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A way to obtain a correspondence between the first order and second order formalism is studied. By
introducing a Lagrange multiplier coupled to the covariant derivative of the metric, a metricity constraint is
implemented. The new contributions which comes from the variation of the Lagrange multiplier transforms
the field equations from the first order to the second order formalism, yet the action is formulated in the first
order. In this way all the higher derivatives terms in the second order formalism appear as derivatives of the
Lagrange multiplier. Using the same method for breaking metricity condition and building conformal
invariant theory is briefly discussed, so the method goes beyond just the study of first order or second
formulations of gravity, in fact vast new possible theories of gravity are envisioned this way.
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I. INTRODUCTION

There are two main formulations that are used in gravity
theories. The first order formalism, which is also called the
Palatini formalism [1] treats the metric and the connection
as independent degrees of freedom. The connection is
obtained through the solution of the equations of motion. In
general, the solution does not result in the connection being
the Levi Civita or Christoffel symbol. In contrast to that,
in the second order formalism the connection is assumed to
be the Levi Civita or Christoffel symbol:

�
ρ

μν

�
¼ 1

2
gρλðgλμ;ν þ gλν;μ − gμν;λÞ ð1Þ

and appears in the action in this way, not by being an
independent degree of freedom. Those two formulations
are used independently by different researchers and in
general those two are inequivalent formulation for similarly
looking gravity theories in terms of the dependence on the
scalar curvature tensors and scalars. Only for Lovelock
theories [2], which includes Einstein Hilbert action at the
first order, both formulations will yield the same equations
of motion and the connection will be in both cases the
Christoffel symbol [3].
Many of the modified theories of gravity that we

consider, as fðRÞ gravity and higher curvature terms

fðR;RμνRμν; RαβγδRαβγδÞ, are viable and can exist in a
wide parameter range. To just a few examples where using
higher curvature terms has been done are in inflationary
models, first of all in the second order formalism in the
Starobinski model R2, a higher curvature terms in context
of inflationary solutions [4–7] or quadratic Gauss Bonnet
inflation [8]. In the Palatini formalism or in the metric
formalism as well, fðRÞ theories of gravity are used to
describe the accelerated cosmological expansion [9]. Those
theories are consistent with the observational constraint
for a range of parameters of the theory. The subject of
alternative theories of gravity has been very active in order
to provide a new approach to the puzzles of cosmology, like
the dark matter and dark energy questions and for other
fields as black holes and neutron stars structure and merger.
Each alternative theory of gravity has then to be compared
with observational data, etc.
While for general relativity and other Lovelock theories,

the first order and the second order formalisms give
just two different variational presentations of the theory
and the name “formalism” is indeed justified, for more
generic Lagrangian, they are not, since a similar looking
Lagrangian, in terms of its dependence on the curvature
tensors, etc., leads to a different theory in the first order
formalism and in the second order formalism. The name
“formalism” is therefore somewhat misleading in this case,
although it has continued to be used anyway, but instead
of just being only a formalism, it represents a way to
build a different theory of gravity from the same looking
Lagrangian.
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II. BASIC FORMULATION

We are not going to deal with a specific theory of gravity.
Instead, the objective of this paper is to show that all known
theories of gravity (and some more that could be formu-
lated as we will see) and in particular the second order
formulation of a gravitational theory can be formulated in a
first order form. Indeed we will see that in a first order
formulation and by using also a Lagrange multiplier tensor
field kαβγ which couples to the covariant derivative of
the metric, the equation of the Lagrange multiplier that
enforces the vanishing of the covariant derivative of the
metric (metricity condition) we can convert the first order
equations of motion to reproduce the equations of motion
in the second order formulation, however the action is still
formulated in the first order formalism:

LðgÞ2order ⇔ Lðg;ΓÞ þ kαβγgαβ;γ1order ð2Þ
The variation with respect to kαβγ gives the metricity
condition:

gαβ;γ ¼ 0 ⇒ Γρ
μν ¼

�
ρ

μν

�
ð3Þ

This type of Lagrange multiplier was first considered for
the purpose of giving a canonical conjugate momentum to
the metric in the context of a covariant gauge theory of
gravity [10,11], but considered only for a very special case
in a Hamiltonian approach. An equivalent constraint was
taken into account in [12–14] which has a similar con-
clusions, but was not discussed with higher curvature
terms. For other different constraints, the vanishing of
the covariant derivative of the metric can be explored giving
a new possibilities as we will discuss in the case of a
formulation for conformal symmetry, but also many other
possibilities could be considered, leading to the possibility
of formulating many new theories of gravity.

III. THE CONNECTION BETWEEN
THE VARIATIONS

For the additional term in the action that introduces a
Lagrange multiplier:

SðκÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
kαβγgαβ;γ ð4Þ

we consider a 3 index tensor. The variation with respect to
this tensor gives the metricity condition, which cause the
connection to be the Christoffel symbol, even if the action
is formulated in first order formalism. As we will see this
formulation gives the same equations of motion as the
second order formalism, but the equations appear as up to
second order differential equations, even for higher curva-
ture action. The variation with respect to the connection
gives the tensors:

δLðκÞ
δΓρ

μν
¼ −kαμνgρα − kανμgρα ð5Þ

with a symmetrization between the components μ and ν.
The variation with respect to the metric is

Gμν
ðκÞ ¼

δLðκÞ
δgμν

¼ −kμνλ;λ : ð6Þ

Because of the new contribution to the field equation Gμν
ðκÞ

the complete field equation will contain additional terms
which make the first order field equations to be equivalent
to the field equation under second order formalism.
For obtain the contribution for the variation with respect

to the metric, we have to use the variation with respect to
the Γ. In that way, the value of the tensor kαβγ will appear:

gρσ
∂LðκÞ
∂Γρ

μν
¼ −kσμν − kσνμ: ð7Þ

By changing the indices we get the relations:

gρν
∂LðκÞ
∂Γρ

μσ
¼ −kνμσ − kνσμ; ð8Þ

gρμ
∂LðκÞ
∂Γρ

νσ
¼ −kμνσ − kμσν: ð9Þ

Adding Eq. (7) into Eq. (8) minus Eq. (9) gives:

gρσ
∂LðκÞ
∂Γρ

μν
þ gρν

∂LðκÞ
∂Γρ

μσ
− gρμ

∂LðκÞ
∂Γρ

νσ
¼ −2kνσμ ð10Þ

which is the value of the tensor, without any symmetriza-
tion of the indices. Therefore the variation with respect to
the metric, which comes from the term − δLðκÞ

δgσν
¼ kνσμ;μ will

given by a derivative of the tensor from Eq. (10):

δLðκÞ
δgσν

¼ 1

2
∇μ

�
gρσ

∂LðκÞ
∂Γρ

μν
þgρν

∂LðκÞ
∂Γρ

μσ
−gρμ

∂LðκÞ
∂Γρ

νσ

�
ð11Þ

as we see in Eq. (12). Indeed solving the tensor kμνλ and
inserting back into Eq. (6) gives:

δLðκÞ
δgσν

¼ 1

2
∇μ

�
gρσ

∂LðκÞ
∂Γρ

μν
þgρν

∂LðκÞ
∂Γρ

μσ
−gρμ

∂LðκÞ
∂Γρ

νσ

�
ð12Þ

where the terms in the right-hand side represents the
additional terms that appear in the second order formalism.
One option for obtain the contributions into the field
equation is to solve kαβγ . The direct way is by using this
equation, that gives the new contributions for the second
order formalism into the field equation, from the variation
with respect to the connection Γρ

μν. Let’s see a simple
example for the correspondence.
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IV. A HIGHER CURVATURE TERMS EXAMPLE

To see how this idea is implemented, let us take a form of
action up to second power for curvature terms [15–17]:

LðgÞ2order ¼ Rþ α

2
R2 þ β

2
RμνRμν þ γ

2
RαβγδRαβγδ ð13Þ

The variation of the action with respect to the metric in the
second order formalism gives the terms:

Gμν
ð0Þ ¼ Rμν −

1

2
gμνR ð14aÞ

Gμν
ðαÞ ¼ R

�
Rμν −

1

4
gμνR

�
−∇μ∇νRþ gμν□R ð14bÞ

Gμν
ðβÞ ¼ RμγRν

γ −
1

4
gμRαβRαβ

−
1

2
∇γð∇μRνγ þ∇νRμγÞ þ 1

2
□Rμν þ 1

4
□R ð14cÞ

Gμν
ðγÞ ¼ RμαβγRν

αβγ −
1

4
gμνRαβγδRαβγδ

þ ð∇α∇β þ∇β∇αÞRμανβ ð14dÞ

Where the complete variation is the sum of the partial
ones:

Gμν ¼ Gμν
ð0Þ þ αGμν

ðαÞ þ βGμν
ðβÞ þ γGμν

ðγÞ: ð15Þ

In the vacuum case (no matter)Gμν ¼ 0. These equations of
motion in second order formalism should coincide to the
equations of motion of the action with the Lagrange
multiplier in first order formalism as (2) The variation
with respect to the Lagrange multiplier kαβγ forcing
metricity condition (3) and the connection being
Christoffel symbol. The variation with respect to the
connection gives:

Kμν
λð0Þ ¼ ∇ρðgμρδνλ − gνμδρλÞ ð16aÞ

Kμν
λðαÞ ¼

�
gμν∇λ −

1

2
δνλ∇μ −

1

2
δμλ∇ν

�
R ð16bÞ

Kμν
λðβÞ ¼ ∇λRμν −

1

4
δμλ∇νR −

1

4
δνλ∇μR ð16cÞ

Kμν
λðβÞ ¼ ∇σR

μσν
λ þ∇σR

νσμ
λ ð16dÞ

Where also here the complete variation is the sum of the
partial ones:

−kμβνgλβ−kνβμgλβþKμν
λð0Þ þαKμν

λðαÞ þβKμν
λðβÞ þ γKμν

λðγÞ ¼ 0:

ð17Þ

Because of the metricity condition (3), the variation of R
with respect to the connection gives identically zero
Kμν

λð0Þ ¼ 0. Therefore we get:

kμβνgλβ þ kνβμgλβ ¼ αKμν
λðαÞ þ βKμν

λðβÞ þ γKμν
λðγÞ: ð18Þ

The field equation are obtained from the variation with
respect to the metric (in the first order formalism):

Gμν
ðκÞ ¼ −kμνλ;λ ð19aÞ

Gμν
ð0Þ ¼ Rμν −

1

2
gμνR ð19bÞ

Gμν
ðαÞ ¼ R

�
Rμν −

1

4
gμνR

�
ð19cÞ

Gμν
ðβÞ ¼ RμγRν

γ −
1

4
gμRαβRαβ ð19dÞ

Gμν
ðγÞ ¼ RμαβγRν

αβγ −
1

4
gμνRαβγδRαβγδ ð19eÞ

with the complete field equation:

Gμν ¼ Gμν
ðκÞ þ Gμν

ð0Þ þ αGμν
ðαÞ þ βGμν

ðβÞ þ γGμν
ðγÞ: ð20Þ

From Gμν
ðκÞ we get the contribution to field equation

which transforms the equations of motion from the original
terms of the first order formalism into the additional term in
the second order formalism. To show that, let us use
Eq. (12) by substituting all of the Kμν

λ ¼ δL
δΓμν

λ
terms from

Eq. (16). The contribution from Gμν
ðκÞ ¼ −kμνλ;λ gives:

Gμν
ðαÞ2

order ¼ Gμν
ðαÞ1

order þ α½−∇μ∇νRþ gμν□R� ð21aÞ

Gμν
ðβÞ2

order ¼ Gμν
ðβÞ1

order

þ β

�
−
1

2
∇γð∇μRνγ þ∇νRμγÞ

þ 1

2
□Rμν þ 1

4
□R

�
ð21bÞ

Gμν
ðγÞ2

order ¼Gμν
ðγÞ1

orderþ γ½ð∇α∇βþ∇β∇αÞRμανβ� ð21cÞ

which are the missing terms that shifted the field equation
from the original first order field equation (14) into the field
equation in second order formalism (19), using Bianchi
identities and symmetrization of the indices. From the
variation of the correspondence (2) with respect to the
metric we obtain that in general

Gμν
ðγÞ2

order ¼ Gμν
ðγÞ1

order þ Gμν
ðκÞ ð22Þ

as shown for the example above.
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V. THE PATH INTEGRAL APPROACH

A formal argument valid even in the quantum case can be
formulated in the path integral approach of [18]. Consider
the path integral over all the field variables (g, k, Γ)
independently of each other, the path integral is

Z ¼
Z

DkDgDΓei
R

d4x
ffiffiffiffi−gp ðLðg;ΓÞþkαβγgαβ;γÞ: ð23Þ

Performing the integral over the field k we obtain the delta
function enforcing the metricity relation:

¼
Z

δðgαβ;γÞDgDΓei
R

d4x
ffiffiffiffi−gp

Lðg;ΓÞ:

Since we know that the metricity condition enforces the
connection to be equal to the Christoffel symbol (3):

∼
Z

δðΓρ
μν −

�
ρ

μν

�
ÞDgDΓei

R
d4x

ffiffiffiffi−gp
Lðg;ΓÞ

therefore after integration over Γwe obtain the path integral
in the second order formulation:

Z ¼
Z

Dgei
R

d4x
ffiffiffiffi−gp

LðgÞ ð24Þ

where the Γ has been replaced by the Christoffel symbol
every where. The final path integral (24) is the path integral
which represents an action under the second order formal-
ism. This argument shows us that the second order
formalism, which contains higher derivatives in the action,
can be put in the first order form without higher derivatives.
This fact should be useful for some semi-quantum version
of gravity theories with higher curvatures terms. In front of
quantizing the action in the second order formalism
with higher derivatives, one could use the first order
formalism with the metricity constraint, which formulate
the action in lower derivatives of the metric and connection
independently.
Concerning the initial value problem, since the models

considered at the end are equivalent to a theory formulated
in the second order formalism, the formulation of the initial
value problem is also equivalent, nevertheless, here, with
the new variables introduced here, including the Lagrange
multiplier field, all the initial conditions can be expressed
in terms as initial values for the fields (including for the
Lagrange multiplier field). This is similar to the
Hamiltonian formalism where the canonically conjugate
variables are introduced and the initial condition involve
the initial values of the fields and their canonically
conjugate momenta.

VI. A CONFORMAL INVARIANT CASE

A generalized constraint on the metric that respects
conformal invariance [19–21] could be used from those
notions. By introducing a vector field Aμ into the constraint:

L̃ðκÞ ¼ ffiffiffiffiffiffi
−g

p
kαβγðgαβ;γ − egαβAγÞ ð25Þ

a conformal symmetry emerges. Where e is the “conformal
charge” of the conformal gauge field. Assuming that the
connection will be covariant under conformal transforma-
tion, the symmetries give:

Γλ
αβ → Γλ

αβ; gμν → ΩðxμÞ2gμν; kαβγ → kαβγ ð26Þ

Aμ → Aμ þ
2

e
∂μ logΩðxμÞ

that the Lagrange multiplier kαβγ with lower indices does
not transform. From the variation of the Lagrange multi-
plier, the condition of Weyl’s nonmetricity is obtained from
the action:

∇γgαβ ¼ eAγgαβ ð27Þ
which leads to the solution for the connection:

Γρ
μν ¼

�
ρ

μν

�
−
e
2
gρλðgλμAν þ gλνAμ − gμνAλÞ ð28Þ

For the conformal invariance we keep quadratic terms of
curvatures in the action coupled to the measure

ffiffiffiffiffiffi−gp
which

is also conformal invariant in addition to the kinetic term of
the gauge fields:

LðcurvÞ
ðg;ΓÞ ¼ α

2
R2 þ β

2
RαβRαβ þ γ

2
RαβγδRαβγδ ð29Þ

LðKinÞ ¼ −
1

4
FμνFμν ð30Þ

By introducing nonmetricity constraint (27) we can obtain
a conformal action and equations of motion, where the
basic formulation is the Palatini formalism. The variation
with respect to the connection gives the tensors as before:

δL̃ðκÞ
δΓρ

μν
¼ −kμβνgρβ − kνβμgρβ ð31Þ

with a symmetrization between the components μ and ν.
And also the variation with respect to the metric is

−
ffiffiffiffiffiffi
−g

p
Gμν

ðκÞ ¼ −
δL̃ðκÞ
δgμν

¼ k̃μνλ;λ þ eðk̃μνλAλ þ k̃νμλAλÞ ð32Þ

where k̃μνλ ¼ ffiffiffiffiffiffi−gp
kμνλ. Notice that the conformal change

of k̃μνλ is opposite to conformal charge of gμν, that is
transforms as:

k̃μνλ → Ω−2k̃μνλ: ð33Þ
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Because of the new contribution to the field equation Gμν
ðκÞ,

the complete field equation will contain additional terms
which make the field equation to be Weyl invariant, which
we will study in detail in the future.
If we want to have a linear term in curvature which

would save the conformal invariance, we will have to use a
modified measure, which is independent of the metric [22]:

S¼
Z

d4x½ΦRþ L̃ðκÞ þ
ffiffiffiffiffiffi
−g

p ðLðcurvÞ
ðg;ΓÞ þLðKinÞÞ� ð34Þ

where the construction of this modified measure, e.g., is
from 4 scalar fields φa, where a ¼ 1, 2, 3, 4.

Φ ¼ 1

4!
εαβγδεabcd∂αφ

ðaÞ∂βφ
ðbÞ∂γφ

ðcÞ∂δφ
ðdÞ ð35Þ

with the symmetries of the scalars and the measure:

φa
0 → φ0

aðφÞ; Φ0 → ΦΩðxÞ2 ð36Þ

with the Jacobian of transformation being J ¼ ΩðxÞ2. This
is one option for breaking the metricity condition, using the
same Lagrange multiplier.

VII. DISCUSSION

In this paper we used a Lagrange multiplier in Palatini
formalism, which can implement metricity condition, and
give the same equation as the field equations which comes
from second order formalism. An explicit proof for
vanishing of the covariant divergence of the energy-
momentum tensor in beyond Lovelock in Palatini formu-
lation is presented [23]. However by introducing the
Lagrange multiplier of the metric, the energy momentum
tensor that will appear is the same one in the second order
formalism, even the action formulated in the first order.
Hence, the stress energy momentum tensor for those
theories will be always covariant conserved. A general
argument using the path integral approach was formulated
as well, and shows the correspondence between the two
formalisms, up to the quantum level.
This mathematical approach discussed in the absence of

matter Lm. In the case of Lm which has no dependence on

the connection Γ, as minimally coupled scalar filed or
electromagnetic filed, the calculations are the same. Only in
the case of fermion, where we have to use the spin
connection formalism, there could be more requirements
with different analyses for the correspondence.
In addition, we used the same method for producing

Weyl conformal invariance from an action which is for-
mulated by the first order formalism. The Lagrange
multiplier is consistent with conformal invariance and by
introducing the proper action a conformal gravity could
emerge from this formalism. A complete description of this
modified gravity theory will be studied in the future.
The formulation of second order theories in the first

order form has a clear advantage from the canonical
formulation and therefore concerning the quantization of
the theory. The equations of motion are only second order
initially, they become higher order when we solve the
Lagrange multiplier and reinsert this into the equations of
motion. Also the metric has a canonically conjugate
momenta, which allows to interpret the integration in the
functional integral over kαβγ and over the metric as an
integration in phase space. All these subjects deserve
further study.
In the future wewill present the physical interpretation of

this Lagrange multiplier as the metric conjugate momen-
tum, with the feature of linking between the first and the
second order formalism. Effectively, formulating a theory
in the second order formalism in the form of first order
formalism provides a simple Hamiltonian formulation,
because of the fact that your action contains a metric
conjugate momentum. This will be used in the context of
covariant canonical gauge theory of gravity.
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