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It is well known that the Reissner-Norstrom solution of Einstein-Maxwell theory cannot be cylindrically
extended to a higher dimension, as with the black hole solutions in vacuum. In this paper we show that this
result is circumvented in Lovelock gravity. We prove that the theory containing only the quadratic Lovelock
term, the Gauss-Bonnet term, minimally coupled to a Uð1Þ field, admits homogeneous black string and
black brane solutions characterized by the mass, charge and volume of the flat directions. We also show that
theories containing a single Lovelock term of order n in the Lagrangian coupled to a (p − 1)-form field
admit simple oxidations only when n equals p, giving rise to new, exact, charged black branes in higher
curvature gravity. For general relativity this stands for a Lagrangian containing the Einstein-Hilbert term
coupled to a massless scalar field, and no-hair theorems in this case forbid the existence of black branes. In
all these cases the field equations acquire an invariance under a global scaling scale transformation of the
metric. As explicit examples we construct new magnetically charged black branes for cubic Lovelock
theory coupled to a Kalb-Ramond field in dimensions ð3mþ 2Þ þ q, with m and q integers, and the latter
denoting the number of extended flat directions. We also construct dyonic solutions in quartic Lovelock
theory in dimension ð4mþ 2Þ þ q.

DOI: 10.1103/PhysRevD.98.044019

I. INTRODUCTION

In general relativity (GR) in vacuum, black branes are
objects that are intrinsic to dimensions higher than four.
Since the direct product of Ricci flat manifolds is still Ricci
flat, one can construct black branes in GR by a simple
oxidation of the black hole solutions of a given dimension d
to dimension D ¼ dþ q by adding q flat directions. In
spite of their simple origin, these spacetimes possess very
rich physics. They describe the rapidly rotating limits of the
black ring in five dimensions [1] as well as the Myers-Perry
black hole in dimension greater than or equal to six [2],
since in the latter case the angular momentum is not
bounded from above. These rapidly rotating objects inherit
the instability of the black branes, the Gregory-Laflamme
instability, which is triggered by perturbations traveling
along the extended direction with wavelength above a
critical value [3,4]. Therefore, one can in principle get rid of
the instability by the compactification of the extra direction
with a radius below the critical wavelength, but then,
decreasing the mass of the black hole on the brane, and
therefore its radius, the instability reappears. These results

were extended to charged black strings in low energy string
gravity with isometry IR10−d × IRt × Sd−2 in dimension ten,
where a dilaton and a (d − 3)-form [with field strength a
(d − 2)-form] are present. Evidence on the stability of the
extremal cases was reported also in [5]. In these solutions it
is important to notice that the dilaton cannot be turned off
without turning off the (d − 3)-form field, and therefore, in
the case d ¼ 4 the solution is not continuously connected to
an oxidation of the Reissner-Norstrom solution. When the
instability takes place, numerical simulations in five
dimensions show that the black string may brake into a
chain of black holes [6–8], in a finite value of the proper
time of an asymptotic observer for generic initial data,
providing evidence on a violation of cosmic censorship in
asymptotically Kaluza-Klein spacetimes. Recent simula-
tions show a similar behavior for the late time evolution of
the black ring instability [9] as well as in the ultraspinning
regime of the Myers-Perry solution in dimension six [10],
providing evidence on violations of cosmic censorship, for
generic initial data as well, in an asymptotically flat
spacetime in higher dimensions. For any theory predicting
corrections to GR, in particular in the context of string
theory, one expects that as the perturbed black string
evolves it may unveil regions with high curvature and
therefore higher curvature corrections may play a role on
the evolution of the spacetime. Consequently, it is natural to
look for black brane solutions in the presence of higher
curvature terms.
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Agoodmodel for exploring the physics of higher curvature
gravity are Lovelock theories. These are the most general
theories having only the metric as a fundamental field, with
second order field equations [11]. Even more, the quadratic
Gauss-Bonnet theory appears in the low energy limit of the
bosonic and heterotic string theories. The Lagrangian of
Lovelock theory is constructed by linearly combining the
dimensional continuations of all the Euler densities of even
dimensions lower than D, each term being a homogeneous
polynomial of order l on the Riemann tensor, and is given by

L ¼ ffiffiffiffiffiffi
−g

p Xl̄

l¼0

clLðlÞ; ð1Þ

with

LðlÞ ¼ 1

2l
δC1D1…ClDl
A1B1…AlBl

RA1B1

C1D1
…RAlBl

ClDl
: ð2Þ

Here l̄ ≤ ½D−1
2
�.The l ¼ 0contributionisabaredcosmological

term, the l ¼ 1 is the Einstein-Hilbert Lagrangian and the
l ¼ 2 term is the Gauss-Bonnet term. Explicitly,

Lð0Þ ¼ 1; ð3Þ

Lð1Þ ¼ 1

2
δCDABR

AB
CD ¼ R; ð4Þ

Lð2Þ ¼ 1

4
δC1D1C2D2

A1B1A2B2
RA1B1

C1D1
RA2B2

C2D2
¼ R2 − 4RABRAB þ RABCDRABCD; ð5Þ

L3 ¼ 1

8
δC1D1C2D2C3D3

A1B1A2B2A3B3
RA1B1

C1D1
RA2B2

C2D2
RA3B3

C3D3
ð6Þ

¼ R3 − 12RRABRAB þ 16RABRA
CRBC þ 24RABRCDRABCD þ 3RRABCDRABCD

− 24RABRA
CDERBCDE þ 4RABCDRABEFRCD

EF − 8RABC
DRAECFRB

EDF: ð7Þ

This theory shares many of the properties of GR. For
generic values of the dimensionful couplings cl, the theory
admits a Birkhoff’s theorem in the sense that spherical
symmetry implies the existence of an extra Killing vector
which is timelike outside the event horizon of the black
hole solutions [12,13]. The lapse function of the black hole
solution is determined up to a polynomial equation
(Wheeler’s polynomial) [14–16], and each of the solutions
of the polynomial has an asymptotic behavior that matches
one of the possible maximally symmetric vacua of the
theory [17,18]. As in GR one would like to construct black
branes, nevertheless, for generic values of the couplings, it
is not possible to trivially oxidate the black hole solution of
a given dimension d and one has to rely on numerical
methods to construct homogeneous black strings. This is
done by warping the extended directions with a function of
the radial coordinate [19–21], which in the Kaluza-Klein
language is read as a dilaton with a nontrivial radial profile.
Notwithstanding, when all but one of the constants cl is
nonvanishing the theory contains black holes [22,23] (see
also [24]), and mimics the behavior of general relativity
since in this case the black holes in vacuum can be trivially
oxidated [25].1 The black holes on the transverse section

can also be obtained from the general solution with generic
couplings in the regime where the radial coordinate is small
compared with all the length scales involved in the theory,
i.e., r ≪ jcl=c1j 1

2l−2 for all l > 1. This is natural since the
highest curvature term must dominate the dynamics in the
high curvature regime. Recently it was shown that the black
strings constructed in this manner also suffer from a
Gregory-Laflamme instability, under spherically symmetric
perturbations that travel along the extended directions, in
the quadratic and cubic Lovelock theories [28,29], respec-
tively (see also [30] for black branes).
The black hole solutions can be charged under a Maxwell

field [22] and it is therefore natural to explore whether these
spacetimes may lead to charged black branes. Surprisingly
enough, in this paper we show that the solutions of the
Gauss-Bonnet theory minimally coupled to a Maxwell field
can be trivially oxidated. In GR the equations along the
extended directions behave as scalars under the change of
coordinates on the brane, and turn out to be incompatible
with the trace of the field equations on the brane.
Nevertheless, here we show that these equations are indeed
compatible if the gravitational theory contains only the
Gauss-Bonnet term, i.e., cl ¼ c2δðl;2Þ in Eq. (1). This leads
to new black strings and black branes in Gauss-Bonnet-
Maxwell theory, which is shown in Sec. II. In Sec. III we
show an interesting extension of this result by proving that if
the action contains a single Lovelock term of order n plus the
Maxwell action for a (p − 1)-form field (with field strength
FðpÞ), one can construct homogeneous strings and branes
with FðpÞ ∧ ⋆FðpÞ ≠ 0 only if n ¼ p. This implies that the

1This result can be extended to Lovelock theories with a
unique maximally symmetric solution provided the black hole
on the transverse section is warped by a function of the extended
direction [25,26]. Also, it has been recently shown that for GR
with a negative cosmological constant, homogenous black strings
can be constructed at the cost of introducing a massless scalar
field which is linear along the extended direction [27].
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solutions of GR coupled to a massless scalar field can be
trivially embedded in the same theory in higher dimensions
by adding flat directions, nevertheless no-hair theorems
imply that no black branes can be constructed in this
manner, and that the only static solution with spherical
symmetry on the brane is the Janis-Newman-Winicour
naked singularity in arbitrary dimension d [31,32], times
IRq. In Sec. IV we construct new solutions for the cubic
Lovelock theory coupled to a three-form field strength,
which exploiting the results of Sec. III can be oxidated to
describe magnetically charged black branes in dimensions
ð3mþ 2Þ þ q, with m and q integers, for which the horizon
is given by a product of m three-dimensional spaces of
constant curvature γ times IRq. We also construct new
magnetic black brane solutions for the quartic Lovelock
theory R4 coupled to a three-form fundamental field, in
dimensions ð4mþ 2Þ þ q, as well as dyonic solutions in
dimension ð2mþ 2Þ þ q.

II. NEW CHARGED BLACK STRINGS IN
GAUSS-BONNET-MAXWELL THEORY

Let us first review the obstruction on the construction
of black branes in Einstein-Maxwell theory by cylindrical
oxidation of the Reissner-Norstrom solution. The field
equations for Einstein-Maxwell theory are

Eð1;2Þ ≔ RAB −
1

2
gABR −

�
FACFC

B −
1

4
gABFCDFCD

�
¼ 0:

ð8Þ

Assuming an electric ansatz of the form

ds2 ¼ ds̃2D−q þ dx⃗2q

¼ −fðrÞdt2 þ dr2

gðrÞ þ r2dΩ2
D−2−q þ dx⃗2q; ð9Þ

A ¼ AtðrÞdt; ð10Þ

one obtains two sets of equations:

R̃μν −
1

2
g̃μνR̃ ¼ F̃μαF̃ν

α −
1

4
g̃μνF̃αβF̃αβ; ð11Þ

and

−
1

2
gxixi R̃ ¼ −

1

4
gxixi F̃αβF̃αβ ðno sum over xiÞ; ð12Þ

where the Greek indices run along the d ¼ ðD − qÞ-
dimensional manifold with line element ds̃2, objects with
a tilde are intrinsically defined in this manifold and xi, with
i ¼ 1;…; q, stand for the Cartesian coordinates along
the extended, flat directions. Equation (11) leads to the
Reissner-Norstrom solution in D − q dimensions with the

gauge potential given by At ¼ −Qe=rd−3 þ A∞. Inserting
the trace of (11) on Eq. (12) one finds that

ðD − q − 2ÞF̃2 ¼ ðD − q − 4ÞF̃2; ð13Þ

which is compatible only if the electric charge vanishes,
and therefore At is constant. As expected, this shows that
the Reissner-Norstrom solution cannot be extended cylin-
drically to higher dimensions by just adding flat directions.
The factor of the left-hand side of (13) is determined by the
fact that

g̃μνG̃μν ¼
2 − ðD − qÞ

2
R̃: ð14Þ

For the Gauss-Bonnet theory, whose Lagrangian is given
by Lð2Þ in Eq. (5) the generalized Einstein tensor reads

Gð2Þ
AB ¼ 2RRAB − 4RACRC

B − 4RCDRCD
AB þ 2RACDERCDE

B

−
1

2
gABLð2Þ; ð15Þ

and one can see that in dimension D

gABGð2Þ
AB ¼ 4 −D

2
Lð2Þ: ð16Þ

We can couple Lð2Þ to Maxwell’s theory and the field
equations then read

Eð2;2Þ ≔ Gð2Þ
AB −

�
FACFC

B −
1

4
gABFCDFCD

�
¼ 0: ð17Þ

Splitting the equations using the ansatz of the electrically
charged black brane (9) and (10) one obtains

G̃ð2Þ
μν ¼ F̃μαF̃ν

α −
1

4
g̃μνF̃αβF̃αβ; ð18Þ

and

−
1

2
gxixiL̃

ð2Þ ¼ −
1

4
gxixi F̃αβF̃αβ ðno sum over xiÞ: ð19Þ

Now, inserting the trace of the equation defined on the
(D − q)-dimensional manifold (18) into (19) one obtains

ðD − q − 4ÞF̃2 ¼ ðD − q − 4ÞF̃2; ð20Þ

which is trivially fulfilled and imposes no extra constraint
on the electric field. Therefore, one is left with the system
of equations projected on the brane (18), which admits
black hole solutions with charge and mass [22]. This shows
that it is enough to solve the system (18) which will provide
a solution of Gauss-Bonnet-Maxwell theory in D − q
dimensions, and admits a cylindrical uplift to dimension
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D with planar extra directions. Explicitly, the following
brane spacetime is a solution of the Gauss-Bonnet-Maxwell
theory (17):

ds2 ¼ −
�
1 −

�
μ

rD−q−5 −
Q2

r2ðD−q−4Þ

�1
2

�
dt2

þ dr2

1 − ð μ
rD−q−5 − Q2

r2ðD−q−4ÞÞ
1
2

þ r2dΩ2
D−q−2 þ dx⃗2q; ð21Þ

A ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − q − 4ÞðD − q − 2Þ

p Q
rD−q−3 dt; ð22Þ

where μ andQ are integration constants and dΩD−q−2 is the
line element of a ðD − q − 2Þ-sphere. This spacetime
describes a black brane for D − q > 5. One can check
the consistency with the general argument provided above,
and show explicitly that the field equations along the
extended directions x⃗ are trivially fulfilled.
It is interesting to notice that the dynamics of this theory

is invariant under global scale transformations of the
metric, since under gAB → ξ−1gAB, the field equations (17)
scale as

Eð2;2Þ
AB ¼ 0 → ξEð2;2Þ

AB ¼ 0: ð23Þ

This is not a symmetry of the action but it is a symmetry of
the field equations.

III. LOVELOCK THEORIES WITH A SINGLE
TERM AND p-FORMS

The results of the previous section immediately motivate
the exploration of Lovelock theories containing a single
Lovelock term of order n, coupled to a p-form field
strength, with field equations given by

Eðn;pÞ ≔ GðnÞ
AB −

�
FAC1…Cp−1

F
C1…Cp−1
B

−
1

2p
gABFC1…Cp

FC1…Cp

�
¼ 0; ð24Þ

and the Maxwell equation for a (p − 1)-form,

∇AFAC1…Cp−1 ¼ 0: ð25Þ

The term in the parentheses of (24) corresponds to the
energy-momentum tensor of a (p − 1)-form field with

field strength FðpÞ, and GðnÞ
AB is the Lovelock tensor of

order n, i.e.,

GAðnÞ
B ≔ −

1

2nþ1
δAC1…C2n
BD1…D2n

RD1D2

C1C2
…RD2n−1D2n

C2n−1C2n
; ð26Þ

which reduces to the Einstein tensor when n ¼ 1. This
tensor is obtained by the Euler-Lagrange derivative with

respect to the metric of the integral spacetime integral offfiffiffiffiffiffi−gp
LðnÞ with LðnÞ defined in (2), and it is therefore

symmetric and divergenceless. It is important to notice
the following identity:

gABGðnÞ
AB ¼

�
2n −D

2

�
LðnÞ: ð27Þ

We are interested in homogenous black strings and
branes with metrics of the form (9), and therefore, as in
the electromagnetic case, let us assume that the funda-
mental (p − 1)-form field depends only on the coordinates
on the brane. This requirement is general enough also to
admit solutions with magnetic charges. We can now project
the equations of the Lovelock theory supported by a
(p − 1)-form (24) on the brane and along the q extended
directions, which respectively lead to

G̃ðnÞ
μν ¼

�
F̃μα1…αp−1F̃

α1…αp−1
ν −

1

2p
g̃μνF̃α1…αpF̃

α1…αp

�
; ð28Þ

−
1

2
gxixiL̃

ðnÞ ¼ −
1

2p
gxixi F̃α1…αpF̃

α1…αp ðno sum over xiÞ:

ð29Þ

Inserting (29) on the trace of the (D − q)-dimensional
equations (28), one obtains

ðD−q−2nÞF̃α1…αpF̃
α1…αp ¼ðD−q−2pÞF̃α1…αpF̃

α1…αp ;

ð30Þ

which for F̃α1…αpF̃
α1…αp ≠ 0 is consistent only if n ¼ p.

This shows that we can cylindrically uplift the solutions of
Lovelock theory with a single Lovelock term of order n,
only when they are supported by an (n − 1)-form field. It is
therefore enough to solve the equations on the brane (28) to
find new extended black objects. The field equations of
such theory also acquire a global scaling symmetry since
under gAB → ξ−1gAB, one has

Eðn;nÞ
AB ¼ 0 → ξn−1Eðn;nÞ

AB ¼ 0: ð31Þ

Note that in order to have a nonvanishing contribution of
the Lovelock theory of order n to the field equations we
need d > 2n.
It is interesting to notice that Einstein theory supported

by a single massless scalar field belongs to the special class
of theories singled out by the previous arguments. Indeed in
such a case the equations on the brane read

R̃μν −
1

2
g̃μνR̃ ¼ ∂μϕ∂νϕ −

1

2
g̃μνg̃αβ∂αϕ∂βϕ; ð32Þ

while the equations along the extended directions
reduce to
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R̃ ¼ g̃αβ∂αϕ∂βϕ; ð33Þ

which is trivially implied by the trace of (32). Due to
no-hair theorems, it is not possible to obtain cylindrically
extended black objects in this system, nevertheless for
spherical symmetry on the brane, this shows that one
can indeed cylindrically extend the singular Janis-
Newman-Winicour [31] solution from four dimensions
to D ¼ ð4þ qÞ-dimensions as a solution of the Einstein-
Klein-Gordon system in dimension D. This can be
extended to arbitrary d by considering the Zannias-
Xanthopoulos singular solution [32].
We have seen in the previous section that for the Gauss-

Bonnet theory coupled to a Maxwell field one can indeed
construct black branes. In the following section we con-
struct new solutions for cubic and quartic Lovelock theories
supported by a three-form and four-form field strength,
respectively, describing black strings and branes.

IV. NEW CHARGED BLACK P-BRANES IN
LOVELOCK GRAVITY

In the previous section we have shown that the Lovelock
theory of order n coupled to a (p − 1)-form with p ¼ n
admits black brane solutions, provided one can find a black
object on the brane. In this section we construct new
solutions in this class for cubic and quartic Lovelock theory
coupled to a two-form and a three-form, respectively.

A. Cubic Lovelock theory and a Kalb-Ramond field

Let us propose the following ansatz for the metric:

ds2 ¼ ds̃2d þ dx⃗2q ð34Þ

¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdΩ2
ð1Þ þ � � � þ dΩ2

ðmÞÞ þ dx⃗2q;

ð35Þ

where dΩðiÞ stands for the line element of the ith three-
dimensional, constant curvature manifold of curvature γ,
normalized to �1 (it can be checked that the case γ ¼ 0
does not lead to black hole solutions). For the sake of
concreteness one could use the following coordinate chart
ðxi; yi; ziÞ on the ith three-dimensional manifold with line
element dΩðiÞ such that

dΩ2
ðiÞ ¼

dx2i þ dy2i þ dz2i
ð1þ γ

4
ðx2i þ y2i þ z2i ÞÞ2

ðno sum over iÞ; ð36Þ

and the following, natural, magnetic ansatz for the three-
form field strength

Fð3Þ ¼ P
Xm
i¼1

VolðΩðiÞÞ; ð37Þ

where P is a constant and which in components reads

Fð3Þ
μνλ ¼

P
ð1þ γ

4
ðx21 þ y21 þ z21ÞÞ3

δx1½μ δ
y1
ν δ

z1
λ� þ � � �

þ P
ð1þ γ

4
ðx2m þ y2m þ z2mÞÞ3

δxm½μ δ
ym
ν δzmλ�

ðno sum over mÞ: ð38Þ

The dimension of the spacetime is therefore D ¼ dþ
q ¼ ð2þ 3mÞ þ q.
In this manner, as usual, the equations for the two-form

are fulfilled:

∇μF
μνλ
ð3Þ ¼ 0; ð39Þ

without any constraint on the magnetic charge P. One
therefore has to deal with the generalized Einstein equa-
tions,

Eð3;3Þ
AB ≔ c3G

ð3Þ
AB −

�
FACDFCD

B −
1

6
gABFCDEFCDE

�
¼ 0;

ð40Þ

and then solve the lapse function fðrÞ from the system,

−
c3
24

δAC1…C6

BD1…D6
RD1D2

C1C2
RD3D4

C3C4
RD5D6

C5C6

−
�
FA
CDF

CD
B −

1

6
δABFCDEFCDE

�
¼ 0: ð41Þ

Note that we have explicitly included the coupling2 c3.
With this ansatz, one can use the results from the

previous sections to show that the equations Eð3;3Þ
xixi ¼ 0

(no sum over xi) are implied by the trace of the equations on
the brane. Out of these equations one can show that

Eð3;3Þt
t ¼ Eð3;3Þr

r : ð42Þ

The equations projected along the angles ΩðiÞ are all equal

and reduce to a linear combination of the Eð3;3Þt
t equation

and its derivative with respect to the radial coordinate, as
expected from diffeomorphism invariance. Consequently,
one is left with a single master equation that admits a first
integral and leads to the following Wheeler’s-like poly-
nomial for f ¼ fðrÞ:

2For some explicit examples of solutions including charged
black holes with planar horizons, Taub-Nut black holes and their
coupling with nonlinear electrodynamics in general Lovelock
theories containing the cubic term see the works in Ref. [33].
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f3 −
6γ

ðd − 3Þ f
2 þ 12

ðd − 4Þðd − 3Þ f þ 1

54

ðd − 8Þ!P2

ðd − 3Þ!c3
þ μ

rd−7c3
−

8γðd − 8Þ
ðd − 6Þðd − 7Þðd − 3Þðd − 4Þ ¼ 0: ð43Þ

Here μ is an integration constant.
Assuming the existence of a horizon located at

r ¼ rþ > 0, we can compute the temperature and the
entropy density of the black string [34], which respectively
read

T ¼ f0ðrþÞ
4π

¼ 1

48

ðd − 7Þðd − 4Þðd − 3Þμ
c3πrd−6þ

; ð44Þ

s ¼ 64π2c3ðd − 5Þðd − 2Þrd−6þ ; ð45Þ

and μ ¼ μðrþÞ is given by

μðrþÞ ¼
ðd − 2Þ!ðd − 5Þ

ðd − 7Þ!
�
8γc3ðd − 8Þ − 1

54

P2

ðd − 5Þ
�
rd−7þ :

ð46Þ

As expected, the positivity of the temperature and entropy
imply c3 > 0 and μ > 0, which by virtue of (46) and for
d > 8 imply γ ¼ 1 (the case d ¼ 8 does not lead to black
holes). Therefore, the horizon of the black branes is given
by the product of m three-spheres times IRq. Figure 1
depicts the lapse function for some values of the integration
constants in dimensions d ¼ 11 and d ¼ 14.
The solution with vanishing integration constants,

μ ¼ P ¼ 0, has the form

ds20 ¼ −αdðP ¼ 0; μ ¼ 0Þdt2 þ dr2

αdðP ¼ 0; μ ¼ 0Þ
þ r2ðdΩ2

ð1Þ þ � � � þ dΩ2
ðmÞÞ þ dx⃗2q; ð47Þ

with αd a real solution of the cubic polynomial (43). This
spacetime has a curvature singularity at the origin that, as
shown in Fig. 1, can be covered by an event horizon for
nonvanishing values of the integration constants. The
situation is similar to what occurs for Lifsthiz spacetimes,
where the Lifshitz background is singular at the origin (it
contains timelike incomplete geodesics), but this singular-
ity is hidden by an event horizon in the case of Lifshitz
black holes (see e.g., [35]). This behavior is also reminis-
cent of gravitating monopoles [36].
The asymptotic behavior of the lapse function is

fðrÞ ¼ αdðPÞ −
μ̃ðd; μ; PÞ

r
d−7
3

þ � � � ; ð48Þ

where � � � denotes subleading terms. Here αd and μ̃ depend
on the dimension as well as on the integration constants μ
and P. It is interesting to notice that the first dependence in
r has the usual falloff for the black hole solution of the
cubic Lovelock theory in vacuum [22], therefore one may
expect that for a fixed P ¼ P̄, these solutions should have a
finite mass when the energy density is measured with
respect to the background:

ds2∞ ¼ −αdðP̄Þdt2 þ
dr2

αdðP̄Þ
þ r2ðdΩ2

ð1Þ þ � � � þ dΩ2
ðmÞÞ þ dx⃗2q; ð49Þ

with a nonvanishing magnetic flux. It is interesting to
notice also that the term that decays as r−ðd−7Þ=3 has a
slower falloff than that of an asymptotically flat solution
with finite mass in general relativity ðr−ðd−3ÞÞ, nevertheless
since only the cubic term is present, the mass will come
from the term with falloff r−ðd−7Þ=3 on the lapse function.

B. Quartic Lovelock theory and a three-form:
Magnetically charged solutions

Let us now construct new black brane solutions of
quartic Lovelock theory coupled to a four-form field
strength. We will first construct solutions with magnetic
charge only, for which we use the ansatz (34) and (35),
where now dΩðiÞ stands for the line element of the ith four-
dimensional, constant curvature manifold of curvature γ,
normalized to �1. Again for concreteness a coordinate
chart ðxi; yi; zi; wiÞ on the ith four-dimensional manifold
with line element dΩðiÞ can be used and then

dΩ2
ðiÞ ¼

dx2i þ dy2i þ dz2i þ dw2
i

ð1þ γ
4
ðx2i þ y2i þ z2i þ w2

i ÞÞ2
ðno sum over iÞ;

ð50Þ

d= 11

d= 14

1 2 3 4 5 6
r

–0.2

–0.1

0.1

0.2

f (r)

FIG. 1. Charged black holes for cubic Lovelock theory sup-
ported by a three-form field strength. fðrÞ for c3 ¼ 1, rþ ¼ 1 and
magnetic charge P ¼ 1, for dimensions d ¼ 11 and d ¼ 14. The
event horizon is a product of three-spheres and this solution can
be trivially oxidated to higher dimensions by adding a factor IRq

to the metric.
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and now the magnetic ansatz for the four-form reads

Fð4Þ ¼ P
Xm
i¼1

VolðΩðiÞÞ; ð51Þ

which in components turn out to be

Fð4Þ
μνλρ ¼

P
ð1þ γ

4
ðx21 þ y21 þ z21 þ w2

1ÞÞ3
δx1½μ δ

y1
ν δ

z1
λ δ

w1

ρ� þ � � �

þ P
ð1þ γ

4
ðx2m þ y2m þ z2m þ w2

mÞÞ3
δxm½μ δ

ym
ν δzmλ δw1

ρ� ;

ð52Þ

with no sum over m. Now the spacetime dimension is
D ¼ dþ q ¼ ð2þ 4mÞ þ q. Again, Maxwell equations
for the fundamental three-form are trivially fulfilled and
introducing the gravitational coupling c4 one is left with the
system

Eð4;4Þ
AB ≔ c4G

ð4Þ
AB −

�
FACDEFCDE

B −
1

8
gABFCDEHFCDEH

�

¼ 0; ð53Þ

which explicitly reads

−
c4
25

δAC1…C8

BD1…D8
RD1D2

C1C2
RD3D4

C3C4
RD5D6

C5C6
RD7D8

C7C8

−
�
FA
CDEF

CDE
B −

1

8
gABFCDEHFCDEH

�
¼ 0: ð54Þ

As before, since there is a single metric function
and the system comes from an action that is invariant
under diffeomorphisms, it is enough to integrate the (tt)
equation that leads to the following Wheeler’s-like quartic
polynomial:

f4 −
12γ

ðd − 3Þ f
3 þ 18ð3d − 16Þγ2

ðd − 5Þðd − 4Þðd − 3Þ f
2 −

108γðd − 8Þ
ðd − 7Þðd − 5Þðd − 4Þðd − 3Þ f

−
1

384

ðd − 10Þ!P2

ðd − 3Þ!c4
þ 27ð3d2 − 48dþ 188Þ
ðd − 9Þðd − 8Þðd − 7Þðd − 5Þðd − 4Þðd − 3Þ −

μ

rd−9c4
¼ 0:

Again, μ is an integration constant. The expression for
the temperature and entropy density of a black hole with
horizon located at r ¼ rþ read

T ¼ f0ðrþÞ
4π

¼ 1

432

μðd − 9Þðd − 7Þðd − 5Þðd − 4Þðd − 3Þ
ðd − 8Þγπc4rd−8þ

;

ð55Þ

s ¼ 216π3γðd − 8Þðd − 6Þðd − 2Þc4rd−8þ ; ð56Þ

and in this case μ ¼ μðrþÞ is given by

μðrþÞ ¼
ðd − 10Þ!
ðd − 3Þ!

�
27ð3d2 − 48dþ 188Þðd − 6Þc4

−
1

384
P2

�
rd−9þ : ð57Þ

Considering the latter expression plus restricting the
entropy and temperature to be positive, implies c4 > 0,
μ > 0 and γ ¼ 1. Consequently, in this case the event
horizon of the black branes has the local geometry of the
product of m four-spheres times IRq. In Fig. 2 we show
some plots of the lapse functions for different values of the
integration constants and dimensions.
As before, when r → þ∞, the lapse function approaches

a constant αdðPÞ plus a term proportional to a function

μ̃ðd; μ; PÞ that decays as r−ðd−9Þ=3. This coincides with the
asymptotic falloff of the solution in quartic Lovelock theory
in vacuum [22].

C. Quartic Lovelock theory and a three-form:
Dyonic solutions

Finally, let us construct new black brane solutions with
both electric and magnetic charge, i.e., dyonic solutions.
We assume that the line element is given by (34) and (35)
and now dΩðiÞ stands for the line element of the ith two-
dimensional manifold of constant curvature γ, normalized
to �1. One can choose the coordinate patch ðxi; yiÞ on the
ith two-dimensional manifold such that

dΩ2
ðiÞ ¼

dx2i þ dy2i
ð1þ γ

4
ðx2i þ y2i ÞÞ2

ðno sum over iÞ: ð58Þ

In order to turn on the electric and magnetic parts of the
field strength we assume

Fð4Þ ¼ Qdt ∧ dr ∧ X
i

VolðΩðiÞÞ

þ P
X
i<j

VolðΩðiÞÞ ∧ VolðΩðjÞÞ; ð59Þ

which in components reads

CHARGED BLACK STRINGS AND BLACK BRANES IN … PHYS. REV. D 98, 044019 (2018)

044019-7



Fð4Þ
μνλρ ¼ P

Xm
i<j

δxi½μδ
yi
ν δ

xj
λ δ

yj
ρ�

ð1þ γ
4
ðx2i þ y2i ÞÞð1þ γ

4
ðx2j þ y2jÞÞ

þQ
Xm
i

δt½μδ
r
νδ

xi
λ δ

yi
ρ�

ð1þ γ
4
ðx2i þ y2i ÞÞ

: ð60Þ

The spacetime dimension is now D ¼ dþ q ¼ ð2þ 2mÞ þ q. Maxwell equations for the fundamental three-form are
fulfilled identically and as before the system (54) leads to a single polynomial equation that resembles Wheeler’s
polynomial,

f4 −
4γ

ðd − 3Þ f
3 þ 6γ2

ðd − 5Þðd − 3Þ f
2 −

4γ

ðd − 7Þðd − 5Þðd − 3Þ f −
μ

rd−9c4

−
1

768

ðd − 10Þ!ðd − 4ÞP2

c4ðd − 3Þ! þ 1

192

ðd − 9Þ!Q2

c4ðd − 7Þðd − 3Þ!r2ðd−8Þ þ
γ2

ðd − 9Þðd − 7Þðd − 5Þðd − 3Þ ¼ 0: ð61Þ

Temperature and entropy density read

T ¼ f0ðrþÞ
4π

¼ ðd − 5Þðd − 3Þ
16γπc4rd−8þ

�
μðd − 9Þðd − 7Þ − 1

96

ðd − 9Þ!ðd − 8Þ
ðd − 3Þ!

Q2

rd−7þ

�
; ð62Þ

s ¼ 16π2γc4ðd − 6Þðd − 4Þðd − 2Þrd−8þ ; ð63Þ

and μ ¼ μðrþÞ in this case is given by

μðrþÞ ¼
rd−9þ

ðd − 7Þðd − 5Þðd − 3Þ
�

γ2c4
ðd − 9Þ þ

1

192ðd − 8Þðd − 6Þ
�

Q2r2ð8−dÞþ
ðd − 7Þðd − 4Þ −

P2

4ðd − 9Þ
��

:

Figure 3 contains the lapse functions of dyonic black
branes in quartic Lovelock theory with horizons given by
the product of m two-spheres times IRq.

V. CONCLUSIONS AND FURTHER COMMENTS

In this paper we have shown that Lovelock theories with
a single Lovelock term3 of order n admit cylindrical,

homogeneous charged black strings in the presence of a
(p − 1)-form, only when p ¼ n. In the simplest case, one
can consider general relativity (n ¼ 1) coupled to a mass-
less scalar field (p − 1 ¼ 0) and construct branelike sol-
utions by just adding flat directions. No-hair theorems in
this case forbid the existence of black objects with a
nonvanishing scalar field. We have explicitly shown that
the next simpler case, i.e., Gauss-Bonnet-Maxwell theory,
does admit charged black strings and black branes which
are homogeneous on the extended directions. We have
extended these results and constructed new explicit

d = 10

2 4 6 8 10
r

–0.3

–0.2

–0.1

0.0

0.1
f (r)

(a)

d= 14

1 2 3 4
r

–0.025

–0.020

–0.015

–0.010

–0.005

0.005
f (r)

(b)

FIG. 2. Magnetically charged black holes for quartic theory supported by a four-form field strength in dimensions d ¼ 10 (left panel
with P ¼ 2900) and d ¼ 14 (right panel with P ¼ 550). In both figures we have chosen c4 ¼ 1 and rþ ¼ 1. The event horizon is
given by the product of four-spheres and these solutions can be cylindrically oxidated to higher dimensions by adding a factor IRq to
the metric.

3Lovelock theories with a single Lovelock term also admit for
black holes with nonminimally coupled scalar hairs [37].
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solutions, for the cubic Lovelock theory supported by a
Kalb-Ramond field as well as for the quartic Lovelock
theory with a four-form field strength.
The new black brane solutions we have constructed here

have a horizon geometry that is given by the product of
spheres times IRq. It is well known that in general relativity
in vacuum the usual sphere of Schwarzschild-Tangherlini
solution [38], hereafter the base manifold, can be replaced
by an arbitrary Euclidean Einstein manifold [39]. In
Einstein-Gauss-Bonnet theory in vacuum, it was realized
by Dotti and Gleiser [40] that for generic values of the
Gauss-Bonnet coupling, an Einstein base manifold must
also fulfill a quadratic tensor constraint on the curvature
that admits a simple expression when written in terms of the
Weyl tensor. Some explicit examples of horizons were
given in [41] as well as the expression for the finite
quasilocal mass. In Refs. [42–44], it was shown that for
generic values of the couplings, the Einstein restriction on
the base manifold is a necessary condition and that for the
particular relation that leads to a theory with a single
maximally symmetric solution, the restrictions are weak-
ened and the set of possible causal structures is enlarged to
admit as well wormhole solutions in vacuum [45]. This
analysis was extended to Lovelock theories in the Chern-
Simons case [46] in Ref. [47] obtaining similar results even
with time dependence. Also products of Thurston geom-
etries may appear as models for the horizon in Lovelock
theories with a unique maximally symmetric solution [48].
For arbitrary values of the Lovelock couplings a thorough
analysis was provided in Ref. [49], where it was shown that
the base manifold has to fulfill a hierarchy of Euclidean

Lovelock equations. A similar result was recently obtained
for warped black strings in [50].
Of particular relevance for the present work is Ref. [51],

where new static solutions in general relativity coupled to
p-forms were presented. Here we have used the same
ansatz for the p-forms in the electric and magnetic cases,
where the components are distributed on a symmetric
fashion along the base manifold. These results were
extended to the Einstein-Gauss-Bonnet theory in [52]. In
the latter references the authors also consider base mani-
folds that are products of Einstein-Kähler spaces, with
a p-form field strength that is proportional to exterior
products of the Kähler forms of each manifold. An
exhaustive analysis of the solutions supported by a p-form
in general relativity in the Robinson-Trautman family was
provided in [53,54]. All these solutions, as the ones
presented in Sec. IV of this paper, have an asymptotic
behavior that matches the transverse section of the metric
(49). These metrics have a singularity at r ¼ 0, which for
black hole spacetimes is surrounded by an event horizon.
The stability of homogeneous black strings and black

branes is easier to study than that of the nonhomogeneous
objects.4 Since the solutions are symmetric under trans-
lations along the extended directions, one can construct
plane waves with a definite momentum along such direc-
tions. In general relativity [3], Gauss-Bonnet [28] and cubic
Lovelock theories [29] there is a perturbative instability, a
Gregory-Laflamme instability, that it is triggered by modes
with wavelength above a critical value, and it is therefore a
long wavelength instability, sharing some properties of
instabilities of other physical systems [55]. It would be
interesting to explore the stability of the solutions here
constructed, in particular that of the extremal dyonic case in
quartic Lovelock theory.
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FIG. 3. Dyonic solution in quartic Lovelock theory in dimen-
sion d ¼ 14. The event horizon is given by a product of six two-
spheres and we have chosen c4 ¼ 1, P ¼ 1 and rþ ¼ 1. Two
different values for the electric charge are presented which
correspond to a subextremal value that leads to a spacetime with
an event and Cauchy horizon and also the extremal case for which
the horizons degenerate and the solution has vanishing temper-
ature.

4Even though the Cauchy problem for theories containing a
unique Lovelock term could be ill posed around a generic
background, Refs. [28,29] show that the linearized problem
can be explored in a systematic fashion, providing a well-defined
result. As it occurs in vacuum for spherically symmetric black
holes, we believe that the configurations we have constructed in
this work will appear as the high-curvature regime of charged
black string solutions including also the Einstein-Hilbert term.
Those solutions might be constructed numerically and in such a
setup one could hope to study the nonlinear evolution of the
perturbation.
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