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We study a quintessential black hole solution in three dimensions, with mass and quintessence charge.
By exploring the Carter-Penrose diagram, we show the presence of spacelike and lightlike singularities in
the metric, given different values for the quintessence parameter, as well as an AdS-like spatial infinity and
event horizon encapsulating the singularity. We also study the propagation of scalar and Dirac (Weyl) fields
around the black hole solutions with different quintessence charges, obtaining the quasinormal spectra for
both fields using two different numerical methods with good agreement between the data. In both cases, the
presence of quintessence increases the imaginary part of the quasinormal mode, since this is related to
the event horizon of the solution, preserving the interpretation of this quantity as relaxation time in the
corresponding CFT. We also investigate the behavior of high-temperature scalar field modes, demonstrat-
ing the presence of the so-called hydrodynamical limit, different from the BTZ black hole, for which no
such modes exist.
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I. INTRODUCTION

The accelerated expansion of the Universe, discovered
through type-Ia supernovae measurements [1,2], is nowa-
days a well-established fact. In the framework of general
relativity, such an accelerated phase is expected to be
driven by an exotic kind of matter with negative pressure
called dark energy [3,4]. Besides the well-known models
introducing this expansion by means of a cosmological
constant term, some of the most promising candidates for
dark energy models are those containing an extra scalar
component, the quintessential field [5], introduced in the
geometry via energy-momentum tensor. The effects of
an accelerated expansion of the Universe can be probed by
black hole physics, inasmuch as the dark energy field
content will change the structure of spacetime. Since the
1990’s a large number of works have studied black holes
in models with a cosmological constant. In this work
we deal with black holes solutions in an Universe with
quintessence.
In [6], Kiselev has found a family of static spherically

symmetric black holes parameterized by the so-called
quintessence charge—wq—and in [7] a generalization
including rotation and charge was presented. In the context
of AdS=CFT correspondence [8–10], Chen et al. [11]
considered the effects of the quintessence field in the

spacetime describing a d-dimensional planar AdS black
hole. The authors found an exact solution with a planar
topology depending on wq, the cosmological constant Λ,
and the black hole mass M.
An important aspect that can be explored is the (in)

stability of these black holes solutions against small
perturbations to the neighborhood of event horizon via
different probe fields. The solutions of the equations
governing the evolution of the perturbations for “plane
wave” boundary conditions are the so-called “quasinormal
modes.” Such solutions have a characteristic spectrum of
complex frequencies assumed the mentioned boundary
conditions. For asymptotically flat black holes these are
taken as purely ingoing waves at the horizon and purely
outgoing modes at infinity, while for asymptotically AdS
black holes, in general, the Dirichlet boundary condition is
used [12–14].
Perturbations in black hole quintessential scenarios

have been extensively studied in recent decades, consid-
ering the evolution of a variety of probe fields. The
equations for Dirac, electromagnetic, and scalar fields
with or without mass were analyzed in [15–20] for a
quintessential Schwarzschild black hole, and their qua-
sinormal modes were obtained. Additionally, in Reissner-
Nordström quintessential scenarios, scalar, Dirac, and
gravitational perturbations have been tested and the
corresponding quasinormal spectra retrieved [21–23].
In general, the presence of a quintessential field in
the metric yields oscillations with lower frequencies
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and damping factors. In the late-time behavior, the field is
expected to decay exponentially, after the phase of
quasinormal ringing [20].
The evolution of a Gaussian wave package, representing

a typical field perturbation in the neighborhood of a
Schwarzschild black hole, was studied by Vishveshwara
[24] in the context of perturbation theory. This evolution
comes in three different stages: the first characterized by a
rapid initial pulse, given the initial burst of the perturbation;
this is followed by a second stage of damped oscillations,
called the quasinormal ringing phase; finally, the perturba-
tions decay exponentially or as a power-law tail.
The question of stability of a given solution is answered

by the analysis of the second and third phases of the field
evolution. In the second phase, the sign of the imaginary part
of the quasinormal frequencies settles whether the decay is
stable. An initial perturbation should decay as a damped
oscillation, for intermediate t whenever ImðωÞ < 0; other-
wise, the perturbation displays an unlimited growing mode
and the system is unstable. In order to determine the field
stability through the third phase of its evolution, we must
evolve the field for very long times and determine whether it
displays a vanishing asymptotic behavior.
The study of AdS black holes in d < 4 spacetime

dimensions is appealing in several ways [25–27], as is
the understanding of the dual field theory in the framework
of AdS=CFT correspondence [28,29] and the study of the
thermodynamical properties of such black holes, which are
found to be similar to those of four-dimensional solutions,
as shown for the BTZ black hole [30,31].
In the context of AdS=CFT correspondence, the study

of black hole quasinormal modes allows us to investigate
specific aspects on the dual quantum field theories at finite
temperature [8,9]. For instance, the inverse of the imagi-
nary part of the fundamental quasinormal frequency is
suggested to define a relaxation time scale for the dual
thermal system to return to its equilibrium [32]. In the case
of quintessential AdS black holes, the computation of the
quasinormal spectrum can bring some insight to a better
understanding of the conjecture when the bulk has an
accelerated expansion.
Our aim in this work is to present the causal structure of

(2þ 1)-dimensional planar quintessential AdS black
holes [11] and also to study the evolution of classical
fields in such geometry in order to obtain the quasinormal
spectra, probing the stability of the metric to small field
perturbations. The paper is organized as follows: In
Sec. II, we provide a brief review of the black hole
solution considered in this paper. In Sec. III, we analyze
its causal structure of and, in the following two sections,
the propagation of scalar and Weyl fields and their
quasinormal spectra. Section VI brings the results on
the calculation of quasinormal frequencies at high temper-
atures, after which, in Sec. VII, we present the discussion
of results and our conclusions.

II. THREE-DIMENSIONAL PLANAR BLACK
HOLES WITH QUINTESSENCE

The line element ansatz for a (2þ 1)-dimensional planar
black hole can be written as

ds2 ¼ −AðrÞdt2 þ AðrÞ−1dr2 þ r2dx2; ð1Þ

where r stands for the radial coordinate 0 < r < ∞ and x is
a planar coordinate −∞ < x < ∞. This is our starting point
for the analysis of the geometrical properties of this
geometry.
The function AðrÞ is determined by Einstein’s field

equations,

Rab −
1

2
gabR −

1

L2
gab ¼ 8πTab; ð2Þ

with L standing for the AdS radius, related to the
cosmological constant Λ by L2 ¼ −1=Λ, and Tμν is the
energy-momentum tensor for the quintessence. Following
[11,6], such a tensor can be cast in terms of the quintes-
sence energy density ρq and the state parameter of the
quintessence, wq, as

Tt
t ¼ Tr

r ¼ −ρq; Tx
x ¼ ð2wq þ 1Þρq: ð3Þ

Solving Einstein’s field equations (2) with the line element
ansatz and the energy-momentum (3), we have

ds2 ¼ −
r2

L2
fðrÞdt2 þ L2

r2
fðrÞ−1dr2 þ r2dx2; ð4Þ

where

fðrÞ ¼ 1 −
�
rþ
r

�
σ

; σ ¼ 2ð1þ wqÞ;

and rþ ¼ ðML2Þ1=σ specifies the event horizon, with M
being the black hole mass. As shown in Sec. III, the
solution (4) describes a class of black holes whose spatial
infinity has the conformal structure of an AdS spacetime
whatsoever the quintessence parameter wq. In another way,
the singularity formed at the point r ¼ 0 has a different
character depending on the value of wq, being the param-
eter crucial for the determination of the causal structure.
The line element in (4) can also be obtained, with the

proper choice of charges, as a particular solution from a
generic description of quintessential black holes by Kiselev
[6]. In particular, for wq ¼ 0 we recover the metric of the
well-known BTZ black hole [25].
In the next section, we clarify the coordinate singularity at

r → rþ as a lightlike structure not singular in geometry, and
establish the character of the singularity for different wq.
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III. CAUSAL STRUCTURE

We now describe the causal structure for three different
black hole solutions, corresponding to wq ¼ −1=3, wq ¼
−2=3 and wq ¼ −1=2.
The spatial asymptotic form of the metric (4) does not

depend on the quintessence parameter wq. For all cases in
the range −1 < wq < 0, the spatial infinite r → ∞ is AdS.
The behavior of the Kretschmann invariant, computed for
the metric (4) shows

RabcdRabcd ¼ 12

L4
þ 1

L4

�
p1

�
rþ
r

�
2σ

− 4p2

�
rþ
r

�
σ
�
; ð5Þ

where p1¼σ4−6σ3þ15σ2−20σþ12 and p2 ¼ ðσ − 2Þ×
ðσ − 3Þ. In the limit r → 0,

RabcdRabcd → ∞;

and for r → rþ,

RabcdRabcd →
1

L4
ðσ4 − 6σ3 þ 11σ2Þ:

Thus, the solution has a physical singularity at r ¼ 0 and
the Kretschman invariant is well behaved at the location
of the event horizon r ¼ rþ and approaches the AdS value
12=L4 at spatial infinity. In the following, we consider
specific values of wq and go through the conformal
diagrams, with the usual coordinate transformations.

A. Black hole with wq = − 1=3
In this case, the line element (4) takes the form

ds2 ¼ −
r2

L2

�
1 −

�
rþ
r

�
4=3

�
dt2 þ L2

r2½1 − ðrþr Þ4=3�
dr2

þ r2dx2:

The first step in order to obtain the Penrose-Carter diagram
of the black hole solution is to define the advanced and
retarded null coordinates (u, v) as u ¼ t − r� and
v ¼ tþ r�, respectively, where r� is the tortoise coordinate
given by

r� ¼
3L2

2rþ

�
arccot

�
r
rþ

�
1=3

þ 1

2
log

�
r1=3 − r1=3þ
r1=3 þ r1=3þ

��
; ð6Þ

with r� ∈� −∞; 0�. In this coordinate system, the metric is
free of singularities at the event horizon. The maximal
analytical extension of the metric is done by the Kruskal
coordinates U and V,

U ¼ −e−
2urþ
3L2

−π=2; V ¼ e
2vrþ
3L2

−π=2; ð7Þ

resulting in

−UV ¼ e½2arccotð
r
rþÞ1=3−π�

�
r1=3 − r1=3þ
r1=3 þ r1=3þ

�
: ð8Þ

Defining the new coordinates Ũ ¼ arctanðUÞ and
Ṽ ¼ arctanðVÞ, we have the Penrose-Carter diagram in
Fig. 1. Notice that the spatial infinity is conformally AdS
and the spacelike singularity is located at r ¼ 0, being
covered by the lightlike structure at r ¼ rþ (event horizon).

B. Black hole with wq = − 1=2
Following the same steps as for the case wq ¼ −1=3, we

find that the tortoise coordinate is given by

r� ¼
L2

rþ
log

�
1 −

rþ
r

�
ð9Þ

and the Kruskal coordinates are U ¼ −e−urþ=2L2

and
V ¼ evrþ=2L

2

. Thus,

−UV ¼
�
1 −

rþ
r

�
:

Using the same Penrose coordinates Ũ and Ṽ as in
Sec. III A, we can construct the Penrose-Carter diagram
(Fig. 2) for this case. The surprising feature here is the
change in the nature of the singularity: by decreasing wq,
we go from a spacelike singularity to a lightlike one.
The spacetime is still encapsulated by an event horizon at

r ¼ rþ, preventing the existence of a naked singularity.

C. Black hole with wq = − 2=3
Similarly to the previous case (Fig. 2), the Penrose-

Carter Diagram for the black hole with wq ¼ −2=3 also
shows a lightlike spacetime singularity. For completeness,
we present the tortoise coordinate and the Kruskal exten-
sion in this case as well:

FIG. 1. Penrose-Carter diagram for the black hole with
wq ¼ −1=3.
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r� ¼
3L2

r2=3þ r1=3
−
3L2

2rþ
log

�
r1=3 þ r1=3þ
r1=3 − r1=3þ

�
;

U ¼ −e−urþ=3L2

; V ¼ evrþ=3L
2

: ð10Þ
Thus,

−UV ¼ e2
r1=3þ
r1=3

�
r1=3 − r1=3þ
r1=3 þ r1=3þ

�
:

1. Singularity character: threshold for wq

The general tortoise coordinate can be written as a first-
order hypergeometric function,

r� ¼ L2

Z
1

r2 − rσþr2−σ
dr

¼
L2r1þ2wq

2F1½1; 1þ2wq

2þ2wq
; 1þ 1þ2wq

2þ2wq
; r

2þ2wq

rσþ
�

rσþð−1 − 2wqÞ
: ð11Þ

The limit r → 0 lead to 2F1 → 1, which allows us to
investigate the threshold between the spacelike and the
lightlike singularities. When wq > −1=2, we have

lim
r→ 0

r� → limited ð12Þ

which leads to

lim
r→ 0

UV → 1: ð13Þ

With the usual choice of Ũ and Ṽ as in Sec. A, we will
always have a spacelike singularity.
On the other hand, when wq ≤ −1=2, we will have

lim
r→ 0

r� → ∞ ð14Þ

and

lim
r→ 0

UV → ∞: ð15Þ

what maps Ũ and Ṽ into the points �π=2, generating a
lightlike singularity, as in Secs. B and C.
In spite of the topological difference between spacetimes

for different σ, the singularities are always enclosed by an
event horizon. This allows us to infer properties like the
Hawking temperature in each solution and the usual
thermodynamics coming from it, as well as to evolve
dynamical fields, studying the quasinormal spectra of the
solutions in the region outside the horizon. In order to
obtain these spectra, we impose the usual boundary
conditions to AdS-like spacetimes, consisting of plane
waves entering the event horizon, and a vanishing field
at spatial infinity. In the next sections, we calculate the
quasinormal modes for two different fields, analyzing the
scaling of these modes with the black hole constants.

IV. KLEIN-GORDON FIELD PERTURBATION

The evolution of a massive probe scalar field Ψ in
the black hole geometry (4) is given by the well-known
Klein-Gordon equation, which, after performing the sep-
aration of variables Ψðr; x; tÞ ¼ ZðrÞffiffi

r
p e−iωtþiκx, can be cast in

the form

d2

dr2�
ZðrÞ þ ½ω2 − VðrÞ�ZðrÞ ¼ 0; ð16Þ

where VðrÞ is the effective potential. For the massless case
m2 ¼ 0, VðrÞ has the following expression

VðrÞ ¼ 3r2

4L4
−

M2

4r2ð1þ2wqÞ −
M2wq

r2ð1þ2wqÞ −
M

2L2r2wq

þ κ2

L2
þ Mwq

L2r2wq
−

κ2M

r2ð1þwqÞ : ð17Þ

At the event horizon rþ ¼ ðML2Þ 1
2ð1þwqÞ, the effective

potential VðrÞ goes to zero and is infinite at the conformal
spatial infinity r → ∞. In the limit of vanishing quintes-
sence wq → 0, VðrÞ is the effective potential of a massless

FIG. 2. Penrose-Carter diagram for the black hole with
wq ¼ −1=2 and wq ¼ −2=3.
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scalar field evolving in a BTZ black hole [33] as expected.
In Fig. (3) we show curves of VðrÞ for different values of
the quintessence parameter wq. All curves display the same
qualitative behavior, with the potential near the event horizon
decreasing as the quintessence parameter approaches the
pure AdS case wq ¼ −1.
It is useful to compute the quasinormal spectrum due to

the probe scalar field, since this allows us, e.g., to verify the
black hole stability. Using, e.g., the Horowitz-Hubeny
technique [32] (in exact the same), for the effective
potential (17), we have obtained the frequencies. The
results are listed in Tables I and II. In the absence of
quintessence, we reproduce the values for the BTZ black

hole case [33]. Our data also reveal that, even when wq ≠ 0,
the imaginary part of ω scales with the size of the black
hole rþ, i.e., −ImðωÞ ≃ rþ remains valid while the scaling
ReðωÞ ≃ κ is broken in the presence of the quintessence
field.
The results of the Tables I and II were also obtained with

the characteristic integration in null coordinates (along with
the Prony method) as described in [14], and we find both to
be in very good agreement: the last digit for imaginary parts
of ω in Table I indicates the uncertainty inferred from the
divergence between both methods (and for the cases
ReðωÞ ≠ 0). The largest deviation we find is for the case
wq ¼ −κ=2 ¼ −0.5 for which the numerical integration
method yields ω ¼ 0.2423–1.1517i, a 0.4% deviation from
the value listed in the table.
Examples of the time evolution of the field (obtained

through the characteristic integration method), are shown in
Fig. 4. We see that the imaginary and real parts of the
fundamental mode decrease faster with increasing jwqj,
but the temporal evolution permanently remains that
of a damped oscillator, not showing the transition to an
exponential decay that others AdS-like spacetimes or
different spin-fields can display.
By the results showed in Tables I and II it seems, a

peculiar feature emerges for the quasinormal modes when
k > 0 (and σ ≠ 2): for small rþ the modes have ReðωÞ > 0,
and for high rþ they are purely imaginary. Given the
possible qualitative change in ω, we investigate this
behavior for a specific case in the Appendix. We also
address the question of a scale of ω, L, rþ and k, what is
clear for σ ¼ 2 [33].

TABLE I. Scalar quasinormal frequencies for fixed L ¼ 1 and κ ¼ 0.

wq ¼ 0 wq ¼ −0.8 wq ¼ −0.5 wq ¼ −0.1

rþ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ
1 0.0 2.00 0.0 0.249 0.0 0.666 0.0 1.458
5 0.0 10.00 0.0 1.247 0.0 3.333 0.0 7.291
10 0.0 20.00 0.0 2.495 0.0 6.666 0.0 14.583
50 0.0 100.00 0.0 6.138 0.0 33.333 0.0 72.916
100 0.0 200.00 0.0 12.477 0.0 66.667 0.0 145.833

TABLE II. Scalar quasinormal frequencies for fixed L ¼ 1 and κ ¼ 1.

wq ¼ 0 wq ¼ −0.8 wq ¼ −0.5 wq ¼ −0.1

rþ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ
1 1.00 2.00 0.1585 0.540 0.241 1.153 0.794 1.896
5 1.00 10.00 0.0 1.301 0.0 3.409 0.0 7.509
10 1.00 20.00 0.0 2.521 0.0 6.704 0.0 14.688
50 1.00 100.00 0.0 12.483 0.0 33.341 0.0 72.941
100 1.00 200.00 0.0 24.958 0.0 66.672 0.0 145.853

-2
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FIG. 3. Scalar field effective potential for several values of wq
with M ¼ L ¼ κ ¼ 1.
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V. WEYL FIELD PERTURBATION

We complete the study of field evolution by analyzing a
massless fermion field dictated by the usual wave equation
as found in [34]. In order to study the dynamics of the Weyl
field given by

iγðaÞeμðaÞ∇μΨ −mΨ ¼ 0; ð18Þ
we consider the Dirac equation for a two-component
massive spinor:

Ψ ¼
�Ψ1ðt; r; xÞ
Ψ2ðt; r; xÞ

�
; ð19Þ

where the indexes enclosed in parenthesis, (a), refer to the
flat coordinates in the tangent space, γðaÞ are the usual
gamma matrices, and m denote the spinor mass. Following
[35] the spinor covariant derivative ∇μ can be written as

∇μ ¼ ∂μ þ
1

8
ωðaÞðbÞ
μ ½γðaÞ; γðbÞ�; ð20Þ

where ωðaÞðbÞ
μ denote the spin connection,

ωðaÞðbÞ
μ ¼ eðaÞν ∂μeðbÞν þ eðaÞν Γν

μαeαðbÞ: ð21Þ
The triad eμðaÞ and the metric connections Γν

μσ for the line
element (4) are given by the following expressions, where

gðrÞ ¼
�
r2

L2

�
fðrÞ

eðaÞt ¼
ffiffiffiffiffiffiffiffiffi
gðrÞ

p
δðaÞt ; eðaÞr ¼ 1ffiffiffiffiffiffiffiffiffi

gðrÞp δðaÞr ; eðaÞx ¼ rδðaÞx :

ð22Þ

Γt
tr ¼

1ffiffiffiffiffiffiffiffiffi
gðrÞp d

dr

ffiffiffiffiffiffiffiffiffi
gðrÞ

p
; Γr

rr ¼
ffiffiffiffiffiffiffiffiffi
gðrÞ

p d
dr

�
1ffiffiffiffiffiffiffiffiffi
gðrÞp �

;

Γr
tt ¼

gðrÞ
2

d
dr

gðrÞ; Γr
xx ¼ −rgðrÞ; Γx

rx ¼
1

r
:

ð23Þ

From the above quantities it is possible to compute the
components of spin connection (21):

ωðtÞðrÞ
t ¼ 1

2

d
dr

gðrÞ; ωðrÞðxÞ
x ¼ −

ffiffiffiffiffiffiffiffiffi
gðrÞ

p
: ð24Þ

Redefining the two component spinor Ψ by

Ψ1 ¼ i½r2gðrÞ�1=4e−iωtþiκxRþ;

Ψ2 ¼ ½r2gðrÞ�1=4e−iωtþiκxR−; ð25Þ

the Dirac equation (18) becomes

�
d
dr�

� iω

�
R� ¼ WR∓: ð26Þ

In the case of a massless spinor, e.g., a Weyl field, the
superpotential W is given by

W ¼ κ

ffiffiffiffiffiffiffiffiffi
gðrÞp
r

: ð27Þ

Now, letting X� ¼ Rþ � R−, we rewrite Eq. (26) as

�
d2

dr2�
þ ω2

�
X� ¼ V�X�; ð28Þ

where V� are the potentials for the massless two compo-
nent spinor,

V� ¼ W2 � dW
dr�

: ð29Þ

With W given by (27), the potentials V� take the explicit
form

V�ðrÞ ¼
κ2

L2

�
1 −

�
rþ
r

�
σ
�
� κσrσþ
2L3rσ−1

�
1 −

�
rþ
r

�
σ
�
1=2

:

ð30Þ

As in the scalar field case, σ plays the role of the
quintessence charge, with σ ¼ 2þ 2wq. In Fig. (5) various
curves of V�ðrÞ for different values ofwq are presented. We
are interested in the quasinormal frequencies obtained from
this description when imposing the traditional boundary
conditions in a typical AdS-like spacetime: incoming
plane waves on the horizon and vanishing field at the
AdS border, i.e.,

lim
r→∞

ΨðrÞ ¼ 0; ð31Þ

lim
r→ rþ

ΨðrÞ ¼ e−iωr� : ð32Þ

50 150
0

q 0

q 0.5

q 0.8

100

50

100

150

200

ln Re
t

FIG. 4. Scalar Field evolving in a BTZ-quintessential black
hole. The geometry parameters read rþ ¼ L ¼ κ ¼ 1.
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There are a few methods available to solve the Weyl field
equation, and following the method of the previous section,
we choose to expand the field in a manner similar to that of
Ref. [32]. Changing the radial coordinate to a more suitable
one, rσ ¼ y−1, in such a way that the horizon rþ lies in yþ,
we obtain a new field equation:

	
σ2yσ−1

�
1 −

y
yþ

�
2 ∂2

∂y2 þ
�
y
σ−2
σ

�
1 −

y
yþ

�
2

ðσ2 − σÞ

−
σ2yσ−1

yþ

�
1 −

y
yþ

�� ∂
∂yþ ω2 − V�ðyÞ



ΨðyÞ ¼ 0;

ð33Þ

with

V�ðyÞ ¼
κ2

L2

�
1 −

y
yþ

�
� κσy

σ−1
σ

2L3yþ

�
1 −

y
yþ

�
1=2

: ð34Þ

Given the exponent 1=2 in the second term of V�ðrÞ, we
may choose as the ansatz an unusual expansion around the
horizon, namely

ΨðyÞ ¼
X∞
n¼0

anðy − yþÞαþn
2; ð35Þ

which seems to be the only way to couple with the half
exponent in the effective potentials. Now, considering (33)
in the form

�
sðyÞ ∂2

∂y2 þ τðyÞ ∂
∂yþ uðyÞ

�
ΨðyÞ ¼ 0; ð36Þ

we have the new functions s, τ and u as expansions of the
terms in (33),

sðyÞ ¼
X∞
n¼0

snðy − yþÞn → sn ¼ ð0; 0; s2; s3; s4;…Þ;

τðyÞ ¼
X∞
n¼0

τnðy − yþÞn → τn ¼ ð0; τ1; τ2; τ3; τ4;…Þ;

uðyÞ ¼
X∞
n¼0

unðy − yþÞn2 → un ¼ ðu0; u1; u2; u3; u4;…Þ:

ð37Þ

Naturally, the series for s, τ and u will depend on σ.
In the cases with an integer quintessential exponent, we
may have only one or two nonzero terms in sn and τn,
though an infinite in un. The noninteger σ cases are quite
more complicated, given that then sn and τn also have an
infinite number of terms, but still converge with the chosen
ansatz.
From (35) and (33), we can obtain the two relevant

relations. First, the indicial equation for α, given by

αðα − 1Þs2 þ ατ1 þ u0 ¼ 0; ð38Þ

which for every σ reduces to

α ¼ � iωðyþÞ−1
σ

σ
: ð39Þ

The positive sign of α corresponds to incoming waves near
the horizon and the negative stands for the outgoing waves,
which are the proper quasinormal resonances in a similar
fashion to [32], which should be taken to solve the
equation.
Second, the recurrence relation for n > 1, with the

chosen ansatz, reads

an ¼ −
1

ðnαþ n2=4Þτ1

�Xn−1
k¼0

akun−k þ
XfðnÞ
k¼0

algn;k

�
; ð40Þ

where τ1 ¼ σ2y−1=σþ ,

fðnÞ¼
	n−2

2
→ neven

n−3
2

→ nodd
; l¼

	
2k → neven

2kþ1 → nodd
; ð41Þ

and
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FIG. 5. Weyl field effective potentials for several values of wq
with M ¼ L ¼ κ ¼ 1.
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gn;k ¼
( ðαþ kÞðαþ k − 1Þsnþ4

2
−k þ ðαþ kÞτnþ2

2
−k → n even

ðαþ kþ 1=2Þðαþ k − 1=2Þsnþ3
2
−k þ ðαþ kþ 1=2Þτnþ1

2
−k → n odd

ð42Þ

In the above relations, we consider the first two terms of the
expansion, a0 ¼ 1 and a1 ¼ − u1

ðαþ1=4Þτ1.
Now, if we truncate the series (35), in a particular

number of terms, (c), condition (31) requires that Ψð0Þ ¼P
c
n anð−yþÞn=2 ¼ 0, which is then the quasinormal equa-

tion we want to solve. The convergence of the method is
tested in the usual way: after having obtained a particular
mode for a given c, we repeat the procedure taking a larger
number of terms (say, cþ 10) verifying whether the
obtained frequencies are the same within a given precision.
In general, for high rþ and integer σ, this convergence is
achieved with c between 50 and 100 while for rational σ
around 150 terms [36]. For small/intermediate rþ, however,
the convergence is poor and other approaches, such as
numerical integration, are preferred.
In Tables III and IV, we list the outgoing quasinormal

frequencies calculated via the Frobenius method as
described above, for different values of σ ¼ 2ðwq þ 1Þ,
revealing that the modes for both potentials, V�, are
similar for large rþ, but show significant differences for
small rþ.
We check the accuracy of the values in Tables IV

and III by comparing the methods of Frobenius and
numerical integration over null-coordinates, obtaining

very similar results for both high rþ (maximum error
of 0.2%), and small rþ (around 1%). See Table V for a
specific example.
In general, the Frobenius method has a better conver-

gence for large rþ (as the expansion is done around y−1þ )
[32], while the integration method is preferable for small
rþ, as long as a typical grid scale for the profile acquisition
is proportional to 1=rþ; this imply a great computational
cost when rþ is high.
From the above listed data, we can infer a scaling between

rþ and the quasinormal modes in the high-rþ regime,

ω� ¼
�
rþ
4
� κ

2
þOðr−1þ Þ

�
σi; ð43Þ

in which the different signs refer to the different potentials
V�. The scaling can beverified to happen also for other small
κ cases, such as κ ¼ 3, 4, and is expected in the interpretation
of ImðωÞ as a relaxation time in the AdS border.
In the Appendix, we obtain Eq. (43) by means of an

analytical solution in the case σ ¼ 1 and address the same
qualitative issue we quote in the previous section: the
difference in the quasinormal spectrum for high and
small black holes relative to the presence of ReðωÞ. We

TABLE III. Weyl quasinormal frequencies for L ¼ κ ¼ 1 for potential Vþ.

wq ¼ 0 wq ¼ −0.25 wq ¼ −0.333 wq ¼ −0.5

rþ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ
2 1.0705 2.1429 0.7278 1.8173 0.6087 1.6849 0.3944 1.3693
10 0 6.0747 0 4.5544 0 4.0512 0 3.0559
50 0 25.9563 0 19.479 0 17.3207 0 13.0102
100 0 50.9441 0 38.221 0 33.9803 0 25.5051
500 0 250.935 0 188.214 0 167.308 0 125.501

TABLE IV. Weyl quasinormal frequencies for L ¼ κ ¼ 1 for potential V−.

wq ¼ 0 wq ¼ −0.25 wq ¼ −0.333 wq ¼ −0.5

rþ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ
0.2 0.9589 0.3574 0.9585 0.1582 0.7630 0.3778 0.7657 0.3431
2 0 0.4117 0 0.2905 0 0.2516 0 0.1749
10 0 4.1668 0 3.1071 0 2.7541 0 2.0456
50 0 24.088 0 18.053 0 16.0398 0 12.010
100 0 49.076 0 36.795 0 32.6999 0 24.505
500 0 249.067 0 186.789 0 166.308 0 124.501
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demonstrate different border values for rþ in which
ReðωÞ > 0 for V�.

VI. HIGH-TEMPERATURE SCALAR
QUASINORMAL FREQUENCIES

In the last part of this work, we will report on the
presence of high-temperature modes, (also known as
hydrodynamic approximation), by expanding the Klein-
Gordon equation (16) in the corresponding limit. Taking
into consideration this equation in terms of the radial
coordinate, we have

∂2

∂r2 Ψþ
�∂rh
h

þ 1

r

� ∂
∂rΨþ 1

h

�
χ2

h
−
κ2

r2

�
Ψ ¼ 0; ð44Þ

where h ¼ r2½1 − ðrþ=rÞσ�=L2 is the g00 metric term and χ
is the time derivative of the field. Defining a change of
variables u ¼ rþ=r, f ¼ 1 − uσ , and considering the
Hawking temperature of the black hole,

TH ¼ σ2

8πL2
rþ; ð45Þ

we rewrite χ → 8πTHω=σ2 which, to leading order, sub-
stituting Ψ → fν on (44), has only two different solutions:

ν ¼ �i
ω

σ
: ð46Þ

Once again, we take as valid the solution of ingoing waves
on the event horizon, thus, considering the negative signal
in the above expression as the leading-order term in a near-
horizon expansion for the high-temperature approach. In
what follows, this condition guides the procedure for the
high-temperature modes’ expansion. We consider an ansatz
of the form

Ψ ¼ fνðF0 þ iωF1 − ω2F2 þ � � �Þ: ð47Þ

Substituting (47) into (44) yields

�
−
ω2

σ2
fν−2 _f2 þ iω

σ
fν−2 _f2 −

iω
σ
fν−1f̈

�
ðF0 þ iωF1Þ

−
2iω
σ

fν−1 _fð _F0 þ iω _F1Þ þ fνðF̈0 þ iωF̈1Þ

þ
�
_f
f
þ f̈

_fð1 − σÞ

��
−
iω
σ
fν−1 _fðF0 þ iωF1Þ

þ fνð _F0 þ iω _F1Þ
�
þ ω2

f2
fνðF0 þ iωF1Þ ¼ 0; ð48Þ

which, organized in orders of ω gives

F̈0 þ
�
_f
f
þ f̈

_fð1 − σÞ

�
_F0 ¼ 0 ← ðiωÞ0; ð49Þ

F̈1 þ _F1

�
_f
f
þ f̈

_fð1 − σÞ

�
−
2_f
σf

_F0 þ
� ðσ − 2Þ _f
σð1 − σÞf

�
F0

¼ 0 ← ðiωÞ1: ð50Þ
The solution for Eq. (49) is given in terms of hyper-

geometric functions of the first kind, written as

F0 ¼ Aþ B
u2

2 2F1

�
1;
2

σ
; 1þ 2

σ
; uσ

�
; ð51Þ

where A and B are constants, which diverges u → 1. Given
the right boundary condition, we must take B ¼ 0, such
that F0 ¼ A is the only allowed solution. Equation (50)
then leads to

F1 ¼ CþD
u2

2 2F1

�
1;
2

σ
; 1þ 2

σ
; uσ

�
þ A

lnð1 − uσÞ
σ

;

ð52Þ

with C and D constants, which has two divergent functions
for u → 1. Taking a step back in the equation for F1, we
can put it into an integral form,

F1 ¼ −A
Z

uσ−1

1 − uσ
du −D

Z
u

1 − uσ
duþ C: ð53Þ

In the near-horizon approximation, we can write the
integrands expressions as,

uσ−1

1 − uσ
¼ −

1

σ
ðu − 1Þ−1 þ 1 − σ

2σ
ðu − 1Þ0

þ −5þ 6σ − σ2

12σ
ðu − 1Þ1 þOðu − 1Þ2; ð54Þ

u
1 − uσ

¼ −
1

σ
ðu − 1Þ−1 þ σ − 3

2σ
ðu − 1Þ0

þ −5þ 6σ − σ2

12σ
ðu − 1Þ1 þOðu − 1Þ2: ð55Þ

TABLE V. Weyl quasinormal frequencies for L ¼ κ ¼ 1 and
potential V−: comparison of numerical integration (N) with the
use of prony method for the frequencies with the Frobenius
method (F).

rþ σ ¼ 2 (N) σ ¼ 2 (F) σ ¼ 1 (N) σ ¼ 1 (F)

2 0.4032i 0.4117i 0.1773i 0.1749i
10 4.1325i 4.1668i 2.0511i 2.0456i
50 24.0455i 24.0882i 12.0180i 12.0098i

100 49.072i 49.076i 24.5163i 24.5050i
500 249.095i 249.067i 124.568i 124.501i
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We can then avoid divergences by imposing AþD ¼ 0,
such that

F1 ¼ C − A
σ − 2

σ
ðu − 1Þ þOðu − 1Þ3: ð56Þ

Taking this solution with C ¼ 0 and F0 ¼ A into the ansatz
(47), we can write the wave function as

Ψ ¼ Að1 − uσÞν
�
1þ iω

σ − 2

σ
ð1 − uÞ

�
; ð57Þ

which fulfills the quasinormal mode condition for ingoing
waves in the horizon. Lastly, the Dirichlet condition of
Ψð0Þ ¼ 0 in the border of the AdS spacetime yields for the
high-temperature mode limit,

ω ¼ −i
σ

2 − σ
; ð58Þ

which represents a quasinormal mode in the cosmological
range of interest for the variable σ∶ 0 < σ < 2, or, equiv-
alently, −1 < wq < 0.
In the context of the AdS=CFT correspondence, the

dynamics of probe fields evolving in the bulk spacetime
which contains a black hole are related to perturbations of a
thermal state on the dual thermal field theory defined at the
AdS boundary. Therefore the damping of the fundamental
quasinormal frequency of a scalar probe field in the bulk,
with high Hawking temperature, gives the characteristic
thermalization time scale for the dual thermal state [32].
In our case, the time scale for the thermalization is

τ ¼ 1

2πTH

�
2 − σ

σ

�
; ð59Þ

showing that, as for three-dimensional Lifshitz black holes
[29], the perturbation at the AdS boundary is not long lived
in the limit of high temperature. Notice that, as the
quintessence parameter jwqj increases, the time scale τ
for a given temperature TH increases as well, demonstrating
that the quintessence field in the bulk makes the return of
the thermal state to equilibrium more difficult.

VII. FINAL REMARKS

In the present work, we studied a Schwarzschild-AdS-
like black hole solution endowed with a quintessential field
in (2þ 1) dimensions, introduced in the line element via
energy-momentum tensor. We have shown that the nature
of the singularity depends on the quintessential charge wq.
We found two types of black holes: a spacelike singularity
for −1=2 < wq ≤ −1=3 and a lightlike singularity for
wq ≤ −1=2. This singularity is enclosed by a single event
horizon and has an AdS spatial infinity, which allows us the

study of interesting physical properties in the context of
AdS=CFT conjecture.
From this perspective, we investigated further the propa-

gation of a scalar and a Weyl probe fields in the fixed
geometry of the black hole. The scalar field profile in time
domain had exhibit two different behaviors: a permanent
damped oscillation or an exponential decay, depending on
the spacetime parameters.
The quasinormal spectra of probe scalar fields shows

that, typically, higher σ values (which correspond to lower
jwqj) lead to lower ReðωÞ. For each quintessential charge
wq, ImðΩÞ and rþ scale perfectly, supporting the inter-
pretation of ImðΩÞ as relaxation time in the CFT context.
For the Weyl field perturbation we have a scale between

the two quantities as well, of type ωI� ∝ σrþ
4
� σκ

2
for large

rþ, which yields distinct spectra to second order in rþ, for
V�. Both scalar and Weyl fields display an oscillatory
character only for low values of rþ, with the frequency
being purely imaginary for high rþ. This fact will depend,
however, on the κ momentum of the field.
With respect to the distinct quasinormal spectra for the

potentials V� of the Weyl case, we emphasize that the
isospectrality property is related to the integral of a group of
potential functions in the boarder of the spacetime [34]. For
instance, considering the superpotential W in our Weyl
case, we have

dW
dr�

¼ dr
dr�

dW
dr

¼ gtt
dW
dr

¼ κσrσþ
2L3rσ−1

�
1 −

�
rþ
r

�
σ
�
1=2

ð60Þ

and

W ¼ κ

L

�
1 −

�
rþ
r

�
σ
�
1=2

; ð61Þ

leading to

WðrþÞ ¼ 0; Wð∞Þ ¼ κ: ð62Þ

Being Wj∞rþ ¼ 0 a necessary (but not sufficient) condition
for isospectrality [37], we obtained different spectra for the
different potentials. This fact is reflected in the scale
proposed as our result: the higher the rþ and the smaller
the κ, the more similar to each other the spectra produced
by Vþ and V− are.
Finally, we also showed the presence of high-temper-

ature quasinormal modes regarding a massless scalar field
perturbation, and found that the quasinormal spectrum
exhibits purely imaginary frequencies, as expected for a
large AdS black hole. Considering, then, the AdS=CFT
correspondence, we computed the thermalization time scale
τ of a thermal state on the dual field theory defined at the
conformal AdS boundary, demonstrating the influence of
the quintessence on the thermalization.
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APPENDIX: SOLVING THE FIELD EQUATIONS
ANALYTICALLY: THE CASE σ = 1

We are interested in the investigation of two specific
aspects related to the quasinormal spectra showed in
previous sections: the qualitative change of purely imagi-
nary oscillations to quasinormal modes with ReðωÞ > 0
and the absence of scale showed in the case σ ¼ 2. We will
treat both fields with their specific potential and the variable
transformation necessary to solve analytically the field
equation.

1. Scalar field case

We start with the scalar field equation in a tortoise
coordinate system and the usual field transformation for
σ ¼ 1,

d2Ψ
dr2�

þ r2 − rrþ
L2

�
−3þ rþ=r

4L2
þ ω2L2

r2 − rrþ
−
κ2

r2

�
Ψ ¼ 0:

ðA1Þ

Changing the radial coordinate to x ¼ r−rþ
r , an the field as

Ψ ¼ ð1 − xÞZ we have that

xð1 − xÞZ00 þ ð1 − 3xÞZ0 þ
�

A
1 − x

þ B −
δ2

x
þ αx

�
Z ¼ 0

ðA2Þ

in which the prime denotes derivative with respect to x,
and the constants in the potential read A ¼ −3=4,
B ¼ A þ δ2 − α, δ ¼ iωL2r−1þ and α ¼ L2κ2r−2þ .
Equation (A2) can not be turned into a hypergometrical
form, unless α ¼ 0 [38]. In such a case, we can find a
field transformation, Z ¼ χu, and the new equation is a
hypergeometric differential equation. In our case, χ ¼
ð1 − xÞ−3=2xδ reduces (A2) to

xð1 − xÞu00 þ ð1þ 2δ − 2δxÞu0 þ δu ¼ 0; ðA3Þ

which can be solved analytically in terms of a second-order
hypergeometrical functions. A similar equation for σ ¼ 2
was found in [33]. There, the authors found two scales
ReðωÞ ¼ κ and ImðωÞ ∝ 2rþ which is not the case for other
quintessential fields (see, e.g., Eq. (A7) for α ≠ 0). The
Dirichlet boundary condition reduces the quasinormal
problem to the following relation,

−1þ 2δ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4δ2

p

2
¼ n; ðA4Þ

n ∈ N. Then the quasinormal spectrum is given by

ω ¼ −
�
n2 þ 3nþ 2

2nþ 3

�
rþ
L2

i ðA5Þ

whose quasinormal frequencies represents exactly what is
displayed in Table I (case wq ¼ −1=2), when n ¼ 0.
Taking Eq. (A2) when α ≠ 0, we have

xð1 − xÞu00 þ ð1þ 2δ − 2δxÞu0 þ ðδ − αð1 − xÞÞu ¼ 0;

ðA6Þ

or

u00 þ
�

1

1 − x
þ 1þ 2δ

x

�
u0 þ

�
δ − α

x
þ δ

1 − x

�
u ¼ 0:

ðA7Þ

which has a solution in terms of confluent Heun functions,
expressed as

uðxÞ ¼ C1HeunCð0; 2δ;−2;−α; αþ 1; xÞ
þ C2x−2δHeunCð0;−2δ;−2;−α; αþ 1; xÞ: ðA8Þ

In terms of the first field variable, this solution turns to

ΨðxÞ¼C1ð1−xÞ−1=2xδHeunCð0;2δ;−2;−α;αþ1;xÞ
þC2ð1−xÞ−1=2x−δHeunCð0;−2δ;−2;−α;αþ1;xÞ;

ðA9Þ

which diverges in the limit x → 1 (or r → ∞), unless
C2 ¼ 0.
The remnant confluent Heun function when expanded in

a series of x gives rise to Ψ → xδ, when r → rþ, which is
the ingoing (to horizon) quasinormal wave. Applying the
Dirichlet boundary conditions, i.e., taking Ψjx→ 1 ¼ 0, we
have an equation of type

Ψjx→ 1 →
X
n

fnðδ; αÞxn ð¼ 0Þ; ðA10Þ

where fn is the ratio of a polynomial of δ and α over a
polynomial function of α. The convergence of the series
can be analyzed in a “pedestrial” way, term by term,
searching for a solution of a polynomial equation of
type δðαÞ ¼ 0.
Being δ ¼ iL2ωr−1þ , we have a purely imaginary oscil-

lation whenever δ ∈ R, and a ReðωÞ > 0 quasinormal
mode if δ ∈ C. Taking an increasing number of terms in
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the series (A10), the convergence of α is displayed in
Table VI.
The transition from ReðωÞ > 0 to purely imaginary

modes is given by a critical value of α, the highest order
in the table,

αc ∼ 0.6549; ðA11Þ

such that

rðcÞþ ¼ κLffiffiffiffiffi
αc

p ∼ 1.236κL: ðA12Þ

Whenever rþ < rðcÞþ , we have ReðωÞ > 0, and if rþ > rðcÞþ ,
the quasinormal modes are purely imaginary. This is the
reason why no transition is seen for κ ¼ 0 in data from

Sec. III. The value of rðcÞþ ∼ 1.24 was found also with
numerical integration and with the Frobenius method
(less than 1% deviant), as the change in the spectrum from
ReðωÞ ¼ 0 to ReðωÞ > 0.
The same technique can be used to investigate the scale

of δ and α. Considering large black holes, or waves with
small angular momentum, we can expand the polynomials
fn for small α and solve the equation in δ. The successive
orders of (A10) give rise to

δ¼−0.66706−0.37575α− 0.11007α2−Oðα3Þ → Oð8Þ;
ðA13Þ

δ¼−0.66681−0.37526α−0.11018α2−Oðα3Þ → Oð15Þ;
ðA14Þ

δ¼−0.66676−0.37518α−0.11021α2−Oðα3Þ → Oð18Þ;
ðA15Þ

with the following approximative result for the quasinormal
frequencies,

ω ¼ −
�
0.66676rþ

L2
þ 0.37518

κ2

rþ
þ 0.11021

κ4L2

r3þ

þO

�
κ6L4

r5þ

��
i: ðA16Þ

Expression (A16) is compatible with Tables I and II with an
accuracy higher than 99.96%.

2. Weyl field case

Taking the Weyl field equation with σ ¼ 1, a similar
approach can be used. The wave equation expressed as

� ∂2

∂r2� −
∂2

∂t2 − VðrÞ
�
Ψðr; tÞ ¼ 0; ðA17Þ

with

VðrÞ ¼ κ2

L2

�
1 −

�
rþ
r

��
� κrþ
2L3

�
1 −

�
rþ
r

��
1=2

: ðA18Þ

can be turned into a more suitable form by taking the
variable x2 ¼ 1 − rþ

r , given by

�
x2

∂2

∂x2 þ x
∂
∂xþ ð−a2x2 − bxþ c2Þ

�
Ψ ¼ 0; ðA19Þ

in which

a ¼ � 2κ

rþ
; b ¼ � 2κ

Lrþ
; c ¼ 2ωL

rþ
: ðA20Þ

Equation (A19) can be analytically solved when L ¼ 1,
(a ¼ b), in terms of modified Bessel functions [39],

Ψ ¼ C1

ffiffiffi
x

p �
BesselI

�
−
1

2
þ ic; ax

�

þ BesselI

�
1

2
þ ic; ax

��

þ C2

ffiffiffi
x

p �
BesselK

�
−
1

2
þ ic; ax

�

þ BesselK

�
1

2
þ ic; ax

��
ðA21Þ

Solution (A21) can be used for both Vþ and V−, adjusting
the signal of b (a ¼ b). The ingoing wave is represented
by the solution with C1 (while C2 represents an outgoing,
being discarded). The Dirichlet condition in spatial
infinity reads Ψjx¼1 ¼ 0, which can be expressed in
exactly the same way of Eq. (A10). In a similar fashion,
we can solve an equation cðbÞ ¼ 0 and test the limits of c
purely imaginary or with ReðcÞ > 0. Performing it
for both potentials, up to Oð40Þ, a critical b arises for
each case,

TABLE VI. Solving the polynomial δðαÞ ¼ 0 for different orders in x.

Oð1Þ Oð2Þ Oð3Þ Oð4Þ Oð8Þ Oð14Þ Oð18Þ
∀ α, ReðωÞ ¼ 0 α ¼ 0.7927 α ¼ 0.6801 α ¼ 0.6646 α ¼ 0.6564 α ¼ 0.6550 α ¼ 0.6549
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bðcÞ ¼ 2=α�c ; ðA22Þ

with αc ¼ ðrþ=κÞðcÞ,

αþc ∼ 2.720; ðA23Þ

α−c ∼ 1.111: ðA24Þ

The scale for which we have purely imaginary modes
varies with the potential (what can be seen in Tables III
and IV): for Vþ, we have ReðωÞ ¼ 0 if rþ > 2.72k,
while for V− smaller black holes (rþ > 1.111k) have also
ReðωÞ ¼ 0.

Expression (43) can be obtained as a particular case of
the procedure used above. The expansion of cðbÞ ¼ 0 for
small b produces a solution of type

c ¼ −
�
1

2
þ b

2
þ b2

4
þ b3

8
þOð4Þ

�
i; ðA25Þ

which scales the quasinormal mode as

ω ¼ −
�
1

2
� κ

rþ
þ κ2

r2þ
� κ3

r3þ
þOð4Þ

�
rþ
2
i; ðA26Þ

the first two terms being exactly those of (43).
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