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Cosmological structures grow differently in theories of gravity which are modified as compared to
Einstein’s general relativity (GR). Cosmic microwave background (CMB) fluctuation patterns at the last
scattering surface are lensed by these structures along the photon path to the observer. The observed CMB
pattern therefore keeps trace of the growth history of structures. We show that observations of the CMB
lensing bispectrum offer an interesting way to constrain deviations from GR in a broad class of scalar-
tensor theories of gravity called “beyond Horndeski”. We quantify how the constraints on generic
parameters describing the deviations from GR depend on the effective multipole range of the analysis. Our
results further indicate that an accurate nonlinear correction of the matter bispectrum in the modified
gravity considered is necessary when the bispectrum is used to probe scales beyond a multipole
lmax ≳ 1500. We also found that the results are insensitive to details of the implementation of the screening
mechanism, at very small scales. We finally demonstrate the potential of the lensing bispectrum to provide a
blind reconstruction of the redshift evolution of our modified gravity parameters by combining the analysis
of CMB and low-z source lensing data.
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I. INTRODUCTION

Dark energy is an enduring mystery. One possibility is
that the observational evidence pointing to its existence, i.e.,
late-time cosmic acceleration, is misinterpreted and should
rather be considered as traces of the breakdown of general
relativity (GR) at large scales. Many experiments are being
conducted in order to test this hypothesis, in particular by
seeking a possible deviation from GR in the growth rate of
large scale structures of the Universe (e.g., [1–5]).
One fundamental difficulty in devising tests of gravity on

cosmological scales is that the large scale structures of the
Universe are delineated by visible objects—galaxies, clus-
ters of galaxies—which are biased tracers of the dark matter
distribution, while this is the latter which is the dominant
source of gravity at these scales. Of course, there are well
developed models relating the light distribution to the mass
distribution and a perturbative description of the galaxy
bias should work well at large scales, only introducing
a small number of nuisance parameters (e.g., [6]).

Nevertheless, deviations from GR are bound to be very
small, and controlling the accuracy of these models at the
required level of precision is a daunting challenge which
will be hard to meet convincingly. It is therefore all too
natural to try finding observables which rely on a solid
understanding of their physics. Gravitational lensing effects
are obvious candidates, which are very promising.
However, practical analyses of the weak lensing probed
with luminous objects, referred to as cosmic shear, still
have to cope with a number of difficulties, e.g., the
alignment of objects with their surrounding structures or
uncertainties in the redshift distribution of the lensed
sources. In addition, most of the lensing effect comes from
redshifts around half that of the most distant sources,
typically z ∼ 1. One interesting avenue to explore will be
the lensing effect on the Lyman-α forest on the line of sight
of distant quasars (e.g., [7–9]). Here, we instead look at the
lensing effect on the CMB, whose physical origin is very
well known. In that case, the main contribution to the

PHYSICAL REVIEW D 98, 043530 (2018)

2470-0010=2018=98(4)=043530(12) 043530-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.043530&domain=pdf&date_stamp=2018-08-28
https://doi.org/10.1103/PhysRevD.98.043530
https://doi.org/10.1103/PhysRevD.98.043530
https://doi.org/10.1103/PhysRevD.98.043530
https://doi.org/10.1103/PhysRevD.98.043530


lensing signal comes from a large redshift range centered at
z ∼ 2, and this allows us to probe a redshift range hardly
attainable by the lensing effects probed with luminous
sources.
Multiple works have already considered the future

forecast to constrain modified gravity theories from the
CMB lensing measurements, focusing in particular on the
(angular) power spectrum and/or cross-power spectra with
other cosmological observables(e.g., [10–14]). But these
two-point statistics are far from being exhaustive, and
further information can be extracted with the higher-order
statistics. Refs. [15,16] showed that the lensing bispectrum
of the CMB is detectable at high statistical significance in
near-term experiments. It is thus natural, as a second step,
to explore the potential power of measurements of the
CMB lensing bispectrum in assessing modified gravity
theories. The aim of this paper is to present the first forecast
study of this probe.
This paper is organized as follows. Section II recalls the

basic theory of the lensing bi-spectrum and how it is altered
in modified gravity theories. Section III presents our main
results, while Sec. IV summarizes our work and discusses
perspectives.
Throughout the paper, we adopt a fiducial cosmological

model which is consistent with the latest Planck cosmology
[17], i.e., a spatially flat ΛCDM cosmology with the baryon
and matter density, Ωbh2 ¼ 0.0223 and Ωmh2 ¼ 0.119, the
dark-energy density ΩΛ ¼ 0.689, the amplitude of the
primordial scalar power spectrum, As ¼ 2.13 × 10−9, and
its spectral index at k ¼ 0.05 Mpc−1, ns ¼ 0.965, with the
reionization optical depth, τ ¼ 0.0630.

II. LENSING BISPECTRUM

In this section, we first review briefly the formalism of the
CMB lensing bispectrum in GR (see, e.g., [15,18]). We then
describe the modification of the bispectrum in a general class
of modified gravity theories (see, e.g., [19–21]).

A. Lensing potential

The gravitational lensing effect on the CMB anisotropies
is described as a remapping of the CMB fluctuations at the
recombination by the so-called deflection angle, d ¼ ∇ϕ,1
where ϕ is the lensing potential (e.g., [24,25]):

ϕðn̂Þ ¼ −2
Z

χ�

0

dχWðχ; χ�ÞΨðχ; n̂Þ: ð1Þ

Here χ� is the comoving distance to the CMB last-
scattering surface, and Ψ is the Weyl potential. The lensing
kernel, Wðχ; χ�Þ, is defined (for a flat cosmology) as

Wðχ; χ�Þ ¼
χ� − χ

χχ�
: ð2Þ

Let us define the lensing convergence as κ ¼ −∇2ϕ=2. By
using Poisson equation, we obtain

κðn̂Þ ¼
Z

χ�

0

dχ
3Ωm;0H2

0χ
2

2aðχÞ Wðχ; χ�Þδmðχ; n̂Þ; ð3Þ

where a is the scale factor and δm is the underlying density
fluctuations of matter along the line-of-sight. The lensing
potential (and thus the convergence) can be reconstructed
from the observed CMB anisotropies by using the fact that a
fixed lensing potential introduces statistical anisotropy into
the observed CMB (e.g., [26–28]). The reconstructed lensing
convergence map can then be used for cosmology by first
transforming the map into its harmonic coefficients, κlm, and
then by measuring various moments like the power spectrum
and the bispectrum (which entails an accurate subtraction of
the nonlensing contributions, see e.g., [29,30]). Recent CMB
experiments have already detected the power spectrum of the
lensing potential very precisely [31–35]. For instance, the
Planck detection [33] has a 40σ significance. The detection
and precise determination of the CMB lensing bispectrum
are therefore obvious and important next step in CMB
scientific analyses.

B. Lensing bispectrum

The bispectrum of the lensing convergence, defined in
harmonic space, has translational and rotational invariance.
This is true as long as the statistical isotropy holds. It is thus
sufficient to characterize it with a function Bl1l2l3

of only
three variables, weighted by the Wigner 3j-symbols
through

hκl1m1
κl2m2

κl3m3
i ¼

�
l1 l2 l3

m1 m2 m3

�
Bl1l2l3 : ð4Þ

In what follows, we use the flat-sky approximation, and
start by computing the bispectrum given by

hκl1κl2κl3 ¼ið2πÞ2δðl1 þ l2 þ l3ÞBl1l2l3 : ð5Þ

The full-sky bispectrum is then obtained from the flat-sky
bispectrum through

Bl1l2l3 ¼
�
l1 l2 l3

0 0 0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×Bl1l2l3 ; ð6Þ

where the multipoles have to satisfy the triangle condition
jli − ljj ≤ lk ≤ li þ lj. In order to evaluate this expres-
sion, it is enough at the scales of interest to use the
following approximate form of the Wigner 3j-symbol,

1Here we ignore the curl mode of the deflection angle (e.g.,
[22]) because it contribution is negligible compared to that of the
lensing potential in the standard ΛCDM cosmology (e.g., [23]).
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�
l1 l2 l3

0 0 0

�
≃ ð−1ÞL

ffiffiffiffiffiffi
e3

2π

r
ðLþ1Þ−1=4

Y3
i¼1

ðL−liþ1Þ−1=4

×

�
L−liþ1=2
L−liþ1

�
L−liþ1=4

ð7Þ

for even L, where we define L ¼ ðl1 þ l2 þ l3Þ=2. For
odd L, the Wigner 3j-symbol becomes zero.
The CMB lensing bispectrum is sourced by
(1) the nonlinear evolution of the large-scale structure

[15], and
(2) the so-called post-Born correction [16], i.e., the

correction to the Born approximation for which
the lensing effect is evaluated on the unperturbed
geodesic.

We denote these contributions respectively by BLSS and
Bpb, and present their explicit expressions below.
The CMB lensing bispectrum from the nonlinear growth

of the density perturbations is given in the flat-sky limit
by [15]

BLSSðl1;l2;l3Þ ¼
Z

χ�

0

dχ
�
3Ωm;0H2

0

2aðχÞ
�
3

× χ2W3ðχ; χ�ÞBδðk1; k2; k3; χÞ: ð8Þ

Here, Bδ is the matter bispectrum arising from
the nonlinear growth of structure. In the weakly non-
linear regime, it can be obtained by using perturbation
theory. The result at the tree-level order is of the general
form

Bδðk1; k2; k3; χÞ ¼ 2F2ðk1; k2; zÞPδðk1; zÞPδðk2; zÞ
þ 2 perms; ð9Þ

where Pδðk; zÞ is the matter power spectrum at redshift
zðχÞ, and the function F2 is the second-order perturbation
theory kernel (e.g., [36]). Writing k1 · k2 ¼ k1k2 cos θ, it is
given by

F2ðk1; k2; zÞ ¼
5

7
aðk1; zÞaðk2; zÞ

þ 1

2

k21 þ k22
k1k2

bðk1; zÞbðk2; zÞ cos θ

þ 2

7
cðk1; zÞcðk2; zÞcos2θ; ð10Þ

where aðk; zÞ, bðk; zÞ and cðk; zÞ are unity at the tree-
level of perturbation theory. In the highly nonlinear
regime, the deviation from tree-level prediction are
significant, and a proper treatment of the nonlinear
effects coming from the higher-order perturbations is
needed. The scale- and time-dependent coefficients a, b,

and c effectively characterize these, and their deviation
from unity is calibrated with high-resolution N-body
simulations. According to [37], they are given by

aðk; zÞ ¼ 1þ fσ8ðzÞga6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.7QðneffÞ

p ðqa1Þneffþa2

1þ ðqa1Þneffþa2
ð11Þ

bðk; zÞ ¼ 1þ 0.2a3ðneff þ 3Þðqa7Þneffþ3þa8

1þ ðqa7Þneffþ3.5þa8
ð12Þ

cðk; zÞ ¼ 1þ ½4.5a4=ð1.5þ ðneff þ 3Þ4Þ�ðqa5Þneffþ3þa9

1þ ðqa5Þneffþ3.5þa9
;

ð13Þ

with QðxÞ ¼ ð4 − 2xÞ=ð1þ 2xþ1Þ. Here, the variable q is
given by q ¼ k=kNL with the nonlinear scale, kNL, deter-
mined by 4πk3NLP

lin
m ðkNLÞ ¼ 1. The quantity σ8ðzÞ is the

variance of the matter density fluctuations smoothed with a
top-hat sphere of radius 8h−1 Mpc at redshift z. The
logarithmic slope, neff ≡ d lnPlin

m ðkÞ=d ln k, is the effective
spectral index of the linear power spectrum, Plin

m ðkÞ. The
parameters, ai, are determined by fitting results of N-body
simulations, which yields [37]

a1 ¼ 0.250 a2 ¼ 3.50 a3 ¼ 2.00

a4 ¼ 1.00 a5 ¼ 2.00 a6 ¼ −0.200

a7 ¼ 1.00 a8 ¼ 0.00 a9 ¼ 0.00: ð14Þ

Later on, Ref. [38] proposed an improved fit given by

a1 ¼ 0.484 a2 ¼ 3.74 a3 ¼ −0.849

a4 ¼ 0.392 a5 ¼ 1.01 a6 ¼ −0.575

a7 ¼ 0.128 a8 ¼ −0.722 a9 ¼ −0.926: ð15Þ

In our baseline calculations, we use the parameters of
Ref. [38] (hereafter “GM”) but we shall also use the earlier
results of Ref. [37] (hereafter “SC”) as ameans to assess the
dependence of our results on the accuracy of these fitting
formula.
The post-Born correction to the CMB lensing bi-

spectrum, Bpb is given as [16]

Bpbðl1;l2;l3Þ ¼ 2
l1 · l2

l2
1l

2
2

× ½l1 · l3Mðl1;l2Þ þ l2 · l3Mðl2;l1Þ�
þ cyc perm; ð16Þ

where
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Mðl;l0Þ ¼ l4

Z
χ�

0

dχ
½Wðχ; χ�Þ�2

χ2

× PΨ

�
l
χ
; χ

�
Cκκ
l0 ðχ; χ�Þ: ð17Þ

PΨðk; χÞ is the power spectrum of the Weyl potential at a
comoving distance χ, and

Cκκ
l ðχ0; χ�Þ ¼ l4

Z
χ0

0

dχ
Wðχ; χ0ÞWðχ; χ�Þ

χ2

× PΨ

�
l
χ
; χ

�
: ð18Þ

If these terms are known, or determined accurately, then the
post-Born term is known as well.
All in all, the CMB lensing bispectrum is the sum of

Eqs. (8) and (16).

C. Effect of modified gravity on the bispectrum

In modified gravity theories, the perturbation theory
kernel F2 is altered and may be written, at the tree level in
the quasistatic approximation, as (e.g., [20,21])

F2ðk1; k2; zÞ ¼
�
κðzÞ − 2

7
λðzÞ

�

þ κðzÞ 1
2

k21 þ k22
k1k2

cos θ

þ λðzÞ 2
7
cos2θ: ð19Þ

The kernel above coincides with the GR case when
λðzÞ ¼ κðzÞ ¼ 1. Let us note that here and in all the
following we use κ as a parameter characterizing the
deviation from GR, as in many previous theoretical papers.
This is then not to be confused with the lensing con-
vergence which is denoted by the same symbol in other
parts of the literature [and in (3)].
The Horndeski theory of gravity (e.g., Refs. [39–41]), is

the most general nondegenerate scalar-tensor theory in 4D
space-time that leads to second-order equations of motion.
It may have λ ≠ 1 in general, but κ ¼ 1 is still preserved.
An even wider class of theories imaginatively called
“beyond Horndeski” theories, including GLPV [42,43]
and DHOST [44,45], can explicitly break this latter
condition, in close connection with the violation of
Vainshtein mechanism to recover GR at nonlinear regime
(see also [46]). Testing and constraining possible deviations
of λ and κ from unity is thus very interesting, and could give
important information on gravity at cosmological scales,
rather independently of the growth rate of structure probed
with galaxy redshift surveys. Further, no strong constraint
on λ has been obtained so far, and no theoretical upper/
lower limits is known for κ (see, e.g., Refs. [19–21] for

further discussion of the possible values of λ and κ under
some specific models). The measurement of the bispectrum
is therefore key to narrow down the constraints.
A particular subclass of modified gravity theories may

have a specific redshift dependence of λ and κ, and such a
form will have to be used ultimately to get the tightest
constraints on these specific theories. Here, we rather wish
to look at the generic potential of the bispectrum probe.
Following Ref. [20], we adopt the functional form of λ and
κ as

λðzÞ ¼ ½ΩmðzÞ�ξλ ;
κðzÞ ¼ ½ΩmðzÞ�ξκ ; ð20Þ

where ΩmðzÞ ¼ Ωm;0=ðΩm;0 þ a3ΩΛÞ. This naturally
embodies the expectation that a modified theory will
converge to GR at high-z and preserve the successful
predictions of CMB anisotropies using GR. The form is
also monotonic, in keeping with the idea of generic
constraints. Our goal is therefore to assess how well the
generic parameters ξλ and ξκ can be constrained by
measurement of the CMB lensing bispectrum.
One should recall that the modification of the kernel F2

given in Eq. (19) is only valid in the weakly nonlinear
regime. In order to improve the constraints, we may want to
use measurements at small scales, taking into account the
nonlinear corrections introduced earlier in Sec. II B. This is,
however, not trivial in the context of modified gravity,
because a modification of gravity can also change the
nonlinear corrections, and a proper account of these needs
more elaborate work which we leave for future investiga-
tion. Here we rather adopt the fitting formula given in the
GR case, in order to assess the potential power of the CMB
lensing bispectrum in the intermediate regime. Therefore
the kernel F2 used in our analysis is given by

F2ðk1; k2; zÞ ¼
�
κðzÞ − 2

7
λðzÞ

�
aðk1; zÞaðk2; zÞ

þ κðzÞ 1
2

k21 þ k22
k1k2

bðk1; zÞbðk2; zÞ cos θ

þ λðzÞ 2
7
cðk1; zÞcðk2; zÞcos2θ: ð21Þ

Wewill then compare the forecast results based on Eq. (21)
with those derived from the tree-level kernel at Eq. (19).
The impact of the modification of this formula at small
scales is also discussed in detail (see Sec. III C).
Let us conclude this theoretical section with a couple of

comments. The first concerns the relation between the
lensing potential and the density field, which was given in
Eq. (3). This equation may be altered in modified gravity
theories, and the expression given at Eq. (8) might not be
relevant. Fortunately, Ref. [14] showed that the modified
Weyl potential is given by a simple scaling of the matter
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density fluctuations by a factor μ. This means that what is
actually constrained from the lensing bispectrum are
combinations of the parameters, i.e., μ3λ and μ3κ. This
being understood, in the following, we keep using the same
notation, and denote these scaled parameters simply by λ
and κ.
The second point concerns the post-Born correction

term, which could also receive corrections from the
modification of gravity. However, the impact of such a
modification is expected to be very small because the
measurement of the lensing power spectrum severely limits
a modification to the post-Born correction in the bi-
spectrum. Indeed, the signal-to-noise ratio of the lensing
power spectrum will be very high in future experiments
[∼Oð103Þ] and the allowed modification to the power
spectrum amplitude is therefore smaller than about 0.1%.
The signal-to-noise ratio of the bispectrum is, on the
other hand, much lower than that of the power spectrum
[∼Oð10Þ], which is equivalent to a ∼10% constraint on the
modification of the bispectrum amplitude. This means that
the prior information from the power spectrum limits the
modification to the post-Born correction well below the
measurement uncertainty of the bi-spectrum. For this
reason, in our analysis, we ignore the effect of possible
modification to the post-Born correction.
The third point is the validity of the nonlinear fitting

formula beyond tree level.

III. RESULTS

A. Expected constraints on parameters
of modified gravity theories

We begin by inspecting the expected signal for lensing
bi-spectrum for various experiments and configurations. In

Fig. 1, the bi-spectra for equilateral (l1 ¼ l2 ¼ l3 ≡ l,
left) and folded (l1 ¼ 2l2 ¼ 2l3 ≡ l, right) configura-
tions are shown, and the results are plotted as a function
of l.2 Solid lines are the expected bispectrum signals in GR
(black) and modified gravity models (ξλ ¼ 1 for red, ξκ ¼ 1
for blue), which are computed following the prescription in
Sec. II C. The modification to gravity alters the scale-
dependence of the bispectrum amplitude through the shape
dependence of the kernel F2, but only weakly, and the main
effect appears to be a simple rescaling. In the folded
bispectrum, however, the post-Born correction has non-
negligible contributions to the bispectrum, and the total
bispectrum has a bit complicated behavior. In the figure, the
statistical errors are depicted by shaded areas, both for the
upcoming experiment, CMB-S4 (green), and an hypotheti-
cal full-sky experiment limited only by the cosmic variance
(red). Note that the quoted error is estimated from the
Gaussian noise used in the Fisher matrix (see below).
Fig. 1 implies that with a realistic measurement of the

lensing bi-spectrum, one can simultaneously constrain both
modified gravity parameters. We note that these configu-
rations at large scales (l≲ 1000) are a simple rescaling of
the GR case, and as such might be hard to disentangle
from other observational effects, a further reason to hope
for small scale measurements. In addition, the folded

FIG. 1. The CMB lensing bispectrum in GR and modified theories of gravity (ξλ ¼ 1 or ξκ ¼ 1) with error bars expected from a future
CMB experiment (S4) and in the cosmic-variance limit (CV), see specifications in Table I. The left and right panel show the case for an
equilateral and folded configuration with, respectively, l1 ¼ l2 ¼ l3 ≡ l and l1 ¼ 2l2 ¼ 2l3 ≡ l.

2The error bars are computed as follows. We first choose
the width of the multipole bin and bin centers of the multipole, l1,
l2 and l3. Using the three multipole bin centers, the binned
equilateral and folded bi-spectra satisfy l1 ¼ l2 ¼ l3 and
l1 ¼ 2l2 ¼ 2l3, respectively. For each binned bi-spectrum,
Bl1;l2;l3 , its signal-to-noise (i.e., the inverse of the error on its
amplitude) is computed. The error bars plotted in the figure are
obtained by multiplying Bl1;l2;l3

to the errors of the bispectrum
amplitude at each bin.
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bi-spectrum is much more sensitive to the modified gravity
parameters than the equilateral bispectrum because the
amplitude of the LSS bi-spectrum in the folded case is
much larger than that in the equilateral case [15].

In order to see quantitatively how well the parameters ξλ
and ξκ can be constrained, we follow Refs. [15,18] and
define the Fisher matrix:

Fij ¼
Xlmax

l1≤l2≤l3

fsky
Bl1l2l3;iBl1l2l3;j

Δl1l2l3Cl1Cl2Cl3
; ð22Þ

where Bκ
l1l2l3;i

is the derivative of the lensing bispectrum
with respect to the ith parameter.Δl1l2l3 is unity if all li are
different, 2 if two li are equal, and 6 if all li are equal. The
lensing power spectra, Cl, includes the reconstruction noise
of the lensing measurement.
The lensing reconstruction noise is computed by follow-

ing the formula of Ref. [47] which is motivated by the

TABLE I. Specifications for the CMB experiments considered
in this paper: the noise level in the CMB polarization map, ΔP, in
unit of μK arcmin, the angular resolution as expressed by the
FWHM of a Gaussian beam, θ, in unit of arcmin, and the
fractional sky coverage, fsky.

ΔP [μK arcmin] θ [arcmin] fsky

CMB-S4 1 3 0.4
CV 0 � � � 1.0

FIG. 2. Left: Expected constraints on ξλ as a function of lmax and experimental specifications, with and without the nonlinear
correction (see text). The constraints are derived by marginalizing only ξλ as a free parameter. Right: Same as left but for ξκ. Note that the
curves labeled “tree” correspond to Eq. (19) and those labeled “GM” to Eq. (21).

FIG. 3. The expected joint constraints on the two parameters, ξλ and ξκ , assuming the CMB-S4 experiment (left) and in the cosmic-
variance case (right). Ellipses of different colors correspond to changes in the maximum multipole of the bispectrum used to constrain
the parameters (lmax ¼ 500, 1000, 1500). We also show with dashes the case when including a correction of the nonlinear evolution of
the large-scale structure in the bispectrum (denoted by “GM”).
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maximum-likelihood approach to reconstructing the lens-
ing potential [27,48]. The specifications of the CMB
instrumental noise we use are summarized in Table I.
The constraining power at various scales is investigated

by varying the maximum multipole lmax of the summation
of Eq. (22). Derivatives are numerically computed based on
the symmetric difference quotient. The fiducial values of
the parameters are GR ones, i.e., ðξλ; ξκÞ ¼ ð0; 0Þ. The
other cosmological parameters are fixed in the analysis
because these parameters are severely constrained by other
observables such as the primary CMB power spectrum and
lensing potential power spectrum. The linear matter power
spectrum is computed with CAMB [49]. We use the
nonlinear correction to the matter power spectrum of
Refs. [50,51].
Figure 2 shows the expected size of the statistical error

on the parameters ξλ (left) and ξκ (right) as a function of the
maximum multipole considered, lmax, when only one
parameter at a time, either ξλ or ξκ, is free to vary while
keeping the other fixed. These plots show quantitatively
how fast the constraints improve when smaller scales are
included. Let us also note that the 1σ constraints do not vary
simply as a power law of lmax.

3 One also sees that the
constraint on ξκ is much better than that on ξλ. This is
mostly due to the factor 2=7 in front of λ; in addition, the
terms proportional to λ vanish for the folded configuration
(l1 ¼ 2l2 ¼ 2l3 and its permutations) which has domi-
nant contributions to the large-scale structure bispectrum
[15]. In any case, future CMB experiments will allow

exploring a relevant part of the parameter space which is so
far nearly unconstrained.
Figure 3 shows the error contours of the joint constraint

on the parameters ξλ and ξκ. The degeneracy between the
two parameters is clearly seen. It does not change with
lmax, nor is it really broken by the nonlinear corrections.
This degeneracy comes from the first term of the kernel F2

in Eq. (21).
Figure 4 shows the dependence of the statistical error of

ξλ (left) and ξκ (right) on lmax, when the two parameters are
simultaneously constrained. By comparing Fig. 4 with
Fig. 2, due to the parameter degeneracy, the 1σ uncertainty
in each constrained parameter becomes much larger com-
pared to that in the absence of the degeneracy.
It is worth stressing that the correction due to the

nonlinear growth beyond tree level significantly increases
the total signal-to-noise of the bispectrum [15].
Correspondingly, the constraints on the parameters become
significantly tighter.

B. Impact of nonlinear loop correction
on the lensing bispectrum

Our results imply that the study of the nonlinear growth
in modified gravity theories is very important to best extract
information in the lensing bispectrum in the era of CMB-S4
and beyond. We have used the fitting formula of GM for the
matter bispectrum beyond the tree-level prediction [see
Eq. (15)]. Unfortunately, its validity for deriving constraints
on the modified gravity is not yet well studied. However,
Ref. [52] recently uses the same parametrization of the
fitting formula as we proposed in Eq. (15), and shows that
the formula in the nDGP model, which falls into the
Horndeski theories, is in good agreement with the simu-
lation results. Although the fitting formula gives a reason-
able approximation in at least the nDGP model as one of
representative Horndeski theories, a complete treatment of
nonlinear correction in modified gravity theories is still

FIG. 4. Expected constraints on ξλ (left) and ξκ (right) as a function of lmax with and without the fitting model of the nonlinear
correction and experimental specifications. Compared to Fig. 2, we assume that the two parameters are simultaneously constrained.

3In the case of the power spectrum, Cl, if the derivative of Cl
with respect to a parameter, p, is proportional to Cl, the Fisher
matrix for p in the cosmic variance limit is simply given by
Fpp ¼ P

1≤l≤lmax
ðlþ 1=2Þ ≃ l2

max (lmax ≫ 1). Then the 1σ
constraint on p varies as 1=lmax. Nevertheless, Eq. (22) is not
simply written as a function of lmax and the lmax dependence of σ
becomes more complicated.
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highly involved and well beyond the scope of this paper.
Here, we get a feel of the sensitivity of our results to the
specifics of the nonlinear correction by contrasting those
obtained with GM with those derived with the SC fitting
parameters [see Eq. (14).
The expected 1σ error contour in the two dimensional

parameter space using the SC fitting parameters is shown in
Fig. 5. The expected constraints on ξλ and ξκ do not
significantly deviate from those obtained in the GM case.
This suggests than our results are actually quite robust
against the details of the nonlinear correction.
Still, in addition to the effect on the uncertainties of the

parameter constrains, the inaccuracy in the fitting formula
could lead to a bias in the best fit parameters. Assuming that
the GM fitting formula correctly captures the matter bi-
spectrum beyond the tree level, we evaluate the expected
bias in the parameter estimations by using on purpose an
“inaccurate” fitting formula as follows. Specifically, we
regard the SC fitting formula as the inaccurate model, and
compute the expected parameter bias as [53,54]

bi ¼
X
j

F̃−1
ij Δj; ð23Þ

where we define

Δj ¼
X

l1≤l2≤l3

fsky
ðBl1l2l3 − B̃l1l2l3ÞB̃l1l2l3;j

Δl1l2l3Cl1Cl2Cl3
; ð24Þ

The quantities, F̃ij and B̃l1l2l3 , are the Fisher matrix and
lensing bispectrum computed with the incorrect theoretical
model of the fitting formula, respectively.
Table II shows the results of the parameter bias for

several experimental specifications and maximum multi-
pole. As the maximum multipole of the bispectrum
increases, the bias also increases. In the CMB-S4 case,
the bias is still well within the 1σ expected constraints. It
will thus not require heavy theoretical work to solidify the
constraints on modified gravity theories at loop level. On
the other hand, the bias for lmax ≳ 1500 in the CV limit is
actually fairly significant compared to the 1σ constraint.

C. Impact of the screening mechanism
on the lensing bispectrum

At small scales, modified theories of gravity have to
become close to GR in order to evade the observational
constraints based on solar-system measurements. This is
insured by a screening mechanism. Following the treatment
of Ref. [55], we model this screening mechanism through
the following modification of the parameters in
F2ðkm; kn; zÞ,

λðzÞ → 1þ ðλðzÞ − 1Þfðkm; kn; zÞ; ð25Þ

κðzÞ → 1þ ðκðzÞ − 1Þfðkm; kn; zÞ; ð26Þ

where ðm; nÞ is (1,2), (2,3) or (1,3) and

fðkm; kn; zÞ ¼ exp

�
−
k2m þ k2n
k2VðzÞ

�
: ð27Þ

FIG. 5. Expected constraints using the nonlinear loop correction of Ref. [38] compared with that of Ref. [37].

TABLE II. Expected bias in the parameters, ξλ and ξκ , if the
nonlinear loop correction of Ref. [29] is inaccurate while that of
Ref. [30] correctly captures the loop correction. We also show
between parentheses the expected 1σ constraints with the GM
fitting parameters.

lmax Δξλ (σðξλÞ) Δξκ (σðξκÞ)
CMB-S4 500 0.26 (2.8) 0.048 (0.57)

1000 0.45 (1.3) 0.053 (0.28)
1500 0.49 (0.92) 0.033 (0.20)

CV 500 0.26 (1.6) 0.048 (0.34)
1000 0.48 (0.65) 0.053 (0.14)
1500 0.53 (0.35) 0.026 (0.079)
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Here, we further introduce the parameter, v, defined
through kVðzÞ ¼ vkNLðzÞ. The value of v would be
typically v ≫ 1, but could be v ≤ 1. Figure 6 shows the
impact of the screening mechanism, i.e., the constraints on
ξλ (left) and ξκ (right) divided by those without the
screening mechanism, plotted as a function of v. For
v ≥ 10, the impact of screening mechanism on the param-
eter constraints is less significant, and it slightly worsens
the constraints by 1% (10%) at lmax ¼ 500ð1500Þ. On the
other hand, if v≲ 1, the change is significant, and the
statistical errors get increased approximately by a factor of
more than 2. Our result indicates that to constrain the
models with v ≲ 1, a proper account of the screening effect
is very crucial. But, this may in turn suggest a possibility of
the simultaneous constraints on the scale of the screening
mechanism and parameters ξλ;κ.

D. Comparison with low-z lensing bispectrum

So far we have focused on the constraints using the CMB
lensing bispectrum as a clean cosmological probe. Indeed
the lensing bispectrum directly measures the underlying
gravitational potential and, unlike the galaxy bispectrum
discussed by many previous works (e.g., [20,46]), it is
immune to many observational and theoretical uncertain-
ties, e.g., galaxy biases. The bispectrum of the cosmic shear
is an alternative observational probe of modified gravity
theories (e.g., [56]) which is based on the same physics.
The resulting constraints on the modified gravity theories
are expected to be tighter than those obtained from the
CMB lensing bispectrum (at least for monotonous devia-
tions). However, the cosmic shear has significant uncer-
tainties in, e.g., the theoretical modeling of the nonlinear
growth of the large-scale structure, baryon physics, intrin-
sic alignment, and observational difficulties such as
photo-z, PFS, and calibration.
Table III shows the expected bias and 1σ constraints on

the parameters, ξλ and ξκ, using the cosmic shear at zs ¼ 1

and 2, to be compared with the CMB results of Table II.
Compared to the latter case, the bias is larger than the 1σ
constraint even at lmax ¼ 500. The lensing bi-spectrum of
the low-z galaxies is highly sensitive to the modeling of the
nonlinear correction, and the constraints derived from the
cosmic shear bispectrum would be easily biased by
limitation of the accuracy of the nonlinear correction. In
this respect, the constraints derived from the CMB lensing
bi-spectrum will serve as an important cross-check of the
results obtained from the cosmic shear bispectrum. We
shall now see that CMB and shear lensing constraints are
actually fairly complementary.
Here we discuss which redshifts the lensing bispectra of

CMB and galaxies are sensitive to. To that effect, we
consider a time dependence of the parameter, λðzÞ, varying
according to a top-hat function selecting a redshift bin:

λðzÞ ¼
�
1þ ϵ ðzi ≤ z ≤ zi þ 0.1Þ
1 ðotherwiseÞ : ð28Þ

We compute the expected constraints on ϵ with varying zi.
Note that the results of the Fisher analysis do not depend on
the fiducial value of ϵ. We also change the source comoving
distance, χ�, to include cases of galaxy weak lensing.
Figure 7 shows the expected constraints on the param-

eter, λðzÞ, at each redshift bin. We vary the maximum

FIG. 6. The expected constraints as a function of the screening scale, v ¼ kv=kNL, divided by those without the screening mechanism.

TABLE III. Same as Table II but for the lensing bispectrum
probed with low-z sources, in the cosmic-variance limit.

lmax Δξλ (σðξλÞ) Δξκ (σðξκÞ)
zs ¼ 1 500 0.068 (0.11) 0.027 (0.025)

1000 0.076 (0.044) −0.030 (0.011)
1500 0.069 (0.027) −0.074 (0.0068)

zs ¼ 2 500 0.18 (0.22) 0.063 (0.049)
1000 0.24 (0.086) 0.034 (0.021)
1500 0.27 (0.051) −0.0081 (0.013)
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multipole, fitting function and source redshift. At high-z
(z≳ 1), the constraints from the CMB lensing bi-spectrum
are much tighter than those from the lensing bi-spectrum
of low-z sources. For both lmax, the best constraints on the
z-bin of λ are obtained from zs ¼ 1 at z≲ 0.7, from zs ¼ 2
for 0.7≲ z≲ 1.3, and at higher z, the CMB constraints are
the tightest. In addition, the plot indicates by how much the
constraints depend on the somewhat uncertain nonlinear
correction beyond tree-level.
While lensing analyses will initially be done independ-

ently for sources at various redshift, in the long run, the
combination of measurements of the CMB and low-z
lensing bispectra will allow a full blind reconstruction of
the evolution of the modified gravity parameters.

IV. SUMMARY AND DISCUSSION

Besides their academic interest, modified gravity theo-
ries have been proposed as a means to interpret differently
the observational evidences for dark energy. Given the great
success otherwise of Einstein theory at all scales, from the
solar system tests of GR to the largest observational scales
probed by CMB anisotropies, deviations have to be
tenuous, and any search for such modifications are likely
difficult and not immune to a host of troublesome system-
atics effects.
Since the physics of CMB anisotropies is now well

understood, the CMB lensing bispectrum will offer a very
clean probe of modified gravity theories in the near future,
compared to other cosmological probes such as galaxy
clustering and optical weak lensing. In this paper, we
quantitatively evaluated the expected constraints on a
generic two-parameter model of the modified gravity
theories assuming the specifications of near future and
ultimate CMB experiments, which was not explored
previously. This intermediate step allows avoiding a
detailed comparison of the observation with a specific

class of modified gravity models (in much the same way
that the slope of the primordial curvature spectrum is a
good agnostic point of contact between specific theories
and observational constraints).
We quantified the information coming from various

scales and showed the impact of uncertainties in the
theoretical description of the non-linear evolution of large
scale structures. While ultimate, cosmic variance limited
experiments will, in the long run, require further theoretical
advances, we showed that our calculations are already
adequate for the next decade experiments. And we further
checked that details of the needed screening mechanism (to
satisfy Solar System constraints) are at such very small
scales that they have little impact at the scales which can be
realistically probed with such CMB observations.
Finally we point out the exciting prospect of blindly

reconstructing the redshift evolution of the distortion
parameters which we used to parametrize generically the
beyond Horndeski class of modified gravity models (e.g.,
[57]). This will be achieved by performing a joint analysis
of the bispectrum of CMB and source lensing, each
providing the best constraints within different redshift
range, in addition to allowing welcome cross-checks in
the overlap region.
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FIG. 7. Expected 1σ uncertainty on λ at each redshift [see Eq. (28)] using multipoles up to lmax ¼ 500 (left) and 1500 (right) for
various source redshifts, zs. We do not include noise contributions in the covariance (i.e., this is the CV limit). Of course the impact of
the nonlinear correction beyond the tree level increases with decreasing redshift.
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