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We present a prescription for computing gravitational waveforms for the inspiral, merger and ringdown
of nonspinning moderately eccentric binary black hole systems. The inspiral waveform is computed using
the post-Newtonian expansion and the merger waveform is computed by interpolating a small number of
quasicircular NR waveforms. The use of circular merger waveforms is possible because binaries with
moderate eccentricity circularize in the last few cycles before the merger, which we demonstrate up to mass
ratio q ¼ m1=m2 ¼ 3. The complete model is calibrated to 23 numerical relativity (NR) simulations
starting ≈20 cycles before the merger with eccentricities eref ≤ 0.1 and mass ratios q ≤ 3, where eref is the
eccentricity ≈7 cycles before the merger. The NR waveforms are long enough that they start below 30 Hz
(10 Hz) for BBH systems with total mass M ≥ 80 M⊙ (230 M⊙). We find that, for the sensitivity of
advanced LIGO at the time of its first observing run, the eccentric model has a faithfulness with NR of over
97% for systems with total mass M ≥ 85M⊙ across the parameter space (eref ≤ 0.1, q ≤ 3). For systems
with total massM ≥ 70M⊙, the faithfulness is over 97% for eref ≲ 0.05 and q ≤ 3. The NR waveforms and
the Mathematica code for the model are publicly available.
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I. INTRODUCTION

In 2015, LIGO detected the gravitational wave (GW)
event GW150914 corresponding to the merger of a binary
black hole (BBH) system [1]. Subsequently, further events
from BBH mergers have been detected [2,3]. The param-
eters of the binaries were inferred from the measured
data using waveform models calibrated to numerical
relativity (NR) simulations [4–6] under the very reasonable
assumption that the orbit of the binary was quasicircular
[7]. This is expected because binary eccentricity decays
quickly under the emission of gravitational radiation [8].
Whilst there is no known mechanism by which a BBH

system could retain a non-negligible eccentricity in the last
∼4 orbits before merger that LIGO was able to see for the
high mass event GW150914, we would like to confirm this

astrophysical prediction by comparing the data to general
relativistic waveforms including eccentricity. Further, sev-
eral scenarios have been suggested in which binaries may
retain non-negligible eccentricity for an extended time, e.g.,
[9–19], including some where the binary may enter the
sensitive frequency band of LIGO or LISA a large number
of cycles before merger, and before this eccentricity has
decayed.
Gravitational wave data analysis using the method of

matched filtering requires accurate models of the wave-
forms in order to measure source parameters. For the
inspiral of eccentric binaries, models based on the post-
Newtonian (PN) approximation can be used. PN theory
for binaries in eccentric orbits is very well developed
[8,20–41]. For a summary, see the chapter “Eccentric
Compact Binaries” in [42]. However, because the approxi-
mation assumes that the black holes are widely separated
and slowly moving, PN can only model the inspiral
waveform.*ian.hinder@aei.mpg.de
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Near the merger, the waveform can only be determined
using full numerical solutions of the Einstein equations.
Numerical relativity results for eccentric BBH systems1

were first presented in [43,44]. In [44], it was found that the
initial eccentricity in equal-mass eccentric binary wave-
forms becomes irrelevant a few cycles before the merger,
provided that the initial eccentricity is not too high. At this
point, to a good approximation, the binary circularizes
leaving the same merger waveform and a black hole of the
same final mass and spin as if the inspiral had been circular.
The first comparison between eccentric PN waveforms

and NR was performed in [45], and agreement was found
between 21 and 11 GW cycles before merger. Comparisons
at later times were compromised by inaccuracy in the NR
simulations. In [46,47], the evolution of eccentricity in NR
simulations was compared with Newtonian and PN pre-
dictions and shown to be broadly consistent.
While it is possible to perform NR simulations of BBH

mergers for a small number of configurations, each
simulation takes several weeks to run, and is too computa-
tionally expensive to use for GW parameter estimation,
where typically millions of waveforms with different
parameters are generated and compared to the data.
Further, the length of NR simulations is generally limited
to tens of orbits, also due to computational expense.
Therefore, computationally inexpensive waveform models
are required, which reproduce the NR waveforms to a
sufficient accuracy, and which can produce waveforms with
the large numbers of orbits which may be visible to a
gravitational wave detector.
The first eccentric waveform model incorporating inspi-

ral, merger and ringdown (IMR) was presented in [48]. The
inspiral is based on PN, using an improved version of the
“x-model” [45], and the merger is modeled by the non-
eccentric Implicit Rotating Source model of [49] assuming
that eccentricity will be negligible by the time of the
merger. The complete IMR model is called the “ax-model.”
An initial comparison with two NR waveforms showed that
the model was realistic. Recently, two different models for
eccentric binary inspiral-merger-ringdown waveforms for
nonspinning BBH systems in the effective-one-body frame-
work were proposed. In [50], the foundations of an
eccentric model were presented. In [51], another model
was developed, and initial comparisons were performed
with three NR simulations. Finally, in [52], the model of
[48] was improved by using a merger model fitted to NR
simulations, as we have done here.
In this paper, we present a new set of 20 eccentric

nonspinning NR simulations using the Spectral Einstein

Code (SPEC), which we have made available as part of the
public catalog [53] of the Simulating eXtreme Spacetimes
collaboration. The simulations have initial eccentricities
e ≤ 0.2, mass ratios q ≤ 3 and generally start ≈20 cycles
before the merger. The new simulations show that the
circularization shortly before merger observed in [44] for
equal-mass binaries extends to binaries with mass ratio
q ≤ 3. This justifies the use of circular merger waveforms
in [48].
Independently of [48], we develop an eccentric IMR

model based on the PN x-model [45], combined with a
circular merger waveform. Our quasicircular merger
waveform, which can be evaluated for any mass ratio q
within the calibration region 1 ≤ q ≤ 4, is obtained by
interpolation between several NR waveforms with differ-
ent q. For the transition region between the eccentric PN
portion and the circular NR portion, we use a prescription
calibrated to the new eccentric NR simulations, for which
an essential ingredient is a fit of the time between the
waveform reaching a given reference frequency and the
peak of the waveform amplitude.
We test our model against the NR simulations, quantify-

ing the agreement in phase, amplitude, and faithfulness
(a measure of how close the waveforms are when observed
by a gravitational wave detector). Since the waveforms do
not agree perfectly, there is an ambiguity in the choice of
PN parameters to use when comparing with a given NR
waveform. We choose PN parameters such that the wave-
forms agree shortly before the merger, and measure the
accumulation of error at preceding times. This allows us to
be confident in the behavior of the model at the merger, and
we expect that improvements to the PN inspiral model
would extend its validity to earlier times.
The NR waveforms are available in the SXS Public

Waveform Catalog [53], and a Mathematica package
ECCENTRICIMR implementing the full inspiral-merger-
ringdown model is available as open source software
at [54].
In Sec. II, we identify the main features of the eccentric

PN x-model which is the basis of our IMRmodel. In Sec. III,
we describe the NR simulations, including the code used and
the eccentric configurations that we simulated. We validate
the waveforms by assessing the main sources of error, and
finally we show that the circularization observed in [44]
extends to mass ratios q ≤ 3. Section IV discusses the
method we use to define eccentricity in NR. Section V shows
how the circular merger model (CMM) is constructed by
interpolating between NRwaveforms. In Sec. VI, we explain
how the IMR model is constructed by combining the PN
inspiral with the CMM, and the calibration to NR simu-
lations, including the time-to-merger fit, that we use for the
transition. In Sec. VII, we address issues related to comput-
ing Fourier transforms of eccentric NR waveforms, required
for computing the faithfulness of waveforms for gravita-
tional wave data analysis. In Sec. VIII, we compare the IMR

1Note that determining initial conditions for a BBH system
with zero eccentricity is not straightforward; as a result, all
“quasicircular” BBH simulations actually have some residual
eccentricity, which is typically less than 1%. This is treated as a
source of error in a simulation of the desired quasicircular system.
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model with the NR waveforms, analyzing both the time-
domain frequencies, phases and amplitudes, as well as the
Fourier-domain faithfulness relevant to gravitational wave
detection and parameter estimation. Finally, Sec. IX sum-
marizes our results, and discusses possible future improve-
ments of our model.
Throughout, we use units in which G ¼ c ¼ 1.

II. PN INSPIRAL MODEL

In this section, we briefly review the x-model, an
eccentric PN inspiral model introduced in [45] and involv-
ing a change of variables of the “n-model” presented in
[30]. We begin by recalling Newtonian eccentric orbits.
Consider the relative orbit of two bodies at positions x⃗1,

x⃗2 of masses m1 and m2. We restrict to the case where the
bodies orbit in the xy plane, since in the nonspinning case,
BBH systems will orbit in a plane due to symmetry. The
separation r ¼ jx⃗1 − x⃗2j satisfies

r ¼ a½1 − e cos u�; ð1Þ
where a is the semimajor axis of the orbit, e is the
eccentricity, which parametrizes the amplitude of the
oscillations in r, and u is the eccentric anomaly, an angular
variable which represents the phase of the oscillation in r.
Pericenter (point of closest approach) is at u ¼ 0, and
u ¼ π corresponds to apocenter. The angular velocity of the
orbit is given by

_ϕ ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

½1 − e cos u�2 ; ð2Þ

where n is the mean motion, defined as 2π=P, where P,
the radial period, is the time between pericenter passages.
In Newtonian dynamics, the quantities a, e, n and P are
constants, which can all be expressed in terms of the energy
E and angular momentum L; i.e., only two of them are
independent. u can be determined by solving the Kepler
equation,

l≡ 2πðt − t0Þ=P ¼ u − e sin u; ð3Þ
a transcendental algebraic equation for u, where l is called
the mean anomaly, and t0 is a time corresponding to
pericenter passage. l parametrizes the time elapsed since
the preceding pericenter passage. Equation (3) can be
solved numerically for u, for example by Newton’s method,
at each t. Thus we can obtain r and _ϕ (and hence _r and ϕ) at
any time t. Each orbit can be parametrized by the four
independent constants a, e, ϕðt̄Þ and lðt̄Þ at a time t ¼ t̄.
The post-Newtonian quasi-Keplerian representation of

eccentric orbits [21–28,31,55,56] is based on the above
description, and utilizes the same quantities. However,
the equations relating these quantities contain post-
Newtonian corrections, expressed as powers of v=c. For
a pedagogical introduction to the post-Newtonian Kepler

problem, see [57]. In the PN description, there are three
different eccentricities, et, er and eϕ, related to each other
by PN expressions. These are introduced to simplify certain
relations. Here, we express everything in terms of e≡ et.
Relativistic eccentric orbits have the new feature of
precession of the pericenter. The azimuth of the pericenter
increases by Δϕ during one radial (pericenter to pericenter)
period P, so that the azimuthal coordinate ϕ increases by
2π þ Δϕ during this time. n no longer reduces to the
angular velocity _ϕ in the circular limit, and instead we
introduce the quantity ω≡ ð2π þ ΔϕÞ=P, the average
angular velocity. In the relativistic circular case, ω ¼ _ϕ.
For Newtonian orbits, further, ω ¼ n. When radiation
reaction effects are neglected, ω is a constant. The choice
of PN variables (for example n or ω) to use to expand the
equations is arbitrary, and leads to different approximants
once the PN series is truncated. In [45], it was found that
expanding the equations in x ¼ ðMωÞ2=3 led to better
agreement between NR and PN than expanding them in
n, as had been customary previously. The ω variable has the
benefit of agreeing with the angular velocity used as an
expansion variable in the quasicircular Taylor T4 model
which has been shown to agree well with NR in the
nonspinning equal-mass case [58], but we know of no deep
reason why ω (equivalently x) should be better than n. We
expect this good agreement to deteriorate for spinning
systems or for q ≫ 1 [59]. We parametrize the orbit in
terms of the two dimensionless quantities x and e.
In the PNmodel, Eq. (1) remains unchanged, but Eqs. (2)

and (3) are modified by PN correction terms, expanded to 3
PN order. Relativistic orbits not only differ by pericenter
precession and PN correction terms, but the energy and
angular momentum, which in the Newtonian case are
constants, also change due to the emission of gravitational
waves. In the adiabatic approximation, the fluxes of E and
L are approximated by time averaging over a radial period
P, and are used to calculate the time derivatives of x and e.
These fluxes are used here to 2 PN order, as the eccentric
PN code is essentially the same as that used in [45].
Extension of this code to 3 PN is left for future work.
Hence, in order to compute an orbit subject to energy and

angular momentum loss, it is first necessary to solve the
pair of coupled ordinary differential equations (ODEs) for _x
and _e, then compute u using the PN Kepler equation, from
which l, r and ϕ are obtained.
Finally, we compute the gravitational wave using the

restricted approximation, in which the l ¼ 2, m ¼ 2 spin
weight −2 spherical harmonic mode of the waveform is
given to leading (quadrupolar, Newtonian) order as

h22 ¼
Z

−2Y
2
2
�ðθ;φÞhðθ;φÞdΩ ð4Þ

¼ −
4Mηe−2iϕ

R

ffiffiffi
π

5

r �
M
r
þ ð _ϕrþ i_rÞ2

�
; ð5Þ
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h2−2 ¼ h22� ð6Þ

(see Sec. II.A of [45] for a discussion of the origin of these
expressions). Here, −2Y

2
2ðθ;φÞ ¼ 1

2
e2iφ

ffiffiffiffiffiffiffiffi
5=π

p
cos4ðθ=2Þ,

and θ and φ are the spherical polar angles of the observer.
The l ¼ 2, m ¼ �2 modes dominate for small e (see
Sec. III C for a discussion of the relative strength of the
subdominant modes).
For the purpose of this work, we consider the x-model as

a black box, completely defined in [45], that produces
h22ðtÞ for a given ðx0; e0; l0;ϕ0Þ. The model is expected to
be a good approximation of the relativistic dynamics when
the separation is large and the velocity is small, and will
break down close to the merger.

III. NR SIMULATIONS

A. NR methods

SPEC [60–63] is a pseudospectral code capable of
efficiently solving many types of elliptic and hyperbolic
differential equations, with the primary goal of modeling
compact-object binaries. For smooth problems, spectral
methods are exponentially convergent and high accuracy
can be achieved even for long simulations. SPEC evolves
the first order formulation [64] of the generalized harmonic
formulation of Einstein’s equations [65,66]. The damped
harmonic gauge [67] is used to provide stable coordinate
conditions. Singularities inside BHs are dynamically
excised from the computational domain using feedback
control systems [68,69] and initial conditions of low orbital
eccentricity are obtained by an iterative evolution pro-
cedure [70]. SPEC uses h-p adaptivity2 to dynamically
control numerical truncation error and to increase computa-
tional efficiency [71]. Waveforms are extracted using the
Regge-Wheeler-Zerilli formalism on a series of coordinate
spherical shells and extrapolated to null infinity using
polynomial expansions in powers of the areal radius [72].

B. Configurations

We aim to simulate BBH configurations with a given
initial frequency parameter x, eccentricity e and mean
anomaly l (see Sec. II). We use the PN approximation to
translate these quantities into the initial data parameters
needed by SPEC, namely the orbital angular velocity _ϕ, the
separation of the horizon centroids r, and the radial velocity
_r. This specification of initial data parameters is only an
approximation, because the PN and NR quantities are
expressed in different coordinate systems, and the NR
initial data contains nonastrophysical junk radiation which
perturbs the parameters of the binary away from those
given in the initial data. Nevertheless, we find that this

prescription gives waveforms which agree to a good
approximation with the PN ðx; e; lÞ. These initial data
parameters are not used at any point in the subsequent
analysis; all quantities are measured from the waveforms,
so any discrepancy is not important.
We perform new simulations for 20 eccentric nonspin-

ning configurations using the SPEC code. We also use three
existing quasicircular nonspinning configurations already
available in the SXS Public Waveform Catalog [6]. The
parameters of these configurations are given in Table I. In
order to assess the numerical truncation error, each con-
figuration is run at multiple resolutions. The error analysis
is presented in Sec. III D. For each of the cases 1–23,
Table I gives the SXS catalog identification number, the
mass ratio q ¼ m1=m2, the orbital frequency parameter x0
measured after the junk radiation portion of the waveform,
the eccentricity ecomm and mean anomaly lcomm measured at
a frequency xcomm ¼ 0.075, the time of the peak of the
amplitude of the dominant mode of the gravitational wave
strain jh22j, and the number of orbits simulated. The junk
radiation portion of the waveform is considered to be the
first 500 M. x, e and l are measured entirely from the
waveforms by fitting to PN as described in Sec. IV. xcomm
was chosen as the lowest frequency common to all the
waveforms, and for most simulations, corresponds to a time
close to the start of the simulation.
Figure 1 shows the distribution of eccentricities and

mean anomalies in the parameter space. The configurations
span mass ratios q ≤ 3, eccentricities 0 ≤ ecomm ≤ 0.2, and
mean anomalies −π < lcomm ≤ π. Most of the eccentric
configurations start at an average orbital frequency param-
eter of x ∼ 0.07 and evolve for between 11 and 15 orbits
before merging.

C. Effects of eccentricity in waveforms

Figure 2 shows an example of one of the eccentric
waveforms, case 9, with ecomm ¼ 0.189. The usual oscil-
lations in the strain (top panel) at twice the orbital
frequency are modulated by an oscillating envelope with
a frequency lower than the orbital frequency, corresponding
to precession of the pericenter. These modulations due to
eccentricity persist at least up to ∼3 cycles before the
merger. The instantaneous gravitational wave frequency
(bottom panel) also shows oscillations due to eccentricity,
where in the quasicircular case, the frequency would
vary monotonically. The period of the oscillations in the
amplitude and instantaneous frequency corresponds to the
radial orbital period P, and the amplitude of the oscillations
is related to the eccentricity e. The phase of the oscillations
is associated with the mean anomaly, l. See Sec. II for the
definitions of these quantities.
Our PN model contains only the dominant l ¼ 2,

m ¼ �2 spherical harmonic modes. We find that eccen-
tricity introduces a modulation in the ratio between the
subdominant and dominant modes at the percent level for

2h-p adaptivity refers to varying both the size, h, of the
elements and the order, p, of the polynomials in each element.
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the eccentricities we have simulated. This suggests that
subdominant modes are probably no more important for
these eccentricities than they are in the quasicircular case.
Modeling these modes would likely be essential for much
higher eccentricities.

D. Accuracy of the NR waveforms

We have verified that the NR waveforms are not domi-
nated by numerical truncation error due to finite resolution
of the simulations. The waveform phase error accumulated
up to the peak of jh22j, estimated as the difference between
the highest two resolutions (see Sec. 5.2 of [73] for a
discussion of how numerical errors are estimated for SPEC
BBH waveforms) is less than 0.2 radians. The amplitude
error during the inspiral, computed as a function of phase, is
typically below 1%, but in a small number of cases is as large
as 5%. The unfaithfulness (using the aLIGO O1 detector
configuration; see Sec. VII A) between the NR waveforms
at different resolutions is 1 − F < 7 × 10−4 in all cases.
Some configurations, for example those for higher mass
ratios, were run with higher resolution in order to attain this
accuracy.

E. Circularization

In [44], it was shown that when nonspinning equal-mass
black holes merge, the mass and spin of the resulting black

hole were independent (within numerical error) of the
eccentricity of the binary for initial eccentricities e ≤ 0.4
(measured when the radial period P ∼ 387M). Further,
the gravitational wave frequency from binaries with differ-
ent initial eccentricities was shown to be visually indis-
tinguishable for t > tpeak − 50M (Fig. 3 of [44]). This
provides evidence that the binary circularizes within ∼50M
of the merger.
Here, we study this circularization for unequal mass

systems with mass ratios up to q ¼ 3. Figure 3 shows the
amplitude and frequency of the gravitational wave for
several eccentricities with mass ratio q ¼ 3. We clearly see
the effect of eccentricity as low frequency oscillations in
both the frequency and amplitude of the waveform for t <
tpeak − 30M (the very high frequency oscillations visible in
case 23 are due to unresolved numerical truncation error).
However, for t > tpeak − 30M, the waveforms are visually
indistinguishable. The lower panels of Fig. 3 show the
relative difference between each eccentric configuration
and the circular case. We see that for t > tpeak − 30M, the
waveform amplitude and frequency differ by only 4% for
all the different eccentricities at fixed mass ratio q. For
q ¼ 1 and q ¼ 2, we find the same behavior; irrespective
of eccentricity (up to ecomm ≲ 0.2) and mean anomaly, all
simulations at the same mass ratio q show nearly identical
amplitude and frequency for t > tpeak − 30M.

TABLE I. NR simulations used in this work. The columns give the case number, the SXS catalog number, the
mass ratio q ¼ m1=m2, where m1 and m2 are the masses of the black holes, the initial average orbital frequency
parameter x0, the eccentricity ecomm and mean anomaly lcomm measured at a frequency xcomm ¼ 0.075 common to all
waveforms, the time since the start of the usable waveform at which jh22j reaches its peak, and the number of orbits.

Case Simulation q x0 ecomm lcomm tpeak Norbs

1 SXS∶BBH∶0180 1 0.0540 0.000 0.667 8720.2 26.7
2 SXS∶BBH∶1355 1 0.0718 0.053 −2.788 2551.6 11.9
3 SXS∶BBH∶1356 1 0.0582 0.069 0.963 6000.9 20.8
4 SXS∶BBH∶1357 1 0.0689 0.097 1.371 2888.9 12.8
5 SXS∶BBH∶1358 1 0.0703 0.099 −1.742 2655.8 12.1
6 SXS∶BBH∶1359 1 0.0711 0.100 2.743 2530.4 11.7
7 SXS∶BBH∶1360 1 0.0710 0.142 2.178 2372.5 11.1
8 SXS∶BBH∶1361 1 0.0712 0.144 1.550 2325.3 10.9
9 SXS∶BBH∶1362 1 0.0709 0.189 1.042 2147.0 10.2
10 SXS∶BBH∶1363 1 0.0710 0.192 0.732 2108.5 10.1
11 SXS∶BBH∶0184 2 0.0710 0.000 −0.604 3014.6 13.7
12 SXS∶BBH∶1364 2 0.0697 0.044 2.144 3200.3 14.2
13 SXS∶BBH∶1365 2 0.0696 0.060 1.938 3180.7 14.1
14 SXS∶BBH∶1366 2 0.0695 0.095 1.013 3073.2 13.6
15 SXS∶BBH∶1367 2 0.0702 0.096 −0.709 2955.2 13.3
16 SXS∶BBH∶1368 2 0.0708 0.097 −1.963 2850.0 13.0
17 SXS∶BBH∶1369 2 0.0692 0.185 −1.465 2616.4 11.9
18 SXS∶BBH∶1370 2 0.0709 0.185 1.778 2376.6 11.1
19 SXS∶BBH∶0183 3 0.0745 0.000 1.818 2811.9 13.5
20 SXS∶BBH∶1371 3 0.0696 0.055 −2.285 3707.4 16.2
21 SXS∶BBH∶1372 3 0.0695 0.092 2.998 3564.5 15.6
22 SXS∶BBH∶1373 3 0.0700 0.093 1.677 3451.4 15.3
23 SXS∶BBH∶1374 3 0.0694 0.180 −0.265 3014.6 13.5
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We interpret this to mean that the binary has circularized
by 30M before the merger, to an accuracy of 4%. Hence,
when modeling the waveform from eccentric binaries, there
may be no need to use an eccentric model for the merger
portion, as using a circular model instead may introduce
a negligible effect on observables such as the waveform.
Figure 3 justifies the use of circular merger waveforms
in [48].

IV. MEASURING ECCENTRICITY

Given an eccentric waveform model, we may wish to use
it to measure the parameters of a GW signal. This amounts
to determining (M; q; xðtrefÞ; eðtrefÞ; lðtrefÞ;ϕðtrefÞ; trefÞ at
some reference time tref . Since there is a freedom to choose
tref , we quote the parameters at a fixed value of xref . For
example, in Table I, we use xref ¼ xcomm ¼ 0.075.
In simplified terms, the parameters of a GW source are

measured by comparing the measured GW strain data to the
model, and determining the model parameters which best

reproduce the data. Note that the measured parameters are
therefore PN parameters. There are plausible quasilocal GR
definitions for black hole masses and spins, and we can
therefore ask what bias is introduced in these measured
parameters by using an approximate PN-basedmodel instead
of a true GR (or NR) waveform. We can determine this by
fitting the PN model to an NR waveform of known masses
and spins, and measuring the difference in the measured
parameters.
However, in the eccentric case, the situation is complicated

by the fact that there is no clear general relativistic definition
of eccentricity with which to label an NR waveform (see
[46,74] for various possible definitions). Our approach is to
definee and l of theNRsystemas thePNvalues forwhich the
agreement between the instantaneous NR and PNwaveform
frequency, ω22 ¼ ðd=dtÞ argðh22Þ, is maximized over a
single radial period centered on a reference time at which
x ¼ xref . This is possible because we find that the PN model
we are using, with 3 PN conservative dynamics, agrees very
well with NR over one radial period, as shown in [45]. The
dominant error in ourmodel is the2PNadiabatic evolutionof
x and e on timescales longer than one radial period. If the

FIG. 1. The NR configurations plotted as a function of
eccentricity ecomm and mean anomaly lcomm at the common
frequency xcomm ¼ 0.075 for different mass ratios q.
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FIG. 2. An NR waveform with eccentricity ecomm ¼ 0.189
(Case 9). The top panel shows the real part and amplitude of
the dominant l ¼ 2, m ¼ 2 spherical harmonic mode of the
strain, and the bottom panel shows the frequency of this mode,
computed asω22 ¼ d

dt arg h22. The oscillations in jh22j and ω22 are
characteristic features of eccentricity.
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agreement over one radial period were not good, then it
would be problematic to use PN to define the eccentricity of
an NR waveform.
We fit the PN model to the NR data as follows. First, we

choose a time window ½t1; t2� in which to fit the eccentric

PN model. We then perform a least squares fit of
ωPN
22 ðx; e; lÞ to ωNR

22 to determine ðx; e; lÞ. We then perform
an additional fit of ϕPN

22 ðx; e; l;ϕÞ to ϕNR
22 to determine ϕ.

This is the same procedure used in [45].
This fitting can be performed over any time interval, and

gives the best-fitting PN parameters over that one interval.
Since the NR and PN waveforms are not the same, the
measured parameters and the resulting waveform will
depend on the choice of fitting interval.
In Sec. VIII, we will compare the eccentric IMR model

to the NR waveforms. For this purpose, we choose to fit the
PNmodel to the NR waveform at x ¼ 0.11, which typically
occurs ≈7 cycles before the merger. The time interval used
for fitting is centered on this point with total width equal to
the radial period P. Note that the choice of fitting window
therefore depends on x and P from the fit. We use an
iterative process, starting from an initial guess for the fitting
window location and width, and update the guess based on
the result of the fit. We use the parameters measured at this
point to label the waveform. The rms fit error in each case is
≤1%, indicating that the PN model accurately describes the

–500 –400 –300 –200 –100 0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(t–tpeak)/M

A
22

19 (eref=0.002)
20 (eref=0.025)
21 (eref=0.047)
22 (eref=0.044)
23 (eref=0.089)

–500 –400 –300 –200 –100 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(t–tpeak)/M

22

–500 –400 –300 –200 - 100 0

–0.2

–0.1

0.0

0.1

0.2

(t–tpeak)/M

1–
A

22
/A

22
,c

irc

–500 –400 –300 –200 –100 0

–0.2

–0.1

0.0

0.1

0.2

(t–tpeak)/M

1-
22

/
22

,c
irc

FIG. 3. Circularization of q ¼ 3 nonspinning binary black hole waveforms. Shown in the upper panels are the amplitude, A, and
frequency, ω22, of the l ¼ 2, m ¼ �2 mode of the gravitational wave strain. The lower panels show the fractional deviations from the
noneccentric results A22;circ and ω22;circ. The gray horizontal lines in the lower panels indicate �4%, and the vertical lines indicate
t ¼ tpeak − 30M.

–600 –500 –400 –300 –200
0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

(t–tpeak)/M

M
22

NR

PN

FIG. 4. PN fit to NR frequency to measure eccentric parameters
at x ¼ 0.11 shortly before merger. The vertical lines indicate the
interval in which the fit was performed.

ECCENTRIC BINARY BLACK HOLE INSPIRAL-MERGER- … PHYS. REV. D 98, 044015 (2018)

044015-7



waveform on a timescale of one radial period close to the
merger.
For the configuration with q ¼ 1 and ecomm ¼ 0.1 (case

6), the comparison between ωNR and ωPN for the l ¼ 2,
m ¼ 2 mode, fitted across one radial period at x ¼ 0.11, is
shown in Fig. 4. The vertical lines indicate the interval in
which the fit was performed. Note that this procedure for
choosing the PN parameters corresponding to an NR
waveform is not unique. For example, in [45], a longer
fitting interval near the start of the NR waveform was
chosen. Our motivation in this work is to accurately model
the merger, so we choose to make the NR and PN
waveforms agree close to the merger, and then evaluate
the growth in error at earlier times.

V. CIRCULAR MERGER MODEL

As shown in Sec. III E, the eccentric NR waveforms
circularize before the merger, suggesting that it should be
possible for an eccentric waveform model to incorporate a
circular model for the merger. Any circular waveform
model should be sufficient; for example, the implicit-
rotating-source (IRS) model [49] used in [48], effective-
one-body models such as SEOBNRv4 [75], the so-called
phenomenological models, for example IMRPhenomD
[5,76], or surrogate models [77] formed by interpolating
NR waveforms. As shown in Fig. 4 of [48], the IRS model
does not match the NR data perfectly, and the EOB and
surrogate models introduce additional complications to our
model which are not necessary for modeling the straight-
forward waveform from a nonspinning BBH merger.
Hence, we created a very simple model for the merger
waveform by performing an interpolation in q of a small
number of noneccentric nonspinning NR waveforms in the
neighborhood of the merger. The resulting circular merger
model (CMM) can be evaluated for 1 ≤ q ≤ 4 and arbitrary
ϕ0, corresponding to the initial phase of the waveform. This
model agrees well with noneccentric NR waveforms. Note
that there is no attempt to ensure validity for q > 4, and it
will very likely break down for these mass ratios, though
extension of the method to higher mass ratios should
present no difficulties.
To construct the CMM, we take three nonspinning input

waveforms from the SXS waveform catalog [6] with mass
ratios 1, 2 and 4 (SXS∶BBH∶0180, SXS∶BBH∶0184 and
SXS∶BBH∶0182, respectively), and apply a time shift such
that the peak of jh22j is at t ¼ 0. We thus obtain hNRðt; qiÞ
for i ¼ 1, 2, 3. For each waveform, we then compute
the amplitude ANRðt; qiÞ ¼ jhNRðt; qiÞj and instantaneous
frequency ωNRðt; qiÞ ¼ ðd=dtÞ argðhNRðt; qiÞÞ, and interpo-
late them to a common uniform time grid t ∈ ½−500M; 80M�
with spacing 0.4M, resulting in 1450 sample points. At each
time, we construct a second order interpolating function in q
for A and ω across the mass ratios qi. This set of 2 × 1450
interpolants constitutes the model.

To create a circular merger waveform at arbitrary
ðq;ϕ0; tpeakÞ, we evaluate these interpolants at each sample
time with the desired q, integrate the resulting ω numeri-
cally to get ϕ, choosing an appropriate integration constant,
then compute the strain h from A and ϕ. This constitutes the
circular merger model (CMM).
To test the CMM, we use additional SXS catalog

waveforms with mass ratios q ¼ 1.5, 2.5, 3.0, 3.3, 4 (also
used in [77]). Figure 5 shows a comparison between the
CMM and each of the test waveforms. The solid lines are
the NR data, and the dashed lines are the CMM.We see that
in all cases, A and ω are visually indistinguishable between
the NR and CMM results, except for some oscillations in ω
at t > tpeak þ 50M. The phase and amplitude differences
between NR and the CMM are also plotted, and we see that
the maximum phase error in the CMM is ∼0.15 radians,
and the maximum amplitude error is ∼10% at late times,
but only ∼3% if the low amplitude portion at the end of the
ringdown is excluded.3

In order to evaluate the faithfulness of the CMM with
the NR waveforms, we have combined the inspiral of
an NR test waveform with the merger from the CMM,
blended using a transition function T [see Eq. (20)] in the
region t − tpeak ∈ ½−100M;−80M�. As shown in Fig. 5,
the unfaithfulness in each case is 1 − F < 4 × 10−4 using
the aLIGO O1 detector configuration (see Sec. VII A).

VI. CONSTRUCTION OF AN IMR
WAVEFORM MODEL

A. Motivation and approach

We have described the eccentric PN model for the
inspiral, and a circular model for the merger, and have
shown that the merger from NR is essentially circular.
We now define a method for combining the PN inspiral
(x-model) with the circular merger model (CMM) based on
a simple blending of the two models in a transition region.
We will evaluate afterwards how well this has worked.
The starting point is the reference time, at which x ¼ 0.11.

We choose the parameters ðx0; e0; l0;ϕ0Þ at this time, tref .
We compute the waveform from PN for t < tref. We use the
CMMfor t > tcirc ≡ tpeak − 30M, sincewehave shown that a
circular model is good after 30M before the peak. Note that
we do not yet know the time at which the peak occurs, given
the time of the reference point, Δt ¼ tpeak − tref .
If the PN waveform agreed well with the NR waveform

for t < tcirc, the model would now be complete, because we
could match the circular waveform frequency and phase to
the PN frequency and phase at t ¼ tcirc. Unfortunately, the
PN waveform cannot be extended reliably up to tcirc, and it

3In fact, the test waveforms have higher numerical truncation
error than the input waveforms, and this error is comparable to the
differences between the CMM and the test waveforms.
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disagrees with the circular NR waveform between tref and
tcirc, so this procedure would result in a merger waveform
with a noticeable error in the time and phase of the peak.
This is not surprising, because the PN approximation is not
expected to be good so close to the merger.
Instead, we adopt a simple model for the time to merger

Δt and fit it to the NR simulations. This model works very

well, and essentially guarantees that the final IMR model
will have the waveform peak at the correct time, to within
the errors in Δt. Once we have Δt, we blend the eccentric
PN waveform with the circular NR interpolated model
between tref and tcirc. There will be a discrepancy between
the model and NR in this region, and the validity of this
model will be assessed in Sec. VIII.
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B. Time to merger

We now determine Δt ¼ tpeak − tref given the parameters
at tref . The most general functional form would be

Δtðq; e; lÞ ¼
X∞
ijk¼0

aijkqiej cosðkl − αijkÞ; ð7Þ

where we use a Taylor expansion in q and e, and a Fourier
series in l, since l is a periodic variable. In order to match
the NR data, we find that we require quadratic terms in q
and e, but only the first mode in l. Since there can be no
variation with l when e ¼ 0, we must have ai01 ¼ 0. The
resulting model for Δt is

Δtðq; e; lÞ ¼ Δt0 þ a1eþ a2e2 þ b1qþ b2q2

þ c1e cosðlþ c2Þ þ c3eq: ð8Þ

There are eight unknown parameters, and the model is
fitted to all 23 simulations. The fitted function is

Δtðq; e; lÞ ¼ 391.196þ 3.13391e − 2492.95e2

þ 2.77212q − 17.92eqþ 8.11842q2

þ 76.4944e cosð0.626653þ lÞ: ð9Þ

Figure 6 shows Δt for each NR simulation, along with
the value obtained from the fit. The fit residual is less
than �1M, and the essential functional dependence of
Δtðq; e; lÞ has been captured by the model. We conclude
that the time of the peak can be predicted from the
parameters at tref to within �1M.

C. Combining all the ingredients

Given the eccentric parameters ðx0; e0; l0;ϕ0Þ at tref , we
now construct a full IMR waveform. The eccentric PN

waveform is hPNðtÞ, such that its parameters at t ¼ tref
match the desired model parameters. The circular merger
waveform is hcircðtÞ, such that the peak occurs at t ¼ 0.
The waveform is decomposed into amplitude, A, and
frequency, ω, as h ¼ Aeiϕ, and _ϕ ¼ ω. The IMR wave-
form is given by

tpeak ¼ tref þ Δt ð10Þ

tcirc ¼ tpeak − 30M ð11Þ

tblend ¼ tjx¼xblend ð12Þ

αðtÞ ¼ T ðt; tblend; tcircÞ ð13Þ

AðtÞ ¼ αðtÞAPN þ ð1 − αðtÞÞAcircðt − tpeakÞ ð14Þ

ωðtÞ ¼ αðtÞωPN þ ð1 − αðtÞÞωcircðt − tpeakÞ ð15Þ

ϕðtÞ ¼
Z

t
ωðt0Þdt0 ð16Þ

hðtÞ ¼ AðtÞeiϕðtÞ: ð17Þ

The start of the blending region is chosen as xblend ¼ 0.12,
and the reference point as xref ¼ 0.11. In words, we time
shift the circular waveform so that its peak is in the correct
place according to the time-to-merger fit of Sec. VI B, and
blend the amplitude and frequency of the PN and circular
waveforms using a transition function T [see Eq. (20)]
between tblend and tcirc to ensure a smooth transition in these
quantities. The phase is then computed by integrating the
frequency, leading to the final waveform.
This procedure is illustrated for case 6 in Fig. 7, which

shows the amplitudes and frequencies from PN and the
circular model, as well as the transition region in which
they are blended. The NR waveform is shown for
comparison, but no information from the NR waveform
(other than the set of fit parameters at tref ) is used in
computing the model waveform.
We see in Fig. 7 that the IMR waveform ω agrees with

PN and NR before tref , and with the CMM after tcirc.
There is a visible discrepancy between the IMR and NR
frequency between tref and tcirc, though this is small.
The PN waveform breaks down after tcirc. The IMR
amplitude A has a visible disagreement with the NR
amplitude, presumably due to the fact that zeroth-
order PN (restricted) waveform amplitudes are used in
the model.

VII. FOURIER DOMAIN COMPARISONS
OF WAVEFORMS

In this section, we discuss the comparison of waveforms
from the point of view of gravitational wave data analysis,
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FIG. 6. Agreement of the time-to-merger model with NR. The
time between the reference point and the peak of jh22j is shown as
a circle for each NR simulation, and a cross for the fitted model
from Eq. (9).

HINDER, KIDDER, and PFEIFFER PHYS. REV. D 98, 044015 (2018)

044015-10



which requires Fourier representations of the waveforms.
We investigate the effect of eccentricity on the procedure
used to ensure that Fourier transforms of time-domain
truncated waveforms are reliable.

A. Faithfulness

The primary method for analyzing data from a gravi-
tational wave detector for compact-binary mergers is
matched filtering against a set of template waveforms
in the frequency domain (for example, see [78,79] for
methods used in detection, and [80] for parameter

estimation). In Sec. VIII E, we will determine how well
the eccentric IMR waveform model defined in Sec. VI
agrees with potential astrophysical sources. Given two
waveforms h1ðtÞ and h2ðtÞ, their noise-weighted overlap
is defined as [81]

ðh1jh2Þ≡ 4Re
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df; ð18Þ

where h̃1;2ðfÞ are the Fourier transforms of the waveforms
and SnðfÞ is the one-sided power spectral density (PSD) of
the detector noise.
We examine twoAdvanced LIGO detector configurations.

The first, aLIGO O1, is representative of the sensitivity of
LIGO during its first observing run. The noise PSD [82] is
the one which was used to place templates for the O1 search,
as described in [78], and we restrict to a frequency range
fmin ¼ 30 Hz, fmax ¼ 2050 Hz. The second configuration,
aLIGO design, is representative of the sensitivity expected
for the final design configuration of Advanced LIGO. The
noise PSD is the zero-detuned-high-power variant from [83],
with a frequency range fmin ¼ 10 Hz, fmax ¼ 8192 Hz.
The faithfulness [84] between two waveforms is then

defined as the overlap between the normalized waveforms
maximized over relative time and phase shifts,

F ¼ max
ϕc;tc

ðh1ðϕc; tcÞjh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ
p : ð19Þ

The faithfulness measures how similar the waveforms
would appear to a gravitational wave detector when the
data is analyzed using matched filtering.

B. Fourier transforms of eccentric NR waveforms

Computation of the faithfulness, Eq. (19), requires the
Fourier transforms of the waveforms h1 and h2, which will
correspond to the IMR model waveform and the “true”
astrophysical waveform, which we take to be the NR
waveform. Hence, we need to compute the Fourier trans-
forms of these waveforms.
To estimate the continuum Fourier transform, we use a

discrete Fourier transform over the available NR time
interval (see, e.g., [85]). To minimize Gibbs’ phenomena
due to time-domain truncation, the waveform is tapered by
multiplying it by a variant of the Planck taper function [86],

T ðt; t1; t2Þ ¼

8>>><
>>>:

0 for t ≤ t1�
exp

�
t2−t1
t−t1

þ t2−t1
t−t2

�
þ 1

�
−1

for t1 < t < t2

1 for t ≥ t2

ð20Þ

at both the start and end of the waveform. Specifically,
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FIG. 7. Combining the different ingredients to produce the IMR
waveform. The top panel shows the transition function α which is
used to blend the amplitude, A, and frequency, ω, between the
eccentric PN and circular NR waveforms. The middle and bottom
panels show A and ω from the NR simulation, the PNmodel fitted
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(CMM) with peak tpeak determined from the time-to-merger fit
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hlmðtÞ → hlmðtÞ ð21Þ

× T ðt; trel; trel þ 250MÞ ð22Þ

×ð1 − T ðt; tpeak þ 60M; tpeak þ 80MÞÞ: ð23Þ

trel is the relaxed time, after which the effects of non-
astrophysical junk radiation in the waveform can be
neglected (here chosen as 500M from the start of the
waveform), and tpeak is the time of the peak in jh22j, roughly
corresponding to the merger. The waveform is also
resampled to a time step of 0.4M (higher frequency content
is not important here) and padded with zeros before
computing the discrete Fourier transform to ensure a
sufficiently small time step in frequency space.
In the quasicircular case,ω22ðtÞ≈2 _ϕ, where ω22ðtÞ is the

frequency of the dominant instantaneous GW emission
from the binary, and _ϕ is the orbital angular velocity. _ϕ
increases monotonically on the radiation-reaction time-
scale. Intuitively, h̃ðωÞ consists of contributions from times
when _ϕ ≈ ω=2 (an application of the stationary phase
approximation; see for example [87,88]). The amplitude
of the Fourier transform is jh̃22j ∼ ðMωÞ−7=6 to leading PN
order; i.e., it decreases with increasingω because the binary
spends more time, and hence there is more total GW
emission, at lower frequency than at high frequency, and
the increase in the amplitude of emission per orbit at high
frequency is not enough to dominate over this effect.
A quasicircular NR simulation starts with a given orbital

angular velocity _ϕ0, and contributions to h̃ðωÞ for ω < 2 _ϕ0,
which would be present in a real astrophysical waveform,
are not present in the NR waveform. In other words, h̃ðωÞ
for the time-truncated waveform is unphysical below a
certain frequency, and its amplitude is strongly suppressed
for ω < 2 _ϕ0. Hence, there is a peak at ωpeak ≈ 2 _ϕ0 in the
Fourier transform of the truncated waveform. Typically,
h̃ðωÞ is found to be relatively free of Gibbs’ phenomena
and agrees with longer waveforms for ω > 1.2ωpeak [89].
In the eccentric case, there is no longer a single

frequency emitted at a given time, and ω22 ≈ 2 _ϕ oscillates
on the orbital timescale [see Eq. (2)], so it is not clear that
the minimum frequency at which h̃ðωÞ is reliable can be
determined using the same criterion in the eccentric case as
in the circular case.
In order to assess the effect of time truncation, we have

run one simulation, case 3, starting from a lower orbital
frequency than the others, giving 40 cycles rather than the
typical 20, and ∼6000M of evolution time, rather than the
typical 2500M.
Figure 8 shows the amplitudes of the Fourier transforms

of waveforms with ecomm ¼ 0.000 and 0.069 (case 1 and
case 3). The eccentric waveform is plotted twice; once
truncated in the time domain 6000M before merger, and
once truncated 2500M before merger. We see that at high

frequency (Mω > 2 × 10−1), the effect of eccentricity on the
waveform is negligible, indicating that the merger waveform
is more or less independent of eccentricity. At intermediate
frequency (4 × 10−2 < Mω < 2 × 10−1), we see the oscil-
lations in jh̃22j for the eccentric waveforms characteristic of
eccentricity. The eccentric waveform appears independent
of time truncation for Mω ⪆ 5 × 10−2. The peaks in the
amplitudes of h̃ are visible between 2 × 10−2 and ∼10−1,
depending on the configuration, and for ω < ωpeak in each
case, the amplitude drops rapidly to 0 as ω → 0. In this case,
it appears that h̃ðωÞ is independent of time truncation for
ω > 1.2ωpeak, as in the circular case, and we assume this in
the analysis that follows. This is only a preliminary check of
the effect of time truncation on eccentric waveforms, and a
more detailed study in the future would be beneficial.
To ensure that the integral in Eq. (18) only covers the

physical part of the waveform f > 1.2fpeak, we restrict to
computing the unfaithfulness for systems for which
1.2fpeak < fmin. fpeak scales inversely with the total mass
of the system, so it is only possible to compute the
unfaithfulness for systems with total mass M > Mmin,
where Mmin depends on both the length of the NR wave-
form, and the particular GW detector considered. If longer
NR waveforms starting from lower frequency were avail-
able, the unfaithfulness could be computed for lower mass
systems.

VIII. MODELING RESULTS

We have described how to generate an eccentric IMR
waveform for a given e0 and l0. This model will now be
tested by comparing the waveforms from the IMR model
to NR. The parameters of the PN waveforms used in the
comparison are obtained by fitting ωPNðeref ; lrefÞ to ωNR in
a one period window centered on at x ¼ xref ¼ 0.11 as
described in Sec. IV. The relative residual for this fit is less
than 1% in all cases.
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FIG. 8. Fourier transforms of circular and eccentric waveforms.
The eccentric waveform has been truncated in the time domain to
two different lengths. This allows us to assess the effect of time-
domain truncation on the Fourier transform.
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A. Instantaneous gravitational wave frequency

Since the PN parameters of the NR waveform are
determined by fitting the instantaneous GW frequency
ω22, this quantity is expected to agree the best between
NR and the model, at least within the fitting window.
Figure 9 shows ω22 as a function of time for three of the NR
simulations. In each case, the fit window is highlighted.
The top panel shows Case 53 (q ¼ 3, eref ¼ 0), represent-
ing the quasicircular limit of the model. We see that at the
highest mass ratio studied here,ω22 from NR and the model
agree well for the duration of the NR waveform. The
middle panel shows case 6 (q ¼ 1, eref ¼ 0.05). For this
equal-mass case with moderate eccentricity, the phase and
amplitude of the oscillations in the NR ω22 are reproduced
well by the model, though there is some dephasing seen at
early times. This shows that the radiation reaction in the
model does not perfectly capture the evolution of the
advance of pericenter, Δϕ. The bottom panel shows case
23 (q ¼ 3, eref ¼ 0.09). This is the most extreme

configuration studied, with the highest eccentricity and
mass ratio, and shows the limitations of the model. The
dephasing in ω22 at early times is clearly visible, as is the
error between the fit window and the merger.
These three cases are examples which broadly represent

the performance of the model across the whole set of NR
configurations. We conclude that the model reproduces
the NR ω22 well, but the agreement, especially at early
times, becomes worse with increasing mass ratio and
eccentricity.

B. Strain

Figure 10 shows the real part of the strain, Re½h22� from
both NR and the model. The right panels highlight the
merger and ringdown, and while the agreement is not
perfect, the model largely agrees with NR. There is some
dephasing visible at early times for the quasicircular q ¼ 3
case. The equal-mass case with moderate eccentricity
agrees very well with NR. As for the frequency, for the
case with the highest mass ratio and eccentricity, there is
noticeable dephasing at early times between the model and
NR. Again, this may be improved by using 3 PN radiation
reaction terms in the model.

C. Phase

Figure 11 shows the phase error in the model wave-
form; Δϕ ¼ arg hNR22 − arg hmodel

22 . For most of the wave-
forms, the phase error of the circular case gives a lower
bound on the error of the eccentric cases. For eref ≲ 0.05,
the phase error oscillates between the circular value and a
value a few times larger. There is no appreciable effect of
eccentricity on the secular growth of the phase error for
these eccentricities, suggesting that the effect of eccen-
tricity on the error in the adiabatic evolution is negligible.
For higher eccentricities, this is no longer the case, and
eccentricity appears to increase the secular phase error.
We expect that adding higher order radiation reaction

terms to the model, as in [48], will decrease the phase error.
Note that for the quasicircular cases 11 and 19, the

eccentricity measured at x ¼ 0.11 is higher than that
measured at x ¼ 0.075. This discrepancy, affecting the
third decimal place, may be an indication of the error in
the eccentricity-estimation procedure, especially close to
the merger where the secular growth in ω22 may be
confused with oscillations due to eccentricity.

D. Amplitude

Figure 12 shows the relative difference in the amplitude,
A ¼ jh22j, between the NR and model waveforms. Note
that we plot AðϕÞ instead of AðtÞ, so that phase and
amplitude errors are decoupled. The amplitude error varies
between 4% and 13%.
The IMR model incorporates 0 PN restricted wave-

forms; i.e., the expression for the waveform in terms of
the orbital quantities, Eq. (5), is given by the quadrupole
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formula. State-of-the-art quasicircular models use wave-
forms based on at least 3 PN accurate expressions in the
nonspinning case. In the quasicircular case, it has been
shown (e.g., in [58]) that the use of lower order waveforms
primarily affects the amplitude rather than the phase, so it is

not surprising to see relatively large amplitude error here,
even in cases where the phase errors are fairly small.

E. Faithfulness

Figures 13 and 14 show, for each mass ratio q, the
unfaithfulness between the model and each NR waveform
for the two advanced LIGO detector configurations
aLIGO O1 and aLIGO design (see Sec. VII A). The
unfaithfulness is plotted only for the source masses for
which the entire NR waveform is in the sensitive
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frequency band of the detector. The unfaithfulness gets
higher as either eccentricity or mass ratio increases.
For aLIGO O1, with a low frequency cutoff of 30 Hz,

the model has an unfaithfulness of less than 3% for
q ¼ 1 across the entire mass range covered by the NR
waveforms, or M ≥ 80M⊙. For q ¼ 3, the highest eccen-
tricity waveforms have unfaithfulness less than 3%
only for slightly higher masses, namely M > 90M⊙.
By extrapolating the results in Fig. 13 to lower mass, it
appears that the unfaithfulness of the highest eccentricity
waveforms would probably exceed the 3% target for
masses ≲70M⊙.
For aLIGO design, with a low frequency cutoff of

10 Hz, the model has faithfulness 3% for all mass ratios
and eccentricities for which the NR waveform is entirely
in band, however most of the NR waveforms are too short

to compute unfaithfulness forM ≲ 180M⊙. In general, for
a given total mass, the unfaithfulness with aLIGO design
is greater than with aLIGO O1, so it is reasonable to
expect that at masses ≈70M⊙, the highest eccentricity
waveforms would also exceed the unfaithfulness target
of 3%.
Longer NR waveforms, reaching lower frequencies

(for which the entire waveform is in the sensitive band
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FIG. 13. The unfaithfulness, 1 − F, for the aLIGO O1 detector
configuration, between the eccentric IMR model and the NR
simulations, as a function of the total binary mass. Masses for
which the NR waveform starts at a frequency higher than the
detector’s fmin are omitted from the plot. The horizontal line
shows the 3% unfaithfulness target, and the vertical line shows
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FIG. 12. Amplitude difference between IMR model and NR.
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of the detector for lower mass systems) will be necessary
to accurately assess the performance of the model for
lower mass systems with aLIGO design. Improvements
to the model would be needed to reach acceptable
levels of faithfulness for M ∼ 70M⊙ (corresponding to
GW150914) for high eccentricities, with the maximum
usable eccentricity being lower for aLIGO design than for
aLIGO O1.

F. Comparison with quasicircular models

We now compare the eccentric IMR model with existing
quasicircular (e ¼ 0) models currently used by LIGO for
estimating the parameters of gravitational wave sources.
Two suchmodels are SEOBNRv4 [75] and IMRPhenomD

[5,76]. These models have been compared with a large
number of quasicircular NR waveforms, and the unfaithful-
ness is found to be<1% foraLIGOdesign in almost all cases.
For aLIGO O1, which is less sensitive at all frequencies, the
unfaithfulness will be even lower. The analogues of Fig. 14
are Fig. 2 of [75] and Fig. 15 of [5].
In the quasicircular (e ¼ 0) case, the new eccentric

model presented here has an unfaithfulness <1% for
aLIGO O1 forM > 60M⊙ (corresponding to the minimum
mass for which we are able to compute unfaithfulness given
the length of the NR waveforms), but the unfaithfulness is
larger for larger eccentricities.
The quasicircular models incorporate higher order PN

radiation reaction, as well as additional features designed
to increase the accuracy of the dynamics, whereas the
eccentric model uses simple PN for the inspiral. Further,
the quasicircular models have been tested and calibrated
against NR waveforms with much lower initial frequencies.
As a result, we expect the low frequency behavior of the
quasicircular models to be superior to the eccentric model
in the quasicircular limit.
However, as we have shown, the eccentric model is

faithful to the NR data for the last ∼20 cycles before the
merger, when the eccentricity is ≲0.1 at a time ≈7 cycles
before the merger.

IX. CONCLUSIONS

We have presented 20 new publicly available nonspin-
ning NR BBH simulations with initial eccentricities up to
0.2 and mass ratios from 1 to 3, including the merger and
the preceding 20 gravitational wave cycles. When consid-
ered as sources for gravitational wave detectors, the NR
waveforms start below 30 Hz for systems of total mass
M > 80M⊙, and below 10 Hz for systems of total mass
M > 230M⊙.
We have demonstrated that the circularization of eccen-

tric binary black hole systems in the last few cycles before
the merger first reported in [44] for equal-mass systems
extends to systems with mass ratio up to q ¼ 3.
We have shown that an existing PN model for the inspiral

can be fitted to the NR data over one radial period shortly
before the merger, and have quantified how the error in the
PNmodel grows at earlier times. The results depend onmass
ratio and eccentricity, with higher mass ratios and eccen-
tricities generally showing a larger error at early times.
For all the NR waveforms, the PN model remains

accurate to within about half a gravitational wave cycle
across the entire NR waveform, but this is unlikely to be the
case for longer NR waveforms.
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FIG. 14. The unfaithfulness, 1 − F, for the aLIGO design
detector configuration, between the eccentric IMR model and
the NR simulations, as a function of the total binary mass. Masses
for which the NR waveform starts at a frequency higher than the
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70M⊙, roughly corresponding to the mass of GW150914.
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Using the fact that the NR waveforms circularize shortly
before the merger, we have shown that the merger can be
represented using a circular model. A simple circular model
was built from a small number of circular NR waveforms
by interpolating them in the mass ratio q. A full IMR model
was then constructed by blending the PN inspiral model
with the NR-interpolated circular model. The combination
relies on knowing the time Δtðq; e; lÞ between a reference
point (x ¼ 0.11) in the PN waveform and the peak of the
merger waveform, and we have derived an accurate
empirical fitting formula for Δt from the NR waveforms.
We have compared the IMR model with all the NR

simulations. For flow ¼ 30 Hz, and a detector configura-
tion, aLIGO O1, corresponding to the first observing run
of advanced LIGO, the eccentric model has a faithfulness
of ≥97% with the corresponding NR waveform for
systems of total mass M ≥ 85M⊙ for all the NR simu-
lations (eref ≤ 0.1, q ≤ 3), and for systems of total mass
M ≥ 70M⊙, the faithfulness is over 97% for eref ≲ 0.05
and q ≤ 3.
The availability of eccentric IMR waveform models such

as the model presented in [48], and the model presented
here, which has been calibrated to and validated against NR
simulations, is the first step towards measuring the eccen-
tricity of binary black hole mergers through their gravita-
tional wave emission. We have shown that the merger can
be accurately represented by a simple combination of
eccentric PN and circular NR results.
Note, however, that the present model has been validated

only for the last ∼20 cycles before the merger, correspond-
ing to the finite length of the NR simulations used. For
systems of sufficiently high mass that this is the only part of
the waveform which is in the sensitive band of the detector,
for example sources similar to GW150914, the model may
be useful for parameter estimation. For systems where
longer waveforms are required, i.e., lower mass systems for
which both the merger and more of the early inspiral is in
the sensitive band of the detector, the model is probably not
sufficiently faithful to the general relativistic waveform for
reliable results to be obtained.
The model has been calibrated to NR simulations with

parameters in the range (eref ≤ 0.1, q ≤ 3), but it can be
evaluated outside its range of calibration. The model is not
a small-e expansion, so in principle it may be evaluated for

any e < 1. However, the PN approximation, which is an
expansion in v=c, will break down for high eccentricities if
the velocity becomes too large at pericenter. The circular
merger model, as described here, can only be reliably
evaluated within its calibration range q ≤ 4, but by includ-
ing more NR simulations, an extension to higher mass ratio
would be straightforward.
The simulations and model presented here are restricted

to the case of nonspinning binaries. For interesting appli-
cations to gravitational wave data, the model will need to be
extended to include the effects of spin, otherwise it is
possible that the effects of eccentricity and spin could be
confused. We also model only the dominant l ¼ 2, m ¼
�2 spherical harmonic modes. While the effects of sub-
dominant modes are likely more important for eccentric
systems than for circular systems, we expect the effects to
be small for the moderate eccentricities studied here.
Finally, while our model is fully 3 PN accurate in the
conservative dynamics, the radiation reaction terms are
implemented only up to 2 PN, in contrast to the model of
[48] which is 3 PN in both the conservative and radiative
effects, and also contains improvements for high mass
ratios based on the test-mass limit. We expect that the
performance of our model during the early inspiral (when
aligned just before the merger) would be improved with
these modifications, but we leave that to future work.
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