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In this paper, we have established an asymptotically conical Morris-Thorne wormhole solution that
is supported by an anisotropic matter fluid and a global monopole charge in the framework of a 1 + 3
dimensional gravity that is minimally coupled to a triplet of scalar fields ¢, which results from the
breaking of a global O(3) symmetry. For the anisotropic matter fluid, we have considered the equation of
state (EoS) given by P, = wp, with a consequence @ < —1, that implies a so-called phantom energy at the
throat of the wormhole, which violates the energy conditions. In addition, we study the weak gravitational
lensing effect using the Gauss-Bonnet theorem (GBT) applied to the wormhole optical geometry. We show

that the total deflection angle consists of a term given by 4x°%?, which is independent of the impact
parameter b, and an additional term, which depends on the radius of the wormhole throat b, as well as the

dimensionless constant {.
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I. INTRODUCTION

Wormbholes are associated with the amazing spacetime
topology of the connection of two spacetime geometries
that are located in different regions of the Universe or
different universes. They are solutions of the Einstein field
equations; historically, the first step toward the concept of
wormholes was made by Flamm [1] and later a new spin
was put forward by Einstein and Rosen [2]. It is interesting
to note that Einstein and Rosen proposed a geometric
model for elementary particles, such as the electron, in
terms of the Einstein-Rosen bridge (ERB). However, this
model turns out to be unsuccessful, and moreover, the ERB
was shown to be unstable [3-8].

Traversable wormholes (TW) were studied extensively
in the past by several authors; notably Ellis [7,8] and
Bronnikov [9] studied exact traversable wormhole solu-
tions with a phantom scalar, while a few years later,
different wormhole models were discussed by Clement
[10], followed by the seminal paper by Morris and Thorne
[11]. Afterwards, Visser developed the concept of thin-shell
wormholes [12]. Based on physical grounds, it is well-
known that all the matter in our Universe obeys certain
energy conditions; in this context, as we shall see, the
existence of wormholes is problematic. In particular, the
geometry of TW requires a spacial kind of exotic matter
concentrated at the wormhole throat (to keep the spacetime
region open at the throat). In other words, this kind
of matter violates the energy conditions, such as the null
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energy condition (NEC) [12]. It is speculated that such
a matter can exist in the context of quantum field theory.
The second problem is related to the stability of the
wormholes. Given the wormhole spacetime geometry,
one way to check the stability analyses is the linear
perturbation method around the wormhole throat proposed
by Visser and Poisson [13]. Wormholes have been studied
in the framework of different gravity theories, e.g., the
rotating traversable wormhole solution found by Teo [14],
spinning wormholes in the scalar-tensor theory [15],
wormholes with phantom energy [16], wormholes in
gravity’s rainbow [17], the traversable Lorentzian worm-
hole with a cosmological constant [18], wormholes in
Einstein-Cartan theory [19], wormholes in Eddington-
inspired Born-Infeld gravity [20-22], wormholes with
different scalar fields and charged [23-29], wormholes
from cosmic strings [30], wormholes by grand unified
theories in the early Universe [31], wormholes in f(R,T)
gravity [32], and recently, [33-35]. Recently, extensive
studies have been conducted by different authors related to
the thin-shell wormhole approach [36—45].

Topological defects are interesting objects predicted to
exist by particle physics due to the phase transition
mechanism in the early Universe [46]. One particular
example of topological defects is the global monopole,
which is a spherically symmetric object resulting from the
self-coupling triplet of scalar fields ¢“ that undergoes a
spontaneous breaking of the global O(3) gauge symmetry
down to U(1). The spacetime metric describing the global
monopole has been studied in many papers including
[47-51]. In this paper, we provide a new Morris-Thorne
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wormhole solution with an anisotropic fluid and a global
monopole charge in the 14 3 gravity theory minimally
coupled to a triplet of scalar fields. The deflection of light
by black holes and wormholes has attracted great interest;
in this context, the necessary methodology can be found in
the papers by Bozza [52-55], Perlick et al. [56-59], and
Tsukamoto et al. [60-65]. For some recent works con-
cerning the strong/weak lensing, see also [66—81]. While
for an alternative method to study gravitational lensing via
GBT, see Refs. [82-87].

This paper has the following organization. In Sec. II, we
deduce the metric for a static and spherically symmetric
Morris-Thorne wormhole with a global monopole charge.
In Sec. III, we study the weak gravitational lensing
applying the Gauss-Bonnet theorem. In Sec. IV, we draw
our conclusions.

II. MORRIS-THORNE WORMHOLE
WITH A GLOBAL MONOPOLE CHARGE

We start by writing the 3 + 1 dimensional action without
a cosmological constant minimally coupled to a scalar field
with matter fields in units ¢ = G = 1 given by

S:/(%+£)\/—_gd4x+8m (1)

in which x = 8z. The Lagrangian density describing a self-
coupling scalar triplet ¢ is given by [47]

1 A
L==32 040" 3@ =P, ()

with a = 1, 2, 3, while 4 is the self-interaction term, # is the
scale of a gauge-symmetry breaking. The field configura-
tion describing a monopole is

. nf(r)x¢
= () (3)
r
in which
x4 = {rsin6@cos @, rsin@sin @, r cos 6}, (4)

such that >, x*x% = r%. Next, we consider a static and
spherically symmetric Morris-Thorne traversable worm-
hole in the Schwarzschild coordinates given by [11]

2
ds? = —

d
wirge r*(d6? + sin’0d¢?), (5)
1 —

b(r)
r
in which ®(r) and b(r) are the redshift and shape
functions, respectively. In the wormhole geometry, the
redshift function ®(r) should be finite in order to avoid
the formation of an event horizon. Moreover, the shape
function b(r) determines the wormhole geometry, with the

following condition b(ry) = rq, in which r is the radius of
the wormhole throat. Consequently, the shape function
must satisfy the flaring-out condition [16],

b(r)—rb'(r)
0 >0, (6)

in which b'(r) =42 <1 must hold at the throat of the
wormhole. The Lagrangian density in terms of f reads

‘ :‘<1 ‘b(rr)> ,72(5,)2_”2 g )

2 4

On the other hand, the Euler-Lagrange equation for the
field f gives

(s3]

f[ + P (f* = )}zo. (8)

The energy momentum tensor from the Lagrangian
density (2) is found to be

1 v
Tm/ = 8ﬂ¢a8u¢a - Egﬂvgoaapgbaaaqba gﬂ (¢a¢a - ) .
©)

Using the last equation, the energy-momentum compo-
nents are given as follows:

el ()2
oo ()%
o)

It turns out that Eq. (8)cannot be solved exactly;
however, it suffices to set f(r) — 1 outside the wormhole.

-7 a0

e -1p)

(

212
)+f1

-]

Consequently, the energy-momentum components
reduces to
_ _ 7’,2 _ _
T =T, ~-=, T9=Tj=~0. (13)
r

On the other hand, Einstein’s field equations (EFE) reads

1
G,=R, - EQWR =8x7T,, (14)

2%
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where 7, is the total energy-momentum tensor which can

be written as a sum of the matter fluid part and the matter
fields

0 -
Ty =T + T (15)
For the matter fluid, we shall consider an anisotropic
fluid with the following energy-momentum tensor
components:
7,0 = (=p, P,. Py, P,). (16)

Einstein tensor components for the generic wormhole
metric (5) gives

b'(r)
G =2\
t ]"2

/

i) o1 M)

r r)or

b(r) b'r—b
0 _ 1= " q)/Z_ (04
= (1-"7) o0 -5

_br=b @

2r2(r=b)  r]’
G = Gb. (17)

The energy-momentum components yields

1
plr) = r /() = 8,
_b(r)\ @ b(r) 8an?
P 3 T3 |
r r r
br—b
@ (04 2 _ @'
( N Oy
o
3 18
2r (r - b) + r} (18)
where P = Py = P,,. To simplify the problem, we use the

EoS of the form [16-18]
P, = wp. (19)

In terms of the equation of state, from Eq. (18), it is
possible to find the following result:

b(r) — 8an*r + 8rwpr® — 2r(r — b(r))®'(r)
3

0. (20)

r

Substituting the energy density relation,

p(r) = — 8mp’], (21)

5 [V/(r)

877:r

into Eq. (20), we find
b (r)or + b(r) = 8an*(w + 1)r = 2r(r — b(r))®'(r)

3

=0.
(22)

In our setup, we shall consider a constant redshift
function, namely a wormhole solution with a zero tidal
force, i.e., ® = 0; therefore, the last equation simplifies to

b'(r)or + b(r) — 8an*(w + 1)r = 0. (23)
Finally, we use the condition b(ry) = by = ry; thus, by

solving the last differential equation, we find the shape
function to be

/o
b(r) = <Q> ro(1 — 8zn*) + 8an?r. (24)
r

One can observe that the wormhole solution is not
asymptotically flat by checking the following equation
(Fig. 1):

b(r)

lim —~= = lim

r—o0 r r—o0 r

ro 1+$

=) (1 =8| +8zp%.  (25)

The first term blows up when r — oo, since w < —1.
With the help of the shape function, the wormhole metric
reduces to

dr?

ds? = —d* + ]
(1= 8an?)[1 = ()]

+r2dQ2. (26)

Note that the constant factor exp(2®) = const, is
absorbed into the rescaled time coordinate 7. To the best
of our knowledge, this metric is reported here for the first
time. On the other hand, the metric coefficient g,, diverges
at the throat b(ry) = ry; however, this just signals the
coordinate singularity. To see this, one can calculate the
scalar curvature or the Ricci scalar, which is found to be

1671 2 5
R =—2 4 (1-8mp) =2 (@) . (27)
r ar r

from the last equation, we see that the metric is regular at
r = ro. Because of the above coordinate singularity, it is
convenient to compute the proper radial distance, which
should be a finite quantity

_i/r—L’/ .
ro l_b:tT(r/)

(28)
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FIG. 1. The figure shows the behavior of the shape function
b(r)/r as a function of r and w, for chosen by = 1 and 7 = 107>,

Using Eq. (24), we find

|:rFl (% ’ —otl 1 ’ ("_0)'":,]) - rOﬁr(#)}

o Co+l’\r F(%—ﬁ)
V1 = 8an?

in which £ stands for the upper and lower part, respec-
tively. Next, we verify whether the null energy condition
(NEC) and weak energy condition (WEC) are satisfied at
the throat of the wormhole. As we know, WEC is defined
by T, U*U* >0, i.e., p >0 and p(r) + P,(r) > 0, where
T, is the energy momentum tensor with U being a
timelike vector. On the other hand, NEC can be defined by
T, k'k" >0, ie., p(r) 4+ P,(r) >0, with k& being a null
vector. In this regard, we have the following energy
condition at the throat region:

I(r) = + (29)

b'(ro) — 8z’
8ury

p(ro) = (30)

Now, using the field equations, one finds the following
relations:

p(r) + Polr) = — [—b {ro)ro b(”’)} . (31

8 U

considering now the shape function at the throat region,
we find

(1 =8zn?)(w+ 1)
8wrr] '

(p + 7)r)|r:r0 == (32)

This result verifies that matter configuration violates the
energy conditions at the throat (p + P,)|,_, <0 (Fig. 2).

Another way to see this is simply by using the flaring-out
condition,

1= 2
(1-8mr) _

b (ry) = 8an* — 1, (33)

which implies @ < —1. This form of exotic matter with
@ < —1 is usually known as a phantom energy. Another
important quantity is the “volume integral quantifier,”
which basically measures the amount of exotic matter
needed for the wormhole defined as follows:

T, = / (0(r) + P, (1)dV. (34)

with the volume element given by dV = r? sin §drdéde.

For simplicity, we shall evaluate the volume-integral
associated to the phantom energy of our wormhole space-
time (26) by assuming an arbitrary small region, e.g., ry
to a radius situated at “a”, in which the exotic matter is
confined. More specifically, by considering our shape
function b(r) given by Eq. (24), for the amount of exotic
matter, we find

(@ + 1)(1 = 8zn?)
2w

For an interesting observation when a — ry then it
follows

IV:

(a—rp). (35)

/ (p+P,) =0, (36)

and thus, one may interpret that a wormhole can be contracted
with arbitrarily small quantities of ANEC violating matter.

As we have already seen from (25), the first term blows
up when r — o0, since @ < —1. In order to overcome this
problem, it is convenient to rewrite the shape function in
terms of new dimensionless constants. In particular, fol-
lowing Lobo et al. [88], we can consider the following
shape function given by

b _, Kl)g(l — 8an”) + 8an’ (;)] +C. (37)

o o 0

where a, {, and C, are dimensionless constants. Without
the loss of generality, we choose a =1, then using
b(ry)/ro =1, we find C = 0. Furthermore, considering
a positive energy density implies { > 0, while the flaring-
out condition imposes an additional constraint at the throat,
namely { < 1. Moreover, using the equation of state at the
throat P, (ry) = wp(ry), we find {w = —1. On the other
hand, from Egs. (21) and (22), we can deduce the following
equation:

b(r) = 8an’r + wr(b'(r) — 8an?)

o= 22(1 = b(r)/7r)

(38)

To this end, using the condition {w = —1 at r = r(, we
find that ® = const. With this information, we can write
our wormhole metric as follows:

dr?
(1= 8zp?)[1 = (%)

ds? = —dr* + +r2dQ?,  (39)
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FIG. 2. In this figure, we depict the behavior of p + P, as a
function of r and w. We have chosen b, = 1 and y = 107>. The
energy conditions are violated.

provided that ¢ is in the range 0 < { < 1. Now one can
check that

b 1-¢
lim br) _ lim <r°> (1=8zn?)+8xn* =8xn>,  (40)

roco 1 r—oo \ r

provided 0 < ¢ < 1. This equation shows that our worm-
hole metric (39) is asymptotically conical with a conical
deficit angle which is independent of the radial coordinate
r. Furthermore, we can construct the embedding diagrams
to visualize the conical wormhole by considering an
equatorial slice, # = z/2 and a fixed moment of time,
t = const. It follows

dr?
_ bl

r

ds? = + r2d¢?. (41)

On the other hand, we can embed the metric into three-
dimensional Euclidean space written in terms of cylindrical
coordinates as follows:

dz\ 2
ds? = dz? + dr* + r’d¢?® = [1 + <dz> ]dr2 + r2dg?.
r

(42)

From these equations, we can deduce the equation for the
embedding surface as follows:

dz 1
— =z : (43)
s - (3

Finally, we can evaluate this integral numerically for
specific parameter values in order to illustrate the conical
wormhole shape given in Fig. 3.

FIG. 3. The embedding diagram of a two-dimensional section
along the equatorial plane with ¢ = const and € = z/2. To
visualize this, we plot z vs r sweep through a 27 rotation around
the z axis. We chose by =1, = 0.01, and { = 0.5.

ITII. GRAVITATIONAL LENSING

We can now proceed to elaborate the gravitational lensing
effect in the spacetime of the wormhole metric (39).
The wormhole optical metric can be simply found letting
ds? = 0, resulting in

P = dr 242, (44
ey LS A A

Consequently, the optical metric can be written in terms
of the new coordinates

d? = hy,dyedy? = du? + H2(u)dg?, (45)
in which we have introduced ‘H = r and
d
du = d .
V(1= 8m)(1 = (%))

It is very important to first compute the Gaussian
optical curvature (GOC) KC, which is defined in terms of
the following equation [82]:

1 [drd (dr\dH dr\2d*H
—_ TN () gy
K H(u) {du dr (du) ar <du> drz] (47)

Applying this to our optical metric, we find

— 8 _
K—_%C’_ﬁ)l -0, (48)

(40)

Obviously, the GOC is affected by the global monopole
charge and the state parameter. Note the important negative
sign which is implying the divergence of light rays in the
wormhole geometry. But, as we are going to see, this is
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crucial in evaluating the deflection angle, which is really a
result of a global spacetime topology in terms of the Gauss-
Bonnet theorem (GBT). Thus, in our setup, we first choose
a nonsingular domain, or a region outside the light ray
noted as Ay, with boundaries 0.A; = y;, U Cg. Then, the
global GBT in terms of the above construction is formu-
lated as follows:

// Kdo + ]{ kdt + >y = 2my(Ag).  (49)

Ag 0AR

In this equation, x is usually known as the geodesic
curvature (GC) and basically measures the deviation from
the geodesics; K is the GOC; do is the optical surface
element; finally, y, notes the exterior angle at the k'
vertex. The domain is chosen to be outside of the light ray,
implying the Euler characteristic number to be y(Ag) = 1.
The GC is defined via

k= h(V;1.7), (50)

where we impose the unit speed condition A(y,7) = 1. For
a very large radial coordinate R — oo, our two jump angles
(at the source S and observer O) yields y o + wg — 7 [82].
Then the GBT simplifies to

R—oo n+a
///Cda+]fxdt = //ICda+/ dp=n (51
0
Ag Cr A
By definition, the GC for y,, is zero; hence, we are left
with a contribution from the curve Cp located at a
coordinate distance R from the coordinate system chosen

at the wormhole center in the equatorial plane. Hence, we
need to compute

k(Cg) = ‘VCRCRl' (52)

In components notation, the radial part can be written as
(Ve, Cr)" = Ch(O,CR) + Ty (CR2. (53)

With the help of the unit speed condition and after we

compute the Christoffel symbol related to our optical metric
in the large coordinate radius R, we are left with

’

1
—~ o\ 1 =8 (54)

Hence, GC is in fact affected by the monopole charge. To
see what this means, we write the optical metric in this limit
for a constant R. We find

lim x(Cy) = lim |V, Cy

lim dr > Rdg. (55)

Putting the last two equation together, we see that

k(Cg)dt = /1 — 8zn*de. This reflects the conical nature
of our wormhole geometry; to put it more simply, our optical
metric is not asymptotically Euclidean. Using this result
from GBT, we can express the deflection angle as follows:

1 1 //oo
G=rl———1] ——— Kdo.
L/l—smf } V1 =8mpJo Jb

(56)

If we used the equation for the light ray, r(¢) = b/ sin ¢,
in which b is the impact parameter that can be approxi-
mated with the closest approach distance from the worm-
hole in the first order approximation. The surface area is
also approximated as

r

do = Vhdudg ~ (57)

1—8anp?

Finally, the total deflection angle is found to be
bo\ ¢ /Al (1 =%)
&:4n22+<°> T 58
T b (&) (58)

We can recast our wormhole metric (26) in a different
form (Fig. 4). In particular, if we introduce the coordinate
transformations

r

Ro——t (59)

V1 =8

and

(60)

FIG. 4. The figure shows the deflection angle as a function of
the impact parameter b and ¢, for chosen by = 1 and n = 107>.
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Taking into the consideration the above transformations,
the wormhole metric reduces to

dR?

-

ds? = —d2 + + (1 = 8zp?)R2dQ%.  (61)

One can show that the deflection angle remains invariant
under the coordinate transformations (59)—(60). In a
similar fashion, we can apply the following substitutions:

H =Ry\/1-8zy* and

N '

Then, for the GOP in this case, it is not difficult to find
that

K=- (127_35) (%)H. (63)

In the limit R — oo, GC yields
I%I_PC}OK(CR) = Igg{}JVCRCRL

— R (64)

Jimdr - Ry/1 - 8zn*de. (65)

Although GC is independent by 5, we see that df is
affected by . However, we end up with the same result

k(Cg)dt = \/1 — 8zn*dg. This time the equation for the
light ray can be chosen as R = BB/ sin ¢, resulting in a
similar expression

but

1 1 7 [oo
a=rm -1| - // KCdo. (66
[\/1—871:;72 } V1=8mp*Jo JE (66)

Solving this integral, we can approximate the solution
to be

o g2 (Bo) ' val(l-5)
& = 4n’ny +<B> = (67)

From the equations of the light rays, we deduce that the
impact parameters should be related to

Bo— b (68)

\/1—875772’

yielding the ratio

BO bO

Thus, we showed that the final expression for the
deflection angle remains invariant under the coordinate
transformations (59)—(60). For an important observation,
we can compare out result with two special cases. Firstly,
we note that the metric (61) reduces to the pointlike global
monopole metric by letting By = 0; thus,

ds? = —d? + dR? + (1 = 8ap*)R?dQ>.  (70)

The deflection angle due to the pointlike global monop-
ole is given by 4725 (see, e.g., [87]). It is clear that due to
the geometric contribution related to the wormhole throat,
the light bending is stronger in the wormhole case com-
pared to the pointlike global monopole case.

IV. CONCLUSION

In this paper, we have found an asymptotically conical
Morris-Thorne wormhole supported by an anisotropic
matter fluid and a triplet of scalar fields ¢“ minimally
coupled to a 1 4 3 dimensional gravity. For the anisotropic
fluid, we have used EoS of the form P, = wp, resulting
with a phantom energy described by the relation w < —1.
Our phantom wormhole solution is characterized by a solid
angle deficit due to the global conical geometry that reveals
interesting observational effects such as the gravitational
lensing. Introducing a new dimensionless constant £, we
have shown that our wormhole metric is not asymptotically
flat, namely b(r)/r — 8zn> when r — co. We have also
studied the deflection of light; more specifically, a detailed
analysis using GBT revealed the following result for the
deflection angle:

b\ 1=¢ /al(1 =&
oo () 0D
b 2'(75)

Clearly, the first term, 4z%5?, is independent of the
impact parameter b, while the second term is a product
of a function written in terms of the throat of the
wormbhole, b,/b, and the Gamma functions depending
on the dimensionless constant {. It is worth noting that
we have performed our analysis in two different
spacetime metrics. In both cases, we find the same
result; hence, the deflection angle is form invariant
under coordinate transformations. Finally, we pointed
out that the gravitational lensing effect is stronger in the
wormhole geometry case compared to the pointlike
global monopole geometry.
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