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We cut and paste two Bañados-Teitelboim-Zanelli (BTZ) spacetimes at a throat by the Darmois-Israel
method to construct a rotating wormhole with a thin shell filled with a barotropic fluid. The thin shell at the
throat and both sides of the throat corotate. We investigate the linear stability of the thin shell of the rotating
wormhole against radial perturbations. We show that the wormhole becomes more and more stable the
larger its angular momentum is until the angular momentum reaches a critical value and that the behavior of
a condition for stability significantly changes when the angular momentum exceeds the critical value. We
find that the overcritical rotating wormhole has the radius of the thin shell, which is stable regardless of the
equation of state for the barotropic fluid.
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I. INTRODUCTION

A wormhole is a spacetime structure that connects two
regions in our Universe or multiverse. If the wormhole is
spherically symmetric, static, and traversable in general
relativity, a null energy condition is broken at least at a
throat as shown byMorris and Thorne [1]. The first example
of wormholes in the Morris-Thorne class was considered in
1973byEllis [2] andBronnikov [3] independently. TheEllis-
Bronnikov wormhole spacetime is the solution of Einstein
equations and of a wave equation for a ghost scalar field.
The existence of wormholes in nature requires their

stability. The instability of the Ellis-Bronnikov wormhole
was reported by several authors [4–9], contrary to the
conclusion of an earlier work [10]. Torii and Shinkai showed
that an all-dimensional Ellis-Bronnikov wormhole is unsta-
ble against perturbations with which the throat radius is
changed [11]. On the other hand, in 2013, Bronnikov et al.
found that a wormhole, which is filled with electrically
charged dust with a negative energy density, with the same
metric as the metric of the massless Ellis-Bronnikov worm-
hole in four dimensions [12,13], is stable under both spheri-
cally symmetric and axial perturbations [14]. Their result
shows that stability ofwormholes depend on not onlymetrics
but also the matters of the source of the metrics.1

Teo pioneered a rotating traversable wormhole in four
dimensions [16], but Teo did not pay attention to the
stability of wormholes as much as Morris and Thorne [1].
Matos and Nuñes [17] claimed that rotating wormholes
would have a higher possibility of being stable intuitively,
and they considered a rotating wormhole with a ghost
scalar field in four dimensions. Dzhunushaliev et al. [18]
investigated a five-dimensional rotating wormhole with
equal angular momenta filled with a ghost scalar field and
discussed its stability. They found that the unstable mode of
the five-dimensional wormhole disappears when the worm-
hole rotates fast and that the wormhole has the upper bound
of the angular momenta. Their works might show that
rotating wormholes have a higher possibility to be stable
but the effect of rotation on the stability would depend on
the matters supporting the wormholes.
The class of a wormhole which is composed of two parts

of spacetimes joined by a thin shell [19–21] at the worm-
hole throat using Darmois-Israel matching [21–23] was
suggested by Visser [24,25]. The linear stability of a thin-
shell wormhole against radial perturbations was studied in
Refs. [25,26]. The analysis is useful to investigate the
stability of wormholes since one can treat it with only a few
assumptions with respect to the matters supporting the
wormholes. It has been applied to various thin-shell worm-
holes [27–74]. Recently, the details of stability of thin-shell
wormholes have been investigated. Nakao et al. considered
a collision between a thin shell at a wormhole throat and
another dust thin shell that falls into the throat, and
they obtained conditions in which the thin-shell wormhole
persists after the collision [75]. Akai and Nakao
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1The stability of a wormhole against decay via gravitational

instanton tunneling was discussed by Cox et al. [15]. Their work
also shows that the stability of wormholes depends on the matters
of the source of the metrics.
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have investigated the nonlinear stability of a thin-shell
wormhole [76].
The treatment of a rotating thin shell is more difficult

than a spherically symmetric thin shell because of the
low symmetry of the spacetime. The fact, however, was
shown that rotating thin shells in three dimensions are
more tractable than ones in higher dimensions [77–79].
In Ref. [80], Mazharimousavi and Halilsoy cut and
pasted two parts of BTZ spacetimes [81,82] and made
a rotating thin-shell wormhole in three dimensions to
study the stability of the wormhole. They claimed that
one side of a throat counterrotates against the other
side of the throat and concluded that counterrotational
effects make the wormhole stable. However, it seems
to be difficult to understand their conclusion intuitively.
In this paper, we reexamine the stability of the rotating

thin-shell wormhole in three dimensions. We cut and paste
two rotating BTZ spacetimes [81,82] with the Darmois-
Israel matching conditions and construct the rotating thin-
shell wormhole. The angular momenta of both sides of the
throat have the same absolute value but signs opposite
each other. We notice that the opposite signs of the angular
momenta mean that the thin shell at the throat and
the two sides of the throat must corotate. Then, we
investigate the linear stability of the wormhole against
radial perturbations.
This paper is organized as follows. In Sec. II,

we construct the rotating thin-shell wormhole. In
Sec. III, we consider the linear stability of the thin-shell
wormhole against a radial perturbation. In Sec. VI, we
summarize our results. In this paper, we use the units in
which the light speed and 8G, where G is Newton’s
constant in three dimensions, are unity as set in Sec. III
in Ref. [77].

II. CONSTRUCTION OF ROTATING
BTZ WORMHOLE

We construct a rotating thin-shell wormhole by using a
cut-and-paste method [21–23]. We consider two BTZ
spacetimes [81,82] with a line element given by

ds2� ¼ gμν�dx
μ
�dx

ν
�

¼ −f�ðr�Þdt2� þ dr2�
f�ðr�Þ

þ r2�

�
dφ� −

J�
2r2�

dt�

�
2

;

ð2:1Þ

where f�ðr�Þ is defined by

f�ðr�Þ≡ −M� þ r2�
l2�

þ J2�
4r2�

; ð2:2Þ

where M�, J�, and l� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1=Λ�

p
are a mass parameter,

an angular momentum, and the scale of a curvature related

to a negative cosmological constant Λ� < 0, respectively.2

We assume M ≡Mþ ¼ M− > 0 and l≡ lþ ¼ l− for sim-
plicity. The BTZ spacetime with lM ≥ jJ�j has an event
horizon at r� ¼ r�H, where r�H is given by

r�H ≡ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
2

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

J2�
M2l2

s 1
CA

vuuuut ; ð2:3Þ

while the spacetime with lM < jJ�j has a naked singularity
at r� ¼ 0.
We consider two BTZ spacetimes and remove from them

regions

Ω� ≡ fr� < aja > rbg; ð2:4Þ
where a is a constant and rb ≡ r�H for lM ≥ jJ�j and
rb ≡ 0 for lM < jJ�j. The rest of the manifolds has the
boundaries that are the timelike hypersurfaces described as

∂Ω� ≡ fr� ¼ aja > rbg: ð2:5Þ
We identify the two hypersurfaces

∂Ω≡ ∂Ωþ ¼ ∂Ω−; ð2:6Þ
and we obtain a manifold M with two regions glued by a
throat located at ∂Ω as shown in Fig. 1.

FIG. 1. Construction of a rotatingwormholewith a cut-and-paste
method.We cut twoBTZ spacetimeswith angularmomenta J� and
identify the boundaries of the manifolds ∂Ω� that are the timelike
hypersurfaces ∂Ω≡ ∂Ωþ ¼ ∂Ω−, and we obtain a manifold M.
The second Darmois-Israel junction condition implies J− ¼ −Jþ.
Thus, ωðaÞ≡ ωþðaÞ ¼ −ω−ðaÞ, where ω�ðr�Þ is defined as
ω�ðr�Þ≡ −gtφ�=gφφ� ¼ J�=2r2�, is obtained.

2A wormhole with a negative cosmological constant was
considered in Ref. [83].
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We permit that the radius of the throat a is a function of
time, a ¼ aðtÞ, since we are interested in the stability of the
rotating wormhole. By introducing an azimuth coordinate
ϕ� given by

dϕ� ≡ dφ� −
J�dt�
2a2ðt�Þ

; ð2:7Þ

the line element (2.1) in a corotating frame on the timelike
hypersurface, i.e., on the throat, is rewritten as

ds2� ¼ −f�ðr�Þdt2� þ dr2�
f�ðr�Þ

þ r2�

�
dϕ� þ J�

2

�
1

a2ðt�Þ
−

1

r2�

�
dt�

�
2

: ð2:8Þ

We define [T] as

½T�≡ Tþj∂Ω − T−j∂Ω ð2:9Þ
for any tensorial function T.
From the first junction condition ½hij� ¼ 0, the induced

metric hij on the timelike hypersurface with t� ¼ t�ðτÞ and
r� ¼ a(t�ðτÞ) ¼ aðτÞ is given by

ds2∂Ω ¼ hijdyidyj ¼ −dτ2 þ a2ðτÞdϕ2; ð2:10Þ
where τ is the proper time of an observer on the timelike
hypersurface and _t� is obtained as

_t� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f�

p
f�

; ð2:11Þ

where f� ¼ f�ðaÞ and where the dot denotes a differ-
entiation with respect to τ. The induced basis vectors eμi� on
the timelike hypersurface are obtained as

eμτ�
∂

∂xμ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f�

p
f�

∂
∂t� þ _a

∂
∂r� ð2:12Þ

and

eμϕ�
∂

∂xμ� ¼ ∂
∂ϕ�

: ð2:13Þ

The 3-velocity of the observer on the hypersurface is given
by uμ� ¼ eμτ�. The vectors nμ� normal to the hypersurface
are given by

nμ�dx
μ
� ¼ �

�
− _adt� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f�

p
f�

dr�

�
: ð2:14Þ

The second junction condition is given by

½Ki
j� ¼ 0; ð2:15Þ

where Kij is an extrinsic curvature of the timelike hyper-
surface defined by

Kij ≡ eμi e
ν
j∇νnμ: ð2:16Þ

The extrinsic curvature is obtained as

Kτ
τ� ¼ � 2äþ f0�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f�

p ; ð2:17Þ

Kϕ
ϕ� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f�

p
a

; ð2:18Þ

Kτ
ϕ� ¼∓ J�

2a
; ð2:19Þ

where f0� ¼ f0�ðaÞ is defined by

f0� ≡ df�
dr�

����
r�¼a

ð2:20Þ

and the trace of the extrinsic curvature is obtained as

K� ≡ Ki
i� ¼ � 2äþ f0�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f�

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f�

p
a

: ð2:21Þ

The ðτ;ϕÞ component of the second junction condition

½Kτ
ϕ� ¼ −

Jþ þ J−
2a

¼ 0 ð2:22Þ

implies J ≡ Jþ ¼ −J−. Therefore, we obtain

f ≡ fþ ¼ f− ¼ −M þ a2

l2
þ J2

4a2
ð2:23Þ

f0 ≡ f0þ ¼ f0− ¼ 2a
l2

−
J2

2a3
ð2:24Þ

on the timelike hypersurface. The other components of ½Ki
j�

given by

½Kτ
τ� ¼

2äþ f0ffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f

p ð2:25Þ

and

½Kϕ
ϕ� ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f

p
a

ð2:26Þ

violate the second junction condition. Thus, the rotating
wormhole spacetime is singular at the throat, and a thin
shell is needed there. The thin shell at the timelike hyper-
surface follows the Einstein equations

πSij ¼ −½Ki
j� þ ½K�δij; ð2:27Þ

where Sij is the surface stress-energy tensor of the thin shell
filled with a perfect fluid described by
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Sij ¼ ðσ þ pÞUiUj þ pδij; ð2:28Þ

where σ, p, and Ui are the surface energy density, the
surface pressure, and the 2-velocity of the thin shell,
respectively. Here, the 2-velocity of the thin shell Ui is
given by Uidyi ≡ uμ�e

μ
i�dy

i ¼ −dτ, and [K] is given by

½K� ¼ ½Kτ
τ� þ ½Kϕ

ϕ�. The ðτ; τÞ and ðϕ;ϕÞ components of the
Einstein equation (2.27) give

σ ¼ −Sττ ¼ −
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f

p
πa

ð2:29Þ

and

p ¼ Sϕϕ ¼ 2äþ f0

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ f

p ; ð2:30Þ

respectively. From Eqs. (2.29) and (2.30), the equation of
energy conversation is obtained as

dð2πaσÞ
dτ

þ p
dð2πaÞ
dτ

¼ 0: ð2:31Þ

III. STABILITY OF THE ROTATING WORMHOLE

The ðτ; τÞ and ðϕ;ϕÞ components of the Einstein
equation (2.27) are rewritten as

_a2 þ f −
π2a2σ2

4
¼ 0 ð3:1Þ

and

_σ ¼ −ðσ þ pÞ _a
a
: ð3:2Þ

We assume that the thin shell is filled with a barotropic
fluid with the surface pressure given by p ¼ pðσÞ. The
surface pressure p ¼ pðσÞ and Eq. (3.2) imply that the
surface energy density can be written in the form σ ¼ σðaÞ.
Thus, the motion of the shell is described by

_a2 þ VðaÞ ¼ 0; ð3:3Þ
where VðaÞ is the effective potential defined as

VðaÞ≡ fðaÞ − π2a2σ2ðaÞ
4

: ð3:4Þ

The first and second derivatives of VðaÞ with respective to
a are given by

V 0ðaÞ ¼ f0ðaÞ þ π2aσp
2

ð3:5Þ

and

V 00ðaÞ ¼ f00ðaÞ − π2

2
½p2 þ ðσ þ pÞσβ2�; ð3:6Þ

respectively, where β2 is defined as

β2ðσÞ≡ ∂p
∂σ ; ð3:7Þ

the prime is a differentiation with respect to a, and f00ðaÞ is
obtained as

f00ðaÞ ¼ 2

l2
þ 3J2

2a4
: ð3:8Þ

We consider a situation in which the rotating shell does
not move in the radial direction. The shell is characterized
by constants a0,

σ0 ¼ −
2

ffiffiffiffiffi
f0

p
πa0

ð3:9Þ

and

p0 ¼
f00

π
ffiffiffiffiffi
f0

p ; ð3:10Þ

where f0 and f00 are defined as f0 ≡ fða0Þ and
f00 ≡ f0ða0Þ, respectively. By introducing x≡ a=ðl ffiffiffiffiffi

M
p Þ

and x0 ≡ a0=ðl
ffiffiffiffiffi
M

p Þ, the effective potential VðxÞ can be
expanded in the power of x − x0 as

VðxÞ ¼ 1

2

d2V
dx2

����
x¼x0

ðx − x0Þ2 þOððx − x0Þ3Þ ð3:11Þ

since Vðx0Þ and dV=dxjx¼x0 vanish. The thin shell is
stable against linearized fluctuations in the radial
direction for d2V=dx2jx¼x0 > 0, while it is unstable for
d2V=dx2jx¼x0 < 0. Here, d2V=dx2jx¼x0 is obtained as

d2V
dx2

����
x¼x0

¼ 1

Mx40

�
−8x60 þ 12j2x40 − 6j2x20 þ j4

4x40 − 4x20 þ j2

þð2x20 − j2Þβ20
�
; ð3:12Þ

where j and β0 are defined as j≡ J=ðlMÞ and β0 ≡ βðσ0Þ,
respectively. The thin shell is stable if the condition

−8x60 þ 12j2x40 − 6j2x20 þ j4

4x40 − 4x20 þ j2
þ ð2x20 − j2Þβ20 > 0 ð3:13Þ

is satisfied. The behaviors of inequality (3.13) with an
overcritical angular momentum jjj > 1 are different from
the ones with a critical and a subcritical angular momentum
jjj ≤ 1. We classify the rotating wormhole into three
cases below.

A. Subcritical rotating case jjj < 1

In the subcritical rotating case jjj < 1, the factor 2x20 − j2

is positive since x0 is defined in the region x0 > xH, where

xH ≡ rH=ðl
ffiffiffiffiffi
M

p Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
Þ=2

q
. In this case,
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the stable condition (3.13) is rewritten as β20 > A0, where
A0 ¼ A0ðx0Þ is defined as

A0ðx0Þ≡ 8x60 − 12j2x40 þ 6j2x20 − j4

ð2x20 − j2Þð4x40 − 4x20 þ j2Þ : ð3:14Þ

A0 monotonically decreases as x0 increases for x0 > xH and
A0 → 1 in a limit x0 → ∞. Thus, the wormhole with β20 < 1

is unstable. A0 diverges þ∞ in a limit x0 → xH þ 0. This
means that the rotating wormhole with any β20 becomes
unstable in the near-horizon limit x0 → xH þ 0. Figure 2
shows stable and unstable regions. The more rapidly the
wormhole rotates, the larger stable region is on the
x0β20 plane.

B. Critical rotating case jjj= 1
In the critical rotating case jjj ¼ 1, inequality (3.13)

becomes β20 > 1 and x0 > xH ¼ ffiffiffiffiffiffiffiffi
1=2

p
. The wormhole

with β20 < 1 is unstable. The stable and unstable regions
are shown in Fig. 2.

C. Overcritical rotating case jjj > 1

In the overcritical rotating case jjj > 1, the stability
condition (3.13) is given by β20 < A0 (β20 > A0) for 0 <
x0 < jjj= ffiffiffi

2
p

(jjj= ffiffiffi
2

p
< x0), and A0 approaches∞ (−∞) in

a limit x0 → jjj= ffiffiffi
2

p
− 0 (jjj= ffiffiffi

2
p þ 0). A0 monotonically

increases as x0 increases in both regions 0 < x0 < jjj= ffiffiffi
2

p
and jjj= ffiffiffi

2
p

< x0. Note A0 → 1 in both the limits x0 → ∞
and x0 → þ0. Figure 3 shows stable and unstable regions.
We notice that the rotating wormhole with any β20, i.e., any
barotropic fluid, is stable when the throat is at x0 ¼ jjj= ffiffiffi

2
p

.
Roughly speaking, the rapidly rotating wormhole is stable
if the throat is near x0 ¼ jjj= ffiffiffi

2
p

on the x0β20 plane. We also
notice that a stable region with 0 < β20 < 1 exists on the
x0β20 plane.

IV. DISCUSSION AND CONCLUSION

We have cut and pasted two BTZ spacetimes, and we
have constructed a rotating thin-shell wormhole by a
Darmois-Israel method. The second Darmois-Israel
junction condition imposes that two BTZ spacetimes
should have an equal absolute value of angular momenta
but signs opposite each other. We have shown that the
wormhole composed of a thin shell and both sides of a
throat corotate as shown in Fig. 1, while Ref. [80]
concluded that a side of the throat counterrotates against
the other side.
We have investigated the linear stability of the wormhole

against a radial perturbation. We have concentrated on the
thin shell filled with a barotropic fluid. The wormhole has
a critical angular momentum jjj ¼ 1, and we find the
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2

FIG. 2. Stability of the rotating wormhole for j ¼ 0 (left top), jjj ¼ 0.5 (right top), jjj ¼ 0.99 (left bottom), and jjj ¼ 1 (right bottom).
Shaded regions indicate stability. Solid lines denote the radius of the event horizon for each j. One finds stable regions increase as jjj
increases.
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different behaviors of the stability on the x0β20 plane in the
following two cases.
In the subcritical and critical rotating cases jjj < 1, the

more rapidly the wormhole rotates, the larger stable region
is on a x0β20 plane as shown Fig. 2. In these cases, the
wormhole with β20 < 1 is unstable. In a limit at which
the throat approaches the event horizon x0 → xH þ 0, the
surface pressure p (3.10) diverges, and the wormhole with
any β20 is unstable on the x0β20 plane.
In the overcritical rotating case jjj > 1, we notice that the

wormhole with the throat at a radius x0 ¼ jjj= ffiffiffi
2

p
is stable

without dependence on β20, i.e., the equation of state for the
barotropic fluid,3 and that the stable region of the wormhole
with 0 < β20 < 1 exists on the x0β20 plane. In this case, one
cannot say that the wormhole becomes more stable the
faster wormhole rotates.
We have considered the rotating wormhole which is

composed of two parts of two BTZ spacetimes just because
we can treat it easily. The simplicity would help us in the
further development of the stability of rotating thin-shell
wormholes such as the collision of thin shells [75] and
nonlinear stability [76]. We hope that this article will
stimulate further work in this direction.

In the rest of this section, we comment on rotating
wormholes. In Refs. [84,85], a rotating wormhole solution
with a ghost scalar field in four dimensions was obtained,
and the maximum of the angular momentum of the
rotating wormhole was found. The metric of the maximal
rotating wormhole is correspondent with the one of a
maximal rotating Kerr black hole. A rotating wormhole
solution with an equal angular momenta filled with a ghost
scalar field in five dimensions also has a maximal angular
momentum [18]. The metric of the maximal rotating
wormhole is correspondent with the one of a maximal
rotating Myers-Perry black hole [86,87] in five dimen-
sions. These facts do not mean that any wormholes cannot
rotate rapidly since the upper bound of the angular
momentum would depend on matters that support
wormholes.
It was shown that the center-of-mass energy of two

falling particles can be very large if the particles collide at
the throat of a very highly rotating wormhole [88,89]. This
implies that very highly rotating wormholes would be
unstable against particle collisions.
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FIG. 3. Stability regions for the rotating wormhole with jjj ¼ 1.1 (left top), jjj ¼ 2 (right top), jjj ¼ 5 (left bottom), and jjj ¼ 15

(right bottom). Shaded regions indicate stability. Solid lines represent x0 ¼ jjj= ffiffiffi
2

p
.

3We notice that a charged thin-shell wormhole is also stable
with any β20 when some conditions are satisfied [28].
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