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In this work, we find novel static and spherically symmetric wormhole geometries using a three-form field.
By solving the gravitational field equations, we find a variety of analytical and numerical solutions and show
that it is possible for the matter fields threading the wormhole to satisfy the null and weak energy conditions
throughout the spacetime, when the three-form field is present. In these cases, the form field is responsible for
supporting the wormhole and all the exoticity is confined to it. Thus, the three-form curvature terms, which
may be interpreted as a gravitational fluid, sustain thesewormholegeometries.We also show that in the case of
a vanishing redshift function the field can display a cosmological constant behavior.
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I. INTRODUCTION

Wormholes [1,2] are tunnels connecting different regions
of spacetime and have been a subject of discussion for almost
a century, ranging from the Flamm solution [3], the Einstein-
Rose bridge [4], the geon concept devised byWheeler [5,6],
the Ellis [7] and Bronnikov [8] solutions in the 1970s, to
the Morris-Thorne renaissance in 1988 [1]. A fundamental
feature of wormhole physics is the flaring-out condition
of the throat, which in general relativity (GR), and through
the Einstein field equations, entails the violation of the
null energy condition (NEC) at the vicinity of the throat
[1,2,9–12].This leads to the assumption that, inorder to sustain
a wormhole, an exotic type of fluid, defined as matter that
violates theNEC,must be at play.However, onemay tackle the
problem in the context of modifications of GR. Indeed, it has
been shown that it is possible to support wormhole geometries
in modified gravity, where the matter threading the wormhole
satisfies all of the energy conditions, and it is the effective
energy-momentum tensor, containing higher order curvature
derivatives, that is responsible for theNECviolation. Thus, the
higher order curvature terms, interpreted as a gravitational
fluid, sustain these wormhole geometries [13]. More specifi-
cally, a number of works have been dedicated to finding
specific solutions in modified gravity, namely, in fðRÞ gravity
[14], Weyl gravity [15], curvature-matter couplings [16,17],
modified teleparallel gravity [18], Einstein-Gauss-Bonnet
gravity [19], and the hybrid metric-Palatini theory [20],
amongst many other scenarios.
In a cosmological context, an alternative to modified

gravity as a possible cause of the recent accelerated

expansion of the Universe [21,22], the inflationary phase
of the early universe [23–25] and many other cosmological
phenomena, is dark energy [26–28], which can be formally
represented by a scalar field. In the context of compact
objects, such as in wormhole geometries, it is also possible
that scalar fields are one of the simplest candidates to
perform the role of exotic matter [12,29]. In fact, an
extensive amount of work has been dedicated to wormhole
physics supported by scalar fields, especially in the context
of the stability issue. However, in wormhole geometries,
the nontrivial topology is supported by a phantom scalar
field, in order to satisfy the flaring-out condition. In
particular, rotating wormhole solutions in GR were pre-
sented, which are supported by a phantom scalar field
[30,31]. These specific solutions evolved from a static Ellis
wormhole configuration, when the throat is set into
rotation, and as the rotational velocity increases, the throat
deforms until an extremal Kerr solution is obtained, at a
maximal value of the rotational velocity. Since the stability
analysis of rotating wormholes in four dimensions is
very involved, a stability analysis of five-dimensional
rotating wormholes was performed with equal magnitude
angular momenta only, by restricting the analysis to the
unstable radial modes. Interestingly, when the rotation is
sufficiently fast, the radial instability disappears for these
five-dimensional wormholes.
In this work, and motivated by the analysis in scalar

fields, we are essentially interested in finding wormhole
geometries supported by three-forms, where the matter
threading the wormhole satisfies the energy conditions. We
emphasize that three-form fields [32,33] are widely used in
the literature and seem to present viable solutions to
cosmological scenarios such as the recent acceleration of
the Universe [34–36] and inflation [37–41]. In fact, the
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cosmology of self-interacting three-forms was investigated,
and it was shown that the minimally coupled canonical
theory can naturally generate a variety of isotropic back-
ground dynamics, including scaling, possibly transient
acceleration and phantom crossing [32,33]. In [36], the
background dynamics and linear perturbations of self-
interacting three-form cosmology was investigated. It was
shown that the phase space of cosmological solutions
possesses (super)-inflating attractors and saddle pointswhich
can describe three-form driven inflation or dark energy. In
[42], a model of inflation was studied on a 5D Universe
driven by a single three-form field confined to a 4D brane.
The dynamics was studied by testing the perturbation
variables, tensor to scalar ratio and spectral index, against
observational data. Screening mechanisms have also been
explored in the context of three-forms [43]. Considering a
three-form field with conformal couplings to the matter
sector, it was shown that it is possible to obtain a thin-shell
setting where the field interactions are short range. In [44],
Hawking and Turok showed that the inclusion of a 4-form,
constructed from a three-form field potential, can naturally
explain the vanishing cosmological constant problem.
Thus, in this work we analyze the aftermath of theoreti-

cally constructing a three-form field tailored for a static and
spherically symmetric wormhole geometry. The aim of the
present work is to find analytical and numerical solutions in
which thematter fields satisfy the energy conditions through-
out the entire wormhole spacetime, and it is the three-form
field that is responsible for sustaining the wormhole, con-
sequently violating all the energy conditions.
This paper is outlined in the following manner: In

Sec. II A we present the model, write the action, introduce
the three-form formalism, present the equations of motion
for the field and finally compute the gravitational field
equations. In Sec. III, we present an analysis regarding the
energy conditions, in the presence of a three-form field.
In Sec. IV, we expound the modus operandi for finding
solutions, and explore their significance with analytical and
numerical methods. Finally, we conclude in Sec. V.

II. WORMHOLE GEOMETRIES
SUPPORTED BY THREE-FORMS

A. The metric and action

We consider a static and spherically symmetric wormhole
configuration, described by the following line element [1]

ds2 ¼ −e2ΦðrÞdt2 þ dr2

1 − bðrÞ=rþ r2ðdθ2 þ sin2 θdϕ2Þ;

ð1Þ
whereΦðrÞ is knownas the redshift function, as it is related to
the gravitational redshift, and is assumed to be finite every-
where in order to avoid the presence of event horizons, thus
rendering the wormhole traversable [14,29]. bðrÞ is denoted
the shape function, as it depicts the form of the wormhole.

The radial coordinate r runs from a minimum value r0,
corresponding to the throat of the wormhole, where
bðr0Þ ¼ r0, to þ∞. The divergence of the grr component
on the metric, Eq. (1), triggers a coordinate singularity,
so that we require the proper radial distance, lðrÞ ¼
� R

r
r0
½1 − bðrÞ=r�−1=2dr, to be finite everywhere [1]. Note

that the additional condition bðrÞ ≤ r is also imposed.
Now, a key ingredient of wormholes is the so-called

flaring-out condition [1], given by b0ðrÞ < bðrÞ=r, at the
vicinity of the throat, where a prime denotes a derivativewith
respect to the radial coordinate r [1]. This constraint entails
information on the shape of the wormhole, expressed as
constrains on bðrÞ, and reduces to b0ðr0Þ < 1 at the throat.
The action of our model is described by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Rþ LA

�
þ Smðgμν;ψÞ; ð2Þ

where g is the determinant of the metric, i.e., g≡ det gμν,
κ2 ≡ 8πG, R is the Ricci scalar and Smðgμν;ψÞ is the matter
action, where ψ collectively defines the matter fields. We
have introduced the existence of a three-form field Aαβγ

[32,33], with the following Lagrangian density

LA ¼ −
1

48
F2 þ VðA2Þ; ð3Þ

where squaring denotes contraction of all the indices,
A2 ≡ AαβγAαβγ , V ≡ VðA2Þ is the potential function, and
the 4-form F ¼ dA is the strength tensor [44], whose
components can be written as,

Fαβγδ ¼ ∇αAβγδ −∇δAαβγ þ∇γAδαβ −∇βAγδα: ð4Þ
Computing the Euler-Lagrange equations we find that the
equations of motion for our form field reads

∇μFμαβγ ¼ 12
∂V
∂A2

Aαβγ: ð5Þ

Theories employing three-form fields in cosmology hith-
erto are mostly applied to Friedmann-Lemaître-Robertson-
Walker (FLRW) universes, e.g., in models of dark energy
[34–36] and of inflation [37–42], where they appear as a
function of cosmic time t (at the background level).However,
since we are dealing with a static and spherically symmetric
model, we are solely interested on a spatial dependence. One
way of achieving this is by associating its components with a
function, which we denote ζðrÞ, which is solely dependent
on the radial coordinate. Due to the antisymmetric nature of
the three-form, once ζðrÞ is known, all of the other
components are automatically determined.
It is common to write the 1-form (vector) Bδ [37], dual to

the three-form, via the Hodge star operator, ⋆∶ΩpðXÞ →
Ωn−pðXÞ (where ΩpðXÞ is the vector space of p-forms
on an n-dimensional smooth manifold X), which maps
p-forms into (n − p)-forms, through the following relation:
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ð⋆AÞα1…αn−p ¼ 1

p!
1ffiffiffiffiffiffi−gp ϵα1…αn−pβ1…βpAβ1…βp ; ð6Þ

where A is a p—form and ϵ is the n—dimensional Levi-
Civita symbol. For our present study, where n ¼ 4 and
p ¼ 3, Eq. (6) produces a vector,

Bδ ≡ ð⋆AÞδ ¼ 1

3!

1ffiffiffiffiffiffi−gp ϵδαβγAαβγ: ð7Þ

We can now invert Eq. (7) and express the components of
the three-form in terms of its dual

Aαβγ ¼
ffiffiffiffiffiffi
−g

p
ϵαβγδBδ: ð8Þ

We construct the components of the three-form by
expressing the dual vector as a function of ζðrÞ, as

Bδ ¼
�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

bðrÞ
r

r
ζðrÞ; 0; 0

�
T
: ð9Þ

Note that ζðrÞ is a convenient parametrization of the 3-form
field in the geometry given by the line element (1). From
Eqs. (8) and (9), the nonzero components of the three-form
read

Atθϕ ¼ Aθϕt ¼ Aϕtθ ¼ −Atϕθ ¼ −Aθtϕ ¼ −Aϕθt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�
bðrÞ
r

− 1

�s
ζðrÞ; ð10Þ

and A2 is given by

A2 ≡ AαβγAαβγ ¼ −6ζðrÞ2: ð11Þ
Now, taking into account Eqs. (4) and (8), we can write

the kinetic term in the Lagrangian Eq. (3) in a vector
structure [39]

−
1

48
F2 ¼ −

1

2
F0123F0123 ¼ 1

2
ð∇μBμÞ2; ð12Þ

and more specifically as

F2 ¼ FαβγδFαβγδ ¼ −6ϒ ð13Þ
where ϒ is defined, for notational simplicity, by

ϒ ¼ 4

�
1 −

b
r

��
ζ

�
Φ0 þ 2

r

�
þ ζ0

�
2

: ð14Þ

ϒ can be tentatively interpreted as the kinetic energy of the
three-form, which vanishes at the throat, ϒjr0 ¼ 0.
These relations will play an important role in solving the

gravitational field equations, which is the aim of Sec. IV.

B. Gravitational field equations

Varying the action Eq. (2) with respect to the metric gμν,
yields the gravitational field equations

Gμν ¼ κ2TðeffÞ
μν ; ð15Þ

where Gμν is the Einstein tensor and we have defined the
effective energy-momentum tensor of the sources by

TðeffÞ
μν ¼ TðAÞ

μν þ TðmÞ
μν ; ð16Þ

where an (A) superscript refers to the three-formAαβγ and an
(m) to other matter sources. Note that the energy-momentum
tensor associated with the i-species is defined as

TðiÞ
μν ¼ −2

δLðiÞ
δgμν

þ gμνLðiÞ: ð17Þ

Taking into account Eqs. (3) and (17), we find that the
energy-momentum tensor of the three-form reads

TðAÞ
μν ¼ 1

6
FμαβγFν

αβγ þ 6
∂V
∂A2

AμαβAν
αβ þ LAgμν; ð18Þ

in which case, taking into account the wormhole metric (1),
its components are given by

TðAÞ t
t ¼ −ρA ¼ −

1

8
ϒ − V þ ζV;ζ; ð19Þ

TðAÞ r
r ¼ −τA ¼ −

1

8
ϒ − V; ð20Þ

TðAÞ θ
θ ¼ pA ¼ TðAÞ ϕ

ϕ ¼ −
1

8
ϒ − V þ ζV;ζ: ð21Þ

Note that in a cosmological context, it is already known
that [35,36], in the absence of a potential in the Lagrangian
Eq. (3), the three-form source mimics a cosmological
constant with an equation of state w ¼ pA=ρA ¼ −1.
This fact was used by Hawking [44] to tackle the
cosmological constant problem.
Now, consider that the matter energy-momentum

tensor consists of an anisotropic fluid, given by Tμ
ν ¼

diagð−ρm;−τm; pm; pmÞ, where ρm is the matter energy
density, τm is the radial tension, and pm is the tangential
pressure of matter.
With these definitions, the gravitational field equa-

tions (15) yield

ρeff ¼ ρm þ ρA ¼ b0

r2
; ð22Þ

τeff ¼ τm þ τA ¼ b
r3

− 2

�
1 −

b
r

�
Φ0

r
; ð23Þ

peff ¼ pm þ pA ¼
�
1 −

b
r

��
Φ00 þΦ02 −

b0r − b
2rðr − bÞΦ

0

−
b0r − b

2r2ðr − bÞ þ
Φ0

r

�
; ð24Þ

where for simplicity, we have set κ2 ¼ 1, and omitted the
parameter dependencies, e.g., Φ≡ΦðrÞ; we follow this
notation throughout this work. We can interpret the
components of the effective energy-momentum tensor as
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ρeffðrÞ being the total energy density, τeffðrÞ the radial
tension (negative of the radial pressure) and peffðrÞ the
pressure on the tangential directions, orthogonal to the
radial direction.
The Bianchi identities yield the conservation of the

effective energy-momentum tensor, i.e., ∇μTðeffÞ μ
ν ¼ 0, in

which the radial component imposes the following con-
tinuity equation:

τ0eff þ
2

r
ðτeff þ peffÞ þΦ0ðτeff − ρeffÞ ¼ 0: ð25Þ

The equations of motion, Eq. (5), can now be written in
terms of the scalar function ζ as

ζ

�
rΦ0

�
b0 −

b
r

�
þ 4þ 2b0 þ 2r2Φ00

�
b
r
− 1

�
− 6

b
r

�

þ 2r2V;ζ þ ζ0r
�
3
b
r
− 4þ b0 þ 2Φ0r

�
b
r
− 1

��

þ 2ζ00r2
�
b
r
− 1

�
¼ 0: ð26Þ

This relation places a further constraint on the unknown
functions, and will play a major role in finding explicit
wormhole solutions.

III. ENERGY CONDITIONS

Now, as mentioned above, the fundamental ingredient
in wormhole physics is the flaring-out condition, which
through the Einstein field equations, in standard GR, entails
the violation of the NEC. The latter states that, for every
future oriented null vector kμ, the relation Tμνkμkν ≥ 0
holds. However, relative to this issue, we need to point out a
subtlety. The energy conditions arise when one refers back
to the Raychaudhuri equation, where a geometric term
Rμνkμkν appears. Note that one imposes the positivity
of this term, i.e., Rμνkμkν ≥ 0, to ensure the focusing of
geodesic congruences, within a finite value of the param-
eter labeling the points on the geodesics. However, through
the Einstein field equations, the positivity condition entails
the condition Tμνkμkν ≥ 0 on the energy-momentum ten-
sor, which is simply translated as the NEC.
In the present theory, with three-forms, things are not

so straightforward, where the effective Einstein field
equations, given by Eq. (15), may now be rewritten as

Rμν ¼ κ2ðTðeffÞ
μν − 1

2
TðeffÞgμνÞ. Here, one may replace the

Ricci tensor Rμν by the corresponding field equation with
the matters sources. This argument shows that now it is the
effective energy-momentum tensor that violates the NEC,

i.e., TðeffÞ
μν kμkν < 0. Thus, in principle, one may consider

that the matter energy-momentum tensor TðmÞ
μν satisfies the

energy conditions and the respective violations arise from

the three-form curvature term TðAÞ
μν . In fact, it is useful to

impose the condition TðmÞ
μν kμkν ≥ 0 at face value, as taking

into account local Lorentz transformations one may show
that this condition implies the positivity of the energy
density in all local frames of reference. Indeed, the flaring-
out condition, which entails Rμνkμkν < 0 in the vicinity of
the throat does not imply the focusing of geodesics, which
translates a repulsive character of gravity in this region.
Therefore, the strategy in this paper will be the follow-

ing. We impose that the matter energy-momentum tensor

does indeed satisfy the condition TðmÞ
μν kμkν ≥ 0, and it is

the three-form curvature term that entails the violation of

the [45–47] “generalized” NEC [13], i.e., TðeffÞ
μν kμkν < 0.

This implies the following constraint:

0 ≤ TðmÞ
μν kμkν < −TðAÞ

μν kμkν; ð27Þ
in the vicinity of the throat, where taking into account the
energy-momentum of the three-form, i.e., Eq. (18), one
deduces the fundamental inequality in this work, given by

0 ≤ TðmÞ
μν kμkν < −

1

6
FμαβγFν

αβγkμkν

− 6
∂V
∂A2

AμαβAν
αβkμkν: ð28Þ

Now, considering that the world line of an observer (or
family of observers) can be expressed through a timelike
vector Vμ, the weak energy condition (WEC) imposes that
the energy density measured by this observer is always
non-negative, i.e., TμνVμVν ≥ 0. In the present case, we
impose that the energy density of the matter threading the
wormhole satisfies the WEC, so that

TðmÞ
μν VμVν ¼ ðGμν=κ2 − TðAÞ

μν ÞVμVν ≥ 0; ð29Þ

and using Eq. (18), takes the following form

TðmÞ
μν VμVν ¼ 1

κ2
GμνVμVν −

1

6
FμαβγFν

αβγVμVν

− 6
∂V
∂A2

AμαβAν
αβVμVν þ LA ≥ 0: ð30Þ

In summary, for the matter energy-momentum tensor
with components Tμ

ν ¼ diagð−ρm;−τm; pm; pmÞ (where
τm ¼ −pr

m, i.e., the matter radial tension equals the
negative matter radial pressure), the flaring-out condition,
i.e., b0ðrÞ < bðrÞ=r, entails the following inequality on
the effective energy-momentum tensor components,
ρeff − τeff < 0. However, in this work, we are interested in

imposing that the matter energy-momentum tensor TðmÞ
μν

threading the wormhole satisfies the WEC throughout the
entire spacetime, which imposes the following inequalities

ρm ≥ 0 and ρm − τm ≥ 0: ð31Þ
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Thus, it is the energy-momentum curvature term associated
to the three-form that is responsible for sustaining these
wormhole geometries.

IV. SPECIFIC SOLUTIONS

In order to find wormhole solutions, we need to solve the
four independent equations, which consist of three gravita-
tional field equations Eqs. (22)–(24) and the equation of
motion for ζ, i.e., Eq. (26). The system has seven unknown
functions, namely,Φ, b, ρm, τm, pm, ζ, and V, so we have up
to three assumptions to make. As has been done in previous
works [15,20,48], we will specify the redshift and shape
functions, and assume further a form for ζ (which we call
type I, see subsection IVA) or for the potential (type II, see
subsection IV B) to solve the system. For the cases where the
potential is specified and non constant, we are unable to find
analytical solutions, so we consider a numerical analysis to
integrate the equations by specifying the initial conditions far
from the throat, and integrate to the throat.

A. Type I solutions

Following the notation of [20], we consider the follow-
ing choices for the metric functions

bðrÞ ¼ r0

�
r0
r

�
β

; ΦðrÞ ¼ Φ0

�
r0
r

�
α

; ð32Þ

and for the ζ function

ζðrÞ ¼ ζ0

�
r0
r

�
γ

; ð33Þ

where β > −1, α > 0 and γ > 0. Note that Eq. (33) takes
the value ζ ¼ ζ0 at the throat and tends to zero at spatial
infinity.
Substituting the specific choices (32) and (33) into

Eq. (26), the latter becomes a first order differential

equation for VðrÞ where we find the following analytical
solution,

V ¼ ζ20γ

2r2

��
1 −

�
r0
r

�
βþ1

�
ðγ − 2Þ

þΦ0α

�
r0
r

�
α
�
1þ α

αþ 2ð1þ γÞ

−
�
r0
r

�
βþ1 3þ β þ 2ðαþ γÞ

3þ β þ αþ 2γ

��
þ C; ð34Þ

in which C is a constant.
In Fig. 1 we show the energy densities (left panel) and

the NEC profile (right panel) of a particular solution where
the matter component does not violate the NEC nor the
WEC. This means that the three-form field is responsible
for sustaining the wormhole, and all the exoticity of the
object is confined to the field itself and the matter sources
thread the wormhole without violating the NEC and WEC.
This is the main virtue of these models.
An interesting case is obtained by considering a zero

redshift function Φ0 ¼ 0 and γ ¼ 2, so that the potential
becomes a constant V ¼ C, which is readily found from
Eq. (34). In this particular case, although ζ is dependent
on the radial coordinate, we note that its kinetic term in
Eq. (14) vanishes, the energy density of the form field is
constant, and is given by ρA ¼ V ¼ C. This means that the
field mimics a cosmological constant [49]. This feature
does not happen in general with classical scalar fields when
they are not constant. It is due to the fact that the kinetic
term of the energy density of the three-form, Eq. (14),
depends on ζ0 and ζ itself (in contrast with classical
canonical scalar fields where the kinetic term depends
solely on the field derivative and not explicitly on the field
itself). Thus, the ζ0 and ζ terms can mutually cancel. If
C ≥ 0 the field does not violate the NEC and WEC,
however the matter fields in this case are exotic, which
is not our main interest in this study. This feature tells us

ρ
A

ρ
m

1.0 1.5 2.0 2.5 3.0
–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

r /r0

ρA – τA

ρm – τm

1 2 3 4 5

–1.0

–0.5

0.0

0.5

r /r0

FIG. 1. Energy densities (left panel) and NEC profile (right panel) for the form field (solid) and for the matter sources (dashed),
regarding the specific choice given by Eqs. (32)–(33) with β ¼ −1=2, Φ0 ¼ −6.3, α ¼ 1, ζ0 ¼ 1, γ ¼ 3 and C ¼ 0. We refer the reader
to the text for more details.
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that it is also possible for a three-form to exist within a
wormhole without violating the energy conditions while
mimicking a cosmological constant.

B. Type II solutions

We now consider the metric functions given by (32) and
specify a potential V with a quadratic form,

VðζÞ ¼ ζ2 þ C: ð35Þ
The equation of motion (26) now becomes a second order
differential equation for ζ for which we are not able to find
analytical solutions, thus we resort to a numerical analysis.
The results are reported in Fig. 2, for b ¼ r20=r (left panel)
and b ¼ ffiffiffiffiffiffiffi

r0r
p

(right panel), for different choices for the
constants (see caption). We show that it is possible to
recreate a similar behavior, where the matter fields do not
violate the NEC nor the WEC and all the exoticity is
contained in the field itself.
The solutions for ζ are displayed in Fig. 3. We observe

that near the throat the function takes nonzero values and

smoothly decays as the wormhole flares, vanishing as
r → ∞. We also note that, for the case where b ¼ ffiffiffiffiffiffiffi

r0r
p

,
ζ decays faster at the vicinity of r0, therefore, in this setting,
the wormhole will cluster the energy densities closer to
its throat.
It is interesting to consider the particular case of the

zero tidal force, i.e., ΦðrÞ ¼ 0, taking into account that the
shape function follows the form bðrÞ ¼ r20=r and a constant
potential V ¼ V0, Eq. (26) finally becomes

ζ00r2
��

r
r0

�
2

− 1

�
þ ζ0r

�
2

�
r
r0

�
2

− 1

�
− 2ζ

��
r
r0

�
2

− 2

�
¼ 0; ð36Þ

which yields the following analytical solution

ζðrÞ ¼ C1

r2
þ C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r
r0

�
2

− 1

s �
1þ 2

�
r0
r

�
2
�
; ð37Þ

where C1 and C2 are constants. In this framework, the
energy density of the form field is constant and reads

ρA ¼ 9

2

�
C2

r0

�
2

þ V0: ð38Þ

Note that Eq. (38) is the same of the specific one found in
Sec. IVA when C2 ¼ 0. However, in the previous setting
where the shape of ζ was assumed, the energy density
depended only on V0. In this case, we find a generalized
form for ζ which can also mimic a cosmological constant in
the absence of a potential, V0 ¼ 0, when C2 ≠ 0. However,
in order to avoid divergences, we impose that C2 ¼ 0, so
that ζ in Eq. (37) tends to zero and spatial infinity.

V. CONCLUSIONS

In this work, it was shown that it is possible to sustain
static and spherically symmetric wormhole geometries with
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FIG. 2. Energy densities (thick) and NEC profiles (thin) for the form field (solid) and the matter sources (dashed) for the choices in
Eqs. (32)–(33) and Eq. (35) and . Left panel: β ¼ 1, Φ0 ¼ −1, α ¼ 1 and C ¼ −0.1. Right panel: β ¼ −1=2, Φ0 ¼ −2, α ¼ 1 and
C ¼ 0. See the text for more details.
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FIG. 3. Solutions for ζðrÞ, regarding the two solutions of
Eqs. (32)–(33) and Eq. (35) for: β ¼ −1=2, Φ0 ¼ −2, α ¼ 1
and C ¼ 0 (solid) and β ¼ 1,Φ0 ¼ −1, α ¼ 1 and C ¼ −0.1 (dot
dashed). See the text for details.
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a three-form field. More specifically, it was shown that it is
possible to find analytical and numerical solutions to the
gravitational field equations, where the matter fields
threading the wormhole do not violate the null nor the
weak energy conditions and all the exoticity is contained in
the three-form field. An interesting case was also presented
where the three-form field mimics a cosmological constant,
with a constant energy density even though the field varies
with the radial coordinate, which is in contrast with
classical scalar fields. It was also shown, although not as
appealing, that it is possible to find solutions where the
form field does not violate the NEC and WEC, and it is
the matter fields that sustain the wormhole geometry, and
consequently violates the WEC. Thus, it was shown that
three-form curvature terms, which may be interpreted as a
gravitational fluid, sustain these wormhole geometries [13].
We emphasize that the three-form application to these

compact objects is a novel approach to wormhole physics,
which opens new avenues of research. As mentioned in the
Introduction, the stability of these wormhole geometries is
of great importance, but lies outside the scope of this work.
However, a future line of research lies in applying a similar

analysis as considered in [30,31] to these solutions using
three-forms. Another application is to construct evolving
wormhole geometries, such as finding solutions in a
cosmological background, which are conformally related
to the respective static geometries, as outlined in [50–53]. It
was shown that these dynamical geometries exhibit flashes
of time satisfying the WEC. Thus, we also propose to
analyze evolving wormhole geometries, constructed by
dynamical three-forms and investigate the possibility that
these do in fact satisfy the WEC in specific regions of time.
Work along these lines is presently underway.
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