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Considering the unexpected similarity between the thermodynamic features of charged AdS black holes
and that of the van der Waals fluid system, we calculate the number densities of black hole micromolecules
and derive the thermodynamic scalar curvature for the small and large black holes on the coexistence curve
based on the so-called Ruppeiner thermodynamic geometry. We reveal that the microscopic feature of the
small black hole perfectly matches that of the ideal anyon gas and that the microscopic feature of the
large black hole matches that of the ideal Bose gas. More importantly, we investigate the issue of
molecular potential among micromolecules of charged AdS black holes and point out explicitly that the
well-known experiential Lennard-Jones potential is a feasible candidate to describe interactions among
black hole micromolecules completely from a thermodynamic point of view. The behavior of the
interaction force induced by the Lennard-Jones potential coincides with that of the thermodynamic scalar
curvature. Both the Lennard-Jones potential and the thermodynamic scalar curvature offer a clear and
reliable picture of microscopic structures for the small and large black holes on the coexistence curve for
charged AdS black holes.
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I. INTRODUCTION

It is widely accepted that black holes are the most
probable candidate to provide a bridge between a possible
quantum theory of gravity and the classical general rela-
tivity, and also that they likely represent one of the most
intriguingmacroscopic objects. Evenmore surprising is that
a black hole can be mapped to an ordinary thermodynamic
system based on the groundbreakingworks byHawking and
Bekenstein [1,2] that the black hole has temperature and
entropy on an event horizon. From then on, the thermody-
namics of black holes has been being an active and
fascinating field of research [3–5] and also being regarded
as the most feasible example with semiclassical quantum
gravity effects. While intriguing, the most important dis-
covery in this active field is [6] the phase transition of black
holes in the anti–de Sitter (AdS) spacetime. Furthermore,
this result has been extended to a variety of more compli-
cated cases, especially to the case of charged AdS black
holes in which an analytical analogy with the van der Waals
fluid system can be made [7–11]. More precisely, a nice

interplay between the thermodynamic behaviors of the
charged AdS black hole and some notable features of the
van der Waals fluid has been exhibited in detail. In this
context, several landmarks have been derived [12,13] for
the charged AdS black hole, such as the P − V or T − S
criticality, the first-order phase transition, the universal ratio
of critical values, and the behaviors near critical points.
Recently, the so-called Ruppeiner thermodynamic geom-

etry provides [14–16] phenomenologically a potential
description about the types of interaction among micro-
molecules both in an ordinary thermodynamic system and
in a black hole system. This approach thus gives a new
perspective for us to study the thermodynamics of black
holes, particularly in the exploration of microscopic char-
acters of black holes. A lot of studies have shown [17–24]
that the Ruppeiner thermodynamic geometry can tell us the
following information through the thermodynamic scalar
curvature of black holes:

(i) A positive thermodynamic scalar curvature corre-
sponds to a repulsive interaction.

(ii) A negative thermodynamic scalar curvature corre-
sponds to an attractive interaction.

(iii) Avanishing thermodynamic scalar curvature implies
no interaction.

Besides, we have explored in our previous work [25] the
microscopic structures of a hairy black hole of Einstein’s
theory conformally coupled to a scalar field in five
dimensions with the help of the Ruppeiner thermodynamic
geometry, and found that the structures are similar to that
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of the usual ideal anyon gas, Fermi gas, and Bose gas in
different parameter spaces. Therefore, it is natural to ask
how to describe this interaction more intuitively and
visually. Here we try to answer this question completely
from a thermodynamic point of view. We take the charged
AdS black hole as an example and put forward a conjecture
that the well-known experiential Lennard-Jones potential is
a feasible candidate which probably offers a quantitative
description of the interaction force among micromolecules
in the black hole. As expected, our results show that the
behavior of the interaction force induced by the molecular
Lennard-Jones potential coincides with that of the thermo-
dynamic scalar curvature. Hence, the investigation of the
issue of molecular potential among micromolecules can
provide a new possible perspective to deeply explore
internal information of black holes.
The paper is organized as follows. In Sec. II, we derive the

thermodynamic scalar curvature and the number density of
micromolecules for charged AdS black holes, with which
some relevant critical phenomena can be re-explained. In
Sec. III, we introduce themolecular Lennard-Jones potential
among micromolecules of charged AdS black holes and
analyze its feasibility to depict the microscopic structure of
charged AdS black holes. Finally, we devote to drawing
discussions of our results in Sec. IV.

II. CRITICAL PHENOMENA AND
THERMODYNAMIC CURVATURE

As an a priori choice, we proceed to review some basic
thermodynamic critical properties of the spherically sym-
metric charged AdS black hole [12]. The black hole
temperature takes the following form in terms of the
horizon radius rh,

T ¼ 1

4πrh

�
1þ 3r2h

l2
−
Q2

r2h

�
; ð1Þ

where Q represents the total charge and l the effective AdS
curvature radius that is associated with the thermodynamic
pressure P ¼ 3=ð8πl2Þ. Meanwhile, the entropy S and the
thermodynamic volume V, conjugate to the temperature T
and the thermodynamic pressure P, respectively, have the
forms,

S ¼ πr2h; V ¼ 4

3
πr3h: ð2Þ

With the reminiscent of the van der Waals fluid, one can
calculate [12] the P − V critical point or T − S critical point
for the charged AdS black hole at a fixed Q,

Tc ¼
ffiffiffi
6

p

18πQ
; Sc ¼ 6πQ2;

Pc ¼
1

96πQ2
; Vc ¼ 8

ffiffiffi
6

p
πQ3: ð3Þ

When the temperature or the pressure is below its critical
value, i.e., T < Tc or P < Pc, there exists one first-order
phase transition, called the small-large black hole phase
transition. Here we regard the small black hole with
thermodynamic volume V below the critical value Vc
and the large black hole with thermodynamic volume V
above the critical value Vc. The coexistence curve of the
two phases is described by the Clausius-Clapeyron equa-
tion and the Maxwell equal area law. For the sake of
convenience, one usually introduces some dimensionless
reduced parameters as follows,

t ≔
T
Tc

; s ≔
S
Sc

; p ≔
P
Pc

: ð4Þ

Note that 0 ≤ t ≤ 1 and 0 ≤ p ≤ 1. Hence, the phase
diagram can be demonstrated by the equation [26],

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð3 − ffiffiffiffi

p
p Þ

2

r
; or

p ¼
�
1 − 2 cos

�
cos−1ð1 − t2Þ þ π

3

��
2

; ð5Þ

and the corresponding small and large black holes can be
described by the following two equations, respectively,

ss;l ¼
1

2p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 −

ffiffiffiffi
p

pq
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − ffiffiffiffi

p
p Þ

q �
2

; ð6Þ

where the subscript s stands for the small black hole and l
for the large black hole. Note that ss and sl satisfy the
inequalities, 0 < ss ≤ 1 and sl ≥ 1, respectively.
Another important concept is the number density of

black hole micromolecules which was introduced by Wei
and Liu [23] in order to measure the microscopic degrees of
freedom of the charged black hole. It is defined as

n≡ 1

2l2Prh
; ð7Þ

where lP is the Planck length, lP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
. For our

current discussion, we need to introduce a dimensionless
reduced number density ñ≡ n=nc with the aid of the
critical number density nc ¼ 1=ð2 ffiffiffi

6
p

QÞ, and thus the
reduced number densities of the small and large black
holes on the coexistence curve read

ñs;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − ffiffiffiffi

p
pp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1 − ffiffiffiffi
p

p Þp
ffiffiffi
2

p ; ð8Þ

where Eqs. (6) and (7) have been used. The behaviors of the
reduced number densities of the small and large black holes
on the coexistence curve are depicted in Fig. 1. We can see
that when t ¼ 0, i.e., for the extremal situation, the number
density is maximum for the small black hole, while it
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equals zero for the large black hole. With the increasing of
temperature t, the number density decreases for the small
black hole, while it increases for the large black hole. In
particular, the number density of the small black hole is
equal to that of the large black hole at the critical point.
Furthermore, in order to explore the types of interaction

among micromolecules of charged AdS black holes, one
can appeal to the Ruppeiner thermodynamic geometry that
is established on the language of Riemannian geometry.
It is known that such a scheme is effective and feasible
for investigating an ordinary thermodynamic system. The
metric of the Ruppeiner geometry can be written in the
Weinhold energy form [27],

gαβ ¼
1

T
∂2M

∂Xα∂Xβ ; ð9Þ

where Xα represents an independent thermodynamic quan-
tity, M is the black hole enthalpy, and T is the Hawking
temperature. In our case we set coordinates Xα ¼ ðS; PÞ for
a fixed Q. On the coexistence curve, according to the sign
convention [14,15], the reduced thermodynamic curvature
for the small and large black holes can be written as the
following forms,

R̃s;l ≡ Rs;l

jRcj
¼ −

1

2t
·
3ss;l − 1

s5=2s;l

; ð10Þ

where we have utilized Eqs. (1), (4), and (6), and the critical
curvature Rc ¼ −1=ð12πQ2Þ. Now it is ready for us to
determine the types of interaction among micromolecules
of charged AdS black holes.
For the large black hole, we obtain R̃l < 0, impling that

an attractive interaction dominates among micromolecules
of charged AdS black holes and that the microscopic
feature of the large black hole matches that of the ideal

Bose gas [28]. While for the small black hole, it becomes a
little bit complicated. For brevity, we introduce an exotic
parameter sensitivity γ defined as

γ ≡ Q

ð ffiffiffi
5

p
− 2Þl : ð11Þ

Note that 0 < γ ≤ γc, where the critical value γc ¼
1=ð6 ffiffiffi

5
p

− 12Þ ≃ 0.706. With the aid of this parameter γ,
we can clearly know the information of the thermodynamic
curvature for the small black hole. When γ > 1=2, we get
R̃s < 0, meaning that an attractive intermolecular interac-
tion dominates among micromolecules of charged AdS
black holes. When γ < 1=2, we deduce R̃s > 0, implying
that a repulsive intermolecular interaction dominates. The
transmutation between attraction and repulsion appears at
γ ¼ 1=2 and the corresponding reduced temperature and
pressure read

t ¼ tt ≡ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð47 − 21

ffiffiffi
5

p
Þ

q
≃ 0.758;

p ¼ pt ≡ 9ð9 − 4
ffiffiffi
5

p
Þ ≃ 0.501: ð12Þ

Hence, we obtain that the microscopic feature of the small
black hole matches that of the ideal anyon gas [29,30]. The
behaviors of the thermodynamic curvature of the small
and large black holes on the coexistence curve are shown
in Fig. 2.
We can find that for the large black hole, the thermody-

namic curvature is negative. However, for the small black
hole, the thermodynamic curvature can take positive, neg-
ative, and zero, and the transmutation phenomenon happens
at Tt ¼ 0.758Tc. Moreover, according to Ruppeiner’s
explanation [15], the microscopic degrees of freedom of
black holes are carried by the Planck area pixels l2P and the
absolute value of the thermodynamic curvature jRj can be

FIG. 1. The reduced number densities of the small and large
black holes on the coexistence curve with respect to the reduced
temperature t.

FIG. 2. The reduced thermodynamic curvature for the small and
large black holes on the coexistence curve with respect to the
reduced temperature t.
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regarded as the average number of correlated pixels.
Therefore, we can say that the absolute value of the
thermodynamic curvature can reflect the strength of inter-
molecular interaction of black holes in some sense; i.e., the
big absolute value of the thermodynamic curvature corre-
sponds to strong interaction and the small absolute value of
the thermodynamic curvature to weak interaction.

III. MOLECULAR POTENTIAL

By means of the Ruppeiner thermodynamic geometry,
we have a clear understanding of types of interaction
among micromolecules of charged AdS black holes. For
the large black hole, an attractive intermolecular interaction
dominates and for the small black hole, an attractive or a
repulsive intermolecular interaction exists, depending on
the value of exotic parameter sensitivity. Naturally, the
question is how to describe this phenomenon more intui-
tively. At first, it is known that the Lennard-Jones potential
provides a good description of interaction among mole-
cules in the van der Waals fluid, where the interaction force
is repulsive in a short range, but attractive in a long range.
Next, it is well accepted that the thermodynamic behaviors
of charged AdS black holes are very similar to that of the
van der Waals fluid. As a result, it is reasonable to choose
such a potential among micromolecules of charged AdS
black holes which takes the form [31]

uðrÞ ¼ 4u0

��
d
r

�
12

−
�
d
r

�
6
�
; ð13Þ

where r is center-of-mass separation between two mole-
cules, d is the diameter of one molecule, and u0 is the
constant. It is evident that the molecular potential vanishes,
uðrÞ ¼ 0, if r ¼ d. In addition, the potential takes its
minimum −u0 at r ¼ r0 ≡ 21=6d ≃ 1.122d.
According to the above molecular potential, the corre-

sponding interaction force of one molecule on its neigh-
boring molecule is

FðrÞ≡ −
duðrÞ
dr

¼ 24u0
r

�
2

�
d
r

�
12

−
�
d
r

�
6
�
; ð14Þ

where FðrÞ is negative (an attractive interaction) when
r > r0, and positive (a repulsive interaction) when r < r0.
Figure 3 exhibits the behaviors of interaction force for the
small and large black holes on the coexistence curve which
are summarized as follows.

(i) The small black hole is in the frozen state when
t ¼ 0. In this situation, the distance between two
micromolecules is minimum r ¼ rmin ¼ d, and FðrÞ
is positive (a repulsive interaction). However,
the number density is maximum as shown in Fig 1.
The thermodynamic curvature R̃s is very large
(see Fig. 2), meaning that a repulsive intermolecular
interaction dominates. With the increasing of

temperature t, the reduced number density ñs begins
to decrease from the maximum and the distance
between two micromolecules gradually increases,
indicating that a repulsive force is going to weaken
(see Fig. 3). Meanwhile, the value of thermodynamic
curvature R̃s starts to decrease. When the temper-
ature t approaches its transmutation value
tt ¼ 0.758, we can infer r ¼ r0 ≃ 1.122d and
FðrÞ ¼ 0, which agrees with the effect of R̃s ¼ 0.
After then continuing to raise the temperature,
we obtain r > r0 and FðrÞ < 0, implying that an
attractive intermolecular interaction dominates.
Correspondingly, the thermodynamic curvature R̃s
becomes negative. In this process, we can find that
the attractive force FðrÞ has a maximum value and
the absolute value of the negative R̃s also possesses a
maximum value. Therefore, the behaviors analyzed
from the molecular potential and from the thermo-
dynamic curvature are coincident with each other.

(ii) For the large black hole, the reduced number density
is zero when t ¼ 0, implying that the distance
between two micromolecules is infinity and FðrÞ
is close to zero. Meanwhile, the vanishing thermo-
dynamic curvature R̃l ¼ 0 means no interaction.
With the increasing of temperature t, the reduced
number density ñl begins to increase from zero,
indicating that the distance between two micro-
molecules gradually decreases from infinity, and
that an attractive force FðrÞ is getting stronger.
Correspondingly, the absolute value of the negative
thermodynamic curvature R̃l is going to become
large, the distance between two micromolecules is
continuously decreasing but still keeping larger than
r0, i.e., r > r0, so an attractive intermolecular

FIG. 3. The molecular interaction force FðrÞ for the small and
large black holes on the coexistence curve of charged AdS black
holes with respect to the center of mass separation r in the unit of
micromolecule diameter d.
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interaction dominates. Thus, the behaviors of inter-
molecular interaction in the large black hole we
obtain from the molecular potential and from the
thermodynamic curvature coincide with each other.

(iii) At the critical temperature t ¼ 1, the reduced num-
ber densities of the small and large black holes are
equal to each other, that is, ñs∶ñl ¼ 1∶1. We can
approximately obtain1 r ≃ 2d, and conclude that an
attractive intermolecular interaction dominates in the
coexistence state of the small and large black holes.

Before finishing this section, we try to explain the
seeming puzzle why the Coulomb potential has no effects
to micromolecules of the charged AdS black hole. One
reason is that the charge Q is treated as a fixed external
parameter but not as a thermodynamic variable due to the
thermodynamical behaviors of charged AdS black holes.
The other reason is that the charged AdS black hole can be
set [12] to have the same critical values [see Eq. (3)] as that
of the van der Waals fluid if an exact coincidence between
the two systems is required. To this end, the relations
between the black hole charge Q and the parameters a and
b in the van der Waals fluid2 can be obtained [12],

a ¼ 3

4π
and b ¼ 2

ffiffiffi
6

p
Q

3
: ð15Þ

On the other hand, according to the literature [31], the
parameter b is regarded as the effective volume (or
covolume) of a molecule and the parameter a as an average
value of the attractive potential energy per unit concen-
tration. Thus, the two parameters can be given from the
point of view of the Lennard-Jones potential,

b ¼ d3; a ¼ −2π
Z

∞

r0

uðrÞr2dr ¼ 20πd3u0
9

ffiffiffi
2

p : ð16Þ

Now we can make a possible explanation why there
exists no Coulomb potential among micromolecules of
black holes. As far as the relations ofQ, a, and bmentioned
above are concerned, the charge Q is just a fixed external
parameter and only related to the effective volume (or
covolume) of micromolecules, which does not produce the
Coulomb potential among micromolecules. As a result, it is
reasonable and acceptable that the Lennard-Jones potential
Eq. (13) describes the interaction of micromolecules for
the charged AdS black hole although this potential was
originally proposed to depict interactions among neutral
molecules or atoms. Moreover, the coefficient u0 in

Eq. (13) can also be determined from Eqs. (15) and
(16), u0 ¼ 27

ffiffiffi
3

p
=ð160π2QÞ.

IV. SUMMARY

Based on the Ruppeiner thermodynamic geometry, we
give the exact expressions of the number density and
the thermodynamic scalar curvature for the small and
large black holes on the coexistence curve. We point out
explicitly that the well-known experiential Lennard-Jones
potential is one of the best choices to describe inter-
actions among micromolecules for the charged AdS black
hole completely from the thermodynamic point of view.
The behavior of the interaction force induced by the
molecular potential coincides with that of the thermody-
namic scalar curvature. Both the Lennard-Jones potential
and the thermodynamic scalar curvature offer a clear
picture of microscopic structures for the small and large
black holes on the coexistence curve. In a sense, the
Lennard-Jones potential provides a new possible per-
spective to deeply explore the internal information of
black holes.
Finally, we make a simple discussion about our results.
(i) The Ruppeiner thermodynamic geometry plays a

bridge role in connection between the black hole
thermodynamics and the molecular potential
method, where the latter is first proposed in the
present work. Completely from a thermodynamic
point of view, an enlightening work [12] discovered
an interesting similarity between the thermodynamic
features of charged AdS black holes and the critical
behavior of the van der Waals fluid system; i.e., it is
the relation between the Hawking temperature and
event horizon radius that is crucial for such an
analogy, for example, the BTZ black holes behave
like an ideal gas. In other words, the charged AdS
black holes correspond to a system with interaction,
while the BTZ black hole is such a system with
no interaction. On the other hand, in the light of
Ruppeiner thermodynamic geometry, the thermody-
namic curvature plays a vital role in connection
between macroscopic and microscopic scales in a
thermodynamic system. A nonvanishing thermody-
namic curvature corresponds to a system with
interaction, but a vanishing one corresponds to a
system with no interaction. This has been confirmed
by the study of a large number of statistical models
[14]. The situation is same for black holes, for
instance, the thermodynamic curvature is nonvan-
ishing for the charged AdS black holes [20–22],
while it is vanishing for the BTZ black holes [18,19].
These results are coincident with the conclusion
from black hole thermodynamics. Based on the
information about interaction among micromole-
cules in black holes, it is natural for us to introduce
the molecular potential.

1The appearance of approximate equality is based on the
asymmetry characteristics of the number densities of the small
and large black holes on the coexistence curve, as shown in Fig. 1.

2The equation of state for the van der Waals fluid takes the
form, kBT ¼ ðPþ a=v2Þðv − bÞ, where v stands for the specific
volume and kB is the Boltzmann constant.
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(ii) We propose a new attempt to explore constituents
of black holes according to the type of interaction.
For conventional statistical models, like the ideal gas
or van der Waals fluid system, its constituents are
known. Therefore, the mechanism of interaction
between molecules is clear; that is, the molecular
forces originate from an electromagnetic interaction
of electrons and atomic nuclei, while for black holes,
the situation is quite different and some facts should
be pointed out. First, since a black hole can possess
temperature and entropy and, as Boltzmann said, “if
you can heat it, it has microscopic structure,” there is
no doubt that a black hole should have microscopic
structure. Second, there does not exist hitherto a
good and complete theory of quantum gravity,
although the most likely candidate theories—string
theory and loop quantum gravity theory—have
achieved good results to some extent. Thus, the
exploration of the microscopic structure of black
holes is bound to create some speculative assump-
tions. Third, it is still unclear about the constituents
of black holes. Finally, the Ruppeiner thermody-
namic geometry phenomenologically provides the
information about interaction among micromole-
cules both in an ordinary thermodynamic system
and in a black hole system. Hence, comparing to
the methods of studying the usual statistical models,
we can adopt an opposite process to explore the
constituents of black holes, i.e., from the type of
interaction to microscopic structure. So, in this
sense, we can say that the microscopic feature of
the small black hole perfectly matches that of the
ideal anyon gas, and that the microscopic feature of

the large black hole matches that of the ideal Bose
gas. Meanwhile, it is justified that the molecular
potential method can be used to effectively model
the microscopic behaviors of black holes. This
method can also be regarded as a new attempt to
expand black hole thermodynamics.

(iii) We give the reason that we adopt the Lennard-Jones
potential to model microscopic behaviors of
charged AdS black holes. Because a great similarity
between the thermodynamic features of charged
AdS black holes and that of the van der Waals fluid
system has been well-established, the Lennard-
Jones potential that was adopted in the van der
Waals fluid system is now a natural choice to
describe microscopic behaviors of charged AdS
black holes. On the other hand, according to the
analysis of the thermodynamic curvature, the
charged AdS black holes can exhibit both attraction
and repulsion. The Lennard-Jones potential just
provides a good description of the molecular forces
which are repulsive at small and attractive at large
distances, respectively. Moreover, it should be
emphasized that the choice of interaction potential
is not unique. The Lennard-Jones potential is here
selected mainly due to its simpleness and easiness
to extract information of interaction.
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