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We reexamine big bang nucleosynthesis with large-scale baryon density inhomogeneities when the
length scale of the density fluctuations exceeds the neutron diffusion length (∼107–108 cm at BBN), and
the amplitude of the fluctuations is sufficiently small to prevent gravitational collapse. In this limit, the final
light element abundances can be determined by simply mixing the abundances from regions with different
baryon/photon ratios without interactions. We examine Gaussian, log-normal, and gamma distributions for
the baryon/photon ratio, η. We find that the deuterium and lithium-7 abundances increase with the rms
fluctuation in η, while the effect on helium-4 is much smaller. We show that these increases in the deuterium
and lithium-7 abundances are a consequence of Jensen’s inequality, and we derive analytic approximations
for these abundances in the limit of small rms fluctuations. Observational upper limits on the primordial
deuterium abundance constrain the rms fluctuation in η to be less than 17% of the mean value of η.
This provides us with a new limit on the graininess of the early Universe.
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I. INTRODUCTION

The successful theory of big bang nucleosynthesis (BBN)
remains one of the major pillars of modern cosmology.
While BBN once treated the baryon/photon ratio, η, as the
main quantity to be determined by comparing BBN pre-
dictions with astronomical observations, the independent
measurement of η by deduction from cosmic microwave
background (CMB) observations has led to a minimal BBN
theory with no free parameters. Using the CMB values for η,
the predicted BBN abundances of deuterium (D) and 4He
are in excellent agreement with the observations, while the
predicted 7Li abundance remains a factor of 3 larger than the
observationally inferred abundance; for recent reviews of
BBN, see Refs. [1–3].
Given the excellent agreement between the predicted and

observed D and 4He abundances, any modification that alters
the BBN predictions will probably be sharply constrained.
Many such modifications have been proposed, but here we
focus on one of the earliest to be investigated: inhomoge-
neities in the density. Such inhomogeneities are irrelevant
if (as in the case of adiabatic fluctuations or temperature
fluctuations [4]) they leave η unchanged [3]. Here, wewill be
interested in the different case of isocurvature fluctuations,
for which η varies from one region of the Universe to
another. There is a long history of investigations of these
kind of models [5–12] and their baryon inhomogeneity may

reflect environmental nonuniformities or symmetry break-
ings at phase transitions in the very early Universe, long
before BBN occurred [13]. These investigators showed that
it was possible to reconcile the observed D abundance with a
closure density of baryons if the baryons were inhomoge-
neously distributed. During the 1970s there was interest
in baryon symmetric cosmologies which had led to the
consideration of proton and neutron diffusion effects during
BBN [14,15], and the need to avoid matter-antimatter
annihilation effects by requiring that baryon inhomogene-
ities were larger than the neutron diffusion length at BBN.
The subsequent realization that the baryon number would
not be conserved in a grand unified theory (GUT) led to a
rapid loss of interest in baryon symmetric cosmologies, but
there remained an interest in diffusion effects. An important
effect arises when the length scale of the fluctuations is
longer than the proton diffusion length but shorter than the
neutron diffusion length; in this case neutron diffusion from
high-density to low-density regions will strongly modify
the neutron-proton ratio [16,17]. This class of models has
been explored in great detail (see, e.g., Refs. [18,19] and
references therein for more recent discussions). When
neutron diffusion is important and the fluctuation amplitude
is large, it is possible to produce heavier elements than those
normally considered in standard homogeneous BBN [19–21],
a result which provides additional observational signatures
and constraints on such models. Furthermore, fluctuations of
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sufficiently large amplitude can lead to gravitational collapse,
further modifying the standard BBN scenario [22–24] and
creating primordial black holes.
In this paper, we ignore these latter possibilities (and

also the possibility of inhomogeneities in fundamental
“constants” like G [25] or the neutron half-life) and con-
centrate on the simplest case: low-amplitude, large-scale
fluctuations. In this case, BBN proceeds in the standard
way in independent regions with different values of η, and
the elements in these regions mix after BBN to give the
observed abundances today. There are two reasons why this
is an opportune time to revisit this scenario. First, observa-
tional limits on the primordial element abundances have
improved significantly since the earlier investigations cited
above. In particular, high-redshift quasar absorption systems
allow high-precision measurements of the primordial value
of D/H (the number ratio of deuterium to hydrogen) [26,27].
Second, η is no longer a free parameter to be determined
from the results of BBN calculations. Instead, it is fixed by
measurements of CMB fluctuations and then becomes a well
determined input parameter for BBN. This is particularly
salient for the case of BBN with density fluctuations, as
much of the motivation for these models was the possibility
that they might allow a wider range of values for η than in the
standard model, and previous work concentrated on deter-
mining the allowed range for η in these models. Here,
instead, we will be able to use a combination of a fixed value
for η, along with improved estimates of the primordial
element abundances, to place limits on the magnitude and
type of allowed density fluctuations in the early Universe.
In the next section, we will briefly review the standard

model for BBN and discuss the observational limits on the
element abundances that we incorporate in this paper. In
Sec. III, we will examine a variety of statistical distribu-
tions for η and calculate the corresponding predicted
element abundances using a version of the Kawano
nucleosynthesis code [28] with updated reaction rates
[29]. We will then use the observational limits to bound
the fractional rms fluctuation, σ, in each case. We discuss
our results in Sec. IV.

II. STANDARD BBN

Consider the standard model for BBN [1–3]. For
T ≳ 1 MeV, the weak interactions interconvert protons
and neutrons, maintaining a thermal equilibrium ratio,

nþ νe ⟷ pþ e−;

nþ eþ ⟷ pþ ν̄e;

n ⟷ pþ e− þ ν̄e; ð1Þ

while a thermal abundance of deuterium is maintained by

nþ p ⟷ Dþ γ: ð2Þ

After the weak reactions drop out of thermal equilibrium
at T ∼ 0.8 MeV, free-neutron decay continues until
T ∼ 0.1 MeV, when rapid fusion into heavier elements
occurs. Almost all of the remaining neutrons end up bound
into 4He, with a small fraction remaining behind in the form
of deuterium, tritium, and 3He, and some production of
7Li and 7Be, with the latter decaying into the former via
electron capture at the beginning of the recombination era
[30]. The element abundances produced in BBN depend
on the baryon/photon ratio η, which can be independently
determined from the CMB. We adopt a value of η ¼
6.1 × 10−10, consistent with recent results from Planck
[31]. This value of η yields predicted abundances of D and
4He consistent with observations.
Recent observational estimates of D/H include those

of the Particle Data Group (PDG) [32]: D=H ¼ ð2.569�
0.027Þ × 10−5, Cooke et al. [26]: D=H ¼ ð2.527�
0.030Þ × 10−5, and Zavarygin et al. [27]: D=H ¼ ð2.545�
0.025Þ × 10−5. Here we will adopt the PDG estimate,

D=H ¼ ð2.569� 0.027Þ × 10−5: ð3Þ
The primordial 4He abundance, designated Yp, is not so

well established. Izotov et al. [33] give Yp ¼ 0.2551�
0.0022, while Aver et al. [34] give Yp ¼ 0.2449� 0.0040.
The PDG limit is [32] Yp ¼ 0.245� 0.003. However, as
we will see, the primary limit on the models we will
examine here comes from deuterium, rather than 4He, so the
observational limit on 4He will have little effect on our
results.
As noted above, both the D and 4He abundances are

consistent with the predictions of standard BBN with the
CMB value for η, but this is not the case for the 7Li
abundance. The primordial lithium abundance is estimated
to be [32]

7Li=H ¼ ð1.6� 0.3Þ × 10−10: ð4Þ
However, standard BBN with η ∼ 6 × 10−10 predicts a
primordial value for 7Li=H that is roughly 3 times higher
than this observationally inferred value. (For this value of η,
most of the primordial 7Li is produced in the form of 7Be,
which decays into 7Li much later, as noted above.) This
discrepancy between the predicted and observationally
inferred primordial 7Li abundances is called the “lithium
problem,” and it remains unresolved at present (for a further
discussion, see Ref. [35]). Clearly, we cannot use the 7Li
abundance to constrain inhomogeneous BBN, since it is
already inconsistent with standard BBN. However, it will
be interesting to see whether the inhomogeneous models
examined here can help to solve the lithium problem.

III. INHOMOGENEOUS BBN

Our modeling of inhomogeneous BBN will closely
parallel that of Refs. [11] and [12]. We will assume
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isocurvature fluctuations, with η varying across different
regions of the Universe. We will take the length scales of
these fluctuations to be larger than the neutron diffusion
length, so that the diffusion of neutrons relative to protons
is not a significant effect. Note that the Planck CMB
measurements strongly constrain isocurvature modes [36],
but there are many orders of magnitude between the
comoving neutron diffusion length at BBN (∼107–108 cm
at BBN [37]) and the smallest length scales probed by
Planck, so our model has a nontrivial range of application.
We assume further that the inhomogeneous element abun-
dances are smoothed out by post-BBN diffusion of all of
the nuclei, so that the observable Universe ends up with a
single, uniform abundance of each element. Treatments of
post-BBN element diffusion in the standard (homogeneous)
case can be found in Refs. [38,39].
Our model can be entirely characterized by the distri-

bution of η, given by the distribution function fðηÞ which
specifies the fraction of the Universe with η in the interval
ðη; ηþ δηÞ at the time of nucleosynthesis. We will consider
a variety of choices for fðηÞ. Since fðηÞ is a probability
distribution for η, it must integrate to unity,

Z
∞

0

fðηÞdη ¼ 1: ð5Þ

We assume that the inhomogeneities present at BBN are
erased by diffusion before recombination, so that the mean
value of η today (and at recombination) is given by

η̄ ¼
Z

∞

0

fðηÞηdη: ð6Þ

The final average element abundances, i.e., the abundances
inferred from present-daymeasurements, are mass-weighted
averages of the element abundances produced in the different
regions. These aremost easily expressed in terms of themass
fraction XA of a given nuclide A, for which we have

X̄A ¼
Z

∞

0

XAðηÞfðηÞηdη=η̄: ð7Þ

The factor of η in the integral comes from the fact that the
abundances must be weighted by the baryon density in each
region before they mix. The only complication is that the
deuteriumand 7Li abundances are expressed as number ratios
relative to hydrogen, D/H and 7Li=H, rather than as mass
fractions, where the relationship between A/H and XA is
given by

A=H ¼ XA

AXH
; ð8Þ

and the hydrogen mass fraction, XH is, to a good approxi-
mation, given by XH ¼ 1 − Yp, where Yp denotes the

primordial mass fraction of 4He. Then, the mean value of
A=H averaged over different values of η is

A=H ¼ 1

Að1 − ȲpÞ
Z

∞

0

XAðηÞfðηÞηdη=η̄; ð9Þ

where Ȳp is the mean primordial value of the 4He mass
fraction in a given inhomogeneous model. In practice, Ȳp

never varies a great deal from thehomogeneous value,Yp, for
the models considered here, so the correction given by
including the factor of 1=ð1 − ȲpÞ instead of 1=ð1 − YpÞ
in Eq. (9) is negligible.
To perform this calculation, all that is needed is a choice for

fðηÞ and the values of the element abundances as a function
of η in the standard (homogeneous) case. A variety of
choices for fðηÞ have been investigated: unimodal distribu-
tions have included the gamma distribution [8,10], the log-
normal distribution [9], and the Gaussian distribution [11].
We will examine the same set of distributions here.
Taking η̄ to be given by η̄ ¼ 6.1 × 10−10, consistent with

the Planck results [31], we define the comparison ratio, ϕ,
to be given by

ϕ≡ η=η̄ ¼ η=6.1 × 10−10; ð10Þ
so that our earlier expressions become

Z
∞

0

fðϕÞdϕ ¼ 1; ð11Þ
Z

∞

0

fðϕÞϕdϕ ¼ 1; ð12Þ

along with

X̄A ¼
Z

∞

0

XAðϕÞfðϕÞϕdϕ; ð13Þ

A=H ¼ 1

Að1 − ȲpÞ
Z

∞

0

XAðϕÞfðϕÞϕdϕ: ð14Þ

Since our goal is to use current observations to bound the
magnitude of the fluctuations, we will express all of our
results in terms of the rms fluctuation in ϕ, with mean
value 1, given by

σ2 ¼
Z

∞

0

fðϕÞðϕ − 1Þ2dϕ; ð15Þ

and σ corresponds to the rms fractional fluctuation in η
for a given model (defined by a choice of inhomogeneity
distribution f).
We now express the Gaussian, log-normal, and gamma

distributions in terms of ϕ, parametrizing each one by σ.
First, consider the Gaussian distribution with unit mean,
given by
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fðϕÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−ðϕ−1Þ2=2σ2 : ð16Þ

Note that this distribution has the well-known problem that
it implicitly allows negative values for ϕ (and therefore
for η) which are, of course, unphysical. However, we
will confine our attention to sufficiently small values of σ
(σ < 0.25) that the negative values of ϕ correspond to 4 − σ
fluctuations and therefore have no significant effect on the
final results. (In effect, we are truncating our Gaussian at
ϕ ¼ 0). The second distribution we consider is the log-
normal with unit mean, given by

fðϕÞ ¼ 1ffiffiffiffiffiffi
2π

p
sϕ

e−ðlnðϕÞ−μÞ2=2s2 ; ð17Þ

where

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ σ2Þ

q
; ð18Þ

and

μ ¼ − lnð1þ σ2Þ=2: ð19Þ

Our final test distribution is the gamma distribution with
unit mean, given by

fðϕÞ ¼ ααϕα−1e−αϕ

ΓðαÞ ; ð20Þ

where ΓðαÞ is the gamma function, and α is related to σ by

α≡ 1=σ2: ð21Þ

Since our calculations of the mean element abundances
involve an integration over XAðϕÞ, we use a version of the
Kawano nucleosynthesis code [28] with updated reaction
rates [29] and a neutron lifetime of τ ¼ 880.2 sec [32] to
calculate the element abundances as a function of ϕ. Our
predicted element abundances at ϕ ¼ 1 (η ¼ 6.1 × 10−10)
are D=H ¼ 2.592 × 10−5, Yp ¼ 0.247, and 7Li=H ¼
4.544 × 10−10. These abundances are in good agreement
with the corresponding values in Ref. [1], but somewhat
discrepant (for deuterium and lithium) from those in
Ref. [3]. (The differences in the abundances predicted in
Ref. [1], and those in Ref. [3] are most likely due to
differences in the reaction rates used in the corresponding
computer codes.)
Since we can only calculate the element abundances at

discrete values of ϕ, we divide the range in ϕ into
logarithmic bins and change the integrals in Eqs. (13)
and (14) into the corresponding sums,

X̄A ¼
X
i

XAðϕiÞfðϕiÞϕiΔϕi; ð22Þ

A=H ¼ 1

Að1 − ȲpÞ
X
i

XAðϕiÞfðϕiÞϕiΔϕi: ð23Þ

We now proceed to calculate the inhomogeneous element
abundances. Although our ultimate goal will be a limit on
the magnitude of the density fluctuations, this limit will
necessarily depend on current observational limits. To
derive a result less prone to obsolescence, we will first
determine the general effect on the element abundances by
calculating the ratio, R, of each element abundance in the
inhomogeneous case to the corresponding homogeneous
abundance as a function of σ. We will denote this ratio by
RD for deuterium and RLi for 7Li. For each test distribution,
we evaluate Eq. (23) using the binned abundances calcu-
lated numerically as a function of ϕ to derive RD and RLi as
a function of σ. In standard (homogeneous) BBN, 4He
varies much more slowly with η than do D and 7Li [1].
Consequently, the change in 4He is negligible for the range
of σ values considered here; we find that Yp is altered by
less than 0.1%.
Our results for D and 7Li are displayed in Figs. 1–2. We

first make some general observations. The effect of the
inhomogeneities is to increase the abundance of deuterium
and 7Li for all three of our choices for fðϕÞ. Further, the
specific choice for the distribution function fðϕÞ has only a

FIG. 1. The ratio RD of the value of D/H for inhomogeneous
BBN to the value of D/H in standard homogeneous BBN as a
function of σ (the rms fluctuation in η=η̄) for the Gaussian
distribution (blue, solid), the log-normal distribution (red, dot-
ted), and the gamma distribution (green, dashed). Horizontal line
gives the 2 − σ observational upper bound on this ratio derived
from Ref. [32].
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small effect: the variation of the element abundances with ϕ
is very similar for all three of our choices for fðϕÞ. In the
limit where σ → 0, all three of our distributions give nearly
identical results; this is because both the gamma and log-
normal distributions approach a Gaussian distribution in
this limit.
It is possible to derive accurate analytic estimates for R in

the small-σ limit. Reference [1] provides approximations
for the element abundances as a function of ηwhen η is near
the standard model value (η ¼ 6.1 × 10−10). Reexpressing
these abundances in terms of ϕ, we have [1]

D=H ¼ ðD=HÞϕ¼1ϕ
−1.60; ð24Þ

7Li=H ¼ ð7Li=HÞϕ¼1ϕ
2.11; ð25Þ

where the ϕ ¼ 1 subscript denotes the predicted element
abundances at ϕ ¼ 1 (η ¼ 6.1 × 10−10). Assuming that Ȳp

varies very little from its homogeneous value (a good
approximation), we can substitute XðϕÞ ¼ Xϕ¼1ϕ

n along
with the Gaussian expression for fðϕÞ Eq. (16) into
Eq. (14) and expand to second order in σ to obtain

R ≈ 1þ 1

2
nðnþ 1Þσ2; ð26Þ

where n ¼ −1.60 for deuterium and n ¼ 2.11 for 7Li.
Equation (26) provides an excellent approximation to RD
and RLi for small values of σ. While this analytic argument
assumes a Gaussian distribution, our other two distributions,

aswe have noted, approach aGaussian in the limit of small σ,
so Eq. (26) applies to them as well in the small-σ limit.
Equation (26) shows that R − 1 increases quadratically

with σ in the small-σ limit, but we can derive a more general
result that is valid even when Eqs. (24) and (25) are no
longer good approximations. The quantity multiplying
fðϕÞ in Eq. (14) is XAðϕÞϕ. When Eqs. (24) and (25)
are valid, this quantity is, respectively, ϕ−0.60 for deuterium,
and ϕ3.11 for 7Li. These are both convex functions (i.e., with
positive second derivative). However, XAðϕÞϕ for both 7Li
and deuterium remains a convex function beyond the range
of validity of Eqs. (24) and (25). Whenever this quantity is
convex, Jensen’s inequality applied to Eq. (14) implies that
R > 1, i.e., the effect of inhomogeneities is to increase
the deuterium and 7Li abundances relative to their homo-
geneous abundances. Furthermore, this result is indepen-
dent of the functional form for fðϕÞ as long as fðϕÞ is small
outside the range where XAðϕÞϕ is convex. As a corollary,
the kinds of inhomogeneities we are considering here
cannot solve the lithium problem, since a solution of that
problem requires that the 7Li abundance predicted by BBN
be decreased, not increased.
Not surprisingly, the observed deuterium abundance

gives the best upper bound on σ. Using the 2 − σ upper
limit on D/H from the observational estimate in Eq. (3)
and taking D=H ¼ 2.592 × 10−5 for the theoretical value
in the homogeneous case at ϕ ¼ 1, we obtain an upper
bound on RD,

RD < 1.012: ð27Þ

This limit is displayed in Fig. 1. While there is some small
variation between the results for our three distributions, a
conservative bound derived from the observational limit is

σ < 0.17; ð28Þ

i.e., the rms fluctuation in η must be smaller than 17% of
the mean value of η.
Lithium-7 increases more sharply with σ in the inho-

mogeneous case than does deuterium. However, as we have
noted, BBN already predicts a primordial 7Li abundance
much larger than the observationally estimated primordial
abundance, so our 7Li results cannot be used to place useful
limits on inhomogeneous BBN. The best we can do is to
note that this model cannot ameliorate the primordial
lithium problem; indeed, it makes the problem worse.

IV. DISCUSSION

It is clear that the combination of sharp upper bounds on
the deuterium abundance, along with CMB limits on η,
allows us to place tight constraints on the graininess of
cosmological models of the early Universe with large-scale
baryon inhomogeneities. For all of the models examined

FIG. 2. The ratio RLi of the value of 7Li=H for inhomogeneous
BBN to the value of 7Li=H in standard homogeneous BBN as a
function of σ (the rms fluctuation in η=η̄) for the Gaussian
distribution (blue, solid), the log-normal distribution (red, dotted),
and the gamma distribution (green, dashed).
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here, the rms fluctuation in η is constrained to be less than
17% of the mean value of η. These constraints are due
entirely to the upper bound on deuterium. The 4He
abundance is much less sensitive to inhomogeneities
in η, while the observationally inferred primordial 7Li
abundance is already in conflict with the predictions of
standard BBN and so cannot constrain variations to BBN.
Note further that the effect of inhomogeneities is to increase
the 7Li abundance, so inhomogeneous BBN cannot provide
a solution to the primordial lithium problem.

The obvious generalization of this work would be a
reconsideration of fluctuations on smaller scales, where
differential neutron and proton diffusion becomes impor-
tant [16–19]. Such models, however, are considerably more
complex, since the geometry and magnitude of the fluc-
tuations both have a strong influence on the final results.
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