have been attained in
Ref. [20].
Now, the idea is to explore another subcase of the class of

spaces (1). Namely, the one in which one of the matrices
Gij

x or Gij
y vanishes identically. For definiteness, we shall

assume Gij
x ¼ 0. In this case it is immediate to notice that

the line element is given by

ds2 ¼ ðSx þ SyÞ
�
Hij

y dσidσj þ
dx2

Δx
þ dy2

Δy

�
; ð3Þ

where Hij
y are arbitrary functions of y. Note that in the

general case, when Gij
x and Gij

y are both nonzero, the line
element would have the same algebraic structure above, but
the components Hij would be convoluted combinations of
functions of x and functions of y. As we shall see in the
sequel, Einstein’s vacuum equation for the class of spaces
described by (3) is integrable. It will be shown that
although most of the solutions found within this class
are already known, we arrive at a particular solution that, as
far as the authors know, has not been attained before.
The outline of the article is the following. At the next

section we start the integration of Einstein’s equation and
conclude that the calculations should be split in three
different cases depending on the constancy of the functions
Sx and Sy. The case in which both functions are constant is
tackled in subsection II A, which yields flat spaces as the
only solutions. Then, the case in which Sy is constant while
Sx is nonconstant is considered in subsection II B, with the
only solutions being spaces of constant curvature. Finally,
the case in which just Sx is constant is considered in
subsection II C. During the integration process of the latter
case we conclude that there is a special subcase that must be
considered separately. In Sec. II C 1 we treat the general
case and arrive at a generalization of Kasner spacetime,
while the special subcase is tackled in subsection II C 2 and
leads to a solution that, as far as the authors know, has not
been described in the literature yet. Then, in Sec. III we
investigate the geometrical features of the new solution. We
show that this solution is a Kundt spacetime of Petrov
type II possessing a null Killing vector field and that it
reduces to a pp-wave spacetime when the cosmological
constant vanishes. Its isometry algebra is three-dimensional
and Abelian, so that it is Bianchi type I, but, differently

from the most known solutions of this type, the line element
cannot be diagonalized using the cyclic coordinates asso-
ciated to the Killing vectors. The regularity of the new
solution and its asymptotic form are also investigated.
The conclusions and perspectives are presented at Sec. IV.
At Appendix A we show that at the asymptotic limit,
the new solution goes to a Kasner spacetime, whereas in
Appendix B we write the new solution in canonical Kundt
coordinates.

II. INTEGRATING EINSTEIN’S EQUATION

The goal of this work is to integrate Einstein’s field
equation in vacuum with a cosmological constant Λ. That
is, we want to find the most general solution of the equation

Rab ¼ Λgab; ð4Þ
for line elements of the form (3), where Rab stands for the
Ricci tensor. Nevertheless, before doing so, it is useful to
replace the three arbitrary functions H11

y , H22
y and H12

y ¼
H21

y appearing in (3) by the three functions Py, Qy and Ωy

defined in a way that the line element assumes the
following form:

ds2 ¼ S

�
−

1

Ωy
dσ21 þ

Q2
y − P2

y

Ωy
dσ22

þ 2Py

Ωy
dσ1dσ2 þ

dx2

Δx
þ dy2

Δy

�
; ð5Þ

where S ¼ Sx þ Sy. This represents no loss of generality.
Now, an immediate integration of the component

Rσ1
σ2 ¼ 0 of Einstein’s equation for the function Δy

provides

Δy ¼
c1Q2

yΩ2
y

ðSx þ SyÞ2ðP0
yÞ2

; ð6Þ

where c1 is an arbitrary integration constant and the prime
denotes a derivative with respect to the variable on which a
function depends. Although Eq. (6) is correct when Sx is a
constant function, such equation cannot be used when Sx is
nonconstant, otherwise Δy would also depend on x. Thus,
the case in which Sx is a nonconstant function of x must be
handled with special care.1 Doing so, we find that the
equation Rσ1

σ2 ¼ 0 yields the following constraints:

Δy ¼
c1Q2

yΩ2
y

ðP0
yÞ2

and S0y ¼ 0: ðwhen S0x ≠ 0Þ ð7Þ

1The equation Rσ1
σ2 ¼ 0 has the structure Ay þ BySx ¼ 0,

where Ay and By are functions of y. If Sx is constant the general
solution is Ay ¼ −BySx. However, if Sx is nonconstant the
general solution is Ay ¼ 0 and By ¼ 0, thus yielding an extra
constraint.
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In order to attain both of the expressions (6) and (7), we
have considered that P0

y ≠ 0. The special case in which Py

is constant will be considered latter.
Now, assuming either (6) or (7) to hold, and then

integrating Rσ2
σ1 ¼ 0, we find that in both cases Qy must

be given by

Qy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPy − a1ÞðPy − a2Þ

q
; ð8Þ

with a1 and a2 being arbitrary integration constants.
Also, irrespective of assuming the latter expressions for

Δy and Qy, the integration of the component Rx
y ¼ 0 leads

to the following constraint:

S0xS0y ¼ 0:

Thus, we face three possible cases to be followed depending
onwhether the functionsSxðxÞ andSyðyÞ are constant or not.
Namely, (A) the functionsSx andSy are both constant, (B)Sx
is nonconstant and Sy constant, and (C) Sx is constant and Sy
nonconstant. Particularly, note that in cases (A) and (C), Δy

is given by Eq. (6), while in the case (B) wemust use Eq. (7).
In the following section, each of these three cases will be
treated separately. As we shall see, the cases (A) and (B) do
not provide any particularly interesting solutions, while the
case (C) will lead to solutions with richer physics: a
generalization of Kasner solution, that is already available
in the literature, and a new solution of Petrov type II
possessing a null Killing vector field and whose isometry
algebra is three-dimensional and abelian.

A. Subcase S0x = 0 and S0y = 0

In this subsection we investigate the simplest of the three
possible cases regarding the constancy of the functions Sx
and Sy, namely we shall consider that they are both
constant. This gives rise to a constant conformal factor S
which can be easily incorporated into the coordinates by a
scaling transformation, so that we can set

S ¼ Sx þ Sy ¼ 1:

Then, assuming S ¼ 1, along with Eqs. (6) and (8) forΔy
and Qy, it follows that Rx

x is automatically zero, so that the
equation Rx

x ¼ Λδxx states that the cosmological constant
must vanish, Λ ¼ 0. Then, integrating Rσ1

σ1 ¼ Λ ¼ 0, we
find

Ωy ¼ c2ðPy − a1ÞdðPy − a2Þ1−d; ð9Þ

where c2 and d are arbitrary integration constants. In order
to attain (9) it was necessary to assume a1 ≠ a2. Indeed, the
special case a1 ¼ a2 would lead to a different expression
for Ωy, but let us put this particular case aside and deal with
it at the end of this subsection. With the latter expressions

for S, Δy, Qy, and Ωy at hand, the equation Ry
y ¼ Λ ¼ 0

leads to the constraint d ¼ 0. Actually, another possibility
for solving Ry

y ¼ 0 is d ¼ 1, but this is equivalent to d ¼ 0

when we interchange the arbitrary constants a1 and a2, so
that we just need to consider d ¼ 0. Thus, Ωy should be
given by:

Ωy ¼ c2ðPy − a2Þ:

With this expression forΩy along with the latter expressions
for S, Qy, and Δy, it follows that the Riemann tensor is
identically zero. Thus, the solution is the flat space. In
particular, the Ricci tensor vanishes, so that we must have
Λ ¼ 0.
In the latter integration, we have excluded two possibil-

ities, namely the case a1 ¼ a2 and the case in which Py is a
constant function. Nevertheless, integrating these cases
separately we have checked that, in both circumstances,
the solution can only be attained for Λ ¼ 0 and that,
likewise, these solutions turn out to be flat spaces. Thus,
summing up, the case considered in this subsection, namely
S0x ¼ 0 and S0y ¼ 0, do not lead to any interesting solution.
More precisely, all solutions in such subcase are flat.

B. Subcase S0x ≠ 0 and S0y = 0

Now, let us integrate Einstein’s vacuum equation for the
subcase S0x ≠ 0 and S0y ¼ 0. Since the functions Sx and Sy
appear in the metric only through the combination Sx þ Sy,
it follows that the constant value of Sy can be absorbed into
Sx. Thus, without loss of generality, we can set

Sy ¼ 0:

Assuming that P0
y ≠ 0, it follows that Δy and Qy should

be given by Eqs. (7) and (8), respectively. With these
at hand, it follows that integration of the component
Rσ1

σ1 − Ry
y ¼ 0 of Einstein’s equation yields

Ωy ¼ c2 þ c3Py; ð10Þ

with c2 and c3 being integration constants. Also, using the
equation Rx

x ¼ Λ, we obtain

Δx ¼
c4S2x − 4ΛS3x

3ðS0xÞ2
; ð11Þ

where c4 is another integration constant. Finally, imposing
Rσ1

σ1 ¼ Λ we arrive at the following constraint on the
integration parameters:

c4 ¼ −3c1ðc2 þ a1c3Þðc2 þ a2c3Þ: ð12Þ

Then, once assumed that c4 is given by Eq. (12), it follows
that Einstein’s vacuum equation Ra

b ¼ Λδab are fully
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obeyed. Nevertheless, one can check that this final solution
has vanishing Weyl tensor, so that the Riemann tensor
obeys

Rabcd ¼
1

3
Λðgacgbd − gadgbcÞ: ð13Þ

Thus, the solutions that we have found have constant
curvature, i.e., they are de Sitter and anti-de Sitter space-
times when Lorentzian signature is assumed and Λ ≠ 0,
while it is the flat space for vanishing cosmological
constant.
A possibility that has not been considered yet for the

present subcase (S0x ≠ 0 and S0y ¼ 0) is P0
y ¼ 0, in which

case Eqs. (7) and (8) are not valid. However, integrating
Einstein’s equation for Sy ¼ 0 and P0

y ¼ 0 we also even-
tually find that the solution is a maximally symmetric
space. Thus, all solutions of the subcase S0x ≠ 0 and S0y ¼ 0

turn out to be the “noninteresting” spaces of constant
curvature.

C. Subcase S0x = 0 and S0y ≠ 0

Finally, let us consider the subcase S0x ¼ 0 and S0y ≠ 0, in
which case we can, without loss of generality, absorb the
constant value of Sx into Sy and set

Sx ¼ 0: ð14Þ

Moreover, we can easily redefine the coordinate x
(dx → dx̃ ¼ dx=

ffiffiffiffiffiffi
Δx

p
) in order to eliminate the function

Δx. Doing so, and dropping the tilde over the new
coordinate, we find that this is equivalent to setting

Δx ¼ 1: ð15Þ

In particular, note that due to Eqs. (14) and (15) the metric
is independent of the coordinate x. Thus, besides the
Killing vector fields ∂σ1 and ∂σ2 , ∂x does also generate a
symmetry. These three independent Killing vector fields
commute with each other and, therefore, yields an Abelian
three-dimensional algebra. According to Bianchi’s classi-
fication of three-dimensional Lie Algebras, this isometry
algebra is of Bianchi type I [21]. Moreover, it is worth
noting that the Killing tensor (2) is trivial in this subcase.
Indeed, with the choices (14) and (15) we get K ¼ −∂2

x, so
that the first integral associated to K for the geodesic
motion is just the square of the one associated to the Killing
vector ∂x [5].
Postponing the analysis of the special case in which Py is

constant, we can assume expressions (6) and (8) to hold.
Doing so, and using (14) and (15), it follows from the
integration of Rσ1

σ1 − Rx
x ¼ 0 that Ωy must be given by

Ωy ¼ c2ðPy − a1ÞdðPy − a2Þ1−d; ð16Þ

where c2 and d are arbitrary integration constants. Then,
assuming (16) to hold, it follows from the integration of
Rσ1

σ1 − Ry
y ¼ 0 that

Sy ¼
�
b1

�
Py − a1
Py − a2

�
dþ þ b2

�
Py − a1
Py − a2

�
d−
�
−2=3

: ð17Þ

In the above expression, while b1 and b2 are, for the time
being, arbitrary integration constants, d� are not arbitrary,
rather they are given in terms of d by:

d� ¼ 1

2
½1 − 2d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 1Þ þ 1

p
�: ð18Þ

Finally, integrating Rx
x ¼ Λ, we find that b1 and b2 must be

constrained by the following relation:

b1b2 ¼
3Λ

c1c22ða1 − a2Þ2½dðd − 1Þ þ 1� : ð19Þ

In order for the latter expression to be meaningful we
need to have a1 ≠ a2. The special case a1 ¼ a2 will be
considered latter. With the above prescriptions, namely
Eqs. (6), (8), and (14)–(19), we have that Einstein’s vacuum
equation is fully obeyed. Notice that in this solution the
function Py, apart from being nonconstant, has not been
constrained. This freedom on the choice of Py is expected
from the fact that in the metric (5) we could, for instance,
have set Δy ¼ 1 by means of a redefinition of the
coordinate y. Thus, we have started with more degrees
of freedom than necessary. The important point is that
different choices of Py can be understood as different
choices of the coordinate y and, therefore, represent the
same physical space.

1. Turning the metric into a diagonal form

Now, let us try to identify the solution just found.
Integrating the Killing equation, we can check that this
solution admits no other independent generators of sym-
metries besides the commuting Killing vector fields
∂σ1 , ∂σ2 , and ∂x. Thus, this solution is, indeed, a Bianchi
Type I space.
Awell-known class of spacetimes that are Bianchi type I

are the so-called Bianchi type I cosmological spacetimes,
which have the diagonal form

ds2 ¼ −dτ2 þ ðA1
τÞ2dz21 þ ðA2

τÞ2dz22 þ ðA3
τÞ2dz23; ð20Þ

where A1
τ , A2

τ , and A3
τ are arbitrary functions of τ. These

spacetimes are used by cosmologists to incorporate
anisotropy at the spacelike hypersurfaces τ ¼ constant,
providing a generalization of the FRW cosmological model
[22]. The Killing vectors ∂z1 , ∂z2 , and ∂z3 generate a three-
dimensional Abelian isometry group, so that the isometry
algebra is of Bianchi type I. This isometry group acts
transitively on the three-dimensional hypersurfaces given
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by τ ¼ constant. The diagonal form of this line element
indicates that the coordinate vector fields are orthogonal to
family hyper-surfaces. In particular, the Killing vectors ∂z1 ,∂z2 , and ∂z3 are hypersurface orthogonal. For instance, ∂z1
is orthogonal to the hypersurfaces z1 ¼ constant.
Coming back to our Bianchi type I solution found in the

present subsection, one can see that while ∂x is a hyper-
surface orthogonal Killing vector, the existence of the term
dσ1dσ2 in the line element (5) indicates that the Killing
vector fields ∂σ1 and ∂σ2 are not orthogonal to families of
hypersurfaces. Indeed, we can check that

ð∂σ1Þ½a∇bð∂σ1Þc� ≠ 0 and ð∂σ2Þ½a∇bð∂σ2Þc� ≠ 0:

Thus, let us try to find two independent Killing vector fields
that are orthogonal to families of hypersurfaces to replace
∂σ1 and ∂σ2 . Defining the Killing vector field

k ¼ α∂σ1 þ ∂σ2

and imposing the condition k½a∇bkc� ¼ 0, one can find that

as long as Qy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP − a1ÞðP − a2Þ

p
, irrespective of form

of the other functions appearing in the line element (5), we
end up with two possible values for the constant parameter
α: either α ¼ a1 or α ¼ a2. Thus, whenever a1 ≠ a2 we
can exchange the independent Killing vector fields ∂σ1 and∂σ2 by

k1 ¼ a1∂σ1 þ ∂σ2 and k2 ¼ a2∂σ1 þ ∂σ1 ; ð21Þ

which are also independent if a1 ≠ a2. The important point
is that k1 and k2 are hyper-surface orthogonal, differently
from ∂σ1 and ∂σ2 . Since k1 and k2 commute with each other,
we can associate to them coordinates ϕ1 and ϕ2 such that
k1 ¼ ∂ϕ1

and k2 ¼ ∂ϕ2
. Indeed, ϕ1 and ϕ2 are defined by

σ1 ¼ a1ϕ1 þ a2ϕ2 and σ2 ¼ ϕ1 þ ϕ2: ð22Þ

In terms of these coordinates, the line element (5) takes the
form below:

ds2 ¼ Sy
Δy

dy2 −
ða2 − a1ÞðPy − a1ÞSy

Ωy
dϕ2

1

þ ða2 − a1ÞðPy − a2ÞSy
Ωy

dϕ2
2 þ Sydx2: ð23Þ

This diagonal line element can be easily put in the general
form (20) by redefining the coordinate y.
The fact that the investigated solution could be diagon-

alized using three cyclic coordinates, ϕ1, ϕ2, and x, could
be anticipated from the fact that if we take a general Killing
vector field, η ¼ λ1∂σ1 þ λ2∂σ2 þ λ3∂x and compute its
squared norm, we will conclude that if a1 ≠ a2 then ηaηa ¼
0 only if λ1 ¼ λ2 ¼ λ3 ¼ 0. Thus, the hypersurfaces

y ¼ constant, spanned by the Killing vector fields, have
metrics that are either positive-definite or negative-definite.
In this circumstance, there is a result on the literature stating
that the metric can be diagonalized. Indeed, in [22] it is
shown that it is always possible to diagonalize a metric of
the form ds2 ¼ −dt2 þ γijdxidxj, where γij is a positive/
negative-definite three-dimensional metric, whenever the
Einstein’s vacuum equation with cosmological constant is
imposed. Nevertheless, for the case in which a1 ¼ a2 we
can have a nonzero lightlike Killing vector, so that the
diagonalization cannot be attained using cyclic coordinates.
Remember that the nonconstant function Py has not been

constrained, which was a consequence of the freedom in
the choice of the coordinate y, as argued above. Thus,
without any loss of generality, we can set

Py ¼
a2Fy − a1
Fy − 1

; ð24Þ

with the function Fy being defined by

Fy ¼
2
4

ffiffiffiffiffi
b2
b1

s
tan

� ffiffiffiffiffiffi
3Λ

p
y

2

�352=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd−1Þþ1

p

:

This choice in the coordinate y was made so that
the component gyy of the metric became equal to the
unit. Then, assuming (24) to hold and replacing the
cyclic coordinates ϕ1, ϕ2, and x by their rescaled versions
defined by

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3ΛÞp1ða1 − a2Þbp1−2=3

2

22p1c2b
p1

1

s
ϕ1;

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3ΛÞp2ða2 − a1Þbp2−2=3

2

22p2c2b
p2

1

s
ϕ2;

x3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3ΛÞp3bp3−2=3

2

22p3bp3

1

s
x;

with the constant parameters pi given by

p1 ¼
2 − d

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 1Þ þ 1

p þ 1

3
;

p2 ¼ −
dþ 1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 1Þ þ 1

p þ 1

3
;

p3 ¼
2d − 1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 1Þ þ 1

p þ 1

3
;

it follows that the line element (23) becomes
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ds2 ¼ dy2 þ L2=3
y

�X3
i¼1

e2ðpi−1
3
ÞNyðdxiÞ2

�
; ð25Þ

where

Ly ¼
sinð ffiffiffiffiffiffi

3Λ
p

yÞffiffiffiffiffiffi
3Λ

p ; Ny ¼ log

�
2 tan ð ffiffiffiffiffiffi

3Λ
p

y=2Þffiffiffiffiffiffi
3Λ

p
�
:

Note that the parameters pi obey the following constraint.

X3
i¼1

pi ¼ 1; and
X3
i¼1

p2
i ¼ 1: ð26Þ

The solution (25) is a generalization of the Kasner metric
for the case in which the cosmological constant is different
from zero. This particular solution is already available in
the literature, see chapter 13 of Ref. [23]. In the limitΛ → 0
the solution becomes

ds2 ¼ dy2 þ y2p1dx21 þ y2p2dx22 þ y2p3dx23; ð27Þ

which is Kasner Metric [23,24]. Such a solution is used in
cosmology to model an anisotropic vacuum universe [22].
In order to obtain the latter solution we have avoided two

special cases, namely we have assumed that Py is non-
constant, so that (6) hold, and have assumed a1 ≠ a2. Thus,
for completeness, we should also tackle these cases. First,
considering Py constant and following steps analogous to
the ones adopted above, one can check that solutions can be
attained but all these solutions are either equivalent to (25)
or one of its subcases. So, the special case in which Py is
constant does not lead to new solutions. Differently, the
special case a1 ¼ a2 will yield a new solution that is not
available in the literature. In the case a1 ¼ a2, Eqs. (17) and
(19) are not valid so that the calculations should be done
separately, which we shall do in the next subsection. Note
that in this special case the Killing vectors (21) are not
independent from each other, so that the diagonal form
above cannot be attained, as hinted by the fact that the
coordinates ϕ1 and ϕ2 are proportional to each other when
a1 ¼ a2.

2. The special case a1 = a2
The special case a1 ¼ a2 will be considered in the

present section. It turns out that this will be the most
interesting case, since, as far as the authors know, the
obtained solution has not been described in the literature
yet.
In the sequel, we will assume

Sx ¼ 0; Δx ¼ 1; and Δy ¼
c1Q2

yΩ2
y

S2yðP0
yÞ2

; ð28Þ

as assumed for the general case, whereas the function Qy
reduces to

Qy ¼ Py − a1; ð29Þ
since now a1 ¼ a2. Then, from the integration of the
equation Rσ1

σ1 − Rx
x ¼ 0, we obtain

Ωy ¼ c2Qye−d̃=Qy ; ð30Þ
where c2 and d̃ are arbitrary integration constants. Using
this result for integrating the equation Rσ1

σ1 − Ry
y ¼ 0, we

find that

Sy ¼ ½b1e3d̃=ð2QyÞ þ b2ed̃=ð2QyÞ�−2=3; ð31Þ

with b1 and b2 being arbitrary integration constants.
Finally, solving Rσ1

σ1 ¼ Λ, we conclude that the constants
b1 and b2 must be related to Λ as follows:

b1b2 ¼
3Λ

c1c22d̃
2
: ð32Þ

This concludes the integration, as it can be checked that the
remaining components of Einstein’s equations are obeyed.
Thus, we have completely integrated Einstein’s equations
for the particular case in which a1 ¼ a2, the general
solution being given by the line element (5) with its
functions given by (28)–(32). An interesting fact is that
this solution for the case a1 ¼ a2 can be obtained from the
case a1 ≠ a2 by defining

d ¼ d̃
a1 − a2

and then taking the singular limit a2 → a1 in the expres-
sions (16), (17), and (19).
Now, let us try to put the solution just found in a neater

form. First, let us make use of the degree of freedom on the
choice of Py to set

Py ¼ y:

As explained before, this amounts to no loss of generality.
Then, we shall perform the coordinate transformation
ðσ1; σ2; x; yÞ → ðt;ϕ; θ; rÞ, where the new coordinates
are defined by

σ1 ¼ −
ffiffiffiffiffi
c2

p
b1=31

2
ffiffiffĩ
d

p ½ðd̃þ a1c̃Þt − a1ϕ�;

σ2 ¼
ffiffiffiffiffi
c2

p
b1=31

2a1
ffiffiffĩ
d

p ½ðd̃ − a1c̃Þtþ a1ϕ�;

x ¼ b1=31 eða1c̃−d̃Þ=ð2a1Þθ;

y ¼ a21ðrþ c̃Þ
a1rþ a1c̃ − d̃

;
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with the constant c̃ standing for

c̃ ¼ d̃
a1

− logðc1c22b21d̃2=3Þ:

In terms of these new coordinates the line element is
given by

ds2 ¼ e−rdr2

3ð1þ Λe−rÞ2 þ
e−rdθ2 − dtðrdtþ dϕÞ

ð1þ Λe−rÞ2=3 : ð33Þ

Notice that we were able to get rid of all of the integration
constants, so that this solution depends just on the cosmo-
logical constant, which is an external parameter. In these
coordinates the metric is Lorentzian, although the signature
could be easily changed by means of Wick rotations. In
Appendix B we write this solution in canonical Kundt
coordinates. However, in this Appendix it is shown that the
canonical Kundt coordinates are not very illuminating.

III. ANALYZING THE NEW SOLUTION

In this section we shall analyze the geometrical proper-
ties of the line element (33) aiming the identification of the
spacetime. As we will argue in the sequel, such analysis
hints that the metric given in Eq. (33) might be a new exact
solution for Einstein’s vacuum equation. In order to arrive
at this conclusion, we have tried to characterize this line
element as much as possible and then looked for known
solutions with the same geometrical features. The bottom
line is that as far as the authors were able to investigate, the
solution (33) has not been defined in the literature yet.
First, let us point out that the special case of vanishing

cosmological constant of the solution (33) is already
described in the literature. Indeed, when Λ ¼ 0 it follows
that ∂ϕ is a covariantly constant null vector field, so that the
line element represents a pp-wave spacetime [23,25]. The
pp-wave spacetimes are Petrov type N and all their
curvature scalars vanish identically (VSI spacetimes), for
more in this class of spaces see Ref. [26].
Thus, it remains to analyze the general case Λ ≠ 0.

A good starting point is to investigate the isometry group
of the solution (33). A complete integration of the
Killing equation yields that the isometry group is three-
dimensional and Abelian, with the trivial Killing vectors ∂t,∂θ, and ∂ϕ being a basis for the isometry Lie algebra. So,
the isometry algebra is of Bianchi type I. Forming a general
linear combination of these Killing vectors, we can see that
the only ones that are orthogonal to families of hyper-
surfaces are ∂θ and ∂ϕ. Moreover, note that the Killing
vector field ∂ϕ is null. In particular, the existence of a null
Killing vector implies that the line element cannot be put in
a diagonal form using cyclic coordinates, differently from
the previous case a1 ≠ a2, see the discussion on the
paragraph below Eq. (23).

Besides studying the isometry group, another geometric
way to characterize the solution (33) is analysing its Petrov
type. In order to do so, we need to use a so-called null tetrad
frame fl; n;m; m̄g, in which the vector fields l and n are
real, while m and m̄ are complex and conjugated to each
other. The only nonvanishing inner products in such a
frame are lana ¼ −1 and mam̄a ¼ 1. Using one of the null
tetrad frames below, i.e., choosing either the þ frame or
the − frame,

l ¼ ∂ϕ;

n� ¼ � er
ffiffiffi
2

pffiffiffiffi
Λ

p ð1þ Λe−rÞ2=3ð3þ Λe−rÞ1=2∂θ

þ 2ð1þ Λe−rÞ2=3∂t

þ 1

Λ
ð1þ Λe−rÞ2=3½3er þ Λð1 − 2rÞ�∂ϕ;

m� ¼
ffiffiffi
3

p
er=2ffiffiffi
2

p ð1þ Λe−rÞ∂r þ i
er=2ffiffiffi
2

p ð1þ Λe−rÞ1=3∂θ

� i
er=2ffiffiffiffi
Λ

p ð3þ Λe−rÞ1=2ð1þ Λe−rÞ1=3∂ϕ;

m̄� ¼
ffiffiffi
3

p
er=2ffiffiffi
2

p ð1þ Λe−rÞ∂r − i
er=2ffiffiffi
2

p ð1þ Λe−rÞ1=3∂θ

∓ i
er=2ffiffiffiffi
Λ

p ð3þ Λe−rÞ1=2ð1þ Λe−rÞ1=3∂ϕ;

it follows that the only Weyl scalars different from zero are,
respectively,

Ψ2 ¼
Λ
6
ð1þ Λe−rÞ; and

Ψ3 ¼∓ i

ffiffiffiffiffiffiffiffi
Λer

4

r
ð1þ Λe−rÞ4=3ð3þ Λe−rÞ1=2:

The fact thatΨ0,Ψ1, andΨ4 all vanish in these framesmeans
that l ¼ ∂ϕ is a repeated principal null direction of theWeyl
tensor, while n� are nondegenerated principal null direc-
tions.Moreover, this implies that theWeyl tensor is of Petrov
type II. For some review on the Petrov classification,
see Ref. [27].
Another important geometric characterization of this

spacetime is that the null vector field ∂ϕ is geodesic,
shear-free, twist-free, and expansion-free. This means that
the above solution is contained in the Kundt class of
spacetimes. For a recent review on this class of spacetimes
see [28].
All the above features of the solution (33) have been

extensively used in order to try to find it in the literature. In
particular, a thorough search has been performed by the
authors on the books [23,29]. In fact, the closest that we
could get from finding such a solution in the literature was
in chapter 31 of Stephani et al.’s book [23], where they
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exhibit the Kundt’s class of spacetimes. In particular, for
solutions of Petrov type II with non-zero cosmological
constant, the authors of [23] refer to two papers, [30,31],
where special solutions in such a class of spacetimes are
found. However, our solution (33) could not be found there,
inasmuch as their solutions contain strictly nonzero electro-
magnetic fields. In light of this, it seems to the authors of
the present paper that the spacetime described by the metric
(33) has not been presented in the literature so far, being a
new solution of Einstein’s field equations with cosmologi-
cal constant. Actually, the analysis of the existing literature
revealed that there are few known exact vacuum solutions
of Petrov type II. In contrast, solutions of Petrov type D are
much more abundant. For instance, W. Kinnersley has been
able to fully integrate Einstein’s vacuum equation with
vanishing cosmological constant for the entire class of
type D spacetimes [32], yielding a plethora of solutions, a
particular example being Kerr metric.
Concerning the regularity of the line element (33), it

seems that it is regular at all range of the coordinate r
except for the point r ¼ −∞ and when the denominator
(1þ Λe−r) vanishes. Computing some curvature scalars we
have found the following pattern:

Ra1b1
a2b2R

a2b2
a3b3…Ranbn

a1b1

¼ 4
Xn
j¼0

�
n

j

�
e−jr

3j
Λnþj þ 2

3n
ð−2Λ2e−rÞn; ð34Þ

where Rabcd stands for the Riemann tensor. Note that all
these scalars are finite for r ≠ −∞. On the other hand, in
the limit r → −∞ these scalars diverge exponentially like
enjrj. Thus, the point r ¼ −∞ is a singularity of the
spacetime, while other points are regular. Likewise, com-
puting the curvature scalar

∇aRbcde∇aRbcde ¼
20

3
Λ4ð1þ Λe−rÞ2e−r; ð35Þ

we check that there is a divergence just at r ¼ −∞.
Note that when the cosmological constant is negative the

denominator (1þ Λe−r) can vanish, which could indicate
the existence of a real singularity at r ¼ logð−ΛÞ, inasmuch
as the line element (33) blows up. However, the fact that the
curvature scalars (34) and (35) are perfectly regular at r ¼
logð−ΛÞ reveals that this is not the case. In other words, the
divergence of the metric components at r ¼ logð−ΛÞ, when
Λ < 0, is just a coordinate singularity.
The asymptotic limit r → ∞ has a particularly simple

structure concerning the curvature scalars. While Eq. (35)
reveals that the square of the derivative of the curvature
tensor goes to zero in this limit, the powers of the Riemann
tensor given in Eq. (34) goes to 4Λn when r → ∞. Such a
simple structure reminds of spaces of constant curvature
like (anti-)de Sitter, ðaÞdS4, which is a four-dimensional
Lorentzian space of constant curvature, and (anti-)Nariai,

ðaÞN4, which is a solution of Einstein’s equation that is the
direct product of two spaces of constant curvature.
However, although these two spacetimes have covariantly
constant Riemann tensors, so that ∇aRbcde∇aRbcde ¼ 0, in
agreement with the behaviour of Eq. (35) in the limit
r → ∞, the powers of the Riemann tensor differ from the
ones of our spacetime. Instead of 4Λn, which is obtained
from Eq. (34) in the limit r → ∞, for these solutions we
have

Ra1b1
a2b2…Ranbn

a1b1 ¼
� ðaÞdS4∶6ð2Λ=3Þn;
ðaÞN4∶2ð2ΛÞn:

Thus, we can state that the new solution is neither
asymptotically ðaÞdS4 nor asymptotically ðaÞN4.
In order to investigate the asymptotic limit of our

solution, we shall focus on the block related to dt and
dϕ in the line element (33), namely let us consider

ds2tϕ ≡ −dtðrdtþ dϕÞ:

Then, performing the coordinate transformation ðt;ϕÞ →
ðt̃; ϕ̃Þ, where

t̃ ¼ rt; and ϕ̃ ¼ r−1ϕ;

it follows that ds2tϕ becomes:

ds2tϕ ¼ −dt̃dϕ̃ −
1

r
½dt̃ 2 þ ϕ̃dt̃dr − t̃dϕ̃dr� þOðr−2Þ;

where Oðr−2Þ denotes terms that fall off as r−2, or faster,
when r → ∞. Thus, in terms of the coordinates (t̃, ϕ̃), the
asymptotic limit of the block ds2tϕ becomes

ds2tϕjr→∞ ≃ −dt̃dϕ̃:

Hence, we can say that in the asymptotic limit the solution
(33) converges to

ds2jr→∞ ≃
e−rdr2

3ð1þ Λe−rÞ2 þ
e−rdθ2 − dt̃dϕ̃

ð1þ Λe−rÞ2=3 : ð36Þ

This limit spacetime turn out to be a particularmember of the
generalized Kasner class of solutions, as demonstrated in
Appendix A. More precisely, the solution (36) corresponds
to the choice ðp1; p2; p3Þ ¼ ð2=3; 2=3;−1=3Þ of the gen-
eralized Kasner metric (25). As shown in Appendix A, this
limit spacetime is of Petrov type D and possess a four-
dimensional isometry algebra. Curiously, one can check that
the curvature scalars of the line element (36) are exactly the
same as the ones of the solution (33), namely Eqs. (34) and
(35) are also valid for the solution (36). This, however, do not
imply that these two spacetimes are the same. Indeed, it is
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well-known that two geometries can have the same curva-
ture scalars and still be different from each other [33,34]. A
famous example is given by pp-wave spacetimes, which, in
spite of having all curvature scalars equal to zero, are not flat.
Thus, here we have obtained another example of two
different spacetimes with the same curvature scalars.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we have completely integrated Einstein’s
vacuum equation with a cosmological constant for a
subclass of the most general four-dimensional metric
containing two commuting Killing vector fields and a
non-trivial Killing tensor of rank two. As we have seen,
most of the solutions then found have already been
described in the literature. Among them, we have obtained
flat space, spaces of constant curvature, and a generaliza-
tion of the Kasner metric to the case of nonzero cosmo-
logical constant. Nevertheless, we have also obtained a
solution that, as far as we know, have never been described
in the literature before, see Eq. (33). In order to arrive at this
conclusion some features of this solution were investigated,
such as its isometry group, its Petrov type, and the optical
scalars related to the null Killing vector field of this
solution. More precisely, we have obtained that the isom-
etry algebra of this solution is three-dimensional and
Abelian, which means that it is Bianchi type I, its Weyl
tensor is of Petrov type II, and the solution is contained in
the Kundt class of spacetimes. Then, we searched in the
literature pre-existing vacuum solutions having the same
features, but no match occurred. Finally, we have proved
that in the asymptotic limit r → ∞ this solution approaches
a member of the class of generalized Kasner spacetimes
which have the same curvature scalars.
We hope that this new solution, along with the charac-

terization given in this paper could give rise to applications
within the framework of gravitation, cosmology and
beyond. The analysis of the physical properties of the
solution (33) can give a hint on the range of its applicability.
Therefore, in a future work we intend to investigate the
physics of such exact solution.
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APPENDIX A: ANOTHER SOLUTION
THROUGH A SINGULAR LIMIT

In this Appendix we shall investigate some geometric
properties of the spacetime (36), which is the asymptotic
limit of the new solution (33) when r → ∞. In particular,

we will prove that its Weyl tensor is type D according to the
Petrov classification and that its isometry group is four-
dimensional.
Let us start proving that the spacetime (36) can be

obtained from the new solution (33) by means of a singular
coordinate transformation. Replacing the coordinates t and
ϕ in the line element (33) by t̃ and ϕ̃ defined as

t̃ ¼ λ−1=2t and ϕ̃ ¼ λ1=2ϕ; ðA1Þ
where λ is a positive constant parameter, we are led to

ds2 ¼ e−rdr2

3ð1þ Λe−rÞ2 þ
e−rdθ2 − dt̃ðλrdt̃þ dϕ̃Þ

ð1þ Λe−rÞ2=3 :

Note that although the limit λ → 0 is forbidden at the level
of the coordinates, since t̃ and ϕ̃ become ill-defined, the line
element obtained in this limit is perfectly regular and is
given by

ds2 ¼ e−rdr2

3ð1þ Λe−rÞ2 þ
e−rdθ2 − dt̃dϕ̃

ð1þ Λe−rÞ2=3 : ðA2Þ

Despite the line element (A2) being obtained from our
solution through a coordinate transformation, the metric
(A2) can represent a completely different spacetime, since
the coordinate transformation (A1) is singular at λ ¼ 0. For
instance, another example of singular coordinate trans-
formations that yield a different space is provided by Nariai
spacetime, which can be obtained from the degenerated
Schwarzschild-dS solution2 by means of a singular coor-
dinate transformation [35].
Now, let us investigate some properties of the solution

(A2). Note that besides being invariant under translations in
the coordinates θ, t̃, and ϕ̃, the line element (A2) is also
invariant under the boost transformation

r → r; θ → θ; t̃ → at̃; ϕ̃ →
1

a
ϕ̃;

with a being an arbitrary constant parameter. This is an
extra symmetry, whose generator is the Killing vector field

k̃ ¼ t̃∂ t̃ − ϕ̃∂ϕ̃:

One can check that this is the only extra independent killing
vector of the solution (A2) besides the obvious ones ∂θ, ∂ t̃,
and ∂ϕ̃, so that the isometry group is four-dimensional and
non-Abelian. In particular, this implies that, in spite of
having the same curvature scalars, the solutions (33) and
(A2) represent different spacetimes, since they have differ-
ent isometry groups.
In order to obtain the Petrov classification of the solution

(A2), let us introduce the following null tetrad

2By degenerated we mean that the event horizon and the
cosmological horizon coincide.
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l ¼ ∂ϕ̃;

n ¼ 2ð1þ Λe−rÞ2=3∂ t̃;

m ¼
ffiffiffiffiffiffiffi
3er

2

r
ð1þ Λe−rÞ∂r þ i

ffiffiffiffiffi
er

2

r
ð1þ Λe−rÞ1=3∂θ;

m̄ ¼
ffiffiffiffiffiffiffi
3er

2

r
ð1þ Λe−rÞ∂r − i

ffiffiffiffiffi
er

2

r
ð1þ Λe−rÞ1=3∂θ:

Then, computing the Weyl scalars with such tetrad, we find
that Ψ0, Ψ1, Ψ3, and Ψ4 vanish, while, for Λ ≠ 0, Ψ2 is
different from zero and given by

Ψ2 ¼
Λ
6
ð1þ Λe−rÞ:

This means that l and n are both repeated principal null
directions and that the solution (A2) is of Petrov type D if
Λ ≠ 0, which differs from the Petrov classification of the
line element (33). Actually, it has been proven in Ref. [36]
that, in general, given a type II Kundt spacetime one can
take a scaling limit that yields a spacetime of Petrov typeD
with the same curvature scalars of the original spacetime,
see also [37].
Note also that in the case Λ ¼ 0 the latter tetrad is well-

defined, so that we can use it to compute the Weyl scalars.
Doing so, we see that, when Λ is zero, Ψ2 vanishes along
with the Ψ0, Ψ1, Ψ3, and Ψ4. Since all Weyl scalars vanish
it follows that the Weyl tensor is identically zero, which
along with the fact that the metric (A2) is Ricci-flat when
Λ ¼ 0means that the spacetime is flat. Thus, the caseΛ¼0
of the line element (A2) is just Minkowski spacetime.
Continuing the characterization of the limit solution (A2),

we can also verify that the null Killing vector fields ∂ t̃ and ∂ϕ̃
are geodesic, shear-free, twist-free, and expansion-free, so
that the line element (A2) is contained in the Kundt class.
Concerning the regularity of the solution and its asymptotic
limit when r → ∞, all the comments made for the solution
(33) remains valid for the limit solution (A2), since these
spaces have exactly the same curvature scalars.
Finally, we can check that the solution (A2) is, actually, a

member of the generalized Kasner solutions that we have
obtained in Eq. (25). Indeed, performing the coordinate
transformation ðr; θ; t̃; ϕ̃Þ → ðy; x1; x2; x3Þ, where

r ¼ 2 log

� ffiffiffiffi
Λ

p
tan

� ffiffiffiffiffiffi
3Λ

p
y

2

��
;

t̃ ¼
�

4

3Λ

�
1=3

ðix1 þ x2Þ;

ϕ̃ ¼
�

4

3Λ

�
1=3

ðix1 − x2Þ;

θ ¼
ffiffiffiffi
Λ

p �
4

3Λ

�
−1=6

x3;

we can see that the line element (A2) takes the form (25)
with the choice ðp1; p2; p3Þ ¼ ð2=3; 2=3;−1=3Þ. Thus, we
can say that in the asymptotic limit r → ∞, our new
solution (33) goes to a generalized Kasner spacetime.

APPENDIX B: CANONICAL KUNDT
COORDINATES

The line element of four-dimensional Kundt spacetimes
are generally written in canonical Kundt coordinates
(x, y, u, v) as

ds2 ¼ Pðdx2 þ dy2Þ
þ 2duðdvþH1dxþH2dyþGduÞ; ðB1Þ

where P, H1, H2, and G are real functions of the
coordinates. In particular, the null vector field ∂v is
geodesic and twist-free. Since our new solution (33) is a
Kundt spacetime, it can be written in the form (B1), which
is the aim of this Appendix.
Now let us perform the change of coordinates ðr;θ;ϕ;tÞ→

ðx;y;v;uÞ in the line element (33), where the new coor-
dinates are defined by

x ¼
Z

drffiffiffi
3

p ð1þ Λe−rÞ2=3 ; y ¼ θ;

v ¼ −
ϕ

2ð1þ Λe−rÞ2=3 ; u ¼ t:

With these new coordinates, the line element (33) takes the
form (B1) with H2 ¼ 0 whereas the functions P, H1, and G
are given by

P ¼ e−r

ð1þ Λe−rÞ2=3 ;

H1 ¼ −
2Λve−rffiffiffi

3
p ð1þ Λe−rÞ1=3 ;

G ¼ −
r

2ð1þ Λe−rÞ2=3 :

In the latter expressions, r should be thought as a function of
x. Performing the integral that defines the coordinate x we
are led to

x ¼
ffiffiffi
3

p

2

�
er

Λ

�
2=3

2F1ð2=3; 2=3; 5=3;−Λ−1erÞ;

with 2F1 standing for the hypergeometric function. Since it
is quite troublesome to invert the latter relation and write r as
function of x it follows that the canonical Kundt coordinates
(x, y, u, v) are not the most suitable for expressing the line
element (33).
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