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Scalar-tensor theories are one of the most natural and well-constrained alternative theories of gravity,
while still allowing for significant deviations from general relativity. We present the equations of motion of
nonspinning compact binary systems at the third post-Newtonian (PN) order in massless scalar-tensor
theories. We adapt the Fokker action of point particles in harmonic coordinates in general relativity to the
specificities of scalar-tensor theories. We use dimensional regularization to treat both the infrared and
ultraviolet divergences, and we consistently include the tail effects that contribute by a nonlocal term to the
dynamics. This work is crucial in order to later compute the scalar gravitational waveform and the energy

flux at 2PN order.
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I. INTRODUCTION

The observations by the LIGO-Virgo collaboration of
gravitational waves emitted by coalescing compact binary
systems have opened a new era in gravitational wave
astronomy [1-5]. In the upcoming year, we expect to
see many of these events, both in the advanced earth-based
interferometric detectors, and in the space-based antenna
LISA. The gravitational wave observations will allow us to
not only measure the astrophysical properties of these
systems, but also to challenge general relativity (GR) in the
strong-field and highly dynamical regime of gravity.

The detection and parameter estimation of gravitational
wave events require a bank of highly accurate templates
for the gravitational waveforms. For the inspiral part of
the coalescence of compact binary systems, the post-
Newtonian formalism is well-suited to describe the evolu-
tion of the system [6]: it consists of an expansion in the
small parameter ¢ = v/c ~ (Gm/rc?)"/?. The current state
of the art in GR concerning the dynamics is the 4PN order’
[7-14]. The energy flux is known up to 3.5PN order beyond
the quadrupole formula [15-18], with the 4.5PN coefficient
also being known [19]; while the dominant modes of
the gravitational waveform are known up to 3.5PN order
[20-22]. The complete waveform is obtained by connecting
the PN result with numerical relativity waveforms. At
present, this is done using either a direct matching (IMR
models) [23] or some resummation techniques (EOB
waveforms) [24].
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As usual, we refer to post-Newtonian order as nPN =

O(v?/c?)".
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In order to test general relativity, one also has to model
waveforms in alternative theories of gravity. Existing tests
are performed using either theory-independent or theory-
dependent methods. In this paper, we focus on a particular
class of theories, namely massless scalar-tensor (ST)
theories, which are among the most popular and well-
studied theories. They date back to more than sixty years
ago, when they were introduced by Jordan, Fierz, Brans
and Dicke. See [25,26] for historical reviews of these
theories and [27] for current constraints on the parameters.
One of the motivations for studying these theories is to
explain the accelerated expansion of the universe, as f(R)-
theories, in which the action is expressed as a function of
the Ricci scalar, can be expressed as a scalar-tensor
theory [28].

Previous works in order to obtain the waveform at 2PN
order have been performed during the last five years. The
equations of motion are known at 2.5PN order [29], while
the tensor gravitational waveform is known at 2PN order
[30]. However, the scalar waveform is only known at 1.5PN
and the energy flux at 1PN order, as they respectively start
at —0.5PN and —1PN order with respect to the leading GR
order [31]. All these ST results were obtained using the
direct integration of relaxed Einstein equations (DIRE)
method developed by Will, Wiseman and Pati [32—-34]. The
“Effective One-Body formalism” (EOB) has also been
developed for ST theories, focusing on the derivation of
a ST-EOB Hamiltonian [35,36]. Numerical works have
shown that compact binaries in scalar-tensor theories can
undergo a dynamical scalarization phenomenon [37,38],
similar to the spontaneous scalarization effect for individual
stars [39,40]. This phenomenon happens during the late-
inspiral phase, where the post-Newtonian approximation is
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expected to break done. Recently, an analytical method has
been proposed to capture dynamical scalarization, using
resummation techniques [41].

In order to compute the scalar waveform and energy flux
at 2PN order, the equations of motion at 3PN order are
required. In the present paper, we pursue this aim by
constructing a Fokker action of point particles in harmonic
coordinates. This method has recently been developed to
successfully derive the 4PN equations of motion in GR
[11]. Here, we adapt this approach to the specificities of
scalar-tensor theories. We use dimensional regularization to
treat both the infrared and ultraviolet divergences. We show
that some tail effects appear at 3PN in ST theories,
associated to the scalar dipole moment, while these effects
start contributing only at 4PN in GR [42]. We then obtain a
complete ambiguity-free result, as expected from the recent
computation at 4PN in GR [13,14]. In the companion paper
[43], we will study the conserved integrals of motion and
the reduction to the center-of-mass frame.

In the following, we present in Sec. II our massless
scalar-tensor theory, and derive the equations of motion. In
Sec. III, we adapt the multipolar post-Newtonian formalism
to ST theories. In particular, we consistently incorporate the
tail effects that contribute to the conservative 3PN dynam-
ics. In Sec. IV, we implement the post-Newtonian solution
into the Fokker action, and explain the dimensional
regularization method. Finally in Sec. V, we show the full
3PN equations of motion in harmonic coordinates for ST
theories and conclude with some comments on our result.

Notations: We use boldface letter to represent three-
dimensional Euclidean vectors. We denote by y, () the two
ordinary coordinate trajectories in a harmonic coordinate
system {#,x}, by v4(#) = dy,/dt the two ordinary veloc-
ities and by a, (f) = dv,/dt the two ordinary accelerations.
The ordinary separation vector reads n, = (y; —¥2)/r12,
where 71, = |y; —¥,|. Ordinary scalar products are denoted,
e.g. (nov1) = ny, - vy, while the two masses are indicated
by m; and m,. We note #1; the symmetric trace-free (STF)
product of £ spatial vectors n;, with L = i; - --i; a multi-
index made of £ spatial indices.

II. MASSLESS SCALAR-TENSOR THEORIES
A. The field equations in ST theories

We consider a generic class of massless scalar-tensor
theories in which a single massless scalar field ¢ minimally
couples to the metric g,,. It is described by the action

C”

Sgt = lon G/d4x\/_|:¢R

+ Sm(mv ga/i)?

;¢) P a(l¢aﬂ ¢

(2.1)

where R and ¢ are respectively the Ricci scalar and the
determinant of the metric, w is a function of the scalar field
and m stands generically for the matter fields. The action

for the matter S, is a function only of the matter fields and
the metric. The action (2.1) is often called the “metric” or
“Jordan”-frame action, as the matter does not couple
directly to the scalar field.

We note ¢, the value of the scalar field at spatial infinity
and we assume that it is constant in time. We then define the
rescaled scalar field ¢ =2 and the conformally related
metric,

T = PYGyu- (2.2)

In terms of these new variables, the action (2.1) can be
rewritten as,

S = 166¢co;/ xV/=3

X |:R + ;g"/’va(’)ﬂ(p

942w
5 @) TP 0apdpep
¢

+ Sm(m’ ga/)’)7 (23)

Note that the matter fields still couple to the physical metric
Gu- As the scalar field is now minimally coupled to the
metric, the action (2.3) is often called the “Einstein”-frame
action, and we will do our calculation in this frame. Next,
we perform some integrations by part to rewrite the action
(2.3) into the Landau-Lifshitz form and we insert a
harmonic gauge-fixing term ——gm,l“”l“” The new action
is fully equivalent to the previous one and reads,

o 4 N 4 1
Sst = 162G / d*xy/—g {9“ (F,urvp - FﬂVF/)/l)

1. -~ 342
- ,gﬂyrﬂrv ha w(¢)
2 2¢?

gaﬁaa(/)aﬁ(/’]
+ Sm(mﬂ gaﬂ)v (24)

where T* = §°T%, and [, are the Christoffel symbols of
the conformal metric. Defining the inverse gothic metric by

g = /-5,
the action (2.3) can further be rewritten as
C3¢0 4 1 ~ 1 ~ o~ AT Zuv ) Zpo
SST = 327G d*x _E gypgyo' - Eg/wgpo' g aﬂg a,:g
+au (3,;@”"00@”” —0,8" 3691”“)

342w

(2.5)

@”/’3(1(/18/;40} + S (M, gop)- (2.6)

Next, we expand the gothic metric around Minkowski
space-time and define the metric and scalar perturbation
variables #2** and y by
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=g —n* and wy=¢-1. (2.7)
The field equations derived from the gauge-fixed action

(2.6) read,

1
0, v = 1078 (2.82)
C
O =-2C (2.8b)
with
® 4 4
o — L |[(—qg)\TH SHy AHY 2.
4 ¢0[( DTN 166" Tieac s (2%
@ oT
=T  (T-2¢p
Ts $o(3 + 2w) ( ¢8(p>
ct Y s
- % |:_ha 80,(9/;1// - aawaﬂh“
1 ¢0a)' - /3
S by ¥ , 2.9b
+ ((p 3+2w>9 0aOpp (2.9b)

where TH = \/%?2% is the matter stress-energy tensor and

[

T = g,,T*. The scalar source term Ag" is given by

342w

v TIUA X 1 < ~Q
A = 7 (g" g7 —58"8 ”) DupOpp.  (2.10)

The gravitational source term I = Afy + Ay + AL,

where Af] is the Landau-Lifshitz pseudoenergy tensor
[44], is at least quadratic in the field 4 and its derivatives,
with components given by
e 1~a ~ 12 SOU 12

AL/Z = Eg ﬂgyuaﬂhm/ayh A - g Mguyaﬂhﬂyayh g
- Qﬂ”giwa,lh“@ﬂh” + @,,,,Q’W@h“’@yhﬂ”

1 e e [ap UV e e ~ e /s T

+ g (29(1/49/31/ - g(ﬁgﬂ )(Zgﬁygm - g}/ﬂtg]uz)aul’l/1 auhy ’

(2.11a)

A = 0,0, + 0,0, (2.11b)

4 1 s
AF = 0,10 ,h% — 0,1 0, h — 5878, 027 0,

+28,,3"“0,hPP 0, hre. (2.11c)

Note that the gauge-fixing term (2.11c) contains the
harmonicities 0,4 which are not zero in general.
However, this term will ensure that, on-shell, our results
are in harmonic coordinates.

B. The action for matter

We now make precise the action describing the matter.
As we are dealing with compact, self-gravitating objects in
scalar-tensor theories, we have to take into account the
internal gravity of each body. To do so, we follow the
approach pioneered by Eardley [45] and consider that
the total mass of each body may depend on the value of
the scalar field at its location. The skeletonized matter
action is then given by the classical action for point
particles, but with a mass m4(¢), namely

a, b
UaUx

Su==-3 [ (@) ~o) At (212)
A

A . . .
Ho_— Dy
where v}y =% = (c,v,) is the coordinate velocity of

particle A, Y, = (ct,y,) its trajectory and (g,s), is the
physical metric evaluated at the position of particle A using
the dimensional regularization scheme. We recall that the
physical metric is related to the conformal one through

Jap = % Note that the scalar-field dependence of the mass
is responsible for the term g—: in Eq. (2.9). In the absence of

such a dependence, e.g. in GR, the matter stress-energy
tensor should depend only on the matter variables and the
metric.

We then define the sensitivity of each body with respect
to the scalar field as

_ dinm ()

Sy = ding (2.13)

d=¢o

In the calculation at 3PN, we will also need the higher order
sensitivities, defined in Sec. V. The sensitivities of neutron
stars are around syg ~ 0.2, depending on the mass and the
equation of state. Due to dynamical scalarization, neutron
star sensitivities can dramatically grow during the late-
inspiral. As we are working in the post-Newtonian for-
malism and we assume that the sensitivities are constant,
we will not describe this effect in our work. Hawking’s
theorem states that stationary black holes have no hair in
Brans-Dicke theory [46] and this result has been extended
to generalized scalar-tensor theories [47]. Thus, for sta-
1

tionary black holes, the sensitivity is exactly sgy = 3.

Another way to see it is to define the scalar charges [39,48],

1_2SA
oy =———,
A7 3+ 2w,

where wy = @(¢hg). We see that sgy = % implies agy = 0,
i.e. that stationary black holes have no hair. However, in the
case of nonstationary black-holes, i.e. for a time-varying
scalar background, it has been shown that a scalar hair can
arise [49,50]. A similar result has been obtain in the pre-
sence of a constant scalar gradient in the background [51].

(2.14)
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C. The Fokker action

The Fokker action is then computed by replacing into the
original action the gravitational and scalar degrees of
freedom by their solution, obtained by resolving the field
equations (2.8),

SFokker[YA(t)’VA(t)’ . ]

= Ssrlg” (y5(1).v5(1). ...). 00 (y5(1). Vg (0)....) . Va (1))
(2.15)

This procedure only applies to the conservative dynamics.2
In general relativity, starting at 2PN order, the Lagrangian
depends linearly in the accelerations [53], and as expected,
we recover this feature in ST theories [29]. At 3PN order,
we first obtain a Lagrangian that also contains terms
quadratic or of higher order in the accelerations and
derivatives of the accelerations. By implementing the
double-zero method [54] and adding total time-derivatives,
that do not contribute to the dynamics, we can reduce our
original result to a Lagrangian linear in the accelerations.
The equations of motion for the particles are then obtained
by writing the generalized Euler-Lagrange equations,

5SF0kker _ 8LF d aLF d2 8LF
Sy,  Oyx dt

E @ E)‘F"', (2.16)

where Lg is the Lagrangian corresponding to the action,
SFokker = f dtLg. Only once we have constructed the
equations of motion using Eq. (2.16), do we order reduce
them by replacing the accelerations by their lower
order value.

III. THE MULTIPOLAR POST-NEWTONIAN
FORMALISM IN SCALAR-TENSOR THEORIES

A. The separation between the near and wave zones

We generically denote (%, () the PN solution of the field
equations in the near-zone of the compact source, i.e.
in a region of small extent compared to the gravitational
wavelength. It is obtained by a PN iteration of the field
equations (2.8). In the exterior region of the source,
including the wave zone, the multipolar solution is obtained
by a post-Minkowskian iteration of the field equations in
vacuum and is denoted M (h, y). As we are dealing with a
post-Newtonian source, i.e. a compact weakly-stressed and
slowly moving source, there exists a buffer region where
the two expansions are valid. The complete solution is then
obtained by a careful matching of the two solutions in the
exterior part of the near zone, using the method of matched

*An effective field theory method to compute the dissipative
effects in the dynamics from a Lagrangian, consisting in doubling
the matter variables, has been developed for GR [52].

asymptotic expansions [6]. In particular, we impose the
matching equation,

M(h.y) = M(h.), (3.1)

i.e. that the multipolar expansion of the PN solution is equal
to the PN expansion of the multipolar solution. We
emphasize that Eq. (3.1) is valid everywhere and not only
in the buffer zone. The careful implementation of Eq. (3.1)
is crucial when calculating the tail contribution to the 3PN
equations of motion.

The gravitational part of the action S, = Ik drL, can be
decomposed according to

L, :/ddx/lg—l—/ddx/\/l(ﬁg),

where L, is the Lagrangian density. We use dimensional
regularization to treat the infrared divergences of the
post-Newtonian solution at infinity and the ultraviolet
divergences of the multipolar solution at zero. The proof
of this equation can be found in Appendix A.” It uses the
formal structure of the multipolar expansion M(L,) ~
S™ A, re(Inr)? F(t) and the fact that the integral over space
of such generic terms is always zero by analytic continu-
ation in € = d — 3. Next, we investigate the second term in
(3.2). In [11], it was shown that this integral is zero for
instantaneous terms, namely

(3.2)

/ dlx ML), = 0. (3.3)

Thus, the only contributions come from hereditary terms,
that have the formal structure

ML g = D0 (1n ) H ()
y /_ va(l +u;U>K(v), (3.4)

(5]

where u =t — r/c is the retarded time, and H and K are
functions of the source multipole moments /; and J; . In ST
theories, the multipole expansion of the Lagrangian density
has the following formal structure after some integrations
by part,

M(Ly) ~ M(R)TM(h) + M(y)IM(w)

+ M(hy)OM(hw)OM(hw) +---. (3.5)
As M(h) and M(y) are solutions of the vacuum field
equations, their source is at least quadratic in the fields,
that is

3The proof is similar to the one that one can find in Sec. II. B of
[11]. The only difference lies in the fact that we are now dealing
with dimensional regularization while in [11], the proof was done
using a Hadamard-type regularization.
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OM(h) ~ OM(h,w)OM(h.y), and

OM(w) ~ OM(h,w)OM (h,w). (3.6)
Inserting Eq. (3.6) into Eq. (3.5) we see that M(L,) is at
least cubic in the gravitational fields, and will be at least of
order O(G?). As we know that M(L,) should contain at
least one hereditary term, the dominant effect corresponds
to an interaction of the type M x M x I, the so-called
“tails-of-tails.” In GR, when the scalar field is absent, these
terms arise at least at 5.5PN order corresponding to an
interaction between two mass-monopoles and one mass-
quadrupole [55]. In ST theories, in addition to this effect we
can also have an interaction between two mass-monopoles
and one scalar mass-dipole, giving a first contribution at
4.5PN order. We conclude that the second term in the
RHS of Eq. (3.2) is at least of order 4.5PN, and will not
contribute to the dynamics at 3PN order.

Thus, the gravitational part of the Lagrangian has to be
computed only using the PN solution only, namely

L, = /ddxﬁg.

The post-Newtonian solutions (%, ), obtained by solving
the field equations (2.8), read

(3.7)

1626 —
= O] + e, (3.82)
87G —
7= —%D;e} [17] + P, (3.8b)

where an overline denotes a PN expansion. The first terms
in Egs. (3.8) are particular retarded solutions of the PN-
expanded field equations (2.8). They read

k
D_l P = — dd ! |1
ret[ T ] 471_/ X|X|
+o0 ™ (x' t—z|x = X'|/c
e ]
1

(3.9a)

k
Tl = - [ atxixp

+o0 T.(x' t—z|lx = xX'|/c
et PR
1

|x — x'|4=2
(3.9b)
where k = F%:”, I' is the Eulerian function, and the
function y%(nzz) is defined by
@) = @1y, (10)

S I(s+1)I(-s—1)

with the normalization [,"*y,(z) =1. The retarded
Green’s function of the scalar wave equation G (X, 1),
solution of (G, = ()84 (x), is then given by

G == - 5 () e

4z r 2

where 0(t —r) is the usual Heaviside step function. In
Eq. (3.9), we have used the so-called “en” regularization
scheme, which is the equivalent for dimensional regulari-
zation of the finite part procedure of Hadamard regulari-
zation. It has recently been successfully used to compute
the ambiguities at 4PN in GR [13,14]. We have introduced
a factor 7 multiplying the PN source term, that acts as a
regulator acting on top of dimensional regularization. In
practice, we shall first take the limit # — 0 in generic d
dimensions and then take the limit e=d—-3 — 0.
Although some poles in 1 /7 may appear in some individual
terms, it should not be the case when considering the sum
of all terms. In Sec. IV, we shall see in practice how to
compute the particular PN solution.

B. The tail effects at 3PN order in
scalar-tensor theories

We now focus on the second terms, H** and P, in the
Egs. (3.8), that are the source of the tail effect. They are
homogeneous solutions of the wave equation. We follow the
algorithm developed in [13,14] to compute the near-zone
expansion of homogeneous solutions of the wave equation in
d dimensions. The result for H* still stays the same in ST
theories. In particular, it starts contributing to the conser-
vative dynamics at 4PN order. Thus, we only consider the
scalar field homogeneous solution . As we are interested in
the 3PN contribution, it is sufficient to restrict to the
quadratic order in the expansion of the scalar field, y =
Gy, + G*y, + O(G?). The equation we want to solve is

Oy, = Ngolhy, w1l

where [ is the flat d’Alembertian operator and Ny, is the
quadratic part of the source, explicitly given by

2¢oa)6
Noalhyoy] = (1= 520 ) oy,
sl < T —d tdag ) 00w

- hﬁtu w1 — 8/41//181/}1/1“/’

(3.12)

(3.13)

where we have also expanded A at quadratic order,
W = Ghy" + G*Hs” + O(G?). We know that the tail effect
will result from an interaction between the constant ADM
mass M of the system and one time-varying low multipole

moment. Thus, we decompose the linearized field as
h’l"’ = h‘l‘f’M + h’l‘f’,k[, (3.14a)

Vi=Yimt Wi, (3.14b)
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with
4 . )
W= =S1 =0
2 ) 2 -
0 (1)
g, = =305l Wiy, =300
where
. k

[ a1, <z - %’) . (3.16)

is the homogeneous retarded solution of the d’Alembertian
operator. Note that the lowest time-varying multipole
moment in ST theories is the dipole moment, instead of
the quadrupole moment in GR. The static mass monopoles
are given by

IL(t,r) :ﬁ

kI,

and .
)

(3.17)

Inserting the decomposition (3.14a) into Eq. (3.13) and
keeping only the terms contributing to the tails, we get

. 2¢0w/ X
N = 2<1 —m Oy 1 MO 1,

1

- 2 h?9M3%W1,I, - h?ﬁk,aaﬂW1.M- (3.18)

Using Egs. (3.15), we see that V. ‘:"‘21 admits the decomposition

+00
NE =" a, N3 (3.19)
=0
with
. tai ke [T yr
Ny =y [ dyy ysa(y)FL <t—?>,
(3.20)

; 5
Hiy =0, and  yyy =——51s (3.15a)
, | ;
ij 2 2 -
W, ==515 and oy, =500 (3.15b)

where the function F; is made of products of mass multipole
moments. The tail contribution to the scalar field is then
given by

+0o0

1 o
Wit = G Z 2 A"fofi), (3.21)
j=0
where
. D¢ +4) g
I G 2)d -y (3.22)
T(¢ + j+9) 2%

The function f,; can be factorized into the compact form:

= (=) et ['(2¢ —n)
L+ I+ e T(C+k—142e—1)

+o0
X A dr T_2£+”F(Lf+k_l)”y(t - 1),

far

(3.23)

. . . Kk
where the dimensionless coefficients C§ are

Dk +oo »
G = ! dyy 7—1—5@)
“+00
X [ dz(y +2) 22y, _o(2). (3.24)

These coefficients have been computed and an analytic
closed form expression can be found in the Appendix D
of [13]. Plugging the formulas into the tail equation (3.21),
carefully applying the “en” regularization procedure
and expanding everything at 3PN order, we obtain the
scalar tail,

—41/2
8G*M , [+e ct\/ o, [ D O )
L i 1 —_—— - — | (I /(1 — — 17/ (t s 3.25
2 tail 3C8¢0 X 0 7|1n 2{() e 12 ( S, I ( T) S,i ( + T)) ( )

where g = 4ze’t and ¢, is the characteristic length associated to dimensional regularization. Note the appearance of a pole
1/¢. Finally, inserting it into the Fokker action, we obtain the tail part of the action

tail __
F

2G*M
3¢,

@ +2m) fano [ aen( )

1 5

T2 4(3+ 2w

11

()
—|
12 (

+ Oe—7)=18)(1+7).  (3.26)
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Performing some integrations by part and using the Hadamard partie finie (Pf) notation,* we can rewrite the tail part of the

action in a symmetric way,

. 2G*M @ +oo ct\/q
tail __ 2 d I ) / drl1 _
s = S 0 200) [[ari) [ arfin(

26°M
26 M3 4 2w, Pf// dtdt @ ).
3¢y |t -

11

where we have defined the constant 7, = 2\”/)/-“ e T T,
IV. THE FOKKER LAGRANGIAN

IN ST THEORIES
A. The “n +2” method

We now focus on the particular solution (i_zpm, Wpart)- It is
obtained by a PN iteration of the field equations. Due to
some cancellations between the gravitational and matter
parts in the Fokker action, it is sufficient to know the metric
at roughly half the order we would have expected. This is
the so-called “n 4 2” method, that was developed in [11]
for general relativity. Here, we generalize this method to
scalar-tensor theories where we have one additional degree

|

4¢0
97 1282G

while the matter action is given by

2
s, —ZmAcz/dt[_H;—:z—
A

Varying this action with respect to the metric and
scalar fields, we can see that the leading order of the PN
solution is

(}‘ZOOii’ noi, ilij;l/-,) =0(2,3,4;2). (4.4)

Consider now a solution of the field equations,

h, = (Eg()ii,l_zg’,hi,],l//n) =0n+1,n+2,n+1;n+1),
(4.5)

*For any regular function f(f) tending towards zero suffi-
ciently rapidly when t — +o0, the Hadamard partie finie is
defined as

1:0f/dff(ﬂ)EA+ drln< )[f (=)= fD(t +7)]

1. vk
LR (1= 255+ ARy -

5 11

m‘F B (I( )(t—‘[) Iii)(t-i-f))

(3.27)

|

of freedom. As we are only interested in the dynamics at
3PN order, we do the reasoning for odd PN orders and in d
dimensions. We reason by induction and we will see that
the proof follows the one of [11], as the scalar field behaves
similarly as h%". First, we decompose the metric pertur-
bation as

700 — o (d=2)h0+h"
= -
" — {700

i

(4.1)

At leading order in (h, ), the gravitational action reads

2
/ / dx { S 2)h°°”Dh°°” AROTIR 4 2B EIRY — == RTORY + 2(d(d = 1) +4a )i + O(R? )],

(4.2)

AIJA Va
R
22 Mo

h” + O(hy, ¢ 2hy, ¢~ l//A):|

(4.3)

[
where n is an odd number and the orders are included. As
we schematically have %F ~ ¢4(CJh — £ — T'), we have the

estimates "
byl yal = O = 1), (4.60)
oot il 34l = O(n) (4.60)
by =0-1), (460
SElabil ] = 0=, (46)

We now define the rest of the complete PN solution by

(]j[’ l:_”) = ]jln + 7'114»27 (47)
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with

Omn+3,n+4,n+3;n+3), (4.8)

00ii 707
n+2 <rn+3’ rn+4’ n+3’ n+3)
and we expand the Fokker action around the nth order PN solution,

Sl = el + f [ x|l bl

oSk .-
W(I):i[han]’yA] n+4

0% oulyal yalFss + o (i) yal s +

b
Shi Sy

where the ellipsis stand for quadratic or higher order terms. Inserting the estimates (4.6) in Eq. (4.9), we have

Se[hlys).yal = Selhalys).yal + O2n +2). (4.10)
The action is thus known at nPN order as wanted. Note that the quadratic and higher order terms, generically denoted by the
ellipsis in (4.9), do not change the result as they contribute to a higher order in the action. The reasoning in the case of n even
is very similar. Summarizing our result, the ST “n 4 2” method is given by the rule: In order to control the Fokker action at
the nth PN order, it is sufficient to know the metric at the order

7 { On+2,n+1,n+2;n+2) included when niseven, (4.11)
" lOm+1,n+2,n+1;n+1) included when nisodd. '
|
B. Iteration of the post-Newtonian solution OV = —4zGo, (4.13a)
We now perform the iteration of the post-Newtonian
solution. At 3PN order, according to the “n + 2” method, Dll/(o) = 4nGosy, (4.13b)
we need to know the metric at the order (4,5,4;4). As we
will use dimensional regularization to treat all the diver- [K = —4zGoV, (4.13¢c)
gences, we already define all the quantities in d dimen-
sions. We use the decomposition of the metric given by OV, = —4z2Go;, (4.13d)
Eq. (4.1), and define the usual PN potentials
Ok — 472G S—dv d—lV d— 8V8V
i A 4fd=1_, _d-3 1 a2 2 T 2 T a2t
W = —-—=V - ——V 2—K| +0[ =,
c d-2 d-2 c _d(d— )8V8V d(d—1)+4a)oa 5
(4.12a) 4(d—-2) 4 YooV
(4.13e)
—: 4 4 (.~ d-1 1
]’lOl:——3V,'——5 2R,—|——VV, +O —7 N o d_l
¢ ¢ d - 2 ¢ DW” = —47TG <0ij —_ 5”d kk2> —_ 2 d 2 (91V(9,V
(4.12b) @1 B (d-2)
A - fa 0)9¥(0)- (4.13f)
c 2 c The gravitational constant G appearing in these equations
is linked to the usual Newton constant Gy through the
_ 2 2 2wy, 1 relation
=—-— B e A el L 47 o(— ),
v 270 + c* ( d(d—1) + 4wy Vio + c®
G = G\, (4.14)

(4.12d)
where 7 is the characteristic length associated to dimen-

with W = W,;. Each PN potential obeys a flat space-time
wave equation, sourced by matter source densities and
some lower order PN potentials. They read

sional regularization. The matter source densities are
constructed from the components of the stress-energy
tensor for point particles,
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VN
THY — Z my(9) UaUs 5@ (x —y,). (4.15)
A -9 _[gpa}AUf; UZ/CJ
They read
@\ (d=2)T" + T ((p)TOf ((p) N
o=2"—|—7—F5—> o=+ )—, 6= — )T,
(4”0) (d=1)c? $o) ¢ 7 \¢o
2 or
s =~ T—2¢p——). 4.16
7 c2¢0(d(d—1)+4w0)< "’aq) (4.16)

Note that, in addition to the new scalar density, we have slightly changed the definition of the usual densities with respect to
the GR result [6] by adding the scalar field in factor. In the Appendix B, we give the explicit expressions of the matter source
densities as a function of the potentials. Finally, the harmonicity conditions d,4** = 0 read

6‘,{&V+L [WJF <E>2V2_M

20d-2)" 22 d—2 (d-2)?

- 1. - 1
a,Vi + aJW,] —EGiW - O<?>

) eofur3 sl -of2)

(4.17a)

(4.17b)

We emphasize that the gravitational field / should only verify the harmonicity conditions (4.17) when on-shell.

C. Dimensional regularization

The computation of the Lagrangian involves noncom-
pact support integrals of the type

I—/d3xF(x), (4.18)

where F(x) represents a generic function resulting from the
PN iteration of the potentials carried out in the previous
section, taken in the limit when d — 3. The integration of
such a function leads to two different types of divergences.
First, the ultraviolet divergences result from the point-
particle approximation that causes the function F to be
singular at the points y; and Yy,. Then, the infrared
divergences come from the fact that the PN solution
diverges at infinity. In the present work, we use dimen-
sional regularization (DR) [56] to treat both the infrared and
ultraviolet divergences appearing in the integrals of the type
(4.18). Following the procedure used in previous works in
general relativity, the regularization scheme will proceed in
several steps. First, we perform the integration in 3
dimensions using Hadamard regularization (HR) [57] for
both UV and IR divergences. In a second step, we compute
the difference between HR and DR in the case of the
ultraviolet divergences, resulting in the appearance of a
pole. Finally, we add the difference between HR and DR for
infrared divergences. The pole that appears after this step
should exactly compensate the one coming from the tail
term computed in Sec. III B.

|
1. Ultraviolet divergences

When r; — 0, the 3-dimensional function F' admits the
following expansion, valid for any N € N,

Fx)= ) r‘l‘fla(nl)Jro(rf/). (4.19)

ap<asN

The Hadamard regularization of the spatial integral (4.18)
is then given by

1.0

3 Sa+3 F
=1l d°xF 4 —
Sli%{/su) XF(x) + 4z Z a+3 <’”‘f)1

a+3<0

+4ﬂln({%>(r?F)l +1<_>2}.

"R = pf /d3xF(x)

(4.20)

where 7 and ¢, are two constants of regularizations. The
integral on the second line is performed on the domain of
integration S(s) = R*\B(y,, s) U B(y,, s), where B(yy, s)
is the sphere centered in y, of radius s. When implementing
it in the calculation of the Fokker Lagrangian, we obtain a
result that depends on the two constants #; and £,. We now
turn on implementing dimensional regularization. In d =
3 4 € spatial dimensions, the expansion (4.19) of the
function F@) becomes,
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FOx) = Y ””gfﬁf( )+ o(rY).

Po<p<N
q0=q=<q;

(4.21)

We further assume that the function F(¢) does not have any
pole when ¢ — 0. It implies the following relation between
the d-dimensional and the 3-dimensional coefficients,

q1
>[5 m) = ).
q4=40

(4.22)

To obtain the dimensionally regularized version of the
integral (4.18), we only need to compute the difference
between the d-dimensional integral /PR = [ d/xF?(x) and
the HR integral (4.20), and add this result to the previous
one. As when € — 0 the two regularization procedures give
identical results outside the particles’ position, these con-
tributions will cancel out in the difference. Thus, we only
have to carry-out the calculation locally, i.e., in the vicinity
of the particles. Denoting DI = I°PR — [MR the difference
between the two regularized integrals, we have the formula,

sq:% q T

+1 <2+ 0(e).

1 / 2+¢e 1>f ,q

Due to the presence of the pole in Eq. (4.23), it is very
important to perform the angular integration over the
(d — 1)-dimensional  sphere, with volume element
dQ, . (n;), up to linear order in &. Note the presence of
the offending value ¢ = —1 in the sum over ¢ in Eq. (4.23).
An important test of our calculation, and in turn of the
validity of dimensional regularization, consists in checking
that the spherical angular integrals are always zero for
g = —1. By construction, the constants #; and £, will be
absent from the final result, i.e. after adding Eq. (4.20) and
Eq. (4.23), as these are pure HR constants.

2. Infrared divergences

Next, we carry out the regularization of the infrared
divergences. In 3 dimensions, the expansion of the function
F, when r — o0, is given by

N 1
= > S Frm) +of ). (4.24)
P==Po
The regularized value of the integral is then
R s ()
= ll:I:)/d X<r—0> F(x), (4.25)

where we have introduced the regulator (r/ry)®, with
B € C and r 1s a regularization constant. The finite part

(FP) at B = 0 means that we take the zeroth power of B
in the Laurent expansion when B — 0 of the integrand
(r/ro)BF(x). Similarly, the d-dimensional function F(¢)
admits the following expansion near infinity

-3 Y L () m. e

PZ=Po 4=—40

Assuming that the coefficients fﬁf)q admit a well-defined
limit when ¢ — 0, which is the case at 3PN order, we have
the following relation,

q1
=Y 15" ).

9==40

(4.27)

The difference between the DR and HR integrals is entirely

determined by the coefficients f;g),, in the expansion at

infinity of the function F(9). At leading order in & — 0, we
have

DI_Z[ﬁ In <;0>}/d92+€f3q( )+ O(e),

(4.28)

As for the ultraviolet regularization procedure, the presence
of the pole in Eq. (4.28) implies that the spherical angular
integral has to be performed in d dimensions up to linear
order in €. Note also the problematic case ¢ = 1 in the sum
over g. During the calculation one should check that the
corresponding terms do not appear in our end result.

D. Implementation of the calculation

Once the Fokker Lagrangian has been computed using
dimensional regularization, we can add the Lagrangian
describing the tail computed in Sec. III B. We rewrite
Eq. (3.27) by dividing the logarithmic kernel as,

o) -wlin) )
70 2r 12 CT
op ALys

where we recall that 7, = V%ez* #+200) 12 with g = 4me’®.
Thanks to this rewriting, one can see that the pole coming
from the tails (3.27) directly cancels the one coming from
the dimensional regularization of the infrared divergences.

Finally, the last step consists in renormalizing our result
by absorbing the ultraviolet pole through some redefinition
of the trajectory of the particles. The complete 3PN shift on

the trajectories of the particle that allows to remove the pole
« 1/¢ is given by,

(4.29)

044004-10



DYNAMICS OF COMPACT BINARY SYSTEMS IN SCALAR- ...

PHYS. REV. D 98, 044004 (2018)

G mim,
6,02
24c%ery,

A a7+
X (—2 + 6eln(%>),
0

Oyspn = n,(44 + 447 + 117> — 45,)

(4.30)

where the scalar-tensor PN parameters 7 and &, are defined
in Egs. (5.4) and (5.5). Following previous works in general
relativity, we have introduced the gauge constant 7| and r}
to replace the characteristic length scale £, such that the
logarithmic dependence in our result only appears through
the combination In (r,/r}) and In (r|,/r}). At the end, our
result is thus both IR and UV finite.

|

V. RESULTS

A. The 3PN acceleration in
scalar-tensor theories

The 3PN Lagrangian in harmonic coordinates is a
generalized one, meaning that it depends not only on the
positions y, and velocities v4 of the particles, but also on
the accelerations a, and their higher order derivatives.

The accelerations of the particles are obtained by writing
the generalized Euler-Lagrange equations, see Eq. (2.16).
Following [29], we express them using a finite number of
parameters. We define the scalar-tensor parameters:

~ G(4 + 2600)
G = ’ C = 4
2 d 3 d2 4 d3
,1155__0) /125{:——6;) i 355——03) , (5.1)
(1=¢)del, (1=¢) de?y (1=¢)de’y
as well as the zeroth and higher order sensitivities,
_dlnmy() . d*Inmy(¢) , & Inmy(e) At Inmy ()
SA=7 . SA=— 7 5 SA= 3 ) SA= 4 . (52)
dlng |, dlng~ | dlng” | dlng® |,
At Newtonian order, one additional parameter is sufficient to describe the dynamics,
azl—{,’—f—é’(l—Zsl)(l—Zsz), (53)
while at 1PN three new parameters were introduced. They all read,
__ X
F=—"2(1-25)(1 - 25)
. ¢ 2 _ ¢
ﬁl Ey 1—2S2)2(/11<1—2S1>+2§S/1), ﬂzEg(l—2S1)2(11<1—2S2)+25S/2) (54)

Note that they are not all independent, as we have the relation (2 + 7) = 2(1 — ¢). Then at 2PN, four new parameters were

introduced,

o

(1-9

51 = (1 —2Sl) s 52

a
7= 55 (1= 252000 = 45 + £0)(1-25))
7= 55 (1 =25, Pllha = 45 + £0)(1 - 252)

Once again, these parameters are not all independent, as we have the relation 165,56, = 7

introduce two new parameters,

Al

+2£(1942 — 42, — 44,()s
I
2 _614

+2£(1942 — 42, — 42,05

— 1282055 + 283sY].

(1—)

a

(1—2s,)3,
— 60218) +24%s7],
— 6805y + 20251). (5.5)

2(2 + 7). Finally at 3PN order we

¢
| = g(l —255)*[(A3 — 132145 + 2847 + £(3A, — 1347) + 4, %) (1 — 25y)
D= 128205 + 2835,

(1=2s)*[(A3 — 13214y + 2823 + £(34, — 1322) + 4,8%)(1 — 25,)

(5.6)
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We write the full 3PN equations of motion in the following form:
a; = a) +alP™N 4 a3PN 4 aifN,

The 3PN piece is then decomposed into a local part and a non-local one,

a?PN _ a?PN Jinst + a?PN,tall’

and the local part is further split into its increasing power of G:

a.;aPN,inst — Ga 3PN( ) 1 &a 3PN( ) L &a %PN( ) | Gta 3PN @)

We have

ol o _ 5
™ = 3 n12[(5+2}’+2ﬁ2)m1m2+2(2+7+ﬂ])m%
12

Gam 3 _ _ _
S8 ([ 002 + 22+ Pov0s) + (1 =73+ (-2 73]
12

+Vi2(2+7)(npvy) + (=3 = 27)(n1202)] + Vo[22 +7) (n1201) + (3 + 27)(”12”2)])

G3 3
a%PN

n12[m1m2< (—69 — 487 — 87%) — (3+7)/3’2+[31< 1547 +%))

T2
9 - 1 -
(=5 7P =4+ P =842 ) 4 mims (§ (57— 4797 =43+ a5y 212 ) |

G*a?

(5.10a)

(5.10b)

+— [Vz <m1m2 [(% (63 +407 +27%) — 25, + 251) (nipv1) + <i(_55 — 407 —27%) +4p, — 251) (”12”2)}

)

| (J@47 425 ) o)+ (~5 24D+ + 25, =25 ) )|

+vy <m1m2 [(i(—& =407 = 27%) + 25, —251> (npo1) + G (55 +407 +27%) - 45 +251> (”12”2)]
#md (=572 =25 ) ) + (32472 +7) =2y 428, ) (o)

s (3] (3277428 ) P+ (247 =48 ) 1)
(S P+ 7) =481 28, ) (0 =42 4 P ovv) = 2B 422473

1 _ _ _ _
+mymy {(5(39 +267 +7%) —4p, +251> (n12v1)* 4 (=39 — 267 — 7 + 8, — 46, ) (n1201) (n1202)

+ (%(1 +7)(17+7) —8ﬁz+251> (”12”2)2 + <—§—2/}2> (v102) + (%(‘15—8}7) —Bz) v} + G—H—iz) v%])}

8 (1[5 3 200 + (4120200 + (1202 (224 ) 0102) + (-5 -390

+<n12v1><—3<2+7><n12v2>2—2<2+7><vm> +2<2+7>v%)]
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(34 27)(n1212)* 4 (=1 =7)(n1202)v7 + (n1p0y) (3(2 +7)(n202)* + 22 +7)(vyv2) = 2(2 + 7)”%)

N W

+ vy {—
o) (<224 D)) + 6+37)3 )
+np, [‘%(”12”2)4 + (=2 =7)(v102)* + % (1 +7)(n1202)*07 +2(2 4+ 7)(v102) 03

i, 3 _ .
o (534D +56+ 03 + (2=t ). (5.100)
At 2PN order, we recover the result from [29]. The instantaneous 3PN terms are then given by

am 15 _ _ 3 _
=2 { (—§<3 +27)(m1202)° + (m120)° (—3(2 +7)(v10) +3 (84 5y>v%)
12

+ vi (‘%(1 +7)(np02)* + (1 + 7)(”12”2)”%) + (nyv7) <(—2 —7)(v1v2)* + 42 +7) (v vp)v3
+ (=7 - 47)”3) + (npvy) {? 2+ 7)(npv2)* =22 +7)(v1v2)v3
(o0 PO+ P r0a) = 62+ 703) + 202+ 70

+V, (185 (3+27)(n1p02)° + (n1p0,)? <3(2 +7)(v1v) — % 8+ 57)”%)

15

#0204 P02 + (-1 = PNa02)03) + o) [ =2 4 Poara) 42024 P)00203

T (1102 (=3(2 + 7)(0103) + 6(2 + P)13) - 2(2 + M}

me0s) (24 70022 =42+ P) (00203 + (74 4702 ))

35

_ 15 _ 15 _
+np, [E (n1202)® 4+ (=2 = 7)(v102)?v3 + (n1202)* T (2+7)(v1v,) = 3 (4 + 7)”%)

(= (1 P20 + 30+ P20 ) 4 2024 7)(0rse)ad + (e (5 24 )00

_ 3 _ _
- 62+ Povea)id + 35+ 27)28) + (2= g | (5.11a)
2 1 _ 10~
a ™ = “T {V2 <m1m2 Kﬁ (729 + 8887 + 2267%) — 125, + ?51> (np,)?

V)
1 - - 1
+ <Z (—565 - 7287_/ - 192}72) + 32ﬂ2 - 851) (n121]1)2(l’112’1)2) + <E (95 — 168]_/ - 1127_/2)
8- 3 1 - =2 0 S 2
+ 551 (n1pv2)° + §(137 + 2087 + 507%) — 108, + 6y | (n1202) 7
1 - - 1 _ _
+ (n120,) ((Z (=27 — 1287 — 467%) + 123, + 251) (vivy) + (g (=83 + 487 + 427%) — 23, — 351> v%)
1 _ _ _
+ (npp0y) ((Z (269 + 4887 + 1547%) — 245, + 251) (n12v2)* + (2(18 + 297 + 87%) — 165, (v1v3)

1 - 1 o
+ <§ (=207 — 2727 — 667°) + 9, — 5]) v+ <§ (—81 — 1927 — 6272) + 1B, + 51) v%)]
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+ m3 [(% 2+7)*+ 232) (n1201)*(n1202) + <% (2+7)(=2+37) = 4P + 632) (n122,)°
= 2B1(mav2) 0] + (n1202) (((—2 +7)2+7) +48)(vi2) + (=(=2+7) (2 +7) +2p1 - 4?52)1%)
o) (2247 = 85 mana + (-3 2477 =28 ) () + (32477425, ) 3 |

1 _10- 1
+v, <m1m2 [(E (=729 — 8887 — 22672) + 12, — ?51> (n1av,)> + (Z (565 + 7287 + 19272)

_ - 1 8-
- 32ﬂ2 + 851) (nlzvl)z(l’llzl)z) + (E (_95 + 168}_’ + 112}_/2) - §51> (n1202)3
1

1 - _

_ _ 1 L
- 251> (n1205)* + (=2(18 + 297 + 87%) + 168,) (v v5) + <§ (207 4 2727 + 667%) — 9B, + 51> v?

1 - 1 - -
+ <— (81 + 192]_/ + 62}72> - 7ﬁ2 - 5]) 1)%) + (nlzvz) <<Z (27 + 128]_/ + 46}72) - 12,52 - 25]) (l)l Uz)

oo

oo

1 _ _
+ <— (83 — 487 — 427%) +2p3, + 351) v%)

+ m3 [(_1 2+7) - 252) (m1201)*(n1207) <—%(2 +7)(=2+37) + 4B, - 652) (n1202)°

[\

+ 281 (n1p00) 07 + (n1p0y) <(2(2 +7)* 4 85,) (n1202)* + (% 2477+ 252) (v12,)

+(-

24P+ -2+ 4803 )] )

N[ =

2+47)? - 252> vg) + (n1212) ((—(—2 +7)(247) —48,)(v,v,)

+1np [m% ((‘%(2 +7) - 652) (n1201)*(n1202)* + (‘%(—2 +7)2+7)+6p) - 632) (npy)*
+2(2+7)(0102)* + 461 (n1202)* 07 — 42 4 7) (v102) 03 + (n120,)? ((—(—6 +7)2+7)
—46,)(v102) + (-6 +7)(2+7) — 4B + 432)”%) + (npvy) {(3(2 +7)? 4 126,) (n1p0,)°

+ (n1502) (((2 +7)% +48,)(v115) + (—(2+7)* - 482)1;%)] +2(2+ 77)11‘2‘)

1 - - 1 -
+ nmiymy, < <§ (—171 - 54}_’ - 20}_/2> - 18ﬂ2 - 1051) (”1201)4 + <§ (171 + 54}_’ + 20]_/2) + 72ﬂ2
- 1 - 1

+ 4051) (n1201)3(n1202) “F <§ (—455 - 294]_/ - 32}_’2) - 1661) (n1202)4 + (Z (—177 - 1527_/ - 40]_/2)

A S 2 1 = =2 9 S 4 = =2
—8ﬁ2—851 (’Ul’Uz) + g(—gl —76}/—207/ ) —Zﬂ2—251 U] +(43+38J/+ 10}’

_ _ 1 _ _
+ 7P+ 861) (v102) 05 + U%((z (191 + 1247 4 337%) + 205, + 1351) (n120,)?

1 . - 1 9._ _
+ (5 (91 + 767 + 207%) + 9B, + 861> (v117) + <Z (=91 — 767 — 207?%) — 5/}2 - 451) v%)
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+ (n1p01)? ( (-% (241 + 1027 + 227%) — 963, — 6651> (n120,) + G (=229 — 1767 — 497?%)

— 368, — 2631> (v105) + G (229 + 1767 + 497%) + 185, + 13231> v} + G (229 + 1767 + 4972)
+ 186, + 1331) v§> + (n1202)2<<—§ (45 + 327 + 77%) — 24p, — 3031) (v10)

+ G (259 + 1967 + 377%) + 4B, + 1731> v%) + (npp0) [G (383 + 1987 + 2672)

+ 485, + 5251) (np0,)3 + G (=205 — 1487 — 417%) — 36/, — 265,) (n1,0,)0?

_ _ 1
+ (n1a1,) ((2(122 + 877 + 217%) + 64, + 566, ) (v v,) + <§ (—283 — 2007 — 437?)

~ 287, - 3031)11%)} " (%(—81 ~ 767~ 207%) ~ 2 - 251>v;‘>] } (5.11b)
e — S [(( Yre+ )+@)<mzm+(Z—Iﬂzw)—%)(mzvz))
A
N et S
+<—17(2+7)+m)v%+< 272+ )+m>v%ﬂ

8
o’ 2 1 5 =2 =3 2 N\ T - (1 _
+ | Vil ﬂ(—921 — 10407 — 2347 + 247°) —|—§ (35 +97)5, + f 5(65 + 447)

245, 246 1 24,6 3
+%—%)+§(53+18 )@—ﬁﬂﬁ( T2 2+ 1= 82 — 347 + 772)

21 - 21 1 2 -
~ 2+7)6, — @(2 +7)o >> (npvy) + (ﬁ(1437 + 12327 + 2227 — 2473) — 5(35 +97)6,
_ /1 4853, 245 1 - 246
+ 5 <2(—43 —44y) - ﬁ + _1> + 5(—59 — 187)0, + b <4(3 +7)+ }_/2>
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Finally, the nonlocal part of the acceleration is given by

] ) 4G2M +o00
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0 2

3C6¢0
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30 = 20t 3] ) - 25 34 20) 2 (1) 5.12)

where M = m; + m, is the ADM mass. The instantaneous terms on the second line come from the introduction of the time-
varying scale r, in the decomposition (4.29). The term on the first line is the nonlocal tail term. Replacing the scalar dipole
moment by its explicit expression,

1
$o(3 + 2wy)

and using the ST parameters to express the instantaneous terms, we get

I(1) = - [my (1 =2s1)y) +my(1 = 2s;)y5], (5.13)
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B. Discussions

1. General comments

We have verified that our result is manifestly Lorentz
invariant, as it is expected because we are in harmonic
coordinates and dimensional regularization does not break
the Lorentz-Poincaré symmetry. Then in the GR limit, i.e.
when @y — o and ¢y — 1, we recover the 3PN accel-
eration of GR, up to an unphysical shift of the trajectories of
the particles. The presence of such a shift only reflects the
freedom we have when performing the redefinition of the
trajectories of the particles in order to remove the pole.
Finally, up to 2PN, the equations of motion depend only on
the constant & through the combination Gam,,. At 3PN, this
is no more the case and an additional dependence on «
appears in some terms. This is a new and unexpected result.
One way of seeing it is to rewrite it as a dependence on (,
through the relation 1 —¢ = a(1 +7/2). It is then clear
that it introduces an explicit dependence on the function wy.
However, depending on the compact objects we are
considering such a particularity may disappear, and thus
it may be difficult to see the observational consequence of
such a dependence.

2. The binary black hole limit

An important test of our result consists in studying the
binary black hole limit. We have seen that the sensitivity of a
stationary black hole is exactly given by s = 1/2. If we
assume that s, = 1/2 still holds for each black hole in a
binary system, our result is indistinguishable from GR, up to
a simple rescaling of the mass. In particular, the nonlocal tail
part of the acceleration does not contribute and the explicit
dependence in ¢ disappears. This result confirms that
Hawking’s theorem may hold also for binary black holes,
which is a priori not a stationary system, at least up to 3PN
order. However, the 3PN dynamics only describes the early-
inspiral phase of the coalescence. In particular, it does not tell
us anything about the late-inspiral phase where strong-field
effects appear and Hawking’s theorem may break down. A
correct implementation of such hypothetical effects can only
be done using the ST EOB formalism coupled to full
numerical relativity results for ST theories. Some numerical
results [58] have shown that, unless an external mechanism
activates the dynamics of the scalar field, binary black holes
in ST theories and GR are indistinguishable.

3. Black hole—neutron star binary

We now consider the case when one of the compact
object is a black hole, say s; = 1/2, while the other one is a
neutron star, with s, =~ 0.2. First, we find that the explicit
dependence in ¢ also disappears for this configuration, up
to an unphysical shift. Then, as we have 7 = 6, = f8; =
k; = y; = 0, the final result depends only on one single
parameter,

5, :1—54(1 ~ 25,2, (5.15)
It means that the 3PN equations differs from GR only
through this only parameter. Thus, if this result still holds
for the gravitational waveforms,” the black hole-neutron
star system may not allow to distinguish between Brans-
Dicke theory (with constant function ), and general
scalar-tensor theories. Of course, this conclusion does
not apply when dynamical scalarization takes place
[37,38], a situation that is not described by our prescription
for the matter through a skeletonized action [41].

4. Concluding remarks

In the companion paper [43], we compute the conserved
integrals of motion and the reduction to the center-of-mass
frame. Due to the presence of the nonlocal term in the
action (3.27), the computation of the conserved energy and
angular momentum has to be treated carefully, as some
extra contributions may appear [12].

Finally, in scalar-tensor theories, the finite-size effects
are expected to start contributing to the dynamics at 3PN
order [27].° They may prove very usefull to constrain the
theory as such effects can have a different signature in the
signal. Thus, if we want to capture the full gravitational
waveform at 2PN order in ST theories, the tidal effects
should be properly included in the 3PN dynamics. As itis a
work on its own, we have not considered these effects in
this paper, and have left it for a future work.
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APPENDIX A: DEMONSTRATION OF EQ. (3.2)

In this Appendix, we give the proof of Eq. (3.2) in the
case of dimensional regularization. It mainly follows the

’It has already been shown that it is the case for the tensor
gravitational waveform [31].

The tidal effects may even start at a lower order (1PN) due to
some dynamical scalarization phenomenon that could be respon-
sible for the large value of some coefficients in the expansion of
the mass with respect to the scalar field [27].
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proof done for Hadamard regularization in [11]. We
consider the difference

Ay—L,- / dxM(L,). (A1)
where L, = Ik d3x£g involves only the complete solution.
As it is perfectly regular everywhere, we do not need any
regularization. Thus, we can add a regulator in the integral
without altering the result,

A, = / dlx[C, — M(L)). (A2)

Now, as the complete solution £, coincide with M(L,)
outside the source, the integrand of (A2) is zero in the
exterior region. Thus, it is of compact support around the
source and we can PN expand Eq. (A2) without changing
the result,
A, = /ddx[ﬁ_g - M(L,)]. (A3)
Then, the matching equation (3.1) implies a common
structure of the Lagrangian densities, namely
M(Ly) = M(Ly) ~ D apr*(Inr)PF(1),  (A4)
where a € Z, b € N, and the functions F(z) are functions

of the source multipole moments. Inserting Eq. (A4) into
|

the integral involving M(L,) in Eq. (A3), one can see that
it involves integrals of the type [d9xa, r“(Inr)?F(r). After
performing the angular integration, one is left with the
simple radial integrals, f dr r**2*¢(Inr)?, where we have
written the dimension d = 3 + €. These integrals are all
zero by analytic continuation in € € C. To show this, we
split this integral into a near-zone integral, fr<R, and a far-
zone integral, [._ .. The near-zone integral is computed for
Re(e) > —a — 3, and analytically continued for ¢ € C,
except for the value ¢ = —a — 3. Similarly the far-zone
integral is computed for Re(e) < —a — 3, and analytically
continued for € € C, except for the value € = —a — 3.
Then, summing the two analytic continuations, one find
that they cancel each other and the total integral is zero for

any ¢ € C. Finally, one gets that [ d?’xM(L,) = 0,andasa
consequence,

A, = / dxL,.

This ends our proof.

(AS)

APPENDIX B: THE MATTER SOURCE
DENSITIES IN SCALAR-TENSOR THEORIES

In this Appendix, we write the explicit expressions of the
matter source densities (4.16) as a function of the PN
potentials at the required order:

:%m 12 (- 20000, + 5 - g V)| w) + 12 (Bla

o = (/% - {1 L ((1 ~25) w0, +57% —%(Vhﬂ V6D (x —y,) + [1 < 2], (B1b)

o, = éml [vgu{ —ﬁéijv%] S (x —y) +[1 < 2], (Blc)
e _21) i {(1 ~25) 4 (((1 25, + 45 +#f"ﬁ4@)(1 - 2s1)> W),

_%(1 —2s)0? = (1 — 2s1)(V)l>}6(‘1)(x Cy) 42 (B1d)
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