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There has been a striking realization that physics resolving the black hole information paradox could
imply postmerger gravitational wave echoes. We here report on evidence for echoes from the LIGO
compact binary merger events, GW151226, GW170104, GW170608, GW170814, as well as the neutron
star merger GW170817. There is a signal for each event with a p-value of order 1% or sometimes
significantly less. Our study begins with the comparison of echoes from a variety of horizonless exotic
compact objects. Next we investigate the effects of spin. The identification of the more generic features of
echoes then leads to the development of relatively simple windowing methods, in both time and frequency
space, to extract a signal from noise. The time delay between echoes is inversely related to the spacing
between the spectral resonances, and it is advantageous to look directly for this resonance structure. We
find time delays for the first four events that are consistent with a simple model that accounts for mass and
spin of the final object, while for the neutron star merger the final mass and spin are constrained.
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I. INTRODUCTION

With the discovery of gravitational waves from compact
binary mergers [1] came a more careful study of exotic
compact objects (ECOs) as alternatives of black holes.
Theoretically, the existence of horizonless ECOs may be
fundamental to resolving the black hole information para-
dox. Empirically it is hard to verify the nature of spacetime
very close to the horizon due to the large gravitational
redshift, and observational evidence from astrophysical
objects only shows that ECOs must resemble black holes
considerably further from the horizon [2,3]. Short wave-
length modes, which can be approximated by point
particles in comparison to the size of the object, have a
tiny escape cone and are efficiently trapped in the high
redshift region. Very compact ECOs will then appear dark
in the electromagnetic window. Gravitational waves with
wavelengths comparable to the size of the object may not
suffer from the trapping (for a different view involving
fuzzballs see [4]).
As recently highlighted in [5,6], the LIGO observations

of the black hole merger and ringdown do not exclude
horizonless ECOs that have the same angular momentum
barrier outside of the horizon as do black holes. It remains
possible that signals may occur due to reflection from ECO
surfaces or interiors situated well within the light ring. A
wave which falls inside the barrier will reflect off the ECO

and return to the barrier after some time delay td, where
some of the wave will transmit outwards and the remainder
will fall back in toward the interior. This process repeats
and generates a distinct set of echoes as seen by an outside
observer. Interestingly, td only has a logarithmic depend-
ence on the distance from the would-be horizon to where
deviations occur. A deviation at a proper Planck distance
gives td ≲ 103M, which is of order 0.1 s for astrophysical
ECOs with M of order 10 M⊙. This is an accessible
timescale to probe in LIGO data.
A preliminary search for echoes in the LIGO data [7] was

based on the traditional matched filtering method with a toy
model for the template. Although the significance of the
evidence is still under debate [8], this helped to inspire
further work on echoes [9–16]. Some of this effort has been
put toward providing approximate templates for echoes
[11,12,15].
To move forward, one serious challenge is to deal with

the issue of model dependence. For a binary merger
remnant, the wave perturbations can be well described
by wave equations on a stationary background, where the
crucial information about the background spacetime is
encoded in an effective potential. For the black hole
spacetime and in terms of the tortoise coordinate x, the
potential approaches 0 at spatial infinity (x → ∞) and a
spin-dependent constant at the horizon (x → −∞), with the
angular momentum barrier peaking at xpeak. With the
addition of an inner boundary at some x0 < xpeak, an
ECO then behaves as a cavity bounded by this boundary
and the potential barrier, with the trapped waves gradually
leaking out of the cavity through the barrier. The time delay
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between echoes approximately measures the size of the
cavity (becoming larger for more compact ECOs), with
td ≈ 2ðxpeak − x0Þ. The current observation of a clear black
hole ringdown phase only requires that td ≳ 20M [3]. The
variety of ECOs in alternative theories implies differences
in the potential close to the inner boundary and differences
in the boundary condition. These variations, in addition to
the spin of the ECO, can significantly influence the echo
waveform in the time domain and make it difficult to
construct a specific template.
In contrast, echoes in the frequency domain exhibit a

striking resonance pattern. The nearly trapped modes of the
cavity correspond to complex poles of the Greens function
of the perturbation equation, with the poles being very
close to the real axis. Thus by taking the absolute value of
the Fourier transform of the echo waveform, one finds a
series of sharp resonances with a nearly even spacing of
2π=td. A large td implies a large number of such reso-
nances. The phase information is dropped in this descrip-
tion, and this helps to greatly reduce the model dependence.
In this paper we shall develop strategies to extract the time
delay based on the resonance pattern, while being less
sensitive to the more model-dependent information con-
tained in the precise echo waveform.
In Sec. II we take the Greens function approach toward

solving the perturbation equation for a spinless ECO with a
more general potential and boundary condition. This
generality allows us to determine the universal and dis-
tinguishing features of the resonance pattern for different
ECOs. Next we extend these results to the case of nonzero
spin in Sec. III. A spin changes the shape of the resonance
pattern, and it increases the number of narrow resonances.
For spins typical of the merger remnants of LIGO events,
this turns out to be quite relevant for search strategies. In
Sec. IV we develop quasiperiodic window functions, or
combs, designed to isolate signals from noisy data. Here we
focus on windows in frequency space while two other
methods are described in Appendix C. Finally in Sec. V we
apply our methods onto the LIGO data; we describe our
signals and estimate p-values for each event. In Sec. VI we
study consistency of the signals and other characteristics,
including secondary peaks, that strengthen the echo inter-
pretation. We end that section with some implications for
the neutron star merger. We conclude in Sec. VII.

II. ECHOES FROM SPINLESS ECOS

A useful way to understand echoes is through their
frequency content. On a static and spherically symmetric
background as described by the metric ds2 ¼ −BðrÞdt2 þ
AðrÞdr2 þ r2dθ2 þ r2 sin2 θdϕ2, the field equations for
wave perturbations are greatly simplified by separating
out angular variables and focusing on the radial equation.
Considering a single frequency mode e−iωtψωðxÞ, the radial
equation reduces to

(∂2
x þ ω2 − VðxÞ)ψωðxÞ ¼ Sðx;ωÞ; ð1Þ

where x is the tortoise coordinate implicitly defined by
dx=dr ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðrÞ=BðrÞp
, and Sðx;ωÞ denotes the matter

source that generates the perturbation. The background
spacetime determines the effective potential VðxÞ ¼
V(rðxÞ),

VðrÞ ¼ BðrÞ lðlþ 1Þ
r2

þ 1 − s2

2r
BðrÞ
AðrÞ

�
B0ðrÞ
BðrÞ −

A0ðrÞ
AðrÞ

�
;

ð2Þ

for the field perturbation with spin s and angular momen-
tum l.1 For Schwarzschild black holes, the angular momen-
tum barrier reaches a peak at xpeak, which is close to the
light ring radius r ¼ 3M.
Figure 1 presents the potential for different ECOs. A

simple model is provided by a black hole potential with the
low end of the x range simply truncated at x0, and where the
model dependence is encoded in the boundary condition at
x0. Some more physical models of ECOs are basically
ultracompact stars. The prime example is the gravastar
[17,18] characterized by an exotic matter surface just
outside the would-be horizon. There is no firm prediction
for the location of this surface. The standard centrifugal
barrier of this regular spacetime corresponds to a diverging
potential and the behavior ψωðxÞ ∼ ðx − x0Þlþ1 ∼ rlþ1 near
the origin. Recently two of us found another type of ECO,
the 2-2-hole [19], a generic solution of quadratic gravity
with a roughly Planck-scale distance of deviation. In this
case there is no centrifugal repulsion. Instead the potential
approaches a finite constant and ψωðxÞ ∼ x − x0 ∼ r for

FIG. 1. The effective potential for a test scalar field (s ¼ 0,
l ¼ 1) on the background of a truncated black hole (black line), a
gravastar (blue line), and a 2-2-hole (red line).

1s ¼ 0, 1 are for the test scalar field and electromagnetic
radiation cases. s ¼ 2 gives the Regge-Wheeler equation that
governs perturbations in general relativity.
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any l near the origin. This implies a Dirichlet boundary
condition for ψωðxÞ at x ¼ x0.
Previous studies [11,12] have carried out analyses of

echoes in the frequency domain. However, those methods
cannot be applied to ECOs with potentials significantly
different from that of a black hole, such as the gravastar and
2-2-hole. So in the rest of this section we will first discuss a
more general method, and then we find both the universal
features of echoes and the nonuniversal features that can
distinguish different spinless ECOs.
The solution of (1) can be found with the help of the

Greens function, which satisfies

∂2Gωðx; x0Þ
∂x2 þ (ω2 − VðxÞ)Gωðx; x0Þ ¼ δðx − x0Þ: ð3Þ

the Greens function can be constructed from the two
homogeneous solutions that satisfy boundary conditions
on the left (x ¼ x0) and the right (x ¼ ∞), respectively,

Gωðx; x0Þ ¼
ψ left(minðx; x0Þ)ψ right(maxðx; x0Þ)

Wðψ left;ψ rightÞ
: ð4Þ

The Wronskian Wðψ left;ψ rightÞ ¼ ψ leftψ
0
right − ψ 0

leftψ right ≡
WðωÞ, which is independent of x, contains the essential
information of the ECO. ψ right is determined by the out-
going boundary condition ψ right → eiωx when x → ∞. The
response to a given source, at spatial infinity x → ∞ and at
frequency ω, is then

ψω ¼ eiωx ·KðωÞ ·
Z

∞

−∞
dx0ψ leftðx0ÞSðx0;ωÞ: ð5Þ

We refer to KðωÞ ¼ 1=WðωÞ as a transfer function, and it
encodes the exotic compact object’s (ECO’s) resonance
structure.
The solution ψ left is determined by the inner boundary

condition of the ECO. We consider a one-parameter family
of boundary conditions parametrized by the reflectivity R,

ψ left →

�
e−iωVx0AtransðωÞðe−iωV ðx−x0Þ þ ReiωV ðx−x0ÞÞ; x → x0
AoutðωÞeiωx þ AinðωÞe−iωx; x → ∞

; ð6Þ

where ωV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − Vðx0Þ

p
and VðxÞ is slowly varying at

x0. A numerical solution for ψ left given the boundary
condition at x0 then determines the Wronskian, WðωÞ ¼
2iωAinðωÞ. We define KRðωÞ≡ 1=WðωÞjR. R ¼ 1
(R ¼ −1) corresponds to a Neumann (Dirichlet) boundary
condition while R ¼ 0 describes a purely ingoing wave at
x ¼ x0, appropriate for a horizon. The normalization factor
AtransðωÞ for ψ left has no influence on the observable ψω in
(5) since ψ left also appears in the source integral. Here we
choose AtransðωÞ ¼ 1

2i ðωVωÞ−1=2 such that we can write

K0ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ωV=ω

p
AtransðωÞ=AinðωÞjR¼0, in which case

jK0ðωÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijFtrans=Finj

p
where F is an energy flux. For

a truncated black hole with a x0 such that Vðx0Þ is
negligible, K0ðωÞ ¼ TBHðωÞ is the standard black hole
transmission amplitude, where jTBHj monotonically in-
creases from 0 to 1 as the real frequency ω ranges from 0 to
∞. Similarly there is the black hole reflection amplitude
RBH that tends to zero at large ω.
Before continuing our discussion of the transfer function

it is instructive to consider the homogeneous wave equation
corresponding to (1) and solve it numerically in the time
domain. Here an initial condition must be chosen. An initial
Gaussian pulse starting inside or outside the light ring and
moving toward the light ring may be used to model the
initial perturbation of the light ring. The resulting first pulse
moving outwards is identified with the ringdown signal of
the merger event, and the subsequent pulses are identified
as the echoes. For an outgoing (ingoing) initial Gaussian
pulse, the first pulse picks up a factor of TBH (RBH), and it is

the first pulse (the first echo) that contains the high
frequency components. Figure 2(a) presents the frequency
content of individual echoes as generated by an outgoing
initial Gaussian pulse. For the pulselike perturbation
bouncing back and forth between the inner boundary
and the angular momentum barrier, the later echoes involve
more reflections RBH. The result is a frequency content
slowly shifting downwards. In the time domain this
corresponds to damping echoes with gradually growing
widths, which can eventually overlap at late enough times.
The transfer function KðωÞ can be reconstructed by the

Fourier transform of the echo waveform for a finite time
range, divided by the frequency content of the outgoing
initial Gaussian pulse. With no reflection at x0, the transfer
function is simply the transmission amplitude K0ðωÞ ¼
TBHðωÞ. With a reflection at x0, Fig. 2(b) shows the
reconstructed jK−1ðωÞj with an increasing number of
echoes. The larger time range, and thus the increasing
frequency resolution, helps to gradually recover the nar-
rower resonances at lower frequency.
Our definition of the transfer function as KðωÞ ¼

1=WðωÞ can be applied to other ECOs with arbitrary
potentials and boundary conditions. Figure 3 shows
how a variety of ECOs influences the transfer function.
Figure 3(a) shows the truncated black hole for the s¼ l¼2
axial metric perturbation and with various boundary con-
ditions. Figure 3(b) shows the generalized transfer func-
tions for a 2-2-hole and two types of gravastars. In general
the position and width of the resonances, as determined by
the real and imaginary parts of the complex poles of the
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transfer function, depend on the boundary condition and
shape of the potential. The main observation from these
figures is that for all cases the transfer function is
universally characterized by nearly evenly spaced reso-
nances with gradually increasing widths. The upper end
of the resonance pattern is roughly determined by the
ringdown frequency of the corresponding black hole. For

different ECOs the pattern differs mostly by an overall
shift, except at the lowest frequencies where nontrivial
distortions occur.
In Fig. 3(a) we have chosen to plot jKRðωÞ −K0ðωÞj,

where the subtraction removes the high frequency compo-
nent corresponding to the first pulse. The smooth decrease
seen at high frequency confirms that no pure transmission

(a)

(b)

FIG. 3. Upper: logðjKRðωÞ −K0ðωÞjÞ for the truncated black hole: R ¼ −1 (red lines), R ¼ 1 (blue lines), and R ¼ 1=2 (green lines).
Lower: log jKðωÞj for 2-2-hole (red lines), gravastar with Mv=M ¼ 0.8 (green lines), and gravastar with Mv=M ¼ 1 (blue lines). All
assume td=M ≈ 160. ωRD denotes the black hole ringdown frequency. The frequency resolution, the inverse of the step size, is 105.

FIG. 2. For a truncated black hole with R ¼ −1, td=M ≈ 160, and the initial Gaussian pulse within the light ring: (a) the frequency
content of individual echoes; (b) the reconstructed transfer function with different echo numbers.
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term remains. For the 2-2-hole we must implement the
Dirichlet boundary condition as in (7) with R ¼ −1.2 The
metric perturbations are described by the more complicated
equations from quadratic gravity, but for illustrative pur-
poses we have carried over the small r deformation of the
VðrÞ for s ¼ 0 to the VðrÞ for s ¼ 2. We see that the effect
of such a deformation away from the truncated black hole is
quite mild except at low frequencies. The gravastar has
ψ left ∼ aðx − x0Þlþ1 near the boundary and the coefficient a
is chosen such that jKðωÞj → 1 at high frequencies. In
Fig. 3(b) the two choices of the gravastar parameters give a
large relative shift in the resonance pattern.
The absolute value of the Fourier transform of the

observed echo waveform is also affected by the source
contribution as in (5), and this will lead to a modulation of
the resonance pattern from the transfer function. Since the
source is largely uncertain, we set the generic search target
as the nearly evenly spaced resonance pattern within a
frequency range. This frequency bandpass can reduce the
dependence on the source modulation and on the potential
shape close to the inner boundary, while also accounting for
the difficulty of resolving the lower frequency spikes. In the
next section we explore the effect of spin on the resonance
pattern and develop a better idea of how to choose the
frequency bandpass.

As a final comment, it is standard to assume a minimal
picture for echoes, where echoes are echoing the initial
disturbance of the light ring. But it is also possible that
some other disturbance originates in the core of the newly
forming ECO, giving a gravitational wave that arrives at the
light ring at some time after the initial disturbance. Our
focus shall be on the minimal picture.

III. THE EFFECT OF SPIN

For the LIGO merger events, the final objects have spins
and the observations already require them to resemble the
exteriorKerr black holes at least down to the light ring radius.
In this section we study the effects of spin on the resonance
pattern of the transfer function, with inspiration from the
studies in [11,20].3 We find that spin does add interesting
structure to the shapeof the resonancepattern thatwill impact
the relative effectiveness of different search strategies.
Figures 4(b) and 5(b) in particular will provide some
guidance on the choice of bandpass for a given resolution.
In our case these results provide a consistency check, since
they were determined after our data analysis was complete.
The wave perturbation on a Kerr background spacetime

is described by the Teukolsky equation [22]. But its radial
equation does not have a short-ranged potential, and so the

(a)

(b)

FIG. 4. (a) Examples of jKχ
RðωÞj for a truncated Kerr black hole with spin χ ¼ 2=3 and R≡ Rwall ¼ −1, 0, 1 with lnðδÞ ¼ −34.

(b) Examples with m ¼ �2 and lnðδÞ ¼ −155, where this δ corresponds to a time delay more typical of our data analysis. The vertical
lines show the respective ringdown frequencies ωRD. The frequency resolutions used in (a) and (b) are 16000 and 32000, respectively,
and so in (b) there are about 280 steps between spikes.

2For the 2-2-hole td=M ≈ 700–860 ∼ 8 logM as discussed in
Sec. VI. Here we use td=M ≈ 160 for illustrative purposes.

3The position and width of the lowest resonance of a rotating
gravastar were studied in [21].
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resulting asymptotic behaviors at the horizon or spatial
infinity are such as to complicate a numerical study. This
deficiency is cured by a transformed version of the radial
Teukolsky equation, the Sasaki-Nakamura (SN) equation,
as developed for s ¼ −2 [23]. The relation between the
solutions of these two equations is discussed in
Appendix A. The asymptotic solutions of the SN equation
take pure sinusoidal forms, e�iωx for x → ∞ and e�ikHx for
x → −∞, where kH ¼ ω −mΩH and ΩH ¼ χ=ð2rþÞ. χ ¼
J=M2 is the dimensionless spin, the horizon is at rþ where
r� ¼ Mð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þ, and the tortoise coordinate is

defined by dx=dr ¼ ðr2 þM2χ2Þ=ðr2 þM2χ2 − 2MrÞ.
The SN equation naturally reduces to (1) in the spin-
less limit.
In this section we focus on a truncated Kerr black hole,

the simplest model for a rotating ECO. To find the analog of
Fig. 3 for nonzero spin, we can again impose a family of
boundary conditions at x ¼ x0 parametrized by the reflec-
tivity, as we did in (7), but now for the SN equation. When
x0 is large and negative this corresponds to a boundary at r0
very close to rþ, and where the time delay is well
approximated by [3]

td=M ¼ −2
�
1þ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q �
lnðδÞ; ð7Þ

with δ ¼ ðr0 − rþÞ=M. To solve the SN equation an
eigenvalue λ as determined by the angular Teukolsky
equation is needed, and for this we use code developed
in [24]. We also use code that provides a series expansion of
the large x solution to the SN equation in [25].
The boundary condition at x ¼ x0 is obtained from (7)

with the replacement ωV → kH and R → RðωÞ. A new
feature of the truncated Kerr spacetime, as noticed in
[11,20], is that a nontrivial RðωÞ is now needed to have a
perfectly reflecting boundary condition, where the latter is
taken to mean that the energy fluxes of the incoming and
outgoing waves at the boundary x ¼ x0 are equal and
opposite. We use jRwallðωÞj2 to denote this ratio of fluxes.
We can again consider two boundary conditions for a
perfectly reflecting wall, Rwall ¼ −1 (Dirichlet-like) and
Rwall ¼ 1 (Neumann-like). (Rwall ¼ 0 corresponds to the
horizon boundary condition.) The corresponding RðωÞ is
real, and in fact it is a smoothnonvanishing function as shown
in Fig. 17 of Appendix B. The relation betweenRwallðωÞ and
RðωÞ is given by (B3). The expressions of the energy fluxes
with the SN equation amplitudes are given in Appendix A.
Our interest here is to extract a transfer function from the

Greens function so as to exhibit the resonance structure. We
first transform the SN equation to Sturm-Liouville form

Lψ¼ðpψ 0Þ0þqψ¼pS̃. p ¼ pðx;ωÞ ¼ e
R

Fdx where F is
the coefficient of the first derivative term in the SN
equation. The Greens function defined by LGðx; x0Þ ¼
δðx− x0Þ then has the x-independent factor ðpWÞ−1 that
can be identified as a transfer function. The choice of an

integration constant in the definition of p corresponds to a
choice of x̄ such that pðx̄;ωÞ ¼ 1, and this leads to
pðx;ωÞ¼Wðx̄;ωÞ=Wðx;ωÞ. Then ðpWÞ−1 ¼ 1=Wðx̄;ωÞ.
The x̄ dependence of this transfer function cancels when
a physical response is calculated because p also appears in
the source integral. jpðx;ωÞj is a smooth and slowly
varying function of x and ω.
As for the spinless case, we wish the Rwall ¼ 0 transfer

function to reduce to the transmission amplitude TBHðωÞ
for the ordinary Kerr black hole. This can be accomplished
by using the same boundary condition as in (6) with our
previous choice of Atrans but with ωV → kH, and using
x̄ ¼ ∞ to define p. This is discussed in Appendix B. The
result is that the transfer function is defined as Kχ

RðωÞ ¼
1=Wð∞;ωÞjRwall

. We also find jKχ
RðωÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijFtrans=Finj
p

where Ftrans and Fin are the ingoing fluxes to the left
and right of the potential barrier, as shown in (B8). The
transfer function can also be written as

Kχ
RðωÞ ¼

TBHðωÞ
1 − RBHðωÞRwalle−2ikHx0

: ð8Þ

The derivation of this formula and the definition of RBHðωÞ
are given in Appendix B.

A. Features of the spectrum

We can now numerically obtain the transfer function and
thus the resonance spectrum. In Fig. 4(a) we display
jKχ

RðωÞj for spin χ ¼ 2=3 and Rwall ¼ −1, 1, 0 and for
the dominant l ¼ m ¼ 2 mode.4 The black line in this
figure is jTBHðωÞj. Although there is structure at the
frequency mΩHM ¼ 0.382, we see that the spikes are at
evenly spaced increments relative to mΩH up to small
corrections.5 The varying heights of the peaks for ω <
mΩH are an indication that the resolution is not sufficient to
resolve the true heights of the peaks. In Fig. 4(b) we display
jKχ

RðωÞj for values m ¼ �2 with Rwall ¼ −1 and for a
smaller δ that emerges from our analysis of LIGO data.
We see that a substantial spin causes them ¼ �2 transfer

functions to be very different. The frequency content of
m ¼ −2 echoes is significantly lower than for m ¼ 2. Even
though the m ¼ −2 mode may be excited to a lesser
amount than the m ¼ 2 mode, it could still give a non-
negligible contribution to the strength of the lower fre-
quency spikes. For m ¼ 2 we see that resonances of
comparable height exist over a wider range of frequencies
as compared to the spinless case. The resonances are also
very narrow throughout the region ω < mΩH, gradually

4The SN equation is invariant under m → −m, ω → −ω along
with complex conjugation. So we may restrict ourselves to
positive frequencies.

5When RðωÞ has a phase, then the spikes can shift relative to
mΩH but their spacing remains regular. We do not find irregular
spacing of the type displayed in Fig. 5(top) of [20].
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becoming less narrow above this region. So a wide range of
frequencies needs to be probed at a high frequency
resolution to properly resolve the signal. At the lowest
frequencies a relative shift in the resonance positions for
m ¼ �2 can be seen; the two lowest resonant frequencies
ω1 and ω2 are related by ω1 ≈ ð1 ∓ 1=8Þðω2 − ω1Þ.6 For
m ¼ 2, we find that the spacings ωi − ωi−1 can vary by
about 2%, being largest for frequencies somewhat below
mΩH and smallest for frequencies close to ωRD. This has
some bearing on search strategies.
The resonance spikes correspond to modes nearly

trapped in a cavity, and they are associated with complex
poles of the transfer function. From (8), the pole at ω ¼
ωR þ iωI can be determined by 1 − RBHRwalle−2ikHx0 ¼ 0.
It is useful to define Reff ≡ RBHRwall. When ignoring the ω
dependence of Reff compared to that of the exponential, a
pole close to the real axis has [12]

tdðωn;R −mΩHÞ ≈ 2πnþ ϕ0; tdωn;I ≈ ln jReffðωn;RÞj;
ð9Þ

where td ≈ −2x0 and ϕ0 ¼ − argReff . Expanding Kχ
R

around the simple pole ω ¼ ωn under the same approxi-
mation, we find

Kχ
RðωÞ ≈

TBHðωn;RÞ
−itd

1

ω − ωn
þ � � � ; for ω ∼ ωn: ð10Þ

A resonance peak on the real axis occurs in jKχ
RðωÞj at

ω ¼ ωn;R with half-width jωn;Ij and height

hn≈
���� TBHðωn;RÞ
ln jReffðωn;RÞj

����: ð11Þ

Thus we see that the half-width scales with 1=td while the
height does not scale with td. The envelope of peak heights
≈hn þ jTBHj (the second term corrects for the case when
the complex poles are not close to the real axis) is displayed
in Fig. 5(a) for different spins. To resolve a resonance spike
at ωn;R, the required number of frequency steps between
resonance spikes is roughly 2π=j ln jReffðωn;RÞjj, which can
grow very large. The narrow resonances imply long-lived
modes. For resonances at ωM ∼ 0.1, 0.2, 0.3, the lifetime
τ ≈ 1=jωIj ∼ 105, 103, 2 × 102 s, for M ¼ 30 M⊙ with the
time delay in Fig. 4(b).

B. Signal strength

In this subsection we shall be concerned with how the
resonance spikes will appear in the data, keeping in mind
that the transfer function is modulated by an unknown
source function. We have already made clear that there are
resonance spikes of the continuum transfer function that are

(a)

(b)

FIG. 5. (a) The envelope of heights of the resonance peaks of the continuum transfer function, for the truncated Kerr black holes for
different spins. (b) The reconstructed transfer function, and envelopes of peak heights, relative to noise, for different numbers of echoes.
A perfectly reflecting boundary condition is used. The overall scale of the vertical axis has no meaning.

6Evidence for the situation with ω2 ¼ 2ω1 is presented in [26].
A phase introduced in the boundary condition would need to be
tuned to arrive at this situation.
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not properly resolved with the frequency resolution 2π=T
where T ¼ NEtd is the time range of the echo signal.
Of more physical interest is the reconstructed transfer
function, as in Fig. 2(b), corresponding to the discrete
Fourier transform of the finite time echo signal. Instead,
and equivalently, we can take the geometric series expan-
sion of the transfer function in (8) to the NEth order, where
the NE terms build up the first NE echoes. This is then
evaluated with the 2π=T frequency resolution. The result-
ing reconstructed transfer function is similar to the con-
tinuum one evaluated at a finite resolution, as in Fig. 4(b),
but with less fluctuation in the peak heights.
When Gaussian noise is added to the time domain signal,

the amplitude of the noise in frequency space will grow
with

ffiffiffiffiffiffiffi
NE

p
. Thus by dividing the NEth reconstructed

transfer function by
ffiffiffiffiffiffiffi
NE

p
, we can compare the relative

effectiveness of different choices of NE. Figure 5(b) dis-
plays the resonance pattern for NE ¼ 280 echoes, where
NE is also the number of frequency steps between spikes.
The envelope of peak heights for this case is given by the
red curve, which bounds the fluctuating peak heights. The
blue and green curves show the envelope of peak heights
relative to noise forNE ¼ 28 and 2800, respectively. AsNE
increases, the dominant part of the spectrum shifts to lower
frequencies. The envelope curves indicate that the growth
of the peak height can compensate for the increase in noise
as longer ranges of data containing more echoes are used.
The envelope is ≈ðhn þ jTBHjÞ=

ffiffiffiffiffiffiffi
NE

p
at the high end and is

well described by hnj1 − expðNE ln jRBHjÞj=
ffiffiffiffiffiffiffi
NE

p
for the

narrow resonances (ω≲ 0.9ωRD). The latter expression
reduces to

ffiffiffiffiffiffiffi
NE

p jTBHj at the low end or for ω close to
mΩH, that is, when jRBHj → 1.
The peculiar enhancement of the envelope curve for

NE ¼ 2800 at midfrequencies is a sign of another phe-
nomenon, the ergoregion instability. It implies that the
series expansion of the transfer function is actually not
converging, and the resulting enhancement only becomes
apparent at high enough NE (the order of the expansion).
We first discuss the related phenomenon of superradiance.
Superradiance can be seen in a steady state situation by
focusing on the monochromatic ψ left solution. The ampli-
fication factor for fluxes as obtained in Appendix B is

ZðωÞ≡FoutðωÞ
FinðωÞ

−1¼ sign

�
kH
ω

�
jKχ

RðωÞj2ðjRwallðωÞj2−1Þ:

ð12Þ

Rwall ¼ 0 gives back the Kerr black hole result. For 0 ≤
Rwall < 1 we find ZðωÞ > 0 in the superradiance region
0 < ω < mΩH. The nontrivial structure of ZðωÞ is fully
captured by the transfer function. Thus for ω within
(outside) the superradiance region, the energy amplification
(reduction) is most significant close to the resonance
frequencies (this effect is also seen in [20]). Note that
for a steady state with a perfect reflecting wall (jRwallj ¼ 1)

the ingoing and outgoing fluxes are equal (the common
value can still differ greatly inside and outside the potential
barrier) and thus ZðωÞ ¼ 0. Otherwise the amplification
depends on the sign of kH=ω, since this is the sign of the
energy being absorbed by the wall.
The ergoregion instability becomes manifest away from

a steady state situation [27], and it is related to poles on the
complex plane moving to the other side of the real axis.
Then ωn;I > 0 and the mode grows exponentially in time;
this happens when jRBHRwallj > 1 from (9). For echoes
built up by the geometric series expansion of the transfer
function in (8), an amplification jRBHRwallj > 1 can cause
the resulting echoes to steadily grow. For a perfectly
reflecting wall, with jRBHj2 − 1 ¼ −signðkH=ωÞjTBHj2
[from (B11)], jRBHj is slightly larger than 1 in the super-
radiance region and gives rise to the instability. Evidence of
this effect appears as the bump at midrange frequencies for
the NE ¼ 2800 curve of Fig. 5(b).
Astrophysical observations of spinning black holes [28],

or the lack of a large stochastic gravitational wave back-
ground [29], provide strong constraints on the ergoregion
instability of ECOs. Some amount of gravitational wave
energy absorption is expected from matter residing inside
ECOs, and this can weaken the ergoregion instability via an
effective Rwall < 1. The instability can be fully under
control when the absorption overcomes the black hole
superradiance amplification jRBHRwallj < 1. For spin
χ ¼ 2=3, the amplification factor ZðωÞ≲ 0.001 is still
very small [11,24], and so a correspondingly small
absorption of the wall is enough to make ECOs stable
as for the Kerr black hole, as was also observed in a
numerical study [30]. For some such absorption there will
be an NE above which the signal strength will fall
significantly for increasing NE, thus differing from
Fig. 5(b). This effect can be ignored as long as the NE’s
we utilize in our study are below this critical NE. From
Fig. 5(b) we can see that superradiance amplification does
not noticeably affect the χ ¼ 2=3, NE ¼ 280 reconstructed
transfer function (unlike the NE ¼ 2800 case), and so the
ergoregion instability could be quenched via a small
absorption with little effect on this transfer function. We
shall assume some such picture in the remainder of
the paper.

IV. SEARCH STRATEGIES

During the early stages of this work, we developed three
methods for extracting echo signals from noisy data.
Window functions are used to help extract the quasiperiodic
structures in the time and/or the frequency domains. The
expected correlation of a signal in multiple detectors is also
employed. The methods are tested by a toy model, the
spinless truncated black hole model. A sample signal is
combined with two different sets of Gaussian noise to
model real data from two detectors. The toy model helps to
determine reasonable values of the window parameters, and
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this is for a restricted range of time delays that are thought
to be of most interest for the real data search in Secs. V
and VI.
The methods are named methods I, II, III according to the

order in which they were developed. By using frequency
windowsmethod II turns out to be the most successful and is
our focus here, while the other two methods use time
windows and are described in Appendix C. The time and
frequencywindows are complementary, with small and large
numbers of echoes contributing respectively to a signal.

A. Windows in the frequency domain (method II)

From the previous section it can be seen that a promising
strategy is to directly Fourier transform the time series data
of some duration T and then search for the nearly equally
spaced resonance peaks in the absolute value of the
transform. We thus comb the data in frequency space by
imposing a varying periodic window. This method does not
rely on having clearly separated echoes in the time series
waveform. Including overlapping echoes at late time with a
larger T increases the frequency space resolution and can
help to resolve narrow resonance spikes over a wider range
of frequencies. This method also does not require a precise
lining up of the time series of the two detectors. The
frequency window function is characterized by the window
spacing Δf, the offset f0, the widths ffwig, and the
bandpass fmin < f < fmax (f ¼ ω=2π).
The simplest window is of a square shape with unit

height and constant width. But we find it advantageous to
move to a window of trapezoidal shape, being purely
triangular for low frequencies and gradually becoming a
wider shape at higher frequencies as shown in Fig. 6. We
choose to adopt this as a universal window construction for
this method, where the window widths are defined once and
for all, for all analyses. We more precisely describe this
window function below.
We take the absolute value of the Fourier transform of

data of duration T from detector i. Let Si be the segment of
the resulting series within the bandpass ðfmin; fmaxÞ. We
represent the window function Wðn; sÞ as a set of numbers
of the same length as Si. The integer n ¼ TΔf is the
window spacing in units of 1=T and s ¼ f1; 2;…; ng is the
offset. We then construct an amplitude that is the result of
acting the Wðn; sÞ comb on the data,

Aiðn; sÞ ¼ Mean(Si �Wðn; sÞ): ð13Þ

Here the mean is taken on the nonzero products of the
components of the two vectors. As a function of s and for
the right n, Aiðn; sÞ can be expected to be larger only for a
small range of s, say some integer Δs, where there is some
overlap between the narrow windows and the narrow peaks
in the signal plus noise. To isolate this type of s dependence
for a given n, we take the Pearson correlation of the set of
Aiðn; sÞ for the n values of s, with another set of length n
having the idealized shape of interest. For this we take VðrÞ
as the rth cyclic permutation of a set composed of Δs
adjacent 1’s and ðn − ΔsÞ adjacent 0’s. The new amplitude
effectively has the shift expressed in terms of r rather
than s,

Āiðn; rÞ ¼ Corr(Ai; VðrÞ): ð14Þ

Now we can construct the following correlation between
the two data sets:

Pðn; rÞ ¼ Ā1ðn; rÞĀ2ðn; rÞ: ð15Þ

Pðn; rÞ will be large at some ðn; rÞ if a repeating resonance
structure in frequency space is lining up in the two
detectors. In our data analysis, we choose to first maximize
Pðn; rÞ with respect to r. Then the location of a peak that
emerges as n is varied defines a particular nd that gives an
estimate of the actual time delay td as nd ¼ T=td ¼ NE.
The range of n translates to a range of time delays that are
being tested. Although not part of this study, the optimal
value of the offset (r or s or f0) could then be used to
distinguish ECOs with different potentials, boundary con-
ditions, and spins as illustrated in Figs. 3 and 4.
Our particular choice for the fixed window parameters

is as follows. The base width of the individual windows
range from 11=T to 19=T on going from the low to the
high end of the bandpass. The thinnest window for
example is an average of square windows with widths
ð1; 3; 5; 7; 9; 11Þ=T. Also, we choose Δs ¼ 22. These
choices were influenced both by the toy model analysis
and by the initial investigation of the GW150914,
GW151226, and GW170104 data. Some consistency
was found between the toy model and this data in support
of these choices. These choices were not finely tuned, and

FIG. 6. A frequency window function of trapezoidal shape with a spacing TΔf ¼ 200.
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other choices could give similar results. The finding, as
mentioned in the previous section, that the spacing between
resonance spikes can actually vary by up to 2% helps to
explain why nonminimal values of width and Δs are
preferred.
From the toy model studies we found that the best signal

to noise ratio (SNR) for this method occurs for echo
numbers NE ≈ 100–300. The persistence of a signal peak
for a range of NE helps to differentiate it from a noise peak,
which typically shows less persistence. We thus find that it
is effective to average the final correlation plots for a range
of NE to enhance the SNR.
To get some idea of an appropriate bandpass, one can

inspect the NE ¼ 280 reconstructed transfer function of
Fig. 5(b). A bandpass represented as ðfmin; fminÞtd ∼
ðn1; n2Þ corresponds to the range from the n1th to the
n2th peak. We see that a bandpass ranging roughly from the
15th peak to the 60th peak might be appropriate. This figure
was not known when the data analysis was performed, and
the bandpasses at that time were chosen to strengthen
signals. These chosen bandpasses turn out to be quite
consistent with this figure.

V. EXPLORATION OF THE LIGO BLACK
HOLE MERGERS

We now apply the search strategies described in Sec. IV
to the LIGO data. We use the strain data of the two LIGO
detectors for the five confirmed events of binary black hole
coalescence [1,31–34] provided by the LIGO Open Science
Center [35]. For the signal search we apply the three
window methods to the whitened data after merger. We find
evidence for echoes as follows. Method II finds signals for
GW170104, GW170608, GW151226, and GW170814 in
decreasing order of strength. Method I finds a signal for
GW151226, where the best-fit td matches that of method II
very closely. Method III finds a signal for GW170814, and
the agreement with method II on td is also good. Since
methods I and III explore data of much shorter duration
than method II, the agreement of the signals for these two
events serves as a nontrivial consistency check.
We searched for signals over a wide range of time delays

that includes what one might expect for a deviation occurring
at a proper Planck length from the would-be horizon. Our
signal plots and our background analysis plots for the four
events are collected in the four figures, Figs. 7–10. On each

FIG. 7. Event GW151226, methods I and II. The final correlation of two of the LIGO detectors as a function of the time delay, for the
signal search (red lines) and one background search (blue lines). On the right, p-values from the number of background trials given.
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signal plot the red curve denotes the final correlations
between two detectors as a function of the time delay.
For comparison the blue curve in each plot shows the result
of applying the same procedures to data of the same duration
occurring just before merger. Each plot shows the range of
time delays covering �30% from the central peak, and each
curve is adjusted to have zero mean.
To assess the significance of each signal peak we find the

p-value. We follow our same procedure for the same time
delay range on some number of trials, based on various
time-translated parts of the LIGO data. The black curve
shows the probability of finding a highest peak of equal or
greater height compared to the midpoint bin value. The red
dot denotes the signal peak, and the resulting p-value
estimate may be limited by the number of trials. Methods I
and III only require a short range of data, and so with the
full one hour of LIGO data we can generate a sufficient
number of independent background trials. Method II uses
larger echo numbers and needs a longer range of data. To
generate a sufficient number of background trials in this
case we employ random time shifts between pairs of
segments from the two detectors. (For GW170608 we

use only 512 s of data, which is all the noise-subtracted data
available.)
A signal peak tends to persist over various changes of the

window parameters more so than a noise peak. Figure 11
shows an example of the persistence of the signal peak as a
function of NE for GW170104, which makes clear that an
averaging of the correlations over NE will improve the
signal.
The window parameters used are summarized in Table I

along with the best-fit value of td, the p-value, and the
frequency bandpass for each analysis. The bandpass turns
out to be around the most sensitive region for the detectors.
For smaller (larger) mass events, the upper (lower) end starts
to sample higher noise levels, but it is still away from where
the noise gets significantly larger. As we have mentioned
earlier, it is convenient to express the bandpass as a
dimensionless range, ðfmin; fmaxÞtd. In method II the opti-
mal bandpass stays quite stable over the four events as it
varies between (12,58) to (16,62), while for the other two
methods it shifts higher. Table I also shows several instances
where leaving out some number of the early echoes can
positively contribute to the strength of the signal.

FIG. 9. Event GW170608, method II.

FIG. 8. Event GW170104, method II.
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Values of td are determined from two different methods
for GW151226 and GW170814, and the agreement is
within 0.5% and 1.3%, respectively. Such differences could
be expected due to differences in modeling Δt in our
different methods. In particular, there is some ambiguity
in the time domain due to the changing shape and width of
the echoes as well as when a smaller number of echoes
is used.

Methods I and III are able to determine the optimal t0
(the time of the first echo) at the best-fit time delay td. We
find t0 − tpeakamp ¼ 1.012td and t0 − tpeakamp ¼ 1.006td for
GW151226 and GW170814, respectively,7 where we
expect modeling uncertainties at the percent level. An
analogous value of 1.0054td was reported in [7].
Our values of td are a little smaller than those consid-

ered in [7]. Our p-values are essentially proportional to
the time delay range tested, in our case �30% around the
central peak. Given that the time delay has a logarithmic
dependence on the distance from the would-be horizon,
our range corresponds to exploring length scales
Oð10�11Þ times a central value. Our time delay range is
significantly wider than in [7], which should be kept in
mind when comparing p-values. For GW151226, the only
event where we both observe signals, their range does not
include our value for td while our range does include
theirs. We have not found signals for the two earlier
events, GW150914 and LVT151012, which play a sig-
nificant role in their results.
We also check the influence of the whitening process on

our signals. The amplitude spectral density that is used in

FIG. 11. Correlation vs time delay for different NE for
GW170104 with method II.

FIG. 10. Event GW170814, methods II and III.

7The peak-amplitude times tpeakamp we use are at X:646 s and
X:530 s, respectively.
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the whitening is obtained by averaging over some number
of time segments, whose length determines the resolution
for the whitening. Shorter segments tend to leave more
detector artifact spikes in the whitened data. But longer
segments modify the raw data on finer frequency scales,
and so there is risk of modifying the sharp spikes of the
signal. This seems to be the case for method II where
the signal is diminished for longer time segments. For
method II we use 1 s segments, and we find that the results
change little whether we manually remove the resulting
obvious noise spikes or do not. For method I (III), 1 s (4 s)
segments are used.
Finally we discuss the look-elsewhere effects in our p-

value estimates. For method II we have mentioned that the
window parameters were fixed from the toy model and
from initial study of GW150914, GW151226, and
GW170104 events, of which two show signals. Biases
are thus avoided for the GW170608 and GW170814
events, as well as for GW170817 in the next section, all
of which show signals. We learn from the toy model that
there is a rough prior NE ∼ 100–300 that peaks somewhere
in the middle of this range. For GW170104 and GW170608
a sizable portion of the 100–300 range is used. For
GW151226 and GW170814 only a small part is used,
thus implying a larger look-elsewhere effect. The frequency
bandpass is fixed by the signal search for each event, but we
have seen that these are quite consistent with each other.
Methods I and III find only one signal each, and thus there
are more sources of look-elsewhere effects. Note though
that our p-value estimates do not account for the agree-
ments between different methods.
Further studies can help refine the prior on the window

parameters, e.g., by injecting realistic model signals into
real data. The signal detection efficiency should also be
studied further. The noise inherent in the LIGO detectors
has non-Gaussian characteristics, and in particular the
instrumental spectral lines need to be considered. But
not only would it be difficult for instrumental effects to
yield our p-values, no combs of spectral lines as reported

by the collaboration thus far [36] are similar to our signals
for any of the events.

VI. FURTHER ANALYSIS AND THE NEUTRON
STAR MERGER

We have reported that methods I and III have yet to
find signals in events where method II produces rela-
tively strong signals. As we have mentioned, the
development of the three methods and the data analysis
was completed before the effects of spin, as displayed in
Figs. 4(b) and 5(b), were known. These figures show
that the m ¼ 2 resonance spikes of comparable height
remain very narrow over a wide range of frequencies.
This means that properly resolving these spikes will
benefit from a high frequency resolution. Method II has
high resolution by utilizing high numbers of echoes,
which suggests why this method is the most successful.
Furthermore, the final spin for different events are all
close to χ ¼ 2=3, and the choice of bandpass for this
method as determined by the data shows consistency

TABLE I. The best-fit td, p-value, bandpass, and window parameters for the six signals.

Event (method)
Best-fit
td [s]

p-value
[%]

Bandpass
ðfmin; fmaxÞtd

Window parameters for average
(others defined in Sec. IV)

GW151226 (I) 0.0786 <0.13a (34,62)b NE ¼ ð1–29Þ, (5–29), (9–29)c
GW151226 (II) 0.0791 0.76 (12,58) NE ¼ ð260; 270Þ
GW170104 (II) 0.201 <0.18 (16,62) NE ¼ ð100; 125; 150; 175; 200Þ
GW170608 (II) 0.0756 <0.4 (14,60) NE ¼ ð140; 200; 260Þ
GW170814 (II) 0.231 4.1 (12,58) NE ¼ ð170; 190Þd
GW170814 (III) 0.228 0.77 (30,80) NE ¼ 10–17, tw ¼ 40, 80e

aUpper bounds are just limited by the number of trials.
bThe bandpass ranges in units of Hz are (433,789), (152,733), (80,308), (185,794), (52,251), (132,351).
c(i–j) means echoes i throughj were used.
dThe whole time range used was shifted 10 s later.
eThe explicit sets used: ðNE; tw=MÞ ¼ ð15; 40Þ, (10,80), (15,80), (3–15, 40), (5–17,40), (3–15,80).

FIG. 12. Consistency of the four measurements of td=M after
accounting for the mass and spin with a simple model and using
lnðδÞ ¼ −η lnðMÞ where δ ¼ ðr0 − rþÞ=M.
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with the range of dominant spikes of Fig. 5(b).8

[ðfmin; fminÞtd ∼ ðn1; n2Þ corresponds to the range from
the n1th to the n2th peak in that figure, but it should
also be remembered this figure does not include the
modulation from an unknown source function.] This
suggests that echoes are already showing the effects
of spin.
It is interesting to consider the ratios of the time delays

and the final masses for the four events td=M=ð1þ zÞ,
where the redshift factor is due to td (M) being measured in
the detector (source) frame. These ratios from the four
events are consistent with each other and with the predicted
range 700≲ td=M ≲ 860 for a spinless 2-2-hole [19]. In
that reference it was found that the main contribution to
td=M is from the exterior, as with the truncated black hole
model, and it takes the form −4 lnðδÞ ∼ 4η lnðMÞ where
δ ¼ ðr0 − rþÞ=M ∼ 1=Mη. η ¼ 2 (η ¼ 1) corresponds to
r0 − rþ being a proper (coordinate) Planck length. In [19] it
could only be determined that η ≈ 2 for astrophysical sized
objects. The resulting range of td=M motivated the range
over which we first searched.

To consider both the mass and the spin dependence, we
can use the truncated Kerr black hole model as we
discussed before, where the effect of spin is known.
This model relates td=M to χ and lnðδÞ as in (7). Given
that the χ dependence of lnðδÞ is insignificant, it is
convenient to define η from lnðδÞ ¼ −η lnðMÞ. Then
the deviation of η from 2 is a measure of the deviation
of r0 − rþ from a proper Planck length. We can express η in
terms of td, M, χ, and z, and so we can view our results
for the four black hole merger events as four measurements
of η. Incorporating the experimental errors for M, χ, and z
in these events we combine the four measurements to
arrive at η ¼ 1.7� 0.1.9 The fit is shown in Fig. 12
where ðchi-squaredÞ=ðd:o:f:Þ ¼ 0.38.
We now discuss a further reinforcement of the

echo interpretation of a signal peak that shows up at a
certain time delay td. This is due to the existence of
secondary peaks that may be expected at exactly td=2,
2td, 2=3td, 3=2td;…. In these cases the window function
would be either undersampling or oversampling the actual
periodic spikes in the data. We will see that a signal peak
faked by random noise is less likely to have the

FIG. 13. Signal plots showing secondary peaks. The plots are obtained by rescaling and averaging over the echo numbers indicated in
Table I.

8Other than numerous spectral lines and artifacts, the LIGO
noise curve that is within our bandpasses is not dramatically
varying, and thus is not that dissimilar to the flat Gaussian noise
that we used to produce Fig. 5(b).

9Since lnðMÞ ≈ 91, this gives the lnðδÞ ¼ −155 that was used
in Figs. 4(b) and 5(b).
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corresponding secondary peaks. In method II it is more
appropriate to display the correlation in terms of the
spacing between spikes in frequency space, and so we
use the variable n ¼ TΔf ¼ T=Δt introduced above
with nd ¼ T=td.

10

In Fig. 13 we show secondary peaks that occur in the four
signal plots frommethod II. The positions of thevertical lines
are precisely in the ratios indicated. We see that each event
has at least a secondary peak at 2nd. (This suggests a set of
prominent resonance spikes with 2nd spacing.) The signifi-
cance of this secondary peak can be appreciated more from
Fig. 14, where the product of correlations at frequency spike
spacings n and 2n is shown. The product of the primary peak
height at nd with the secondary peak at 2nd shows up as the
strong central peak. These results indicate that there should
be a significant improvement for p-values that account for
the secondary peaks, but we leave this for future studies.
Let us look more closely at GW170104, the event

with the strongest signal from method II. It turns out that
the suggestion of echoes in this event can be seen with a
very simple transformation of the time domain data.
Let fNE

ðtÞ label a range of time series data starting
near the merger and extending to include NE ¼ T=td
echoes. Now consider a new time series given by

FðtÞ ¼ jIFTðbandpassðjFTðfNE
ðtÞÞjÞÞj.11 FT (IFT) is the

discrete (inverse) Fourier transform, and the bandpass is a
version of the (16,62) bandpass that more smoothly cuts off
high and low frequencies. The smoothing reduces noise at
small t after the transformation but it is not essential. Note
the presence of absolute values, and so once again phase
information is not kept. We then consider the product of F’s
for the two detectors.
The result is shown in Fig. 15(a), only for times up to

≈2td. The vertical lines are multiples of the value of td
determined by method II. Peaks show up at td and 2td, and
also at td=2 and 3td=2. To obtain a p-value we use the
product of the four peak heights divided by a product of
averages. In this case we choose to obtain a p-value that
reflects the agreement between the two methods, and so we
use a prior on the value of td that is equal to the previously
obtained value from method II. The resulting p-value is
clearly smaller than if we used our standard wide prior on td.
At 3000 trials and for NE ¼ 280, there is still only an upper
limit on thisp-value.12 Other signals at the same td, as strong

FIG. 14. Product of correlations at n and 2n.

10The previous signal plots for method II are just linear
inversions of frequency space plots about the central peak at td.

11The cepstrum includes a logarithm in the transformation, and
this makes the first peak relatively more prominent. We thank
Martin Green for suggesting the cepstrum.

12Each trial correlates randomly chosen time segments away
from the signal region from the two detectors, but there is a
question of independence given the limited amount of data used.

GRAVITATIONAL WAVE ECHOES THROUGH NEW WINDOWS PHYS. REV. D 98, 044021 (2018)

044021-15



or nearly so, also occur for other values of NE. But this
simple method does not yield signals for the other events.
The strong secondary peaks at 2nd as evident in Figs. 13

and 14 and the time domain peaks at td=2 and 3td=2 in
Fig. 15(a) lead to a possible connection with the comment
at the end of Sec. II. A disturbance of the newly formed
ECO could originate at its core and take time ≈td=2 to
reach the light ring radius. This would set up a train of
echoes interspersed between the original set of echoes, thus
giving the appearance of Fig. 15(a) and producing the
strong secondary peak at 2nd.

A. GW170817

Finally we report on a search for echoes in event
GW170817 [37], the binary neutron star merger. Com-
pared to the LIGO events studied above, GW170817 has
several differences. No postmerger gravitational signal has
been seen [38] because the mass of the system is much
smaller, and so the noise curve around the ringdown

frequency of the final object (∼6 kHz) is considerably
higher. A prompt production of a black hole upon merger is
not expected; rather the favored scenario is an unstable
hypermassive neutron star existing as an intermediate state.
Thus the formation time of the final black hole or ECO is
quite uncertain. Method II is best suited for this event
because the frequency range it targets can extend lower, and
it is less sensitive to the echo starting time.13

Using data with a 16384 Hz sampling rate and a
whitening process with 1=4 s segments, we find a signal
at a time delay of td ¼ 0.00719 s. Repeating the p-value
analysis as before (the same�30% around the central peak)
with 300 trials gives a p-value ∼0.01. The chosen bandpass
is ðfmin;fmaxÞ¼ð1200;6875ÞHz≈ð9;50Þ=td, which extends

FIG. 15. An almost direct observation of echoes in GW170104, and the associated p-value, using the simple method described in the
text.

FIG. 16. The correlation for event GW170817, method II, displayed in frequency space and also showing the secondary peaks. We
have averaged over echo numbers NE ¼ ð200; 220; 240; 260Þ by rescaling and combining results. On the right, the signal (red line) and
300 background trials showing the maximum peak height vs the maximum product of heights with positions in the ratio 1

2
∶ 2
3
∶1. The

highest peak need not be one of the three peaks.

13We thank Niayesh Afshordi for encouraging us to look at this
event. After our analysis of this event appeared in version 2 of this
paper, the analysis in [26] appeared where a much lower
frequency range was considered.
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nearly to the upper end of the available spectral density
range of the data.14 The bandpass is on the rising part
of this noise curve, but there is some compensation for
higher noise from a stronger signal due to the event being
closer.
We show the signal plot containing secondary peaks in

Fig. 16(a). When we compare this figure to Fig. 13, we see
that GW170817 does not seem out of place. For this event
we have used the background trials to show how unlikely
it is for a strong noise peak to be accompanied by
some of the secondary peaks as seen in the signal plot.
Figure 16(b) compares the noise and signal values of the
highest peak height and the highest product of three peak
heights with locations in the ratio 1

2
∶ 2
3
∶1. This result and

the existence of the additional secondary peak at 3
2
nd

indicates that the true p-value is significantly smaller than
we have quoted.
Our result for GW170817 may have interesting impli-

cations for the mass and spin of the final ECO in this event,
which are currently only loosely bounded. We again use the
truncated black hole model. By requiring that η from
GW170817 be consistent with the value η ¼ 1.7� 0.1
obtained for the four black hole merger events, our value
for td then constrains the mass and spin. We find that
M < 2.56 M⊙, and as M ranges from this value down to
M ¼ 2 M⊙, e.g., the spin χ ranges from 0 to 0.77. This
range ofM is to be compared with a total mass of the binary
system of at least 2.73 M⊙. A final mass below 2.56 M⊙ is
perhaps on the low side of expectations based on estimates
for mass loss due to ejected matter and gravitational
radiation starting from a total mass of 2.73 M⊙. In this
regard we note that the mass loss from gravitational
radiation cannot be too low if, indeed, echoes are being
seen. In any case either χ and/or M is smaller than
expectations, according to our echo results and the trun-
cated black hole model.
An echo detection for this event could also shed light on

the formation time of the ECO. We can shift our time
domain later, further from the event time, and see if there is
any increase in signal strength. We see no evidence that the
ECO is formed more than a few tens of milliseconds after
the peak amplitude time (which itself has an uncertainty of
order milliseconds), since this is when the signal strength
starts to decrease. Correspondingly the lifetime of the
hypermassive neutron star would be short.

VII. CONCLUSION

If compact binary mergers are forming horizonless
exotic compact objects (ECOs) with reflecting interiors
or boundaries, then a series of pulses subsequent to the
ringdown phase may radiate from the merger remnant. The

existence of these pulses, or “echoes,”would clearly force a
change for the black hole paradigm.
By calculating the Greens function for ECOs with more

general potentials and boundary conditions, we find that
echoes feature a characteristic resonance pattern in the
frequency space as shown in Figs. 3 and 4 (without and
with the effect of spin, respectively). These patterns reveal
some universal features, such as the nearly evenly spaced
narrow resonances, that we make use of here to search for
echoes. These patterns also display some nonuniversal
features, such as a model dependent overall shift of the
resonance peaks, that can be used in future studies to
distinguish different ECO candidates. The spin of the ECO
is important to determine the shape of the resonance pattern
and thus the optimal frequency range of the search.
Figure 5(b) shows the most relevant version of our transfer
function, and it indicates that something like 40 or 50
highest resonance spikes provide a promising search target.
Our search for echoes is based on the construction of

quasiperiodic window functions, or combs, in both time and
frequency. By combing data sets of variable time duration
with window functions of variable spacing and offset, and
correlating the results between different detectors, a signal
peak at some window spacing determines the time delay. In
the endwe find that the frequencywindowofmethod II is the
most successful where, by taking data of longer duration, a
large number of narrow resonances becomes more acces-
sible. The frequency bandpass as optimized to the data turns
out to be quite consistent with the range of dominant
resonances as determined by the spin of the ECO.
Signal peaks at the best-fit time delays are displayed in

Figs. 7–10 for the four black hole merger events. Also
indicated are initial estimations of the p-values, with values
sometimes significantly less than 1%. These p-values
account for possible noise peaks in a much wider range
of time delays than other searches. These p-values do not
factor in the existence of secondary peaks, seen in Fig. 13,
and also seen in Fig. 16 for the neutron star merger event.
Figure 14 shows how the existence of secondary peaks
quite dramatically increases signal relative to noise. We
have also not attempted to quantify the global significance
of finding signals in four of five black hole mergers and in
the neutron star merger, and with three of the events
showing consistent signals with two different methods
(see Fig. 15 for GW170104). Our values for the time
delays are intriguingly consistent with a simple model that
accounts for the the measured final masses and spins (see
Fig. 12). We leave the meaning of these results for the
reader to ponder, along with the dictum extraordinary
claims require extraordinary evidence.
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APPENDIX A: ASYMPTOTIC SOLUTIONS AND
ENERGY FLUXES FOR GRAVITATIONAL

PERTURBATIONS

The spin weight s ¼ −2 perturbations on a Kerr back-
ground spacetime can be described by either the Teukolsky
equation or the SN equation. For the Teukolsky radial
equation, the asymptotic solutions at the horizon and the
spatial infinity are described by amplitudes Bi,

Rlmω →

�
BtransΔ2e−ikHx þ BrefeikHx; x → −∞;

Bin
1
r e

−iωx þ Boutr3eiωx; x → ∞;
ðA1Þ

where x is the tortoise coordinate with dx=dr ¼
ðr2 þ a2Þ=Δ, Δ ¼ r2 þ a2 − 2Mr, a ¼ J=Mð¼ χMÞ,
kH ¼ ω −mΩH, and ΩH ¼ a=ð2MrþÞ. For simplicity
we suppress the ω dependence for various variables in
these Appendices. For the SN equation the asymptotic
solutions are described by amplitudes Ai,

Xlmω →

�
Atranse−ikHx þ ArefeikHx; x → −∞;

Aine−iωx þ Aouteiωx; x → ∞:
ðA2Þ

The transformation between the solutions to the two
equations is [40]

Xlmω ¼ ðr2 þ a2Þ1=2r2J−J−
�
1

r2
Rlmω

�
; ðA3Þ

where J− ¼ ðd=drÞ − iðK=ΔÞ and K ¼ ðr2 þ a2Þω −ma.
With this we find the following relations between the
Teukolsky and SN amplitudes:

Bin ¼ −
1

4ω2
Ain; Bout ¼ −

4ω2

c0
Aout;

Btrans ¼
1

d
Atrans; Bref ¼

1

g
Aref : ðA4Þ

The first three are as given in [40]. We obtain the fourth as
needed for the discussion of a reflecting wall close to the
horizon. The various coefficients are

c0 ¼ λðλþ 2Þ − 12aωðaω −mÞ − i12ωM;

d ¼ −4ð2MrþÞ5=2½ðk2H − 8ϵ2Þ þ i6kHϵ�;

g ¼ −b0
4kHð2MrþÞ3=2ðkH þ i2ϵÞ ; ðA5Þ

where λ is the spheroidal harmonic eigenvalue of the
Teukolsky angular equation, ϵ ¼ ðrþ −MÞ=ð4MrþÞ
and b0 ¼ λ2 þ 2λ − 96k2HM

2 þ 72kHMrþω − 12r2þω2 −
i½16kHMðλþ 3 − 3 M

rþ
Þ − 12Mω − 8λrþω�. To use (A3)

we need to include higher order terms beyond the leading
order asymptotic expansions listed above. In particular, we
need a series expansion of the Teukolsky radial equation to
the next-to-next-leading order at both boundaries before
matching to (A2).
From the energy fluxes F ¼ dE=dt at the horizon and at

spatial infinity in terms of Teukolsky amplitudes [11,24],
we thus obtain

Fout ¼
1

2ω2
jBoutj2 ¼

8ω2

jc0j2
jAoutj2; ðA6Þ

Fin ¼
128ω6

jCj2 jBinj2 ¼
8ω2

jCj2 jAinj2; ðA7Þ

Ftrans ¼
128ωð2MrþÞ5kHðkH þ 4ϵ2ÞðkH þ 16ϵ2Þ

jCj2 jBtransj2 ¼
8ωkH
jCj2 jAtransj2; ðA8Þ

Fref ¼
ω

2kHð2MrþÞ3ðk2H þ 4ϵ2Þ jBref j2 ¼
8ωkH
jb0j2

jAref j2: ðA9Þ
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Here we see that the energy fluxes in terms of the amplitudes Ai nicely resemble the expressions for the scalar perturbations
on the Kerr background or that of perturbations on the Schwarzschild background. The Ai’s are also dimensionless while the
Bi’s are not. The additional factors jc0j2, jCj2, jb0j2 are as follows:

jc0j2 ¼ λ4 þ 4λ3 þ λ2ð−24a2ω2 þ 24amωþ 4Þ − 48aλωðaω −mÞ
þ 144ω2ða4ω2 − 2a3mωþ a2m2 þM2Þ;

jCj2 ¼ λ4 þ 4λ3 þ λ2ð−40a2ω2 þ 40amωþ 4Þ þ 48aλωðaωþmÞ
þ 144ω2ða4ω2 − 2a3mωþ a2m2 þM2Þ;

jb0j2 ¼ λ4 þ 4λ3 þ λ2ð64M2k2H − 112MrþωkH þ 40r2þω2 þ 4Þ

− 48λ

	
8M2k2H

�
4M
rþ

− 3

�
þ 2MkHrþω

�
5 −

4M
rþ

�
þ r2þω2

�
1 −

4M
rþ

�


þ 144

	
64M4k4H − 96M3k3Hrþωþ 4M2k2H

�
4M2

r2þ
−
8M
rþ

þ 13r2þω2 þ 4

�

þ 4MkHrþω
�
2M2

r2þ
−
2M
rþ

− 3r2þω2

�
þ r2þω2

�
M2

r2þ
þ r2þω2

�

: ðA10Þ

These three factors are smooth nonvanishing functions of
ω, and they become equal to each other when a ¼ 0.
Finally, the fluxes are related by energy conservation
Fout − Fin ¼ Fref − Ftrans.

APPENDIX B: THE TRANSFER FUNCTION FOR
A TRUNCATED KERR BLACK HOLE

Here we use the SN equation, noting that it naturally
reduces to the Regge-Wheeler equation (1) in the spinless
limit. For a truncated Kerr black hole with a reflecting wall
close to the horizon there are two solutions of interest,

ψ leftðxÞ →
�
Atranse−ikHx þ ArefeikHx; x → x0
Aine−iωx þ Aouteiωx; x → ∞

; ðB1Þ

ψ rightðxÞ →
�
Dtranse−ikHx þDrefeikHx; x → x0
eiωx; x → ∞

: ðB2Þ

For ψ left, we impose the relation Aref=Atrans ¼ RðωÞe−2ikHx0
as in (6). We assume that the wall is positioned at a large
and negative x0 so that Vðx0Þ is negligible. Rwall is defined
in such a way that jRwallj2 is the ratio of energy fluxes
Fref=Ftrans, and so

Rwall ¼
jCj
jb0j

Aref

Atrans
e2ikHx0 ¼ jCj

jb0j
RðωÞ: ðB3Þ

Thus Rwall and RðωÞ have the same phase. From our choice
of perfect reflection, and with only a sign change as a
possible phase change, Rwall ¼ �1, we have RðωÞ ¼
�jb0j=jCj. We display this in Fig. 17. We find that jCj ¼
jb0j when kH ¼ 0, i.e., RðmΩHÞ ¼ Rwall.

For the SN equation, pW is independent of x and
can be used to define the transfer function: Kχ

R ≡ 1=
pWðψ left;ψ rightÞjRwall

. The amplitudes of two solutions at
x → ∞ and x → −∞ can then be related by computing this
quantity at both ends

pW ¼ 2iωAinpð∞Þ ¼ 2ikHðDrefAtrans −DtransArefÞpð−∞Þ:
ðB4Þ

Here pð�∞Þ≡ pð�∞;ωÞ and we have yet to choose x̄.
The transfer function is determined up to the overall

normalization of ψ left, as expressed by the value of Atrans.
We wish to choose Atrans such that Kχ

0 ¼ TBH, the trans-
mission amplitude for a Kerr black hole, and so in this
paragraph we focus on Rwall ¼ Aref ¼ 0. From the energy
fluxes of the previous section we define the transmission
amplitude

TBH ¼
ffiffiffiffiffiffi
kH
ω

r
Atrans

Ain
; jTBHj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi����Ftrans

Fin

����
s

: ðB5Þ

Since Kχ
0 ¼ 1=ð2iωAinpð∞ÞÞ, we must have

Atrans ¼
1

2i
ffiffiffiffiffiffiffiffiffi
ωkH

p
pð∞Þ : ðB6Þ

The 1=pð∞Þ factor now in ψ left multiplies the pðxÞ in the
source integral, and pðxÞ=pð∞Þ is simply pðxÞ defined by
x̄ ¼ ∞. This is the choice of x̄ that we mentioned in the
main text. The Wronskian relation in (B4) implies
ωAinpð∞Þ ¼ kHDrefAtranspð−∞Þ. From (B5) we can then
find TBH in terms of the ψ right amplitudes,
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TBH ¼
ffiffiffiffiffiffi
ω

kH

r
1

Dref

pð∞Þ
pð−∞Þ ; jTBHj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi����Fout

Fref

����
s

: ðB7Þ

For these two expressions to be consistent we must have
jpð∞Þ=pð−∞Þj ¼ jb0=c0j as can be checked numerically.
Returning to a general Rwall, and with the normalization

of ψ left given by (B6), we can write

Kχ
R ¼ 1

2iωpð∞ÞAin
¼

ffiffiffiffiffiffi
kH
ω

r
Atrans

Ain
; jKχ

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi����Ftrans

Fin

����
s

:

ðB8Þ

Thus the transfer function itself is the flux ratio, now for
general Rwall. We can then rewrite Kχ

R in a useful form with
the help of the Wronskian relation (B4) and (B7),

Kχ
R ¼

ffiffiffiffiffiffi
kH
ω

r
Atrans

Ain
¼

ffiffiffiffiffiffi
ω

kH

r
1

Dref

pð∞Þ
pð−∞Þ

�
1 −

Dtrans

Dref

Aref

Atrans

�
−1

¼ TBH

ð1 − RBHRwalle−2ikHx0Þ
; ðB9Þ

where

RBH ≡ jb0j
jCj

Dtrans

Dref
; jRBHj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi����Ftrans

Fref

����
s

: ðB10Þ

With the energy conservation Fout ¼ Fref − Ftrans for ψ right,
we find

jRBHj2 − 1 ¼ −signðkH=ωÞjTBHj2: ðB11Þ

We can then find the amplification factor for ψ left with a
generic Rwall. Using energy conservation Fout − Fin ¼
Fref − Ftrans we have

Z≡ Fout

Fin
− 1 ¼ Ftrans

Fin

�
Fref

Ftrans
− 1

�

¼ sign
�
kH
ω

�
jKχ

Rj2ðjRwallj2 − 1Þ: ðB12Þ

Note that Ftrans, Fref , and kH=ω all have the same sign.

APPENDIX C: OTHER WINDOWING METHODS

1. Windows in the time domain (method I)

Time delays of interest in our study imply that there may
be about 50 distinct echoes after ringdown. Thus a way to
reduce noise is to impose a time window function that zeros
the data between echoes. A window function is described
by the time delay Δt between centers of windows, the time
at the center of the first window t0, the window width twi for
the ith window, and the total time duration T of the data to
be windowed. As a reference time we choose the time of
maximum amplitude tpeakamp, a time that is accurately
determined from the main event. Then we allow the time
of the first window to shift within the range tpeakamp þ
0.9Δt < t0 < tpeakamp þ 1.1Δt at each Δt in the search.
Since the typical Δt’s of interest are much larger than the
duration of the merger, this range should be more than
enough to account for any effect the merger dynamics can
have on t0.
The simplest choice is a square window of unit height

and constant width tw, but the toy model displays echoes
with growing widths. To improve on square windows for
this method we first smooth the edges by using Hann
windows. These are given by 1

2
ð1þ cosð2πxÞÞ for − 1

2
≤

x ≤ 1
2
and 0 elsewhere. To account for the steadily increas-

ing widths of echoes we use windows with twi=M ∼
232þ 12i.15 Figure 18 presents an example of the
improved window function. The effectiveness of the noise

FIG. 17. RðωÞ used to generate Fig. 4.

15This fit is based on the spinless toy model. With nonzero
spin, due to the existence of the superradiance region, the shapes
of echoes are less universal and more sensitive to initial
conditions.
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reduction decreases as the width of the windows increases.
From the toy model it was found that NE ∼ 15–40 was
optimal.
In Fig. 19(a), we show the result of applying the

window function onto the data, where, for illustration, we
have chosen the correct value for Δt such that the
windows align properly with the signal. We then take
the absolute value of the Fourier transform to search
for the resonance structure in frequency space. The
impact of the time window is illustrated in Fig. 19(b).

The signal resonance pattern emerges after windowing
(red curve), in comparison to the noisy distribution before
windowing (gray curve) and the windowed version of the
pure noise (blue curve). The latter shows that the window
also generates artifacts that can mimic a signal, i.e.,
equally spaced spikes due to the periodicity of the
window itself. However, the artifacts are more spread
out in location and random in size compared to the signal
peaks. It then helps to apply a bandpass fmin < f < fmax,
and the toy model suggests that a reasonable bandpass is

(a)

(b)

(c)

FIG. 19. Reducing noise by applying a time-domain window function. The black curve shows the signal, the grey and red curves show
the data before and after windowing, and the blue curves show the windowed Gaussian noise. (a) Echoes combined with Gaussian noise
in the time domain. (b) The absolute value of the Fourier transform of the data. (c) The autocorrelation function of the data in (b) in the
frequency range 0.26 to 0.37.

FIG. 18. Fourteen Hann windows with increasing widths and Δt=M ¼ 780.
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ðfmin; fmaxÞ ∼ ð0.7; 1ÞfRD, where fRD is the fundamental
black hole ringdown frequency.
The signal resonances in Fig. 19(b) can be further

isolated by forming the autocorrelation function of the
Fourier transformed data within the selected bandpass. As
shown in Fig. 19(c), where the autocorrelation is plotted as
a function of shift, a series of peaks will occur for shifts
coinciding with the resonance spacing (vertical grey lines).
The noise due to the windowing artifacts enters almost
solely in the first peaks (the two blue spikes), and so by
including only peaks 3–8, almost all of the artifacts are
removed. Generally the windowing artifacts are larger the
narrower the window width is compared to the time delay.
For the range of time delays we consider in the LIGO
search we use peaks 5–9.
The sum of autocorrelation peaks generates, for a data set

i and a time delay Δt, an amplitude AiðsÞ as a function of
the offset, the integer s in t0 ¼ tpeakamp þ 0.9Δtþ sδt. In
the presence of a common signal in two data sets then A1ðsÞ
and A2ðsÞ can become large at the same s. We thus
maximize over the products

MaxðfA1ðsÞA2ðsÞ; s ¼ 0;…; 0.2Δt=δtgÞ: ðC1Þ

The signal now appears as a peak in this correlation when
considered as a function of Δt. This gives our estimate for
the actual time delay td, and the optimal offset t0 is also
determined.

2. Combining time and frequency
windows (method III)

The two methods with windows in time or frequency
space are complementary to each other. The separation
between the echoes in the time domain and the separation
between the resonances in the frequency domain are
inversely related. So for long (short) time delay the time
(frequency) windows are more effective at removing noise.
In this method we explore the possibility that applying

both time and frequency windows could remove even
more noise.
Here we choose to use simplified square windows with

constant width in both the time and the frequency domains.
These windows are characterized by the parameters Δt
(Δf ¼ 1=Δt), tw, T, f0, fw, fmin, and fmax. We choose to
restrict the time window offset t0 to be around the expected
value, t0 ≈ tpeakamp þ Δt. Since echoes grow wider at later
times, there is a trade-off in choosing tw to capture the
dominant content of echoes with the minimum amount of
noise. In particular, a too small tw will spread out the signal
resonance pattern and make it less distinctive from noise.
For a given set ftw; T; fwg we take the mean of the

absolute value of the doubly windowed data AiðsÞ defined
analogously to (13). Then we find the frequency window
offset s that maximizes the correlation between two data
sets, MaxðfAiðsÞAjðsÞ; s ¼ 1;…; ngÞ. Finally the band-
pass fmin < f < fmax is optimized to find a peak in these
maximum correlations as a function of Δt. In this hybrid
method different window parameters are more correlated,
making it more difficult to identify their optimal values. It
could be expected that the time window artifacts make the
frequency window less effective. But having the frequency
window brings in the use of the correlation with respect to
the offset s.
From the toy model study, we find that this method starts

to work with relatively small echo numbers, i.e.,
NE ¼ 10–20. The optimal time window width, which is
around tw=M ¼ 40–80, is narrower than the real echo
widths. For these relatively small choices for T, the
frequency space resolution is low, and we need the small
values fwT ¼ 1–3 to best capture the signal. With different
choices of ftw; T; fwg, signal peaks are found to persist
more than noise peaks. Thus we average over them all to
increase the SNR, after we shift and normalize each
correlation plot to have zero mean and a common variance.
Higher values of NE could also be expected to work, but
they are not considered in this work.
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