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A mechanism of inflation from higher dimensions compactification is studied. An early Universe
capable of providing exponential growth for some dimensions and exponential contraction for others,
giving therefore an explanation for the big size of the observed four-dimensional Universe as well as the
required smallness of the extra dimensions is obtained. The mechanism is formulated in the context of
dynamical spacetime theory, which produces a unified picture of dark energy, dark matter, and can also
provide a bounce for the volume of the Universe. A negative vacuum energy puts an upper bound on the
maximum volume, and the bounce imposes a lower bound. So in the early Universe the volume oscillates,
but in each oscillation the extra dimensions contract exponentially, and the ordinary dimension expand
exponentially. The dynamical spacetime theory provides a natural way to exit from the inflation
compactification epoch since the scalar field that drives the vacuum energy can smoothly climb into
small positive values of vacuum energy, which is the end of the inflation compactification. A semianalytic
solution for a step function potential is also studied, where all of these effects are shown, especially the
jump of the vacuum energy effect only on the derivative of dynamical spacetime vector field, and not the
volume or its derivatives, which match smoothly.
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I. INTRODUCTION

In many interesting models, a vacuum with a negative
cosmological constant is predicted, as in superstrings,
supergravity [1], etc. Here, we will present a model which
uses extra dimensions and a primordial negative vacuum
energy. For cosmology with higher dimensions and in the
presence of a noncanonical scalar field, the dynamics is
governed by a dynamical spacetime vector field, which is
used as a Lagrange multiplier of an energy momentum
tensor of the scalar field [2]. A non-Lagrangian approach
similar to this was developed by Gao and Collaborators [3].
An interesting feature of the model [2] is that it allows for

bouncing solutions. This effect in higher dimensions
combined with a negative cosmological constant in the
early Universe leads to the existence of an “inflationary
phase” for some dimensions and a simultaneous “defla-
tionary phase” for the remaining dimensions, since the
volume of the spacetime remains constant or oscillating in
the early Universe. For an approximately constant volume,
some dimensions will grow exponentially, where others
will shrink exponentially. This effect is obtained without

invoking exotic matter or quantum effects as a similar
inflation compactification scenario was discussed in [4–8].
We discuss how it may be possible to exit from this

inflation-compactification era by dynamically increasing
the cosmological constant, until it becomes positive and
small. This is possible in our model because the scalar field
can evolve towards increasing values of vacuum energy,
without problems. Finally, the need for trapping the extra
dimensions when they become become very small to
prevent their reexpansion is studied. One could use, for
example, the Casimir effect for periodic extra dimensions
for this purpose.

II. THE BASIS OF THE MECHANISM

A. The geometry

For understanding the basics of the mechanism, we
review the formalism of cosmology with a higher dimen-
sion as developed in [9] for a “classical Kaluza-Klein
cosmology for a torus space with a cosmological constant
and matter”. The metric we assume is the following:

ds2 ¼ −dt2 þ RðtÞ2 Σdx
jdxj

fDðxÞ2
þ RðtÞ2 Σdx

pdxp

fdðxÞ2
; ð1Þ*benidav@post.bgu.ac.il
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where

fD ¼ 1þ kD
4
ΣðxiÞ2; fd ¼ 1þ kd

4
ΣðypÞ2; ð2Þ

RðtÞ is the scale factor for theD dimensions (xi), and rðtÞ is
the scale factor for the other d dimensions (yp). The kd and
kD are the special curvatures. Their Hubble constants are
defined as

HR ¼
_R
R

Hr ¼
_r
r
: ð3Þ

The complete volume of the Universe is defined as

V ¼ RDrd; ð4Þ
which allows us to define the “volume expansion
parameter”

H ¼
_V
V
: ð5Þ

The connection between the volume expansion parameter
and the Hubble parameters, using the definition (4) is

H ¼ DHR þ dHd: ð6Þ
The motivation for defining the total volume is because of
the ability to write down one combination of the Einstein
equation which has no dependence on the individual scale
factor, only through the volume, as we will see below.

B. Einstein equations

We first consider the case of a stress energy tensor which
has for every individual scale factor its own pressure: p for
D dimensions and p0 for d dimensions

Tμ
ν ¼ diagðρ;−p;−p;…;−p0;−p0;…Þ: ð7Þ

Using the identities from the Appendix, we can obtain the
solution for the Einstein equation,

1

2
DðD − 1Þ

�
_R2

R2
þ kD

R2

�
þ 1

2
dðd − 1Þ

�
_R2

R2
þ kd
R2

�

þDd
_R
R
_r
r
¼ 8πρ ð8Þ

ðD − 1Þ R̈
R
þ d

̈r
r
− d

_R
R
_r
r
− ðD − 1Þ

�
_R2

R2
þ kD

R2

�
¼ −8πðρþ pÞ ð9Þ

D
R̈
R
þ ðd − 1Þ ̈r

r
−D

_R
R
_r
r
− ðd − 1Þ

�
_r2

r2
þ kd

r2

�
¼ −8πðρþ p0Þ: ð10Þ

For simplicity, we set the special curvature for all the
dimensions to zero kd ¼ kD ¼ 0. Under the assumption of

isotropy of the pressure p ¼ p0 ¼ ðγ − 1Þρ, the relation
from Eqs. (8)–(10) gives

D
R̈
R
þ d

̈r
r
¼ 8πρ

Dþ d − 1
½1 − ðDþ dÞγ�: ð11Þ

The properties of densities as a function of the volume are
summarized in Table I. By the definition of the volume (4),
the equation could be represented as

V̈
V
¼ Dþ d

Dþ d − 1
8πðρ − pÞ: ð12Þ

The notation of normalized density gives a dimensionless
equation of motion. By integrating the equation and using
the dimensionless density Ω ≔ ρ

ρc
, we obtain as in [9],

E ¼ 1

2
_V2 −

Dþ d
Dþ d − 1

ΩV2; ð13Þ

where E is the anisotropy parameter, which is an integration
constant that appears in the solution. The special feature of
this equation is that it depends on the total volume and not
the separate scale parameters of the individual dimensions.
Using the volume definition again (4) in the energy

equation (13) together with (26), we obtain the first-order
differential equations for R and r in terms of the volume
solution,

_R
R
¼ 1

ðDþ dÞV
�
_V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ed
D

ðDþ d − 1Þ
r �

ð14aÞ

_r
r
¼ 1

ðDþ dÞV
�
_V −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ED
d

ðDþ d − 1Þ
r �

: ð14bÞ

From those equations, we obtain that the basic condition for
the existence of solution is E ≠ 0, because of the appear-
ance of the square root of E. After an integration,

RðtÞ ¼ V
1

Dþd exp

�
þ 1

Dþ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EdðDþ d − 1Þ

D

r Z
dt
V

�
ð15aÞ

TABLE I. The properties of densities as a function of the
volume.

Name ω ρ dependence

stiff 1 V−2

matter 0 V−1

radiation 1
Dþd V−Dþdþ1

Dþd

dark energy −1 constant
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rðtÞ ¼ V
1

Dþd exp

�
−

1

Dþ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EDðDþ d − 1Þ

d

r Z
dt
V

�
:

ð15bÞ

Those equations could be used for obtaining the solution
for every individual scale parameter of any particular
dimension. After calculating the solution for the total
volume from the energy equation, the equations above
could give us the evolution of each scale factor. Notice that
for any E > 0, we get an anisotropic evolution.

C. Solutions with constant equation of state

Simple examples of density dependence on the volume
could be given under the assumption of a constant equation
of state ω ¼ p

ρ. Substituting the density which the Universe
contains into the energy equation, would give the density
multiple by the quadratic term of the volume. That means
the massless scalar field ρϕV2 will provide a constant term
into the energy equation. However, only a ghost kinetic
term of the scalar will shift the potential upwards, and a
physical kinetic term of a scalar will push the potential
down. The contribution for dark energy will be a parabolic
term V2 into the effective potential of the energy equation.
If the dark energy has negative values, the parabola will
provide a barrier, which will prevent high values of V.
A positive value of dark energy will provide a nonstable
effective potential, which pushes the Universe to infinity.
The dark matter gives a linear term in the effective potential
of the energy equation with a negative slope.

D. Kasner solution

For a complete vacuum free from density and pressure,
the Kasner solution automatically follows from the basic
formalism. From the energy equation (13), we get
V ¼ ffiffiffiffiffiffi

2E
p

t, which means the total volume grows linearly
with the time. This case leads to a well-known Kasner
vacuum solution [10], which describes an anisotropic
universe without matter, with different scale factors as
well. Using Eq. (15), we get the powers for the scale factors
RðtÞ ¼ tp, rðtÞ ¼ tq,

p ¼ 1

Dþ d

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðDþ dþ 1Þ

D

r �
ð16Þ

q ¼ 1

Dþ d

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðDþ dþ 1Þ

d

r �
; ð17Þ

which obey the Kasner conditions,

Dpþ dq ¼ Dp2 þ dq2 ¼ 1: ð18Þ
This solution allows us to check that our formalism
recovers the well-known vacuum solutions.

III. INFLATION FROM UNIFIED DE-DM

A. Unified dark energy and dark matter solution

A suggestion for an action which produces DE-DM
unification takes the form of [2],

L ¼ −
1

2
Rþ χμ;νT

μν
ðϕÞ −

1

2
gαβϕ;αϕ;β − VðϕÞ; ð19Þ

where R is the Ricci scalar (8πG ¼ 1), ϕ is a quintessential
scalar field with a potential VðϕÞ, and χμ is a dynamical
spacetime vector field which is a Lagrange multiplier
enforcing the covariant conservation law of the energy
momentum tensor,

∇μT
μν
ðϕÞ ¼ 0: ð20Þ

We use the same stress energy tensor as the one postulated
by Gao and colleagues [3],

Tμν
ðϕÞ ¼ −

1

2
ϕ;μϕ;ν þ UðϕÞgμν; ð21Þ

which they require to be conserved without an action
principle. The covariant conservation of this stress energy
tensor leads to unified dark energy and dark matter for a
constant potential and for interacting DE-DM, a non-
constant potential UðϕÞ. This action produces very similar
effects, but also include additional effects like bouncing,
which are not obtained in [3]. The action depends on three
different variables: the scalar field ϕ, the dynamical space
time vector χμ, and the metric gμν.

B. Equations of motion

According to this ansatz, the scalar field is just a function
of time ϕðtÞ and the dynamical vector field will have only
the time component χμ ¼ ðχ0; 0; 0; 0Þ, where χ0 is also just
a function of time. Avariation with respect to the dynamical
space time vector field χμ will force a conservation of the
original stress energy tensor, which implies

ϕ̈þ 1

2
H _ϕþU0ðϕÞ ¼ 0: ð22Þ

Notice that for a standard quintessence, the equation does
not contain the factor 1

2
, but only the “volume expansion

parameter” H, which equals to 3H for the case of the
isotopic expansion of 3þ 1 dimensions. The second
variation with respect to the scalar field ϕ gives a non-
conserved current,

χλ;λU
0ðϕÞ − V 0ðϕÞ ¼ ∇μjμ ð23aÞ

jμ ¼ 1

2
ϕ;νðχμ;ν þ χν;μÞ þ ϕ;μ; ð23bÞ
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and the derivatives of the potentials are the source of the
current. For constant potentials, the source becomes zero,
and we get a covariant conservation of this current. For the
metric we presented above, this equation of motion takes
the form,

ϕ̈ð_χ0 − 1Þ þ _ϕðHð_χ0 − 1Þ þ χ̈0Þ
¼ U0ðϕÞð_χ0 þHχ0Þ − V 0ðϕÞ: ð24Þ

For constant potentials, the current (23) is covariantly
conserved; a feature which will be used later. The last
variation, with respect to the metric, gives the stress energy
tensor we know from the Einstein equation,

Gμν ¼ gμν
�
1

2
ϕ;αϕ

;α þ VðϕÞ þ 1

2
χα;βϕ;αϕ;β þ χλϕ;λU0ðϕÞ

�

−
1

2
ϕ;μððχλ;λ þ 2Þϕ;ν þ χλ;νϕ;λ þ χλϕ;ν

;λÞ

−
1

2
ðχλϕ;μ

;λϕ
;ν þ χλ;μϕ;λϕ

;νÞ: ð25Þ

For the stress energy tensor from Eqs. (7) and (25), the
relation between the energy density and the fields is

ρ ¼
�
_χ0 −

1

2

�
_ϕ2 þ VðϕÞ; ð26Þ

which has no dependence on the potential UðϕÞ or its
derivatives. Those three variations are sufficient for build-
ing a complete solution of the theory, using the energy
equation (13) and the integration form of the individual
scale parameters (15).

C. Constant potentials solution

In order to compute the evolution of the scalar field, we
have to specify a form for the potentials. For a simplified
case of constant potentials,

UðϕÞ ¼ C; VðϕÞ ¼ ΩΛ: ð27Þ

The solution for the variation with respect the dynamical
time, which is Eq. (22) can be integrated to give

_ϕ2 ¼ 2Ωm

V
; ð28Þ

where Ωm is an integration constant which represents the
effective dark matter ratio. From the second variation, with
respect to the scalar field ϕ a conserved current is obtained,
which from Eq. (24) gives the exact solution of the
dynamical time vector field,

_χ0 ¼ 1þ κ

V2
; ð29Þ

where κ is another constant of integration. Together with
Eqs. (28) and (29) into the density equation (26), the
volume dependence of Ω ≔ ρ

ρc
is

Ω ¼ ΩΛ þΩm

V
þ Ωκ

V3=2 ; ð30Þ

where Ωκ ¼ κΩm. Using the energy equation (13) which is
the way to solve Einstein equations under the “inflation
compactification mechanism”, we obtain the relation,

E ¼ 1

2
_V2 þUeffðVÞ ð31Þ

with the appropriate effective potential,

UeffðVÞ ¼ −
Dþ d

Dþ d − 1
ðΩΛV2 þ ΩmV þΩκ

ffiffiffiffi
V

p
Þ: ð32Þ

In Fig. 1, we can see the plot of the effective potential for
ΩΛ;Ωκ < 0, and Ωm > 0.
From Eqs. (15), we can see terms with

ffiffiffiffi
E

p
; therefore,

E > 0 is a basic condition for the existence of solutions,
where E is the measure of the anisotropy of the solution.
Only for E ¼ 0, we have an isotropic solution. Because of
this condition, we can obtain two different cases, repre-
sented in Fig. 1: the left case, where all of the effective
potential is positive everywhere and the right case, where
there is a part with negative values of the potential.
In the left case, if E ¼ Emin, we have V ¼ VC ¼ const,

which refers to a constant total volume. But from Eq. (15),

FIG. 1. The effective potential, for two cases, where ΩΛ;Ωκ < 0 and Ωm > 0.
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we obtain that the scale parameter RðtÞ is exponentially
growing and the rðtÞ is exponentially shrinking,

RðtÞ ¼ V
1

Dþd
C exp

�
þ 1

Dþ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EdðDþ d − 1Þ

D

r
t
VC

�
ð33aÞ

rðtÞ ¼ V
1

Dþd
C exp

�
−

1

Dþ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EDðDþ d − 1Þ

d

r
t
VC

�
: ð33bÞ

This kind of solutions holds only for the left case, because
of the energy condition E ¼ Emin > 0 could only exist if
the potential is positive at the minimum. In general, when
E > Emin, we have an oscillating volume solution. If E is
slightly larger than Emin, the oscillation will not be so large,
and the expansion of the individual scale parameters will be
close to an exponentially growing or decreasing, as shown
in Fig. 2. On the other hand, if E is much larger than Emin,
the oscillations will be large also, and the individual scale
parameters will grow and shrink modulated by an oscil-
latory behavior, as shown in Fig. 3. Another important
condition is E < Emax as can be seen in Fig. 1.
For proving the existence solutions for a more non-

constant potential VðϕÞ, where dynamically we change
from negative to positive values, we study the case of the
step function potential.

D. End of inflation compactification,
using a step function potential

The end of the inflation compactification era will take
place when the cosmological constant changes from neg-
ative values to positive values since then the effective
potential does not prevent the total volume from expanding
to infinity. For example, a smooth potential that interpolates
from those values is

VðϕÞ ¼ Λþ∞ − Λ−∞

2
tanhðβϕÞ þ Λþ∞ þ Λ−∞

2
; ð34Þ

where Λþ∞ > 0 is the asymptotic value of the potential for
ϕ → ∞ and is chosen to be small. On the other hand,
Λ−∞ < 0 is the asymptotic value of the potential for
ϕ → −∞. For obtaining a partially analytic and more
simple solution, we take the limit for β → ∞, which then
becomes a step function,

VðϕÞ ¼ Λþ∞ − Λ−∞

2
SignðϕÞ þ Λþ∞ þ Λ−∞

2
: ð35Þ

Notice that there is no problem for the scalar field ϕ to
increase and go up in the direction of increasing dark
energy, since its dynamics is not determined by the
potential VðϕÞ that determined the value of the dark energy.
In general, the scalar field evolution depends on U0ðϕÞ,
which is in this case zero, since the potential UðϕÞ is a
constant. Still by choosing the positive root of Eq. (28), we
get the desired effect of increasing dark energy as a function
of time. For simplicity, let us define the parameter ξ,

ξ ¼ _χ0 − 1; ð36Þ

which estimates the difference between the dynamical time
and the cosmic time. If ξ ¼ 0 then χ0 ¼ t. The variation
with respect to the scalar field ϕ, Eq. (24), takes the form,

_ϕ

�
_ξþ 1

2
Hξ

�
¼ −V 0ðϕÞ: ð37Þ

Since ϕ is a monotonic function of time, it is better to
change the time dependence to the scalar dependence
d
dt ¼ _ϕ d

dϕ. In this way, the equation is easier to analyze,

2Ωm

V
3
2

dðξV1
2Þ ¼ −dVðϕÞ: ð38Þ

For the potential (35), we get the differential equation,

FIG. 2. A numerical solution for the volume and the scale
factors in a Kaluza Klein universe, with the parameters:
ΩΛ ¼ −0.04, Ωm ¼ 0.24, Ωκ ¼ −0.2, with the initial condition
_V ¼ 0.01.

FIG. 3. A numerical solution of the volume and the scale factors
for a Kaluza Klein universe, with the parameters: ΩΛ ¼ −0.04,
Ωm ¼ 0.24, Ωκ ¼ −0.2 with an initial condition _V ¼ 0.5.
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2Ωm

V

�
d
dϕ

ξþ 1

2V
d
dϕ

V

�
¼ −ðΛþ∞ − Λ−∞ÞδðϕÞ; ð39Þ

where in the right-hand side, we obtain a source term, with
the piecewise solution,

ξðϕ < 0Þ ¼ κ−

V
1
2

ðϕ¼0Þ
; ξðϕ > 0Þ ¼ κþ

V
1
2

ðϕ¼0Þ
: ð40Þ

From continuity of the geometry, we demand V− ¼ Vþ;
otherwise, the geometry is not defined at the junction. From
an integration around an infinitesimal region that contains
ϕ ¼ 0, we obtain the jump of the ξ,

Δξ ¼ −
Vðϕ¼0Þ
2Ωm

ðΛþ∞ − Λ−∞Þ: ð41Þ

Inserting (40) into (41) gives the discontinuity of κ,

κþ − κ− ¼ −
V

3
2

ðϕ¼0Þ
2Ωm

ðΛþ∞ − Λ−∞Þ: ð42Þ

Subtitling all the known terms to the energy equation gives

E ¼ 1

2
_V2 −

Dþ d
Dþ d − 1

V2

�
2Ωm

V

�
ξþ 1

2

�

þ Λþ∞ − Λ−∞

2
SignðϕÞ þ Λþ∞ þ Λ−∞

2

�
: ð43Þ

Because of the jump of the potential and the field ξ, we can
calculate the jump of _V2 from the energy equation. The
solution gives

1

2
Δ _V2¼ Dþd

Dþd−1

�
2Ωm

Vðϕ¼0Þ
ΔξþΛþ∞−Λ−∞

�
V2
ðϕ¼0Þ ¼0;

ð44Þ

where there is no jump in the volume and its first derivative.
From Eq. (15), which gives the dependence of the metric
components, we obtain that all derivatives of the scale
factors are continuous. That leads to the conclusion that
even when there is a large discontinuous change in the
potential, still the metric and its derivative do not suffer
from these discontinuities.

E. Large times behavior and extra dimensional
stabilization

For obtaining the asymptotic limit of the solutions, let us
take the case of the pure vacuum energy Ω ¼ const which
is the case of late time expansion; we get an upside down
harmonic oscillator, which for large volumes gives the
solution,

VðtÞ ¼ V0 expðχtÞ; ð45Þ

where χ2 ¼ 2 Dþd
Dþd−1Ω. The integration form of the scale

factors in Eq. (15) leads to

RðtÞ ∼ e
χt

Dþd exp

"
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EdðDþ d − 1Þ

D

r
V

1
Dþd
0

χ
e−χt

#

rðtÞ ∼ e
χt

Dþd exp

"
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EDðDþ d − 1Þ

d

r
V

1
Dþd
0

χ
e−χt

#
: ð46Þ

From the fact that the solution for the integral gives
expð−χtÞ which decays for large times, we are left with the
limit,

RðtÞ → R0 exp

�
χ

Dþ d
t

�
ð47aÞ

rðtÞ → r0 exp

�
χ

Dþ d
t

�
: ð47bÞ

This represents a restoration of the isotropy in the evolution
of all dimensions in the Universe. This has to be avoided,
because the extra dimensions should be small also in the
late Universe. One way to archive this is to generate a
potential for the extra dimensions, which starts to act when
the extra dimensions are very small and then freeze the
extra dimensions to very small size. This can be obtained,
for example, by using the Casimir effect present in periodic
extra dimensions [11–13]. The stopping of the extra
dimensions can also be used as a particle production
mechanism, that can result in the reheating of the
Universe by a field independent of the inflaton (our field
ϕ) which is the extra dimension size. The extra dimension
size becomes therefore a curvaton field [14–16].

IV. DISCUSSION

In this article, we studied the basics of an inflation
compactification mechanism from the interplay of ordinary
and higher dimensions. In the case of isotropic pressure, the
solution can be obtained for the total volume and with no
dependence with the individual scale factors of each
dimension. Those can be calculated directly from the total
volume dependence and the anisotropy constant E.
For the dynamical spacetime theory produces a unifi-

cation of dark energy, dark matter, and a bounce of the
volume, which naturally prevents the collapse of the
Universe and obtains a lower bound for the volume of
the Universe. Likewise, the presence of a negative cosmo-
logical constant prevents the volume from becoming very
big in the early Universe. There is an effective potential that
governs the evolution of the volume. In this case, the
effective potential is positive and has a minimum, a static
solution for the total volume is obtained, and exponential
compactification of the extra dimensions occurs. In that
case, the ordinary dimensions exponentially increase and
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the extra dimensions exponentially decrease. For small
values of E higher than the value obtained for the case the
volume sits at the minimum, the total volume oscillates and
the ordinary dimensions expand exponentially with an
oscillatory modulation.
The dynamical spacetime theory provides a natural way

to exit from the inflation compactification epoch. The main
reason for that is that the theory allows for two different
potentials: UðϕÞ which drives directly the evolution of the
scalar field ϕ and VðϕÞ which determines the value of the
dark energy. It is therefore perfectly possible for the scalar
field that drives the vacuum energy to smoothly climb into
small positive values of vacuum energy, which is defined as
the end of the inflation compactification. A semianalytic
solution for the step function potential is also derived. In
this limit, the matching of the solution at the value of the
scalar field where the vacuum energy jumps, still respects
the continuity of all components of the metric and also for
its time derivatives.
We have showed that the exponential growth of the total

volume breaks the anisotropy and all the scale factors start
to expand in a similar fashion. The role of the inflation
compactification mechanism, as we have explained, is to
push the extra dimensions to very low sizes and the
ordinary dimension to very large sizes. However, we cannot
extend the model to all future time, since the vacuum
energy at the end will restores the isotropy of the expansion
of all dimensions. So we have to invoke a mechanism that
locks the extra dimensions when they reduce to very small
sizes. This could be produced from the known Casimir
effect that takes place in the compact extra dimension for
example. The stopping of the extra dimensions can be used
also as a particle production mechanism, that can result in
the reheating of the Universe by a field independent of the
inflaton (our field ϕ) which is the extra dimension size. The
extra dimension size becomes therefore a curvaton field.
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APPENDIX: IDENTITIES

The covariant conservation of the energy momentum
tensor gives

_ρþ ðpþ ρÞD
_R
R
þ ðp0 þ ρÞ _r

r
¼ 0: ðA1Þ

The Ricci tensor nonvanishing values, under the metric (1),

R00 ¼ −
�
D
R̈
R
þ d

̈r
r

�
ðA2Þ

RDD ¼ _HD þ ðDHD þ dHdÞHD þ ðD − 1Þ kD
R2

ðA3Þ

Rdd ¼ _Hd þ ðDHD þ dHdÞHd þ ðd − 1Þ kd
r2

: ðA4Þ

And the Ricci scalar,

R ¼ 2D
R̈
R
þ 2d

̈r
r
þ 2DdHDHd

þDðD − 1Þ
�
H2

D þ kD
R2

�
þ dðd − 1Þ

�
H2

d þ
kd
R2

�
:

ðA5Þ
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