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Through likelihood analyses of both current and future data that constrain both the expansion history of
the Universe and the clustering of matter fluctuations, we provide falsifiable predictions for three broad
classes of models that explain the accelerated expansions of the Universe: ΛCDM, the quintessence
scenario, and a more general class of smooth dark energy models that can cross the phantom barrier
wðzÞ ¼ −1. Our predictions are model independent in the sense that we do not rely on a specific
parametrization, but we instead use a principal component (PC) basis function constructed a priori from a
noise model of supernovae and cosmic microwave background observations. For the supernovae
measurements, we consider two type of surveys: the current JLA and the upcoming WFIRST surveys.
We show that WFIRST will be able to improve growth predictions in curved models significantly. The
remaining degeneracy between spatial curvature and wðzÞ could be overcome with improved measurements

of σ8Ω
1=2
m , a combination that controls the amplitude of the growth of structure. We also point out that a

PC-based figure of merit reveals that the usual two-parameter description of wðzÞ does not exhaust the
information that can be extracted from current data (JLA) or future data (WFIRST).
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I. INTRODUCTION

The source of the current accelerated expansion of the
Universe, discovered almost two decades ago [1,2], remains
one of themost intriguing puzzles of our time. Froman exotic
component with negative pressure to a break of general
relativity on cosmological scales, many explanations have
been theorized. Moreover, large experimental efforts [3–16]
either have been made, are in progress, or are currently
being proposed to measure the expansion history of the
Universe and growth of structurewith percent-level precision
(or better).
Various parametrizations of the dark energy equation of

state have been thoroughly studied in the literature [17–28].
In this work, we study a broader class of cosmic acceleration
scenarios, modeling the equation of state wðzÞ by a principal
component (PC) basis function, following previous works
[29–31]. We analyze a broad class of scenarios with a
constant or time-dependent (but smooth) equation of state,
with and without spatial curvature. This work provides both
an update of the current state of the art on constraints on the
Hubble expansion rate, as a functionof redshift, the luminosity
distance, and the growth of structure, and predictions for
the upcoming surveys. We use the constraints from current
and futuremeasurements tomake predictions for other cosmic
acceleration observables. Specifically, we use both current
measurements of supernovae (JLA) and future measurements
(WFIRST), observations of the cosmicmicrowavebackground

(CMB) temperature and polarization power spectra by the
Planck satellite, baryon acoustic oscillations, and the Hubble
constant. The results of this work can be used as a ground test
for dark energy scenarios, a violation of which could poten-
tially rule out a whole class of acceleration paradigms.
We will divide our cosmological observables into those

providing us information about the geometry of the
Universe and those with information about the clustering
of matter. In the context of smooth dark energy models,
dark energy affects the growth of structures only through
the background expansion. This assumption enables a
consistency check by comparing observables that are
sensitive to the background expansion and to the growth
of linear perturbations, which is violated only in models
that either modify general relativity or predict the clustering
of the dark energy itself. Therefore, the rate of evolution of
the growth functions with redshift is a powerful probe of
dark energy [32,33]. However, one should be cautious
when interpreting consistency tests based on particular
parametrizations because growth and geometry probes are
sensitive to the evolution of the dark energy equation of
state in different ways, and therefore wrong assumptions
on the redshift behavior of wðzÞ could induce misleading
discrepancies. On the other hand, the choice of a particular
parametrization has the advantage of being more computa-
tionally efficient, and can falsify interesting scenarios such
as wðzÞ ¼ constant. This paper offers a complementary
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approach to previous efforts [32,33] that relied on specific
functional forms for wðzÞ.
Another appealing possibility is to use wðzÞ PCA to

examine in detail how systematic effects and different
survey strategies induce changes in the dark energy
equation of state [34]. In the context of WFIRST,
Ref. [5] provides a detailed analysis on the relative
importance of various systematic uncertainties, as well
as the differences in the figure of merit between a space
survey that carries an onboard integral field channel (IFC)
spectrometer and a strategy that assumes that spectra will
be observed from the ground. It would be interesting to
understand how much their conclusions depend on the
parametrization adopted, which we postpone for future
work to be accomplished in collaboration with the WFIRST
supernova science investigation teams.
This paper is organized as follows. In Sec. II we discuss

the data and broad classes of models that we use in our
analysis. In Sec. III we present our main results, where
we analyze the falsifiability of smooth dark energy
scenarios [ΛCDM, quintessence, and more general
smooth dark energy models that cross the phantom barrier
of wðzÞ ¼ −1] in a model-independent way. In Sec. IV
we discuss the model-independent definition of the figure
of merit, first proposed in Ref. [35]. We then quantify, in
Sec. V, the effects of marginalizing over spatial curvature
on the different classes of dark energy scenarios studied
and vice versa (we see the effect on the curvature
posteriors after marginalizing over the dark energy
parameters). We present our conclusions in Sec. VI.

II. DATA AND MODELS

We ran multiple Markov chain Monte Carlo (MCMC)
likelihood analyses with a modified version of the
CosmoMC code [36–39]. Our chains were divided into
three broad categories (see Table I): the first group, named
Geo, contains data sets that probe only the geometry
of our Universe. The second group, called All, also
includes data sets that measure the linear and nonlinear
evolution of the structure formation. The last group,
named All w/o WL-RSD, is similar to Geo but we
exchange the CMB compressed Gaussian likelihood [9]1

with the full CMB temperature and polarization power
spectra measurements [40].
One of the aims of this paper is to assess how the posterior

for spatial curvature depends on our assumptions about the
behavior of wðzÞ. In this investigation, we introduce an
additional data set—named All w/o WL-RSD—given that
there is a well-known tension between CMB and weak
lensing on the amplitude of perturbations that can bias such a
posterior. The comparison between All w/o WL-RSD and
All constraints indicates the magnitude of such biases.
In addition to these broad categories, our chains in the

Geo group were further divided into two subgroups,
depending on the adopted supernovae data set. The first
subgroup uses the current JLA compilation implemented
on CosmoMC [4], and the second one adopts WFIRST
simulated data [5].
All the chains ran in this work included baryon acoustic

oscillations (BAO) [41,42] and local H0 measurements [43].
The local H0 measurements are implemented in CosmoMC
as a Gaussian prior in the inverse angular diameter distance
at the effective redshift z ¼ 0.04 [44]. Because the principal
components allow wðzÞ to vary in the redshift range
0 < z < 0.04, PCAs introduce a dependency between the
dark energy equation of state at low redshift and the
predictedH0 given a fixed inverse angular diameter distance,
which broadens the H0 posterior in comparison to ΛCDM.
Among all the different strategies presented in the

WFIRST supernovae analysis [5], we adopted the so-called
Imaging-Allz. That Imaging-Allz setup provides mea-
surements of a few thousand type IA supernovae in a few
redshift bins, observed over the broad redshift range 0 <
z < 3 (see Fig. 1). It does so by considering the scenario
that a ground-based spectroscopy will be sufficient to
calibrate the redshift evolution of the supernovae spectral
features, which allows the WFIRST satellite to be solely
an imaging survey. Complications of this hypothesis work
in the direction of lowering the number of observed
supernovae, increasing the systematic errors, and short-
ening the redshift range. We intend to address the impact
that the different WFIRST strategies have in our conclu-
sions in future work.
The All set of chains constrains the evolution of

perturbations by adding the full lensed Planck temperature
and polarization data [40], CMB lensing reconstruction
[10], redshift space distortions [41], and tomographic
CFHTLenS weak lensing data [46]. For both the CMB

TABLE I. Data sets that define the Geo, All, and All w/o WL-RSD group of chains.

(a) Geo (b) All (c) All w/o WL-RSD

CMB Gaussian Full Planck (including lensing reconstruction) Full Planck
BAO DR12þWiggleZþ 6DFþMGS DR12 (including RSD) þ WiggleZþ 6DFþMGS DR12þWiggleZþ 6DFþMGS
H0 Riess et al. 2016 Riess et al. 2016 Riess et al. 2016
SN JLA or WFIRST JLA JLA
WL � � � CFHTLens (including nonlinear scales) � � �

1In the Geo chains, we have adopted the Gaussian compressed
likelihood (not marginalized over the AL parameter).
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lensing reconstruction and the CFHTLenS data sets, we
have used range cuts that are less conservative than the ones
adopted by the Planck Collaboration, as they include scales
where gravitational collapse is nonlinear [9]. On the lensing
reconstruction likelihood, we adopt the so-called aggres-
sive cuts, and on the CFHTLenS weak lensing, we adopt
the six bin tomographic likelihood. With the potential
systematic contamination in mind, we do not overempha-
size the statistical significance of deviations from ΛCDM.
To account for the nonlinear scales in the matter power

spectrum, we adopt the HALOFIT fit [47]. Given that
HALOFIT has only been calibrated to models with a
constant dark energy equation of state, we apply the
mapping described in Ref. [48] between a general time-
evolving dark energy equation of state and w ¼ const.
This mapping has been tested against simulations for the
well-known w0 − wa dark energy parametrization, and we
assume that the arguments presented in Refs. [48,49] that
justify this mapping are also valid here. Indeed, the authors
of Ref. [49] have argued that the nonlinear completion (of
the power spectrum) of rapidly varying wðzÞmodels can be
obtained from w ¼ const models by matching the distance
to the last scattering surface.
We fix the sumof the neutrinomasses as

P
mν ¼ 0.06 eV

in all the chains. In a future paper, we will analyze how the
sum of neutrino masses is affected when marginalizing over
different assumptions on the dark energy equation of state.
In this paper we give an up-to-date status of the falsifi-

ability of smooth dark energy models beyond ΛCDM.
Furthermore, we analyze the impact of marginalizing differ-
ent dark energy scenarios on parameters like the curvature on

spatial slicings, ΩK , and how measurements of a parameter
that monitors local structure, S8 ≡Ω1=2

m σ8, are relevant to
constraining dark energy andΩK simultaneously.2 Instead of
performing a case-by-case analysis, we chose to do a model-
independent analysis using a principal component basis,
given that the main advantage of this basis is that it is
complete.
We expand the dark energy equation of state as

wðzÞ ¼ wfiducial þ
XNPC

i¼1

αieiðzÞ; ð1Þ

where eiðzÞ with i ¼ 1;…; NPC are the principal compo-
nents of perturbation around the fiducial model
wfiducial ¼ −1. These are shown in Fig. 2. The principal
components have support in the range 0 < z < zmax ¼ 3.
For z > zmax, we extrapolate the equation of state by
assuming w ¼ w∞ ¼ constant. Therefore, the energy den-
sity of dark energy is given by

ρDEðzÞ ¼
8<
:

ρDEð0Þ exp
h
3
R
z
0 dz

0 1þwðz0Þ
1þz0

i
; z ≤ zmax

ρDEðzmaxÞ
�

1þz
1þzmax

�
3ð1þw∞Þ

; z > zmax:
ð2Þ

Here, and throughout this paper, we assume w∞ ¼ −1.
The parameter vector in the Geo chains is θ⃗Geo ¼

fΩch2; θA; α1;…; αNPC
;ΩKg. Here, Ωch2 is the cold dark

matter density, θA is the angular size of the horizon at the
time of recombination,H0 is the local Hubble constant, and
h≡H0=ð100 km=s=MpcÞ. To reduce the dimensionality
of the expensive MCMC chains, we fixed the baryon
density Ωbh2 ¼ 0.02228 and the scalar tilt ns ¼ 0.966 in
all the Geo chains, even though there is a correlation
between these two quantities with the angular size of
the CMB peaks and the so-called shift parameter R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

p
DAðz�Þ=c [9,50], where DAðzÞ is the comoving

angular diameter distance to redshift z, and z� is the redshift
of recombination. Most of the constraining power on the
amplitude of the principal components comes, however,
from type IA supernovae and not from the CMB.
The baseline model for the chains in All and All w/o

WL&RSD groups is

θ⃗All=Red ¼ θ⃗Geo þ fΩbh2; ns; lnAs; τg: ð3Þ

Here, τ is the reionization optical depth; Ωbh2 is the baryon
density; and logAs and ns are the initial curvature power
spectrum amplitude and tilt, respectively. The reionization
history is assumed to be given by the so-called instanta-
neous reionization. Generalizations of the reionization

FIG. 1. Assumed type IA supernovae redshift distribution in the
Imaging-Allz WFIRST strategy. The first bin (0.01 < z < 0.1)
includes predictions for the number of type IA supernovae that
will be observed by the Foundation supernovae survey [5,45].

2The parameter σ8 is defined as the rms amplitude in linear
theory of mass fluctuations on an 8h−1 Mpc scale.
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history that better fit the Planck LFI polarization data could
potentially affect our results by changing the inferred lnAs,
which then affects the gravitational lensing amplitude [51].
The growth function obeys the following evolution

equation:

G00 þ
�
4þH0

H

�
G0 þ

�
3þH0

H
−
3

2
ΩmðzÞ

�
G ¼ 0: ð4Þ

Here HðzÞ is the Hubble function (we have neglected
radiation), ΩmðzÞ ¼ Ωmð1þ zÞ3½H0=HðzÞ�3, and prime
denotes derivative with respect to ln a. The normalization
of the growth function at the initial redshift zini ¼ 1000
is GðziniÞ ¼ 1, and G0ðziniÞ ¼ −6ΩDEðziniÞ=5, where
ΩDEðzÞ ¼ ½ρDEðzÞ=ρDEð0Þ�½H0=HðzÞ�2 [29]. Finally, the
logarithm growth rate is defined as

fðzÞ≡ d lnD
d ln a

¼ 1þG0

G
: ð5Þ

Often, the parametrization fðzÞ ¼ ΩmðzÞγ is assumed [52],
so we will also show how the so-called growth index γ
varies as function of the redshift.
To construct the PC basis, we closely follow Appendix A

of Ref. [29]. Here we will summarize the procedure and
highlight the differences compared to Ref. [29]. We start
with the supernovae Fisher matrix

FSN
ij ¼

X
β

σ−2β
dmðzβÞ
dpi

dmðzβÞ
dpj

; ð6Þ

where β runs through the redshift binning;m is the apparent
magnitude mðzÞ≡Mþ 5 logðH0dLðzÞÞ; M is a constant
related to the absolute magnitude; dL is the luminosity
distance; H0 is the Hubble constant; pi ¼ fβ1;…;
βNz

;M;Ωm;Ωmh2g; and fβ1;…; βNz
g are the amplitudes

of a binned dark energy equation of state. The eigenvectors
of the Fisher matrix generate a basis for arbitrary functions
defined on the redshift bins, wðzjÞ ¼ wfid þ

PNz
i¼1 αieiðzjÞ.

We construct piecewise-rectangular-shaped wðzÞ ¼ βi if
zi−1 < z < zi (and zero otherwise), which reduces the
numerical noise in the final PCA shape because the energy
density can be evaluated analytically.
Themodel for the statistical and systematic errors adopted

in the supernovae Fisher matrix was updated relative to [29]
to better represent the WFIRST Imaging-Allz simulated
data:

σ2β ¼
�

Δz
Δzsub

��
sðzÞ
Nβ

þ 0.012
�
1þ z
1.7

�
2
�
; ð7Þ

with

sðzÞ ¼
	
0.015 z ≤ 1.03

−0.014þ 0.014 × ð1þ zÞ z > 1.03:
ð8Þ

FIG. 2. The principal components of the dark energy equation of state, wðzÞ. The Fisher matrix used to construct this basis contains
contributions from both type IA supernovae and the CMB. Lower components include fewer oscillations and have support, mainly,
at low redshifts. Higher principal components oscillate rapidly at low redshifts, which suppresses their effect since there are two
integrations in the scale factor to go from the equation of the state to the comoving luminosity distance. Their inclusion is, nevertheless,
necessary to encompass the modes that supernovae can probe, with non-negligible statistical significance.

V. MIRANDA and CORA DVORKIN PHYS. REV. D 98, 043537 (2018)

043537-4



Here, Nβ is the number of supernovae in each bin and
Δz ¼ 0.1, except for the first binwhereΔz ¼ 0.1 − zmin with
zmin ¼ 0.01. We subdivided the data intoNz ¼ 883 sub-bins
up to zmax ¼ 3 (making Δzsub ¼ 0.003), which corresponds
to the maximum observable supernovae redshift in the
WFIRST Imaging-Allz strategy [5]. The number of super-
novae in the bins ofΔz ¼ 0.1 is shown in Fig. 1. As stated in
Ref. [5], the systematic model adopted in our Fisher matrix
is an oversimplification. More realistic likelihoods will, in
practice, introduce correlations between the principal com-
ponents. This, however, does not affect the conclusions of
this paper since they do not depend on the orthogonality of
the basis. The crucial point is that thePCAbasis, althoughnot
orthogonal, is complete; i.e., it contains all themodes that can
be observed by the WFIRST likelihood with high statistical
significance. Indeed, Fig. 3 compares the posterior for the
Hubble expansion rate, the growth function, and the comov-
ing luminosity distance when 15, 20, and 25 principal
components are varied. From here, it is clear that going

from 15 to 25 PCs does not alter the observable posterior
significantly.
To smooth the shape of the principal components, we

apply the continuum limit; i.e., we increase the correspond-
ing number of equal size bins toNz, and then we impose the
normalization

XNz

i¼1

½eiðzjÞ�2 ¼
XNz

j¼1

½eiðzjÞ�2 ¼ Nz: ð9Þ

We calculate the number of supernovae in each sub-bin via
linear interpolation from the center of each original redshift
bin. The factor Δz=Δzsub rescales the errors in the sub-bins.
Because the number of principal components (NPC) that
ensures completeness with the data is much less than total
number of bins, Nz, none of our results will depend on sub-
bin width Δzsub. Last, we tested our procedure by explicitly
reproducing the PCA basis shown in Ref. [29].
We also add a Planck-like likelihood to the total Fisher

matrix. Similar to Ref. [29], we adopt the covariance matrix

CCMB ¼
� ð0.0018Þ2 −ð0.0014Þ2
−ð0.0014Þ2 ð0.0011Þ2

�
; ð10Þ

for the parameters q⃗ ¼ flnðD�=MpcÞ;Ωmh2g, where D� is
the comoving distance to the surface of the last scattering.3

We then construct the CMB Fisher FCMB ¼ D½CCMB�−1DT,
where Dij ¼ dqi=dpj.
Therefore, the total Fisher matrix is F ¼ FSN þ FCMB.

We then marginalize F over M, Ωm, and Ωmh2.
Supernovae measurements are insensitive to constant shifts
in relative distances as well as shifts that are nearly constant
at z > zmin. As explained in Appendix B of Ref. [29], large
variations in wðzÞ below z < zmin create degeneracies
between fα1;…; αNPC

g and Ωm that slow the convergence
of the chains.
To ensure that the dark energy equation of state respects

the prior wmin < wðzÞ < wmax, we follow the procedure
described in Appendix A of Ref. [29]. We start from the
projection of a generic wðzÞ on the PC basis:

αi ¼
1

Nz

XNz

j¼1

½wðzjÞ − wfiducial�eiðzjÞ: ð11Þ

Now, the maximum/minimum αi values are achieved
whenever wðzjÞ ¼ wmax=wmin and eiðzjÞ is positive, and
wðzjÞ ¼ wmin=wmax and eiðzjÞ is negative. Therefore, we
require that αð−Þ < α < αðþÞ, with

αð�Þ
i ≡ 1

Nz

XNz

j¼1

½ðwmin þ wmax − 2wfiducialÞeiðzjÞ

� ðwmax − wminÞjeiðzjÞj�: ð12Þ

FIG. 3. Posterior for the growth function, the comoving
luminosity distance, and the Hubble expansion rate (top to
bottom) predicted by chains with 15 (dotted-dashed red lines),
20 (blue shaded areas), and 25 (solid black lines) principal
components. The inner lines (and the darker blue shaded region)
correspond to the width of the 68% confidence interval, while the
outer lines (and the lighter blue shades) indicate the width of the
95% confidence area. All posteriors are centered at zero to guide
the comparison of their width. In all three chains, we assumed
flatness and the prior −2.5 < wðzÞ < 1. The likelihoods adopted
in these chains are shown in Table I, with the supernovae data
given by the simulated WFIRST data. The small differences in
the Hubble posteriors are suppressed even further in the distance
posteriors, which indicates that they reflect amplitude shifts in
highly oscillatory modes. The small changes in distance and
growth observables also confirm that 20 PCs are sufficient to
ensure completeness of the PCA basis.

3To evaluate D�, we include radiation as well as cold dark
matter and dark energy contributions.
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Last, we further impose the prior on the sum

XNz

i¼1

½wðzjÞ−wfiducial�2

<
XNz

i¼1

max½ðwmax−wfiducialÞ2;ðwmin−wfiducialÞ2�; ð13Þ

which implies

XNPC

i¼1

α2i <max½ðwmax−wfiducialÞ2;ðwmin−wfiducialÞ2�: ð14Þ

These are conservative priors because not all equations of
state that respect the inequalities in Eqs. (12) and (14) are
limited to the range wmin < wðzÞ < wmax, but the converse
is true; i.e., the priors keep all the models we want and
eliminate many models we need to exclude.

III. FALSIFYING SMOOTH DARK ENERGY

In this section, we investigate the falsifiability of smooth
dark energy scenarios. The observables used here only
constrain the background expansion of the Universe
(Table I describes them in further detail). The data include
local H0 measurement, baryon acoustic oscillations,
comoving distance to the surface of the last scattering,
and type IA supernovae. They are collectively described as
the Geo (SN ¼ X) data sets, with X ¼ JLA or X ¼ WF
(WFIRST) representing the adopted type IA supernovae
data. In some aspects, this section provides a partial update
to the analyses presented in Refs. [29,30]. The WFIRST
supernovae data were simulated using state-of-the-art
numerical tools, and the final likelihood takes into account
a variety of systematic effects described in detail in Ref. [5].
Smooth dark energy models modify the amplitude of

linear perturbations only through changes in the back-
ground evolution. Because the data contained in the Geo
group are sensitive uniquely to the background expansion,
the posteriors for the linear growth function are predictions
that can be falsified with surveys that measure the ampli-
tude of fluctuations. In fact, the Dark Energy Survey (DES)
Collaboration already released its Year One data that can
potentially falsify the predictions presented in this section.
The WFIRST satellite, on the other hand, will release its
supernovae results only by the end of the next decade and,
at that time, it will also provide state-of-the-art weak
lensing measurements that can be used to check the
consistency between growth and geometry in smooth dark
energy scenarios.
We examine chains that assume flatness, ΩK ¼ 0, and

others that allow spatial curvature to be a free parameter
within some prespecified width. The prior of −0.01 <
ΩK < 0.01 was adopted in chains with current type IA
supernovae data, so predictions can be at the few-percent

level. This prior is, indeed, informative except for ΛCDM
models. Percent-level upper limits on jΩKj are at the order
of what can be achieved by current data when growth
information is included. For chains with simulated
WFIRST type IA supernovae, the prior width is relaxed
to −0.1 < ΩK < 0.1, which is not informative given the
few-percent-level constraints we obtain in this case.

A. ΛCDM
In flat ΛCDM, the geometric data set with current JLA

supernovae can constrain the comoving luminosity distance
at the subpercent level at all redshifts, despite the fact that
H0 is measured at the 2.4% level. The Hubble expansion
rate shows a striking tightness around z ≈ 0.9, which was
previously noted in Ref. [29]. With the CMB’s outstanding
precision in measuring the distance to the surface of last
scattering, changes in the comoving distance at high
redshift must be compensated by an opposite variation at
low redshift whereDðzÞ ∼ z=H0. Changes inH0 at the few-
percent level are, therefore, not compatible with the CMB
and high-redshift type IA supernovae, even though they are
allowed by local measurements. More precise local H0

measurements would reduce uncertainties in predicting the
comoving distance at high redshift in ΛCDM scenarios,
which in turn would increase the ability of future type IA
supernovae missions to falsify the standard model with no
spatial curvature. A related issue is a well-known tension
between local H0 measurements and the Hubble constant
inferred from the CMB acoustic peaks. One could ask
if this discrepancy is artificially tightening the constraints
in flat ΛCDM. While it does impact the mean spatial
curvature posteriors towards positive values, which also
shifts the mean HðzÞ predictions as seen in Fig. 4, it does
not affect the width of the posteriors significantly.
Allowing curvature to be a free parameter broadens the

95% contours on the growth function and the comoving
angular diameter distance by a factor of ≈2 (see Fig. 4).
Moreover, the posterior of the Hubble parameter becomes
monotonic with redshift; i.e., there is no more degeneracy
between changes in the H0 at low redshift and variations
in the comoving distance at high redshift. In the curved
scenario, the posterior means of all the three functions
shown in Fig. 4 shift at the two-sigma level in comparison
to the flat ΛCDM case. These variations are mainly induced
by the discrepancy between the localH0 measurements and
the angular position of the CMB peaks. Indeed, a positive
spatial curvature is correlated with higherH0 prediction at a
fixed angular position of the CMB peaks.
Going from the current JLA data to the simulated

WFIRST type IA supernovae tightens posteriors by 40%
to 50% in both flat and curved ΛCDM scenarios. The
MCMC runs with simulated WFIRST supernovae are
somewhat pessimistic because they assume that errors in
H0 will still be at the 2.4% level by the end of the next
decade, while Gaia and JWST could potentially bring the
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errors down to a subpercent level [43]. Another possibility
for measuring H0 with better precision may come from
strong-lensed type IA supernovae. However, refinements in
the H0 precision could also exacerbate the current tension
between local measurements and the CMB.
Constraints on the growth function are approximately

at the 0.5% level with current data in flat ΛCDM.
Marginalization over spatial curvature increases the error
on the growth function by a factor of 2, and it also shifts
down the growth posterior mean by almost a percent at
redshift z ¼ 0. The growth rate shows a similar behavior
(see Fig. 5). Future updates on the analysis presented in
Ref. [53], which translates growth predictions to counts of
massive clusters, may prove worthwhile to pursue given
that the current H0 discrepancy pushes the growth function
in curved models to values below the flat case. Finally,
Fig. 5 shows that ΛCDM has tight predictions on the
growth index, which offer an alternative test that can be
used to falsify the standard model.

B. Quintessence

Quintessence scenarios offer a wider range of predictions
that could still be compatible with data even in the case in
which the ΛCDM scenario is falsified by future surveys.
From a physical standpoint, scalar fields with dynamics

dictated by Lagrangians of the form L ¼ X − V, where X
and V are the field’s kinetic energy and potential energy,
respectively, could drive the accelerated expansion with an
equation of state that remains above the phantom barrier of
w ¼ −1. Quintessence is, therefore, one of the simplest
ΛCDM generalizations. In this section, we model quintes-
sence scenarios with the complete set of principal compo-
nents. To impose the canonical scalar field boundaries
−1 < wðzÞ < 1, we adopt the set of conservative priors on
the PC amplitudes that are shown in Eqs. (12) and (14),
with wmin ¼ −1 and wmax ¼ 1.
Quintessence predictions for the growth function are four

times broader relative to the ones assuming ΛCDM. Also,
there is a 2% shift downwards in the growth’s posterior
mean, present in runs with either current JLA supernovae or
future WFIRST simulated data. The shift downwards in the
mean and the broadening of the contour widths show that
the growth function in quintessence never exceeds the mean
ΛCDM expectation by more than approximately 2% [29].
Consequently, the growth posteriors showed in Fig. 6
provide an exciting possibility of falsifying quintessence
and ΛCDM simultaneously. Indeed, modifications of
gravity often introduce new degrees of freedom, and they
generically enhance the amplitude of linear perturbations
well above ΛCDM predictions.

FIG. 4. Constraints on the growth function, the comoving luminosity distance, and the Hubble expansion rate, predicted in the ΛCDM
scenario. The blue contours and the grey lines show the 68% (light) and 95% (dark) confidence region assuming no curvature (Ωk ¼ 0)
and the flat prior jΩkj < 0.01 (which is noninformative), respectively. In both cases, the confidence levels were centered at zero to
highlight the broadening of the posterior. Dashed lines show the fractional difference of the posterior means to flat ΛCDM. The
likelihoods adopted in these chains are shown in Table I, with the supernovae given by the JLA compilation on the left panel and the
WFIRST simulated data on the right panel. For flat ΛCDM, the remaining freedom on the growth function and the comoving luminosity
distance is less than a percent on the entire redshift range, even though the Hubble constant is measured at the 2.4% level. As noted by
Ref. [29], flat ΛCDM predictions on the Hubble expansion rate are especially tight around z ≈ 1, which opens an interesting window of
opportunity for model testing by future experiments.
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FIG. 5. Constraints on the growth rate and the growth index, predicted by ΛCDMmodels. The blue contours show the 68% (light) and
95% (dark) confidence region assuming no curvature (Ωk ¼ 0), while the solid grey lines assume the prior jΩkj < 0.1. In both cases, the
confidence levels were centered at zero to highlight the broadening of the posterior. Dashed lines show the fractional difference of the
posterior means relative to flat ΛCDM. Table I shows the likelihoods adopted in these chains, with the supernovae data given by the JLA
compilation (left panel) and the WFIRST simulated data (right panel). Predictions for flat ΛCDM are so tight that the shades are barely
visible in the lower panel.

FIG. 6. Similar to Fig. 4, but in the context of quintessence. For future WFIRST data, we relax the spatial curvature prior to jΩkj < 0.1.
Current observations constrain the Hubble expansion rate better than 10% in flat models, but predictions above z > 1 depend
considerably on the allowed curvature. The more stringent jΩkj < 0.01 prior is necessary to obtain percent-level predictions with current
data (see Sec. V for further discussion on this issue). WFIRST, on the other hand, tightens the distance posterior to a few percent even
when marginalizing over arbitrary curvature. Finally, the growth function in quintessence never exceeds ΛCDM predictions by more
than 2%–3%, and this allows both models to be simultaneously falsified [29].
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The comoving luminosity distance posteriors in flat
quintessence models are about twice as wide as in
ΛCDM. At the same time, the Hubble function is a factor
5 as broad as the standard model at the redshift range
0 < z < 1. The broadening of the Hubble function is
mainly due to highly oscillatory and not-well-constrained
modes that are suppressed in the comoving luminosity
distance. Indeed, the integration of the Hubble function
smooths oscillatory behavior. In flat quintessence, chains
with WFIRST type IA supernovae show a 30% improve-
ment in precision in comparison to that obtained with
current data. On the other hand, WFIRST constraints show
order-unity improvements when spatial curvature is a free
parameter. Indeed, present data are not powerful enough
to provide percent-level predictions when marginalized
over the more extensive range jΩKj < 0.1. WFIRST, on
the other hand, will be able to constrain the comoving
luminosity distance at the 3% level, even when margin-
alized over arbitrary values of ΩK . Finally, both flat and
curved quintessence scenarios show an order of magnitude
broadening in the growth index posterior compared to
ΛCDM. The growth rate posterior is also wider, by a factor
of 2 approximately, compared to ΛCDM (see Fig. 7).

C. Smooth dark energy

In this subsection, we have adopted the prior −2.5 <
wðzÞ < 1 on the dark energy equation of state to reduce the
computational requirements of the demanding MCMC
likelihood analysis that we present here and in the sub-
sequent sections. To quantify the loss of generality, we
simulated WFIRST data and free curvature, where we
assume either −2.5 < wðzÞ < 1 or −5 < wðzÞ < 1, and

we found no appreciable change. The change in the wðzÞ
prior widens the growth function at redshift z ¼ 0 by no
more than 15%. Nonetheless, an even ampler range in the
equation of state together with the possibility that dark
energy could have been relevant at earlier times may
degrade growth predictions by a considerable amount.
Also, the lack of constraining power in the spatial curvature
stretches the posteriors in runs with current data by more
than 15%. In any case, falsifying smooth dark energy
models with −2.5 < wðzÞ < 1 and no significant amount
of early dark energy would already be an enormous step
towards motivating more exotic dark energy scenarios.
In comparison to quintessence, Fig. 8 shows that cross-

ing the phantom barrier widens the growth function
posterior at z ¼ 0 by 40% and the comoving luminosity
distance posterior by 30% at z > 2, in MCMC runs where
we use current data and jΩKj < 0.01 prior on the spatial
curvature. With WFIRST simulated data and jΩkj < 0.1,
predictions for the growth function at redshift z ¼ 0 are at
least 50% larger, while for the comoving luminosity
distance they are about 25% broader, relative to the
quintessence scenario. Both the growth function and the
comoving luminosity distance posterior means are dis-
placed by a few percent in comparison to quintessence
predictions. Unlike in quintessence scenarios, the growth
function in smooth dark energy models can exceed flat
ΛCDM predictions by more than 2%.
The geometric data with simulated WFIRST supernovae

will be able to probe the spatial curvature at the percent
level. Indeed, WFIRST will be able to constrain the dark
energy dynamics so tightly that there will not be enough
freedom to compensate the shifts in the comoving distance

FIG. 7. Similar to Fig. 5, but in the context of quintessence. For future WFIRST data, we relax the spatial curvature prior to jΩkj < 0.1.
In all models, dark energy is modeled with 20 PCs at z < zmax ¼ 3 and with wðz > zmaxÞ≡ w∞ ¼ −1.
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FIG. 8. Similar to Fig. 6, but in the context of smooth dark energy scenarios, where the dark energy equation of state is restricted to the
range −2.5 < wðzÞ < 1. The extra freedom provided by the phantom crossing in curved models widens the growth function posterior at
redshift zero by approximately 40% with current JLA supernovae and 25% with WFIRST simulated data, in comparison to quintessence
models (see Fig. 6). General smooth dark energy scenarios also predict values for the growth function that are substantially higher
(5%–7%) than theΛCDM predictions. Future WFIRST should be able to constrain the comoving distance at the 2% level and the growth
function at the 4% level even when marginalizing over arbitrary curvature.

FIG. 9. Similar to Fig. 7, but in the context of smooth dark energy models where the dark energy equation of state is restricted to the
range −2.5 < wðzÞ < 1. The extra freedom provided by the phantom crossing in curved scenarios widens the growth rate by
approximately 25% above z ¼ 1. The posteriors for the growth index γðzÞ ¼ ln fðzÞ= lnΩmðzÞ become unstable immediately above
redshift z ¼ 1. This problem in the growth index happens because ΩmðzÞ can cross the boundary ΩmðzÞ ¼ 1 at high redshifts in curved
scenarios. The same goes for fðzÞ, but the crossing fðzÞ ¼ 1 happens at slightly different redshifts [29]. This unmatched crossing makes
the posteriors either change sign or diverge, and hence the growth index loses its capability to falsify curved smooth dark energy
scenarios.
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induced by changes in curvature to maintain the distance to
the last scattering fixed. With current data, however,
constraints on ΩK are considerably relaxed, which moti-
vates the analysis we present in Sec. V. There, we show
how the combination σ8Ω

1=2
m can break the degeneracy

between the dark energy equation of state and the spatial
curvature. The inclusion of weak lensing, CMB lensing
reconstruction, and redshift space distortion data makes an
order-unity difference in the dark energy figure of merit
after marginalization over spatial curvature.
Finally, Fig. 9 shows that the posteriors for the growth

index γðzÞ ¼ ln fðzÞ= lnΩmðzÞ become unstable immedi-
ately above redshift z ¼ 1. Even with the WFIRST simu-
lated supernovae data, the growth index posteriors become
ill-behaved above redshift z ≈ 1.5. This problem in the
growth index happens because ΩmðzÞ can cross the boun-
dary ΩmðzÞ ¼ 1 at high redshifts, in curved scenarios. The
same goes for fðzÞ, but the crossing fðzÞ ¼ 1 happens at
slightly different redshifts [29]. This unmatched crossing
makes the posteriors either change signs or diverge, and
hence, the growth index loses its capability to falsify curved
smooth dark energy scenarios. The growth rate, on the other
hand, is still well behaved on the entire redshift range, and
above z ¼ 1, its posteriors are about 25% broader in smooth
dark energy scenarios compared to quintessence models.
This widening applies to chains with the current JLA data
and with the jΩKj < 0.01 prior, as well as to chains with the
WFIRST simulated data and with jΩKj < 0.1.

IV. FIGURE OF MERIT

In this section, we construct a model-independent figure
of merit (FoM), making use of the principal components,
following closely Ref. [35]. We compute the FoM of the
three cosmic acceleration scenarios we have studied so far:
ΛCDM, quintessence, and general smooth dark energy
scenarios where −2.5 < wðzÞ < 1. PCA-based FoM pro-
vides a complementary view to studies that assume particular
functional forms for wðzÞ. These studies have the advantage
of being more computationally efficient given the low
number of parameters involved in parametrizations that
are common in the literature. FoMs based on particular
functional forms for wðzÞ also have a straightforward
interpretation regarding signal-to-noise ratio. However,
FoMs based on particular forms of wðzÞ may underestimate
or overestimate the constraining power of a given experi-
ment, given that there are multiple compelling generaliza-
tions of ΛCDM, without a clear hierarchy between them in
terms of theoretical plausibility.4 They provide, therefore, an
incomplete picture about the future capabilities of WFIRST
in constraining dark energy models that predict more

elaborate forms of wðzÞ. This incompleteness depends on
how typical values for the amplitudes αi compare with the
68% and 95% observational confidence levels on αi, when
the fiducial model is projected on the PCA basis. This is
defined as the signal-to-noise ratio [see Eq. (3) in Ref. [55]].
For example, Ref. [35] confirms that models in which the

dark energy dynamics is dictated by a canonical field, ϕ,
that rolls on a potential of the form VðϕÞ ¼ V0 þm2ϕ2=2
have small projected volumes in the subspace spanned
by all except for the two most constraining principal
components.5 Indeed, Fig. 5 of Ref. [35] explicitly shows,
for a particular choice of parameters, that only the first and
second principal components have amplitudes that are
comparable to their respective posterior uncertainties.
While VðϕÞ ¼ V0 þm2ϕ2=2 is a perfectly reasonable
potential, there is not enough theoretical guidance from
a more fundamental particle description of the dark energy
component to prevent us from constructing more convo-
luted potentials that result in a wðzÞ that needs to be
described with more principal components.
These nuances in interpreting the FoMs based on

particular parametrizations, when there are multiple com-
pelling dark energy models, can affect the design choices
for future experiments in ways that could potentially reduce
the possibility of discovering ground-breaking results.
For example, the FoM based on wðzÞ ¼ constant models
predicts that the best supernovae strategies are the ones that
focus their statistical power at the low-redshift range z < 1.
A similar conclusion can be derived from simple models
where wðzÞ is well described, in terms of signal to noise,
by the first few PCA components of the Imaging-Allz
strategy. However, observational strategies that focus on
low-z supernova could lose the possibility of investigating
models that predict wðzÞwith large projected volume on the
subspace spanned by higher principal components of the
Imaging-Allz strategy (which would boost the signal-to-
noise ratio of these components).
Following Ref. [35], we define the figure of merit, given

the covariance Cn between the principal components eiðzÞ
with i ¼ 1;…; n, as

FoMPC
n ¼

�
detCn

detCprior
n

�
−1=2

: ð15Þ

Here,Cprior
n is the covariance of the prior, which we estimate

based onMCMC chains that only take into account the prior
constraints on wðzÞ in Eqs. (12) and (14).6 While not all
parametrizations with n parameters necessarily show the

4Indeed, nonparametric methods such as PCAs are well suited
to observables that cannot be robustly modeled from first-
principle calculations. They have been used, for example, to
describe inflation and the epoch of reionization [51,54].

5The PCs of Ref. [35] were constructed to mimic the
discontinued SNAP experiment [56].

6This FoM definition depends on the prior volume, which
might seem contrived, but by doing so we eliminate information
gain that comes exclusively from the prior [35]. This can also be
achieved by only considering the FoM ratio between two
experiments [57].
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improvement given by FoMn, this quantity represents an
approximate upper limit of what is achievable with a given
experiment. The quantity FoMPC

n is only an approximate
upper limit because our PCs were developed with the Fisher
matrix and not with the actual likelihood of the experiment.
The interpretation of FoMPC

n with n ≪ 20 as an upper limit
for the background data with the current JLA data has an
additional caveat, given that we use the same PC basis for
both JLA and WFIRST experiments. However, the asymp-
totic value, FoMPC

n≈20, can robustly be interpreted as an upper
limit to both JLA andWFIRST because these 20 PCs span a
complete basis to both experiments.
Figure 10 compares the PCA-based figure of merit

between the analysis with the JLA compilation and the
WFIRST simulated data. Both cases include BAO, geo-
metric CMB, and local H0 measurements. Current data
can place a good measurement on approximately the first
five principal components. The FoM for these modes is
FoMPC

n¼5ðSN ¼ JLAÞ ≈ 104, while FoMPC
n¼2ðSN ¼ JLAÞ ≈

102 and therefore two-parameter descriptions of wðzÞ, such
as the commonly adopted w0 − wa, do not exhaust the
information that can be extracted from current data. Future
WFIRST data will be able to better constrain the first five
principal components [FoMPC

n¼5ðSN ¼ WFÞ ≈ 106], and it

will also probe twice the number of principal components
in comparison to JLA type IA supernovae. Indeed,
WFIRST will have a wider redshift range sensitive to
modes that affect wðzÞ only at high redshift. The asymptotic
FoM ratio between these two data sets is of order 104,
while this ratio is on the order of 10 for the w0 − wa
parametrization.
In the w0 − wa functional form, the high and low redshift

are entangled, and therefore many of the modes that only
WFIRST can measure well are not allowed by prior or are
severely restricted by the low-redshift supernovae data.
Thus, simple two-parameter functional forms of wðzÞ offer
an incomplete picture of the modes that can be measured
with current and future data. Including extra parameters
in popular parametrizations, however, does not guarantee
that the signal-to-noise ratio of higher order PCAs will be
greater than unity and, therefore, the approximate upper
limit in FoMn may be quite difficult to achieve. This
limitation indeed seems to hold, as it has been shown that
the signal-to-noise ratio in en≫3ðzÞ PCAs, constructed to
be representative of experiments that resemble WFIRST,
is small in commonly adopted quintessence models
[55,58,59]. Without selection criteria derived from a more
fundamental description of dark energy, our results merely
indicate that, in principle, it is possible to construct smooth
dark energy models that are elaborate enough so that
improvements in FoMPC

n with n ≫ 3 represent a gain of
information provided by next generation of experiments.7

In quintessence scenarios, priors in the allowed curvature
range make a significant impact on the figure of merit (as
shown in Fig. 11). Indeed, Fig. 12 shows that curvature
cannot be constrained at the few-percent level with current
data if we assume quintessence, and the uniform prior
jΩKj < 0.1 decreases the FoM by approximately an order
of magnitude in comparison to the flat ΩK ¼ 0 case. In
general, in smooth dark energy models that respect the
boundary −2.5 < wðzÞ < 1, the curvature posterior disfa-
vors large positive values. However, the chosen uniform
priors in the amplitude of the principal components is not
mapped into flat spatial curvature posteriors, and in fact
the priors provide more weight to models that do cross the
phantom barrier (see Fig. 12 of [29]).
The inability of current geometric data to constrain

spatial curvature at the percent level when ΩK is margin-
alized over quintessence and general dark energy models
provides an excellent opportunity for observables that
directly measure the growth of structure to make a
significant impact on the figure of merit. Growth informa-
tion could also mitigate, in the context of ΛCDM, the

FIG. 10. Figure of merit of the PC amplitudes when the smooth
dark energy scenario is probed with Planck geometric data, BAO,
local H0, and JLA/WFIRST type IA supernovae measurements,
as a function of the number of principal components. Current data
can measure the first five principal components approximately.
WFIRST will be able to measure these first five components
significantly better and, in total, it will be able to constrain twice
the number of modes. Finally, spatial curvature impacts the FoM
derived from current data at order unity, while only at a few tens
of percent with WFIRST simulated data.

7The PCA merely shows the modes that can be constrained by
the data (and how well they can be constrained). Interpretation of
the subspace spanned by these PCs depends on theoretical
analysis that is out of the scope of statistical tools that rely only
on the data.

V. MIRANDA and CORA DVORKIN PHYS. REV. D 98, 043537 (2018)

043537-12



impact of the discrepancy between the CMB and local H0

measurements, which shifts the spatial curvature posterior
towards positive values. The combination of the full CMB
temperature and polarization power spectra, CMB lensing
reconstruction, redshift space distortions, and weak lensing
measurements should indeed constrain curvature tightly
given that we see a strong correlation between ΩK and the
predicted σ8Ω

1=2
m in all our Geo chains with current JLA

supernovae (see Fig. 12). Indeed, the combination σ8Ω
1=2
m

corresponds to the direction in parameter space that is best
measured by weak lensing.
With the simulated WFIRST supernovae data, ΩK is

constrained at the percent level in both quintessence and
smooth dark energy scenarios (see Fig. 13), and this
provides an interesting challenge for the future WFIRST
weak lensing survey. Current weak lensing surveys, includ-
ing the recently published Year One DES measurements,
are discrepant with CMB inferences on σ8Ω

1=2
m at the two-

sigma level. Also note that our results do not imply that
every single quintessence and smooth dark energy model
will have ΩK uncertainties larger than a percent. What we
show is what happens when we are agnostic concerning

the feasibility of arbitrary complicated smooth dark energy
scenarios.
Finally, the model-independent FoMPC

n can be con-
verted into model-based figure of merit evaluations with
the use of a fast approximate likelihood that dispenses
with the use of expensive additional MCMC calculations,
as well as the use of sophisticated numerical packages
such as CosmoMC. Given the discrete set of parameter
values αi ¼ fα1;…;α20g and multiplicities wi provided
by our MCMC chains, we define a kernel density
estimation likelihood of the form [51]

LPCðdatajαÞ ¼
XN
i¼1

wiKfðα − αiÞ: ð16Þ

Here N is the number of elements in the chain, Kf is a
smoothing kernel that we assume to be a multivariate
Gaussian with zero mean and covariance fCn¼20 (f is a
smoothing factor), and α is the set of values generated
by the model to be constrained. Such a technique has
been applied with remarkable success in the context of
model-independent studies on the epoch of reionization
[51,60]. The posterior for any physically motivated para-
metrization with M parameters β ¼ fβ1;…; βMg is

FIG. 11. The figure of merit of the PC amplitudes when
quintessence (top left panel) and smooth dark energy (top right
panel) are probed with either the Geometric or the All data sets.
For quintessence, direct measurements of the growth of structure
make an order of magnitude change on the FoM values, as it
decreases the posterior probabilities of large and positiveΩK . For
general smooth dark energy, the difference in the FoM is not as
dramatic when growth information is combined, but given that
flat priors to the PC amplitudes translate into a preference for
negative curvature, part of this reduction in the FoM ratio might
be prior induced, which itself reduces the posterior for large and
positive ΩK .

FIG. 12. Spatial curvature posterior and its strong correlation
with the combination σ8Ω

1=2
m . The inability of current geometric

data to constrain spatial curvature at the percent level in both
quintessence and general dark energy models provides an
excellent opportunity for observables that directly measure the
growth of structures to make a significant impact on the dark
energy figure of merit. Finally, given that flat priors (that can also
cross the phantom barrier) on the PC amplitudes translate into a
preference for negative curvature, the reduction of the posterior
probability for large and positive Ωk in general dark energy
models might be partially prior induced (see Fig. 12 of [29]).
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PðβjdataÞ ∝ LPCðdatajαðβÞÞPðβÞ: ð17Þ
We then can define model-based FoM as FoMModel

M ¼
ðdetCðβ1;…; βMÞÞ−1=2. Such a posterior also allows the
signal-to-noise ratio of each principal component to be
fully sampled for arbitrary models. We intend to fully
explore this technique in a future work to be accomplished
in collaboration with the WFIRST supernova science
investigation teams.

V. IMPROVING SPATIAL CURVATURE
CONSTRAINTS WITH GROWTH

INFORMATION

In this section, we will use the PCA basis of wðzÞ to
quantify the effects of marginalizing the spatial curvature
posterior over different classes of dark energy models. We
will restrict our analysis to current data, including infor-
mation from the growth of structure. In a follow-up study,
we will investigate the correlations between dark energy
parameters and spatial curvature for the future WFIRST
mission, including the WFIRST weak lensing survey. We
will also quantify the correlations between the sum of
neutrino mass constraints and dark energy scenarios.
In the context of the ΛCDM model, the combination of

the full CMB temperature and polarization spectra from the
Planck satellite with BAO measurements constrains the
spatial curvature to the subpercent level jΩKj < 0.005 [61].
Figure 12 shows that even data sets that only measure the
background expansion of the Universe can, all together,

probe the curvature to within a percent. However, the
discrepancy between the CMB and local H0 measurements
shifts the central value of the spatial curvature posterior
towards positive values. For quintessence models, Fig. 12
shows that geometric data cannot constrain spatial curva-
ture even at the 10% level. The situation changes slightly
for general smooth dark energy models for which
−2.5 < wðzÞ < 1. However, this shift towards negative
spatial curvature is in part due to our choice of priors,
given that uniform priors in the PCA amplitudes αi do not
translate into a flat posterior in the spatial curvature [29].
The remaining freedom in the spatial curvature posterior

can be significantly reduced by constraining the product
σ8Ω

1=2
m , which is the parameter combination that weak

lensing measures best. CMB temperature and polarization
power spectra can also constrain the curvature up to the
percent level due to the gravitational lensing effect that
smooths the acoustic peaks. Indeed, Fig. 14 shows that the
posterior width of ΩK is reduced by more than a factor of
10 in the context of quintessence models when the
Gaussian CMB likelihood is replaced by the full CMB
temperature and polarization spectra. Even for arbitrary
smooth dark energy models, with −2.5 < wðzÞ < 1, the
spatial curvature can be constrained better than 1.5% with
the full CMB power spectrum.
In both quintessence and smooth dark energy paradigms,

the effect of marginalizing the dark energy principal

FIG. 13. Spatial curvature posterior and its correlation with the
combination σ8Ω

1=2
m . Further improvements in BAO measure-

ments from the future DESI survey as well as advances in local
H0 measurements may bring ΩK constraints to the subpercent
level without growth information.

FIG. 14. Posterior of curvature and its correlation with σ8Ω
1=2
m .

It is clear that the tension between CMB measurements by the
Planck satellite and low-redshift structure probes shifts ΩK at
the two-sigma level. In particular, no claims that curvature is
measured at the subpercent level, when marginalized over smooth
dark energy models, can be made without solving this tension.
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components in addition to spatial curvature is to reduce the
FoM by a factor of a few. More specifically, the FoM is
reduced by≈10 in quintessence scenarios, primarily because
of the non-negligible posterior probability for large and
positive ΩK , and by ≈5 in smooth dark energy scenarios,
as shown inFig. 11.This level of improvement is significantly
higher than in ΛCDM. Indeed, the spatial curvature is
constrained by both geometry and growth information in
the standard model, given that there is not enough freedom
in the dark energy sector to compensate for changes in the
background expansion induced by large values of ΩK to
maintain the comoving distance to the surface of the last
scattering unchanged.
The addition of low-redshift probes that measure growth,

such as weak-lensing and redshift space distortion, shifts
the curvature posterior by an amount comparable to the
95% confidence regions, in comparison to the All w/o
WL-RSD MCMC chains (see Fig. 14). Indeed, the combi-
nation σ8Ω

1=2
m is well constrained by weak lensing, and

there is a two-sigma tension between weak lensing and the
CMB, which reflects into doubling the uncertainties in
constraining spatial curvature marginalized over smooth
dark energy scenarios.

VI. DISCUSSION

In this paper, we provide a comprehensive investigation
on how current data that probe the background expansion
constrain the theoretical predictions of three broad classes
of dark energy: ΛCDM, quintessence, and smooth dark
energy models that respect the prior −2.5 < wðzÞ < 1.
These three paradigms share the property that dark energy
influences the growth of structure by modifying the back-
ground expansion.
Within this framework, we show that the current back-

ground expansion predicts the linear growth of structure at
the percent level. For general smooth models, such pre-
dictions are at the 10% level when marginalizing over the
informative prior −0.01 < Ωk < 0.01. Flat models always
predict growth at the few-percent level, which provides an
exciting opportunity for current and future surveys to
falsify the flat, smooth dark energy scenario with weak
lensing and redshift-space distortion measurements.

WFIRST supernovae data will be able to improve
growth predictions in curved models significantly. In
particular, the two-sigma posterior for GðzÞ is at the
8% level even when marginalizing over the noninforma-
tive prior −0.1 < Ωk < 0.1. Our analysis is conservative
because it neglects upcoming BAO improvements from
the future DESI survey as well as advancements in
measuring the local H0.
In the near future, the degeneracy between spatial

curvature and wðzÞ could be mitigated with measurements
of the combination σ8Ω

1=2
m . Indeed, this is the direction in

parameter space that weak lensing measurements restrict
the most. In fact, the inclusion of CFHTLens and DR12
RSD measurements reduces the figure of merit of the PCA
amplitudes by order unity. We also point out that incon-
sistencies between low-redshift measurements and CMB
predictions for σ8Ω

1=2
m translate into uncertainties in con-

straining Ωk marginalized over the PCA amplitudes.
Finally, we evaluate a PCA-based figure of merit, which

reveals that a two-parameter description of wðzÞ may not
provide the complete picture of advancements in con-
straining power between WFIRST and JLA supernovae
surveys. In particular, specific wðzÞ functional forms may
bias the determination of the optimal redshift range for the
WFIRST supernovae survey. While a shallow survey can
provide better statistics, a more extensive range may probe
a broader range of models.

ACKNOWLEDGMENTS

We thank R. Hounsell, D. Scolnic, R. J. Foley, and
R. Kessler for helpful discussions and for providing us
state-of-the-art WFIRST simulated supernova. We also
thank R. Kessler and W. Hu for providing us extensive
computational resources granted by the University of
Chicago Research Computing Center. We thank Eric
Linder for valuable discussions about the interpretation
of the PCA-based figure of merit. V. M. thanks the
hospitality of the Sitka Sound Science Center during the
intermediate stages of this work. V. M. was supported in
part by the Charles E. Kaufman Foundation, a supporting
organization of the Pittsburgh Foundation.

[1] A. G. Riess et al. (Supernova Search Team), Astron. J. 116,
1009 (1998).

[2] S. Perlmutter et al. (Supernova Cosmology Project), As-
trophys. J. 517, 565 (1999).

[3] A. G. Riess et al., Astrophys. J. 659, 98 (2007).
[4] M. Betoule et al. (SDSS Collaboration), Astron. Astrophys.

568, A22 (2014).

[5] R. Hounsell, D. Scolnic, R. J. Foley, R. Kessler, V. Miranda,
A. Avelino, R. C. Bohlin, A. V. Filippenko, J. Frieman,
S. W. Jha, P. L. Kelly, R. P. Kirshner, K. Mandel, A.
Rest, A. G. Riess, S. A. Rodney, and L. Strolger, arXiv:
1702.01747.

[6] D. J. Eisenstein et al. (SDSS Collaboration), Astrophys. J.
633, 560 (2005).

MODEL-INDEPENDENT PREDICTIONS FOR SMOOTH … PHYS. REV. D 98, 043537 (2018)

043537-15

https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/510378
https://doi.org/10.1051/0004-6361/201423413
https://doi.org/10.1051/0004-6361/201423413
http://arXiv.org/abs/1702.01747
http://arXiv.org/abs/1702.01747
https://doi.org/10.1086/466512
https://doi.org/10.1086/466512


[7] P. A. Abell et al. (LSST Science, LSST Project), arXiv:0912
.0201.

[8] L. Amendola et al., Living Rev. Relativity 21, 2 (2018).
[9] P. A. R. Ade et al. (Planck Collaboration), Astron. As-

trophys. 594, A14 (2016).
[10] P. Ade et al. (Planck Collaboration), Astron. Astrophys.

594, A15 (2016).
[11] N. Benitez et al. (J-PAS Collaboration), arXiv:1403.5237.
[12] T. Erben et al., Mon. Not. R. Astron. Soc. 433, 2545 (2013).
[13] J. T. A. de Jong, G. A. Verdoes Kleijn, K. H. Kuijken, and

E. A. Valentijn, Exp. Astron. 35, 25 (2013).
[14] A. G. Riess et al., Astrophys. J. 853, 126 (2018).
[15] T. Abbott et al. (DES Collaboration), arXiv:astro-ph/

0510346.
[16] H. Aihara et al., Publ. Astron. Soc. Jpn. 70, 4 (2018).
[17] D. Huterer and A. Cooray, Phys. Rev. D 71, 023506 (2005).
[18] Y. Wang and M. Tegmark, Phys. Rev. D 71, 103513 (2005).
[19] C. Zunckel and R. Trotta, Mon. Not. R. Astron. Soc. 380,

865 (2007).
[20] S. Sullivan, A. Cooray, and D. E. Holz, J. Cosmol. Astro-

part. Phys. 09 (2007) 004.
[21] G.-B. Zhao, D. Huterer, and X. Zhang, Phys. Rev. D 77,

121302 (2008).
[22] G.-B. Zhao and X.-m. Zhang, Phys. Rev. D 81, 043518

(2010).
[23] P. Serra, A. Cooray, D. E. Holz, A. Melchiorri, S. Pandolfi,

and D. Sarkar, Phys. Rev. D 80, 121302 (2009).
[24] J. Kujat, A. M. Linn, R. J. Scherrer, and D. H. Weinberg,

Astrophys. J. 572, 1 (2002).
[25] S. Chongchitnan and G. Efstathiou, Phys. Rev. D 76,

043508 (2007).
[26] D. Huterer and H. V. Peiris, Phys. Rev. D 75, 083503

(2007).
[27] H. Zhan, L. Knox, and J. A. Tyson, Astrophys. J. 690, 923

(2009).
[28] A. Aghamousa et al. (DESI Collaboration), arXiv:1611

.00036.
[29] M. J. Mortonson, W. Hu, and D. Huterer, Phys. Rev. D 79,

023004 (2009).
[30] M. J. Mortonson, W. Hu, and D. Huterer, Phys. Rev. D 81,

063007 (2010).
[31] R. A. Vanderveld, M. J. Mortonson, W. Hu, and T. Eifler,

Phys. Rev. D 85, 103518 (2012).
[32] A. Cooray, D. Huterer, and D. Baumann, Phys. Rev. D 69,

027301 (2004).
[33] E. J. Ruiz and D. Huterer, Phys. Rev. D 91, 063009 (2015).
[34] E. J. Ruiz, D. L. Shafer, D. Huterer, and A. Conley, Phys.

Rev. D 86, 103004 (2012).
[35] M. J. Mortonson, D. Huterer, and W. Hu, Phys. Rev. D 82,

063004 (2010).
[36] A. Lewis, Phys. Rev. D 87, 103529 (2013).
[37] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002).

[38] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,
473 (2000).

[39] C. Howlett, A. Lewis, A. Hall, and A. Challinor, J. Cosmol.
Astropart. Phys. 04 (2012) 027.

[40] N. Aghanim et al. (Planck Collaboration), Astron. As-
trophys. 594, A11 (2016).

[41] H. Gil-Marín, W. J. Percival, A. J. Cuesta, J. R. Brownstein,
C.-H. Chuang, S. Ho, F.-S. Kitaura, C. Maraston, F. Prada,
S. Rodríguez-Torres, A. J. Ross, D. J. Schlegel, D. P.
Schneider, D. Thomas, J. L. Tinker, R. Tojeiro, M. Vargas
Magaña, and G.-B. Zhao, Mon. Not. R. Astron. Soc. 460,
4210 (2016).

[42] C. Blake, E. Kazin, F. Beutler, T. Davis, D. Parkinson et al.,
Mon. Not. R. Astron. Soc. 418, 1707 (2011).

[43] A. G. Riess et al., Astrophys. J. 826, 56 (2016).
[44] A. G. Riess, L. Macri, S. Casertano, M. Sosey, H. Lampeitl,

H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, R.
Chornock, and D. Sarkar, Astrophys. J. 699, 539 (2009).

[45] M. Foley, R. Foley, D. Scolnic, A. Rest, A. G. Riess, S. W.
Jha, R. Kirshner, O. Dosovitz Fox, Y.-C. Pan, and S. Smartt,
in American Astronomical Society Meeting Abstracts,
American Astronomical SocietyMeeting Abstracts, Vol. 229
(2017) p. 341.12.

[46] C. Heymans et al., Mon. Not. R. Astron. Soc. 432, 2433
(2013).

[47] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and M.
Oguri, Astrophys. J. 761, 152 (2012).

[48] L. Casarini, S. A. Bonometto, E. Tessarotto, and P. S.
Corasaniti, J. Cosmol. Astropart. Phys. 08 (2016) 008.

[49] L. Casarini, A. V. Maccio’, and S. A. Bonometto, J. Cosmol.
Astropart. Phys. 03 (2009) 014.

[50] G. Efstathiou and J. R. Bond, Mon. Not. R. Astron. Soc.
304, 75 (1999).

[51] C. H. Heinrich, V. Miranda, and W. Hu, Phys. Rev. D 95,
023513 (2017).

[52] E. V. Linder, Phys. Rev. D 72, 043529 (2005).
[53] M. J. Mortonson, W. Hu, and D. Huterer, Phys. Rev. D 83,

023015 (2011).
[54] C. Dvorkin and W. Hu, Phys. Rev. D 82, 043513 (2010).
[55] R. de Putter and E. V. Linder, arXiv:0812.1794.
[56] G. Aldering et al. (SNAP Collaboration), arXiv:astro-ph/

0405232.
[57] A. Albrecht, L. Amendola, G. Bernstein, D. Clowe, D.

Eisenstein, L. Guzzo, C. Hirata, D. Huterer, R. Kirshner, E.
Kolb, and R. Nichol, arXiv:0901.0721.

[58] M. Barnard, A. Abrahamse, A. Albrecht, B. Bozek, and M.
Yashar, Phys. Rev. D 78, 043528 (2008).

[59] E. V. Linder andD. Huterer, Phys. Rev. D 72, 043509 (2005).
[60] V. Miranda, A. Lidz, C. H. Heinrich, and W. Hu, Mon. Not.

R. Astron. Soc. 467, 4050 (2017).
[61] P. A. R. Ade et al. (Planck Collaboration), Astron. As-

trophys. 594, A13 (2016).

V. MIRANDA and CORA DVORKIN PHYS. REV. D 98, 043537 (2018)

043537-16

http://arXiv.org/abs/0912.0201
http://arXiv.org/abs/0912.0201
https://doi.org/10.1007/s41114-017-0010-3
https://doi.org/10.1051/0004-6361/201525814
https://doi.org/10.1051/0004-6361/201525814
https://doi.org/10.1051/0004-6361/201525941
https://doi.org/10.1051/0004-6361/201525941
http://arXiv.org/abs/1403.5237
https://doi.org/10.1093/mnras/stt928
https://doi.org/10.1007/s10686-012-9306-1
https://doi.org/10.3847/1538-4357/aaa5a9
http://arXiv.org/abs/astro-ph/0510346
http://arXiv.org/abs/astro-ph/0510346
https://doi.org/10.1103/PhysRevD.71.023506
https://doi.org/10.1103/PhysRevD.71.103513
https://doi.org/10.1111/j.1365-2966.2007.12000.x
https://doi.org/10.1111/j.1365-2966.2007.12000.x
https://doi.org/10.1088/1475-7516/2007/09/004
https://doi.org/10.1088/1475-7516/2007/09/004
https://doi.org/10.1103/PhysRevD.77.121302
https://doi.org/10.1103/PhysRevD.77.121302
https://doi.org/10.1103/PhysRevD.81.043518
https://doi.org/10.1103/PhysRevD.81.043518
https://doi.org/10.1103/PhysRevD.80.121302
https://doi.org/10.1086/340230
https://doi.org/10.1103/PhysRevD.76.043508
https://doi.org/10.1103/PhysRevD.76.043508
https://doi.org/10.1103/PhysRevD.75.083503
https://doi.org/10.1103/PhysRevD.75.083503
https://doi.org/10.1088/0004-637X/690/1/923
https://doi.org/10.1088/0004-637X/690/1/923
http://arXiv.org/abs/1611.00036
http://arXiv.org/abs/1611.00036
https://doi.org/10.1103/PhysRevD.79.023004
https://doi.org/10.1103/PhysRevD.79.023004
https://doi.org/10.1103/PhysRevD.81.063007
https://doi.org/10.1103/PhysRevD.81.063007
https://doi.org/10.1103/PhysRevD.85.103518
https://doi.org/10.1103/PhysRevD.69.027301
https://doi.org/10.1103/PhysRevD.69.027301
https://doi.org/10.1103/PhysRevD.91.063009
https://doi.org/10.1103/PhysRevD.86.103004
https://doi.org/10.1103/PhysRevD.86.103004
https://doi.org/10.1103/PhysRevD.82.063004
https://doi.org/10.1103/PhysRevD.82.063004
https://doi.org/10.1103/PhysRevD.87.103529
https://doi.org/10.1103/PhysRevD.66.103511
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://doi.org/10.1088/1475-7516/2012/04/027
https://doi.org/10.1088/1475-7516/2012/04/027
https://doi.org/10.1051/0004-6361/201526926
https://doi.org/10.1051/0004-6361/201526926
https://doi.org/10.1093/mnras/stw1264
https://doi.org/10.1093/mnras/stw1264
https://doi.org/10.1111/j.1365-2966.2011.19592.x
https://doi.org/10.3847/0004-637X/826/1/56
https://doi.org/10.1088/0004-637X/699/1/539
https://doi.org/10.1093/mnras/stt601
https://doi.org/10.1093/mnras/stt601
https://doi.org/10.1088/0004-637X/761/2/152
https://doi.org/10.1088/1475-7516/2016/08/008
https://doi.org/10.1088/1475-7516/2009/03/014
https://doi.org/10.1088/1475-7516/2009/03/014
https://doi.org/10.1046/j.1365-8711.1999.02274.x
https://doi.org/10.1046/j.1365-8711.1999.02274.x
https://doi.org/10.1103/PhysRevD.95.023513
https://doi.org/10.1103/PhysRevD.95.023513
https://doi.org/10.1103/PhysRevD.72.043529
https://doi.org/10.1103/PhysRevD.83.023015
https://doi.org/10.1103/PhysRevD.83.023015
https://doi.org/10.1103/PhysRevD.82.043513
http://arXiv.org/abs/0812.1794
http://arXiv.org/abs/astro-ph/0405232
http://arXiv.org/abs/astro-ph/0405232
http://arXiv.org/abs/0901.0721
https://doi.org/10.1103/PhysRevD.78.043528
https://doi.org/10.1103/PhysRevD.72.043509
https://doi.org/10.1093/mnras/stx306
https://doi.org/10.1093/mnras/stx306
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830

