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Assuming a nongravitational interaction among the dark fluids of our Universe—namely, dark matter
and dark energy—we study a specific interaction model in the background of a spatially flat Friedmann-
Lemaître-Robertson-Walker geometry. We find that the interaction model solves the background evolution
in an analytic way when the dark energy takes a constant barotropic equation of state, wx. In particular, we
analyze two separate interaction scenarios, namely, when the dark energy is a fluid other than the vacuum
energy (i.e., wx ≠ −1) and when it is vacuum energy itself (i.e., wx ¼ −1). We find that the interacting
model with wx ≠ −1 produces stable perturbations at large scales for wx < −1 with the coupling strength
ξ < 0. Both scenarios are constrained by the latest astronomical data. The analyses show that a very small
interaction with the coupling strength is allowed, and within the 68.3% confidence region ξ ¼ 0 is
recovered. The analyses further show that a large coupling strength significantly affects the large-scale
dynamics of the Universe, while according to the observational data the interaction models are very well
consistent with Λ cosmology. Furthermore, we observe that for the vacuum interaction scenario, the tension
onH0 is not released while for the interacting dark energy scenario with wx < −1, the tension onH0 seems
to be released partially because of the high error bars in H0. Finally, we conclude the work by calculating
the Bayesian evidence, which shows that ΛCDM cosmology is favored over the two interacting scenarios.

DOI: 10.1103/PhysRevD.98.043517

I. INTRODUCTION

The theory of nongravitational interactions between dark
matter and dark energy is the main concern of this work.
The origin of such an interacting theory did not appear
suddenly in the cosmological scheme. It has a well-
motivated history that we shall discuss here. However,
before that, we need a basic introduction about dark matter
and dark energy. According to the latest observational
suggestions [1], dark matter (DM) and dark energy (DE)
are the main influential sources of the total energy budget
of the Universe, where dark matter contributes around 26%
of its total energy density, is pressureless, and unseen, while
dark energy—a hypothetical fluid making up 68% of the
total energy density of the Universe—is accelerating the
expansion history of the Universe. The best description for
such observational information is ΛCDM cosmology,
where Λ acts as the dark energy fluid and cold dark matter
(CDM) is pressureless. This is a noninteracting scenario in

the sense that both Λ and CDM are separately conserved.
Despite the great success of ΛCDM cosmology, the
cosmological constant problem [2] still lacks a satisfactory
explanation. The cosmological constant problem refers
to the mismatched value of the cosmological constant
predicted from the high- and low-energy scales of the
Universe. In the following, we shall discuss how the
interacting dynamics is closely related to the cosmological
constant problem. In fact, this coupling mechanics was
developed because of the cosmological constant problem,
and it became very useful for explaining some other issues.
We now give a detailed discussion on the origin of
interacting dark matter and dark energy.
In the late 1980s there was no concept of dark energy,

but the discrepancy in Λwas still a serious issue for modern
cosmology. To account for this issue, one of the attempts
was to consider a toy model where a scalar field is coupled
to gravity [3]. The energy-momentum tensor of such a
coupled scalar field introduces a time-dependent cosmo-
logical constant and, consequently, it became a possible
solution to the cosmological constant problem since the
issue regarding the time-independent cosmological con-
stant is naturally solved due to the variable nature of the
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cosmological constant. After the official introduction of
dynamical dark energy models in several forms (see
Refs. [4–6] for a detailed survey), it was found that they
automatically induce the coincidence problem [7]. We note
that the cosmological constant being time-independent
cannot escape from the same problem. Quite interestingly,
it was reported in Ref. [8] that if dark energy and dark
matter are allowed to interact nongravitationally with each
other, the coincidence problem can be solved. Following
this, a series of works with coupled dark matter and dark
energy had the same conclusions [9–13]. However, some
recent results have fueled the investigations of coupled dark
matter and dark energy with the claim that the observational
data favor an interaction in the dark sector [14–23].
Additionally, some very recent investigations in this direc-
tion strongly claim that the tension on the local Hubble
constant can be released if the interaction in the dark sector
is allowed.
However, the most important question in the coupling

dynamics is, what is the appropriate energy transfer rate
between the dark sectors? Before we look for an appro-
priate transfer rate, we recall that the nature of both dark
matter and dark energy is unknown. Thus, the sensible
approach is to consider some well-motivated phenomeno-
logical transfer rates or interaction functions and test the
expansion history with the available astronomical data. A
number of different interaction rates between dark matter
and dark energy have been studied in the last several years
[24–56]. For a comprehensive review on different inter-
action rates, we refer to Refs. [57,58]. We also note that the
interaction between the dark sectors has also been exam-
ined in a more general framework where the geometry of
the Universe is inhomogeneous [59,60].
In this work we concentrate on the spatially flat

Friedmann-Lemaître-Robertson-Walker universe where
we introduce an interaction between dark energy and
pressureless dark matter that exactly solves the background
evolution. This means that the evolution equations for
dark matter and dark energy are analytically solved. The
appearance of an analytic structure for the background
evolution makes the cosmological model quite interesting
because the cosmological parameters associated with this
model take analytic forms too. However, this is not new
because the analytic structure for such an interaction model
has already been reported by some of the authors in a
previous work [61]. But the motivation of the present work
is completely different. Here, we aim to test the large-scale
stability of the model which is very important because
without stable perturbations there will be no such structure
formation in the Universe.
The analysis of structure formation in models of DE and

DM, from the point of view of cosmological perturbation
theory, plays an essential role when the different models are
confronted with observational data [62]. As is well known,
these dark scenarios imprint a signature on the cosmic

microwave background (CMB) power spectrum [63,64].
Thus, the study of the cosmological perturbations is
important and also requires thorough analysis. In particular,
models with interactions between DE and DM with
adiabatic initial conditions and perturbation theory were
studied in Ref. [65,66]; see also Refs. [58,67,68]. Also,
models with DE-DM interactions with a constant equation
of state were analyzed in Ref. [69]. There, the authors
demonstrated that perturbations were unstable due to a
rapid growth of DE fluctuations. In this sense, testing large-
scale stability is fundamental, since without stable pertur-
bations there will be no such structure formation.
We organize the work in the following way. In Sec. II we

describe the basic equations for the interacting model at
both the background and perturbative levels. The analytical
solutions are discussed in Sec. III. Section V details the
results of the analysis following the observational data used
in this work. Finally, we close our work with a brief
summary in Sec. VI.

II. INTERACTING DYNAMICS IN FLAT FLRW

We consider a spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) universe where pressureless
dark matter, also known as cold dark matter, interacts with
a dark energy fluid. The interaction is nongravitational,
which means that gravity does not play any role in their
interaction. Additionally, we consider the existence of
baryons and radiation in the universe sector. To avoid
any kinds of inflexible constraints like a “fifth force,” we
assume that neither baryons nor radiation takes part in the
interaction. In other words, they are separately conserved.
Since the interaction exists between CDM and DE, the total
conservation of this (CDMþ DE) sector is

_ρc þ 3Hð1þ wcÞρc ¼ −_ρx − 3Hð1þ wxÞρx; ð1Þ

where (ρc, ρx) are, respectively, the energy density of CDM
and DE. The parameter H ≡ _a=a corresponds to the
Hubble rate, with a being the FLRW scale factor. The
quantity wx ¼ px=ρx corresponds to the equation of state
for DE and px is the pressure of the DE fluid. Also, we note
that wc ¼ pc=ρc since pc (the pressure of CDM) is zero,
and hence wc ¼ 0. The total conservation equation (1)
can be decoupled into the following equations:

_ρc þ 3Hρc ¼ −Q; ð2Þ

_ρx þ 3Hð1þ wxÞρx ¼ Q; ð3Þ

where an overdot represents differentiation with respect to
cosmic time. The parameter Q denotes the energy transfer
between the dark sectors. In this sense, the sign of Q
determines the direction of energy transfer. For instance,
Q < 0 indicates energy transfer from dark energy to CDM,
while Q > 0 means the energy flow occurs from CDM
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to DE. In terms of the Hubble parameter H, we have the
following constraint or Friedmann equation:

H2 ¼ 8πG
3

ðρr þ ρb þ ρc þ ρxÞ: ð4Þ

Thus, the dynamical evolution of the universe can be
determined from Eqs. (2)–(4) once the interaction rate Q
is specified.
Introducing ρt ¼ ρc þ ρx as the total energy density of

the dark sector, one can express the energy densities for
dark energy and dark matter, respectively, as

ρx ¼ −
�
ρ0t þ 3ρt
3wx

�
; ð5Þ

ρc ¼
�
ρ0t þ 3ð1þ wxÞρt

3wx

�
; ð6Þ

where the prime stands for differentiation with respect to
the lapse function N ¼ lnða=a0Þ ¼ ln a (here, we set a0—
the present day value of the scale factor—to unity). Now,
by inserting Eq. (5) into Eq. (3) or Eq. (6) into Eq. (2)
we find that the differential equation for the total energy
density of the dark sector is given by

ρ00t þ 3

�
2þwx−

w0
x

3wx

�
ρ0tþ 9

�
ð1þwxÞ−

w0
x

3wx

�
ρt ¼−3Q̄wx;

ð7Þ

where Q̄ ¼ Q=H. Given the interactionQ and the equation
of state wx, the differential equation (7), if solved, can
determine the evolution of each dark sector separately
which can be obtained from Eqs. (5) and (6). In this
context, because both dark components are assumed to
interact with each other, we must define the interaction rate
Q in order to obtain analytical solutions. As we mentioned
before, different expressions have been considered in the
literature for the interaction rate Q. The most commonly
studied energy transfer between the dark sectors depends
on the energy densities (ρx, ρc, ρt) or some combinations of
these, multiplied by a quantity with units of inverse time,
which could be a rate or a differentiation with respect to
time. Commonly, this rate corresponds to the Hubble rate.
In particular, in the reheating scenario this rate was
considered as a constant [70], and an analogous situation
for the curvaton field case was considered as well [71]. In
the following, we will consider that the transfer rate Q is
proportional to the Hubble rate, as discussed above. Thus,
we have

Q ¼ −ξð_ρc þ _ρxÞ ¼ −ξ_ρt; ð8Þ

where ξ is the coupling parameter of the interaction
characterizing the strength and direction of energy transfer

between the dark sectors. We note that the negative sign
before the coupling parameter in Eq. (8) is not related to the
physics of dark matter and dark energy interactions. The
typical choice of the interaction (8) is actually motivated by
phenomenology, together with the fact that the background
energy conservation equations are easily solved. In this
sense, other interaction rates in the literature have been
studied, such as Q ∝ ρc [32], Q ∝ ρx [33], Q ∝ ðρc þ ρxÞ
[31], Q ∝ ðρcρxÞ [30], Q ∝ ðρxρcÞðρc þ ρxÞ−1 [44], Q ∝
ρ2x=ρc [21], and Q ∝ _ρx [23] (also see Ref. [57] for some
other interaction models). We also mention that the
evolution of an inhomogeneous mixture of nonrelativistic
pressureless CDM coupled to DE in which the interaction
term is proportional to the DE density was studied in
Ref. [60]. There, from the spherically symmetric
Lemaître-Tolman-Bondi metric, the authors found that
the interaction Q can be written as Q ∝ _ρx (as in
Ref. [23]). In this sense, from Eq. (8) the presence of
_ρt creates some differences from the usual and well-
known interaction models. Looking at Eq. (8), one can
understand that for positive coupling parameter (ξ > 0)
the interaction rate could be positive, i.e., Q > 0 (energy
flows from CDM to DE) if _ρt < 0, which means that the
total energy density of the dark fluids decreases with the
evolution of the universe. On the other hand, the inter-
action rate could be negative, i.e., Q < 0 (energy flows
from DE to CDM) if _ρt > 0, which means that the total
energy density of the dark fluids increases with the
evolution of the universe. Similarly, for ξ < 0, one also
encounters the following two possibilities: the interaction
rate is positive (i.e., Q > 0) for _ρt > 0 and it is negative
(i.e., Q < 0) for _ρt < 0. Thus, one can see that the flow of
energy between the dark sectors is not only governed by
the sign of the coupling parameter, but it also depends on
the evolution of the total dark fluid. This might be
considered to be an interesting property of the present
interaction since in most of the usual interaction models
the direction of energy flow is actually determined only
from the coupling parameter. The interaction (8) was
explicitly studied in Ref. [42] where the particular case of
an interaction between the cosmological constant and
matter was considered. However, a careful survey of the
literature shows the existence of this interaction in
Ref. [30], much earlier than Ref. [42].
Subsequently, using the same interaction, the back-

ground evolution of the universe was investigated in a
generalized way where the dark energy equation of state
was considered to be either constant or variable [61].
However, no such perturbation analysis was performed
for this interaction and this analysis is an essential issue
related to the structure formation of the Universe. We also
observe another interesting feature in this interaction and
we believe this is worth further investigations. In order to
understand this feature we can rewrite Eq. (8) in a different
way, which can be found using the conservation
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equations (2) and (3) where the rate precisely corresponds
to the Hubble parameter, such that

Q ¼ 3ξH½ρc þ ð1þ wxÞρx�: ð9Þ

One can now notice that the interaction (9) includes the
dark energy equation of state wx aside from the coupling
parameter. This differs from the well-known interactions
where only the energy densities are considered. The
incorporation of the energy transfer Q ∝ _ρt and hence
the inclusion of the equation of state could result in a
noninteracting scenario (equivalently, Q ¼ 0) even if the
coupling parameter is nonzero. In other words, for
wx ¼ −1 − ρc=ρx ¼ −1 − r < −1, where r ¼ ρc=ρx > 0
is the coincidence parameter, the noninteracting physics
is still realized even for ξ ≠ 0. We call this the “zero-
coupling condition.” This kind of interaction—which
retrieves the noninteraction cosmology with some nonzero
coupling strength—is rare in the literature. We further
notice that the dark energy equation of state in this case
belongs to the phantom regime. We admit that the physics
of this zero-coupling condition is very strange at least at the
present stage, and it surely deserves further investigations.
We note that a more general interaction scenario recovering
the above interaction (8) [or Eq. (9)] was first introduced in
Ref. [30] and recently in Ref. [53], where the authors
discussed the analytical solutions for dark matter and dark
energy. Certainly, a general interaction recovering different
interaction rates as special cases would include a large
number of coupling parameters. The stability of such a
general interaction model is surely interesting; however, in
this work we focus only on the stability of the simplest
interaction model that offers an analytic structure.

III. EXACT SOLUTIONS

The differential equation (10) is the main tool to under-
stand the evolution of the dark sector, provided it is exactly
solved. For a constant dark energy equation of state, the
differential equation (10) is simplified to

ρ00t þ3½2þwx�ρ0tþ9½1þwx�ρt¼−3Q̄wx¼3ξwxρ
0
t; ð10Þ

and with the use of the interaction (8) the auxiliary equation
becomes m2 þ 3ð2þ wx − ξwxÞmþ 9ð1þ wxÞ ¼ 0. Now,
under the condition Δ > 0 where Δ is the discriminant of
the above auxiliary equation, the exact solution of the
above differential equation is

ρt ¼ ρ1am1 þ ρ2am2 ; ð11Þ

where ρ1, ρ2 are the constants of integration. The integra-
tion constants must be positive; otherwise, if one of them is
negative, then at some finite scale factor ρt ≡ 0 ⇒ 3H2≈
ρb þ ρr, which means that the evolution of the Universe is
governed by the baryons and radiation, which is purely
unphysical from the available observational data. Thus, we
shall strictly assume that ρ1 > 0 and ρ2 > 0. The roots of
the auxiliary equation ðm1; m2Þ are given by

m1 ¼
3

2
½−ð2þ wx − ξwxÞ þ

ffiffiffiffi
Δ

p
�; ð12Þ

m2 ¼
3

2
½−ð2þ wx − ξwxÞ −

ffiffiffiffi
Δ

p
�; ð13Þ

where Δ ¼ ð1 − ξÞ2w2
x − 4ξwx. In particular, for the case in

which jξj ≪ 1 and as jwxj ∼Oð1Þ, we have Δ ∼ w2
x > 0. In

this sense, for Δ > 0, the exact evolution equations for dark
energy and cold dark matter become

ρx ¼ −
�

1

3wx

�
½ρ1ðm1 þ 3Þð1þ zÞ−m1

þ ρ2ðm2 þ 3Þð1þ zÞ−m2 �; ð14Þ

ρc ¼
�

1

3wx

�
½ρ1ðm1 þ 3þ 3wxÞð1þ zÞ−m1

þ ρ2ðm2 þ 3þ 3wxÞð1þ zÞ−m2 �; ð15Þ

where 1þ z ¼ a0a−1 ¼ a−1 (since we have set a0 ¼ 1).
Using the present-day values of the cosmological param-
eters, the evolution equations for dark energy and dark
matter can be recast, respectively, as

ρx ¼ −
�

1

3wx

���ðm2 þ 3þ 3wxÞρx;0 þ ðm2 þ 3Þρc;0
m2 −m1

�
ðm1 þ 3Þð1þ zÞ−m1

þ
�ðm1 þ 3þ 3wxÞρx;0 þ ðm1 þ 3Þρc;0

m1 −m2

�
ðm2 þ 3Þð1þ zÞ−m2

�
; ð16Þ

ρc ¼
�

1

3wx

���ðm2 þ 3þ 3wxÞρx;0 þ ðm2 þ 3Þρc;0
m2 −m1

�
ðm1 þ 3þ 3wxÞð1þ zÞ−m1

þ
�ðm1 þ 3þ 3wxÞρx;0 þ ðm1 þ 3Þρc;0

m1 −m2

�
ðm2 þ 3þ 3wxÞð1þ zÞ−m2

�
: ð17Þ
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Furthermore, in terms of the new quantities (ρ1, ρ2, m1,
m2), the usual density parameters for dark energy and dark
matter at the current time are calculated as

Ωx;0 ¼ −
�

1

3wx

�
½Ω1ðm1 þ 3Þ þΩ2ðm2 þ 3Þ�; ð18Þ

Ωc;0 ¼
�

1

3wx

�
½Ω1ðm1 þ 3þ 3wxÞ þ Ω2ðm2 þ 3þ 3wxÞ�;

ð19Þ
with Ωx;0 þ Ωc;0 ¼ Ω1 þΩ2, where ðΩ1;Ω2Þ ¼ ðρ1=ρ0;
ρ2=ρ0Þ and ρ0 ¼ 3H2

0=8πG. We note that by solving the
above equations (18) and (19) one can easily find Ω1 ¼
Ω1ðm1; m2; wxÞ and Ω2 ¼ Ω2ðm1; m2; wxÞ. The explicit

forms for Ω1 and Ω2 are Ω1 ¼ ðm2þ3þ3wxÞΩx;0þðm2þ3ÞΩc;0

m2−m1

and Ω2 ¼ ðm1þ3þ3wxÞΩx;0þðm1þ3ÞΩc;0

m1−m2
. In particular, we con-

sider the case when dark energy is the cosmological
constant, i.e., the case when wx ¼ −1. For convenience,
we label the interacting dark energy scenario where DE is
not the cosmological constant (i.e., wx ≠ −1) as IDE, and
we label the interacting vacuum scenario where DE is
represented by the cosmological constant itself as IVS.

IV. DYNAMICS AT LARGE SCALES:
COSMOLOGICAL PERTURBATIONS

The study of cosmological perturbations unveils the
hidden nature of the model. Thus, large-scale stability
has been a very important way to check the viability of any
cosmological model; indeed, for coupled dark energy one
needs to check this as well. In particular, we are interested
in structure formation when the background has a coupling
between dark matter and dark energy governed by the
interaction rate specified in Eq. (8). Thus, we consider the
perturbed FLRW metric with scalar mode k as [72–74]

ds2 ¼ a2ðτÞ½−ð1þ 2ϕÞdτ2 þ 2∂iBdτdxi

þ ðð1 − 2ψÞδij þ 2∂i∂jEÞdxidxj�; ð20Þ
where ϕ, B, ψ , and E, are the gauge-dependent scalar
perturbation quantities and τ is the conformal time. Thus,
by using the metric (20) one can find the perturbed
equations [33,69,75],

∇νT
μν
A ¼ Qμ

A;
X
A

Qμ
A ¼ 0;

where A represents the fluid (dark matter or dark energy)
and Qμ

A ¼ ðQA þ δQAÞuμ þ Fμ
A, where QA is the energy

transfer rate and Fμ
A ¼ a−1ð0; ∂ifAÞ is the momentum

density transfer relative to the four-velocity uμ. (For more
discussions in this direction, we refer to the earlier
works [33,69,75].) We consider that in the rest frame of
dark matter, the momentum transfer potential is zero

[33,69,76]. Thus, the momentum transfer potential becomes
k2fA ¼ QAðθ − θcÞ. The pressure perturbation is defined by
[69,77,78]

δpA ¼ c2sAδρA þ ðc2sA − c2aAÞρ0AðvA þ BÞ; ð21Þ
where c2aA is the square of the physical sound speed of
the fluid “A” in the rest frame and it is defined as
c2aA ¼ p0

A=ρ
0
A ¼ wx þ w0

x=ðρ0A=ρAÞ. Now, introducing the
density perturbation by δA ¼ δρA=ρA and considering no
contribution from the anisotropic stress, i.e., πA ¼ 0, the
density perturbation and the velocity perturbation equations
for the dark matter and dark energy fluids are [33,69,75]

δ0A þ 3Hðc2sA − wAÞδA þ 9H2ð1þ wAÞðc2sA − c2aAÞ
θA
k2

þ ð1þ wAÞθA − 3ð1þ wAÞψ 0 þ ð1þ wAÞk2ðB − E0Þ

¼ a
ρA

ðδQA −QAδAÞ þ
aQA

ρA

�
ϕþ 3Hðc2sA − c2aAÞ

θA
k2

�
;

ð22Þ

θ0A þHð1 − 3c2sAÞθA −
c2sA

1þ wA
k2δA − k2ϕ

¼ a
ð1þ wAÞρA

½ðQAθ − k2fAÞ − ð1þ c2sAÞQAθA�; ð23Þ

where the new quantities c2sA and c2aA, are the adiabatic and
physical sound velocity for the fluid A, respectively, and
θ ¼ θμμ is the volume expansion scalar. Let us note that to
avoid any kind of instabilities, c2sA ≥ 0 has been imposed.
We also note that here c2sc ¼ 0 since we assume cold dark
matter (i.e., wc ¼ 0). In the synchronous gauge, (i.e.,
ϕ ¼ B ¼ 0, ψ ¼ η, and k2E ¼ −h=2 − 3η), the density
and the velocity perturbations for the dark fluids are

δ0x ¼ −ð1þ wxÞ
�
θx þ

h0

2

�

− 3Hðc2s;x − wxÞ
�
δx þ 3Hð1þ wxÞ

θx
k2

�
− 3Hw0

x
θx
k2

þ aQ
ρx

�
−δx þ

δQ
Q

þ 3Hðc2s;x − wxÞ
θx
k2

�
; ð24Þ

θ0x ¼ −Hð1 − 3c2s;xÞθx þ
c2s;x

ð1þ wxÞ
k2δx

þ aQ
ρx

�
θc − ð1þ c2s;xÞθx

1þ wx

�
; ð25Þ

δ0c ¼ −
�
θc þ

h0

2

�
þ aQ

ρc

�
δc −

δQ
Q

�
; ð26Þ

θ0c ¼ −Hθc; ð27Þ
where the term δQ=Q includes the perturbation term for the
Hubble expansion rate δH. Now by inserting the interaction
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rate (8) into the above equations, one can write down the
explicit perturbation equations as

δ0x ¼ −ð1þ wxÞ
�
θx þ

h0

2

�

− 3Hðc2sx − wxÞ
�
δx þ 3Hð1þ wxÞ

θx
k2

�

þ 3Hξ

�
ρc
ρx

þ ð1þ wxÞ
��

ρcðδc − δxÞ
ρc þ ð1þ wxÞρx

þ θ þ h0=2
3H

þ 3Hðc2sx − wxÞ
θx
k2

�
; ð28Þ

θ0x ¼ −Hð1 − 3c2sxÞθx þ
c2sx

ð1þ wxÞ
k2δx

þ 3Hξ

�
ρc

ρxð1þ wxÞ
þ 1

�
½θc − ð1þ c2sxÞθx�; ð29Þ

δ0c ¼ −
�
θc þ

h0

2

�
þ 3Hξ

�
1þ ð1þ wxÞ

ρx
ρc

�

×
�ð1þ wxÞρxðδc − δxÞ

ρc þ ð1þ wxÞρx
−
θ þ h0=2

3H

�
; ð30Þ

θ0c ¼ −Hθc: ð31Þ

Let us now focus on the growth rate of matter perturba-
tions for the prescribed interaction in this work. Here, we
neglect the clustering of dark energy with the assumption
that c2sx ¼ 1. However, depending on the strength of the
interaction, the dark energy perturbations could be an
important issue, but on the sub-Hubble scale such pertur-
bations are not important provided that the sound speed of
the dark energy perturbations is assumed to be positive
[76]. The evolution equation for δc can be written as

δ00c þ
�
1 − 3ξ

�
1þ ð1þ wxÞ

ρx
ρc

��
Hδ0c ¼ 4πGa2ρbδb þ 4πGa2ρcδc

�
1þ 2ξ

ρt
ρc

�
1þ ð1þ wxÞ

ρx
ρc

�

×

�
H0

H2
þ 1 − 3wx þ 3ξ

�
1þ ρx

ρc

�
þ 3ξð1þ wxÞ

ρx
ρc

�
1þ ρx

ρc

���
; ð32Þ

where H ¼ aH is the conformal Hubble parameter and H
can be found from Eq. (4). It is evident that by putting ξ ¼ 0
into Eq. (32), one gets back the evolution equation for δc for
the noninteracting cosmologies, i.e., δ00mþHδ0m¼4πGρmδm
(note that ρm ¼ ρc þ ρb). Furthermore, one can also mea-
sure the deviations in the expansion history through

Heff

H
¼ 1 − 3ξ

�
1þ ð1þ wxÞ

ρx
ρc

�
; ð33Þ

and also in the gravitational constant G as

Geff

G
¼ 1þ 2ξ

�
ρt
ρc

��
1þ ð1þ wxÞ

ρx
ρc

��
H0

H2
þ 1 − 3wx

þ 3ξ

�
1þ ρx

ρc

�
þ 3ξð1þ wxÞ

ρx
ρc

�
1þ ρx

ρc

��
: ð34Þ

One can see that ξ ¼ 0 in both Eqs. (33) and (34)
recovers the standard evolutions of the corresponding
quantities where no interaction is present. Further, we
consider the growth rate of cold dark matter defined by
fc ≡ d

d ln a ðln δcÞ. One may notice that the presence of an
interaction in the dark sector automatically modifies the
Euler equation, which means that the dark matter may not
follow the geodesics [76]. Thus, in the presence of
interaction, the above quantities give a qualitative picture

of the interaction rate and its behavior compared to the
noninteracting cosmologies quantified by ξ ¼ 0.
Let us first focus on the dynamics of the IDE model on

large scales. The behavior of this model is shown through
the evolution of the CMB TT spectra and the matter
power spectra. In the left panel of Fig. 1, we show the
behavior of the IDE model through the CMB TT spectra
which shows that as long as the coupling strength of the
interaction increases, the model significantly deviates
from the noninteracting ΛCDM model. The deviation is
also clear from the relative deviation ΔCTT

l =CTT
l (here

ΔCTT
l measures the deviation of the model from ΛCDM),

and one can see that a nonzero deviation from ΛCDM is
prominent for all of the coupling parameters considered
in the analysis, which is evident from the low multipoles
l. On the other hand, for large coupling strength, the
model significantly deviates from ΛCDM, which is clear
from both the left and right panels of Fig. 1. Similarly,
for different coupling strengths of the interaction rate, we
show the evolution of the matter power spectra in the left
panel of Fig. 2. Again we see that for a large coupling
strength, the model significantly deviates from ΛCDM
cosmology and this deviation is prominent for large k,
while for very small coupling the interaction model is
very close to ΛCDM. However, the deviation from
ΛCDM—even for a very small but nonzero coupling
strength—still exists, which is clear from the relative
deviation shown in the right panel of Fig. 2. From the
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analyses using both CMB and matter power spectra as
well as the corresponding relative deviations, one may
argue that the coupling strength ξ ¼ −0.05 is very high
and can be excluded from the picture.
Furthermore, we depict the modified expansion history

Heff [Eq. (33)] and the effective gravitational constant
[Eq. (34)] in the left and right panels of Fig. 3, respectively.
Both plots in Fig. 3 show that for large coupling strength,

the modified expansion history and the effective gravita-
tional constant significantly differ from that of the non-
interacting ΛCDM cosmology. Finally, from the growth
rate of cold dark matter, fc, displayed in Fig. 4 we observe
a similar trend: a large coupling strength implies a deviation
of the model from noninteracting ΛCDM cosmology. We
conclude that for large coupling strength, the growth rate of
cold dark matter significantly decreases.

FIG. 2. The behavior of the IDE scenario on large scales is shown for different values of the coupling parameter. Left panel: We show
the evolutions of the matter power spectra for different coupling strengths of the interaction model. We find that as the coupling strength
increases, the interaction scenario deviates from the usual noninteracting ΛCDM scenario (i.e., ξ ¼ 0). We note that the curves
representing ξ ¼ −0.0001 and ΛCDM are almost indistinguishable from one another. Right panel: The relative deviation in the matter
power spectra compared to the noninteracting ΛCDMmodel is shown, and we find similar observation as in the left panel. In this figure,
we observe that a very small difference between the curves representing ξ ¼ −0.0001 and ΛCDM exists, and it is clearly visible.

FIG. 1. The behavior of the IDE scenario on large scales is shown for different values of the coupling parameter ξ. Left panel: Here we
display the evolutions of the CMB TT spectra for different values of the coupling parameter representing its strength. We see that as the
magnitude of the coupling parameter increases, the interaction scenario effectively deviates from the usual noninteracting ΛCDM
cosmology. We note that the curves representing ξ ¼ −0.0001 and ΛCDM are almost indistinguishable from one another. Right panel:
Here, the relative deviation in the CMB TT spectra is compared to the noninteracting ΛCDM model. This confirms the observation
found in the left panel of this figure. In this figure, we observe that a very small difference between the curves representing ξ ¼ −0.0001
and ΛCDM exists, but it is very hard to detect.
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The dynamics of this interaction scenario on large scales
has also been investigated. In the left panel of Fig. 5 we
show the variation in the CMB TT spectra for different
strengths of the coupling parameter ξ and compare them
with the noninteracting ΛCDM scenario. We see that as ξ

increases a significant change in the CMB TT spectra is
observed with respect to the noninteracting scenario, while
for lower coupling strengths the deviation from the non-
interacting ΛCDM model is small. However, since the
observational data predict a very small coupling parameter
(allowing for a zero value at the 68.3% confidence level), it
is expected that a small deviation from the ΛCDM model
should be present. In order to measure such a small
deviation, we measure the relative deviation of the inter-
acting model with different coupling strengths with respect
to the ΛCDM model; this is shown in the right panel of
Fig. 5. This plot practically tells that for ξ ≠ 0; however
small it is, a deviation fromΛCDM should exist, although it
is also true that such a deviation would be very small and
thus is not very significant. A similar pattern is found when
the large-scale dynamics is described in terms of the matter
power spectra shown in Fig. 6. The left panel of Fig. 6
shows qualitative changes in the matter power spectra for
different coupling strengths, while the right panel shows
how much the model with different coupling strengths
differs fromΛCDM. Overall, from the analyses for IVS one
can see that the coupling strength ξ ¼ −0.05 presents a
significant deviation from ΛCDM cosmology which—
according to the present observational data—is not reliable;
hence, this large value of the coupling parameter should be
avoided. Finally, following the similar lines as in IDE, for
IVS we investigate the modified expansion history (left
panel of Fig. 7), the effective gravitational constant (right
panel of Fig. 7) as well as the growth rate of cold dark
matter, fc (Fig. 8) finding that for large coupling strength,
the model considerably deviates from the noninteracting
ΛCDM model.
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FIG. 3. Left panel: The dynamical evolution of the quantity Heff=H is shown for different values of the coupling parameter of the
interaction rate (8). From top to bottom, the curves stand for the ΛCDM (ξ ¼ 0) model, ξ ¼ −0.0001, −0.01, −0.03, and −0.05. We
notice that the curves representing noninteracting ΛCDM and ξ ¼ −0.0001 are practically indistinguishable from one another. Right
panel: The evolution of the quantity Geff=G is shown for different values of the coupling parameter of the interaction rate (8). From top
to bottom, the curves stand for the ΛCDM (ξ ¼ 0) model, ξ ¼ −0.0001, −0.01, −0.03, and −0.05. Similar to the left panel, here we also
notice that the curves representing ΛCDM and ξ ¼ −0.0001 are practically indistinguishable from each other. From both panels, we see
that as ξ increases the model deviates from the noninteracting ΛCDM cosmology, and the coupling parameter ξ ¼ −0.05 can be safely
excluded from the consideration.
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FIG. 4. The evolution of growth rate for cold dark matter in the
presence of the interaction rate (8) is shown for different values of
the coupling strength. From top to bottom, the curves stand for
the noninteracting ΛCDM model (where ξ ¼ 0) and with other
coupling parameters ξ ¼ −0.0001, −0.01, −0.03, and −0.05.
Here, too, the curves for ΛCDM and ξ ¼ −0.0001 are indis-
tinguishable from each other. From the figure we observe that as
long as the strength or magnitude of the coupling parameter
increases, the growth rate for the cold dark matter sector
significantly deviates from ξ ¼ 0 (no interaction, ΛCDM). The
physical scenario indicates that as the coupling strength increases,
the growth rate for the cold dark matter decreases with the
evolution of the universe.
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V. DATA AND RESULTS

In this section, we describe the astronomical data using
statistical techniques to constrain the present interacting
scenarios and the results of the analyses. We include the
following sets of astronomical data.
(1) CMB observations:We use CMB data from Planck’s

2015 observations [79,80]. In particular, we use
the likelihoods CTT

l , CEE
l , and CTE

l in addition to

low-l polarization data (i.e., Planck TT, TE, EEþ
low TEB).

(2) Baryon acoustic oscillation (BAO) data: For BAO
data, the estimated ratio rs=DV is used as a “standard
ruler” inwhich rs is the comoving sound horizon at the
baryon drag epoch and DV is the effective distance,
given byDVðzÞ ¼ ½ð1þ zÞ2DAðaÞ2 z

HðzÞ�1=3. HereDA

is the angular diameter distance. In this analysis we

FIG. 5. The behavior of the IVS on large scales is shown for different values of the coupling parameter ξ. Left panel: In this plot, we
show the evolutions of the CMB TT spectra for different coupling strengths of the interaction model. One can clearly see that as the
magnitude or strength of the coupling parameter increases, the interaction model clearly deviates from the noninteracting ΛCDM
cosmology. We note that the curves representing ξ ¼ −0.0001 and ΛCDM cannot be differentiated from one another. Right panel: The
relative deviation in the CMB TT spectra is compared to the noninteracting ΛCDM model. From this plot, one can easily conclude that
changes in ξ result in significant deviations from the corresponding noninteracting scenario. Here, we observe that the curves
representing ξ ¼ −0.0001 and ΛCDM overlap with each other.

FIG. 6. The behavior of the IVS on large scales is shown for different values of the coupling parameter ξ. Left panel: We show the
evolutions of the matter power spectra for different coupling strengths of the interaction model which shows that as the coupling
parameter increases, the interaction model deviates from the noninteracting ΛCDM cosmology. We notice that the curves representing
ξ ¼ −0.0001 and ΛCDM cannot be differentiated from one another. Right panel: The relative deviation in the matter power spectra is
compared to the noninteracting ΛCDM model, and similar features are observed as in the left panel of this figure. From this plot we see
that the curves representing ξ ¼ −0.0001 and ΛCDM cannot be distinguished from one another, although a very minimal difference
between them is present.
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use four data points from different astronomical
surveys: the 6dF Galaxy Survey redshift measurement
at zeff ¼ 0.106 [81], the Main Galaxy Sample of Data
Release 7 of the Sloan Digital Sky Survey measure-
ment at zeff ¼ 0.15 [82], and the CMASS and LOWZ
samples from the latest Data Release 12 (DR12) of the
Baryon Oscillation Spectroscopic Survey (BOSS)
measurements at zeff ¼ 0.57 [83] and zeff ¼ 0.32 [83].

(3) Redshift space distortion (RSD) data: We use the
RSD data from two observational surveys: the
CMASS sample [84] and the LOWZ sample
[84]. The effective redshifts for the CMASS and

LOWZ samples are, respectively, at zeff ¼ 0.57 and
zeff ¼ 0.32. We note that when these two RSD data
points are considered in the analysis, DR12 of BOSS
from BAO will not be considered.

(4) H0 from the Hubble Space Telescope (HST):
The local Hubble constant measured using the
HST by Riess et al. [85] yields H0 ¼ 73.02�
1.79 km=s=Mpc with 2.4% precision.

(5) Joint light curve analysis (JLA): This is the type Ia
supernovae sample that contains 740 data points
spread over the redshift interval z ∈ ½0.01; 1.30�
[86]. This low-redshift sample is the first indication
of an accelerating Universe.

(6) Hubble parameter measurements from cosmic chro-
nometers (CC):We choose the cosmic chronometers
to measure the Hubble parameter values at different
redshifts. Cosmic chronometers are the oldest and
most massive galaxies, and the technique that we
apply to measure the Hubble parameter values is
the differential age evolution of the galaxies. For a
detailed description, we refer to Ref. [87] and
references therein for more information about their
implementation. In this work we consider 30 Hubble
parameter values in the interval z ∈ ð0; 2Þ and they
can be found in Ref. [87].

(7) Weak lensing (WL): We use the weak gravitational
lensing data from the Canada-France-Hawaii Tele-
scope Lensing Survey [88,89].

In order to extract the observational constraints
of the interacting scenarios, we use the publicly available
Monte Carlo Markov chain (MCMC) package COSMOMC
[90,91] equipped with a convergence diagnostic followed by
the Gelman-Rubin statistics [92]. The parameter space for
the interacting dark energy and interacting vacuum scenarios
are, respectively,

FIG. 7. Left panel: The dynamical evolution of themodified expansion historyHeff is shown in the presence of different couplings of the
interaction rate (8) for the interacting vacuum scenario. From top to bottom, the curves stand for the noninteractingΛCDMmodel (ξ ¼ 0)
and for ξ ¼ −0.0001, −0.01, −0.03, and −0.05. Right panel: The evolution of the quantity Geff=G is shown for different coupling
parameters for the interacting vacuum scenario. From top to bottom, the curves stand for the noninteractingΛCDMmodel (ξ ¼ 0) and for
ξ ¼ −0.0001,−0.01,−0.03, and −0.05. From both panels, we see that as ξ increases, the model deviates from the noninteractingΛCDM
cosmology. In both panels, we see that the curves representing ξ ¼ −0.0001 and ΛCDM cannot be differentiated from one another.

FIG. 8. For the interacting vacuum scenario we display the
evolution of the growth rate for cold dark matter for different
coupling strengths. From top to bottom, the curves stand for the
noninteracting ΛCDM model (ξ ¼ 0) and for ξ ¼ −0.0001,
−0.01, −0.03, and −0.05. However, we observe that if the
coupling strength increases, the growth rate for cold dark matter
decreases with the evolution of the universe. Similar to previous
observations, here we see that the curves representing ξ ¼
−0.0001 and ΛCDM cannot be distinguished from one another.
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P1≡fΩbh2;Ωch2;100θMC;τ;wx;ξ;ns; log½1010AS�g ð35Þ

and

P2 ≡ fΩbh2;Ωch2; 100θMC; τ; ξ; ns; log½1010AS�g; ð36Þ
where in both Eqs. (35) and (36), Ωbh2 and Ωch2 are the
baryon density and cold dark matter density, respectively;
100θMC, τ, ns, and AS, are the ratio of the sound horizon to
the angular diameter distance, optical depth, scalar spectral
index, and the amplitude of the initial power spectrum,
respectively. The parameter ξ is the coupling strength, while
P1 has one extra parameter wx. Thus, we see that interacting
dark energy has eight free parameters and the interacting
vacuum scenario has seven free parameters. During the
MCMC analysis, we generally fix some priors on the model
parameters. In Table I we show the priors fixed on various
cosmological parameters while constraining both interacting
models (IDE and IVS). The priors on wx and ξ play an
essential role in the analysis because the early-time

instabilities associated with the model, if any, significantly
depend on the parameter space of ðwx; ξÞ. Now, if we look
closely at the model (9), we can see that it actually
incorporates two separate interaction rates, namely, Q ∝
ρc and Q ∝ ρx; hence, the stability of the entire model (9)
depends on the region where both of them do not lead to
any early-time instabilities. However, one can note that for
some specific regions of the parameter space of wx and ξ
early-time instabilities can be avoided [93], while the entire
region for ξ that allows both positive and negative values
may not always be suitable for avoiding such an instability.
This actually depends on the interaction model. Thus,
motivated by this fact, we divide the parameter space of
wx and ξ into several regions to test the stability of the IDE
scenario: “wx free and ξ free,” “wx > −1 and ξ free,”
“wx > −1 and ξ ≥ 0,” “wx > −1, ξ ≤ 0,” “wx < −1 and
ξ free,” and “wx < −1 and ξ ≤ 0.” We find that the model
does not lead to any early-time instabilities only for the
region “wx < −1, ξ ≤ 0,” while for the other regions the
model leads to early-time instabilities. Quite interestingly,
this allowed region (i.e., wx < −1) has an additional feature:
in the presence of a nongravitational interaction in the dark
sectors, when the dark energy equation of state is allowed to
cross the cosmological constant boundary (that is, for
wx < −1), the tension on H0 can be alleviated [20,94]. In
this context we would like to add that some previous studies
found that for noninteracting cosmologies with a constant
dark energy equation of state (wx) the regionwx > −1 is also
allowed and even preferred by some observational data
[95–97]. Now, we perform similar analyses for the interact-
ing vacuum scenario with different priors on ξ, namely,
ξ ≥ 0, ξ ≤ 0 and ξ free. We find that for ξ ≤ 0, early-time
instabilities do not appear.

TABLE I. This table summarizes the flat priors on the cosmo-
logical parameters for the interacting scenario with wx < −1
(IDE) and the IVS.

Parameter Prior (IDE) Prior (IVS)

Ωbh2 [0.005, 0.1] [0.005, 0.1]
τ [0.01, 0.8] [0.01, 0.8]
ns [0.5, 1.5] [0.5, 1.5]
log½1010As� [2.4, 4] [2.4, 4]
100θMC [0.5, 10] [0.5, 10]
wx ð−3;−1Þ −
ξ ½−1; 0� ½−1; 0�

TABLE II. The table summarizes the observational constraints on the cosmological parameters of IDE at the 68.3% confidence
level for different combinations of observational data. For the coupling parameter, we only report their values at the 95.4% lower
confidence level.

Parameters CMB
CMBþ BAO

þHST
CMBþ BAO

þRSD
CMBþ BAO
þRSDþ HST

CMBþ BAO
þRSDþ HST
þJLAþ CC

CMBþ BAO
þRSDþ HST

þJLAþ CCþWL

Ωch2 0.1260þ0.0035
−0.0059 0.1204þ0.0017

−0.0015 0.1205þ0.0014
−0.0013 0.1201þ0.0013

−0.0014 0.1197þ0.0012
−0.0013 0.1191þ0.0011

−0.0011

Ωbh2 0.0223þ0.0002
−0.0002 0.02231þ0.0002

−0.0002 0.0223þ0.0002
−0.0002 0.0223þ0.0002

−0.0002 0.0223þ0.0002
−0.0002 0.0223þ0.0001

−0.0001

100θMC 1.0310þ0.0007
−0.0005 1.0405þ0.0006

−0.0005 1.0405þ0.0003
−0.0003 1.0405þ0.0003

−0.0003 1.0406þ0.0003
−0.0004 1.0406þ0.0003

−0.0003

τ 0.0711þ0.0184
−0.0187 0.0811þ0.0214

−0.0204 0.0687þ0.0167
−0.0163 0.0621þ0.0171

−0.0160 0.0820þ0.0164
−0.0160 0.0636þ0.0163

−0.0159

ns 0.9678þ0.0057
−0.0056 0.9739þ0.0051

−0.0051 0.9728þ0.0039
−0.0038 0.9730þ0.0041

−0.0041 0.9746þ0.0037
−0.0035 0.9751þ0.0037

−0.0036

lnð1010AsÞ 3.0824þ0.0356
−0.0362 3.1032þ0.0418

−0.0386 3.0770þ0.0349
−0.0316 3.0642þ0.0338

−0.0309 3.1043þ0.0332
−0.0314 3.0658þ0.0318

−0.0308

Ωm0 0.3523þ0.0394
−0.0693 0.2865þ0.0092

−0.0092 0.3105þ0.0100
−0.0098 0.2990þ0.0083

−0.0091 0.2942þ0.0075
−0.0074 0.2994þ0.0073

−0.0073

σ8 0.8221þ0.0392
−0.0350 0.8635þ0.0192

−0.0192 0.8279þ0.0137
−0.0136 0.8311þ0.0146

−0.0143 0.8516þ0.0162
−0.0160 0.8250þ0.0132

−0.0147

H0 65.5213þ4.5145
−3.9333 70.7651þ1.1132

−1.1482 67.9685þ0.8324
−1.0243 69.1889þ0.8698

−0.8904 69.6402þ0.8265
−0.8523 68.8940þ0.6849

−0.8176

wx −1.1093þ0.0828
−0.0509 −1.1511þ0.0529

−0.0586 −1.0603þ0.0427
−0.0201 −1.0940þ0.0407

−0.0394 −1.0960þ0.0375
−0.0365 −1.0608þ0.0289

−0.0238

ξ >− 0.004884 >− 0.001285 > − 0.001384 >− 0.001278 >− 0.000959 >− 0.000935
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A. IDE: Results

In Table II we summarize the 68% confidence-level
constraints on the cosmological parameters for ξ ≤ 0 and
wx < −1 using a variety of astronomical data. In Fig. 9
we show the 68.3% and 95.4% confidence-level contour
plots for different combinations of the model parameters,
including one-dimensional posterior distributions for some
selected parameters of the interacting scenario as well. We
notice that the combined data set CMBþ ext, where “ext”
is the combination of any two data sets from BAO, RSD,

HST, JLA, CC, WL, significantly reduces the allowed
region in the parameter space.
From the analyses presented in Table II, one can easily

state that the coupling parameter is very low. The coupling
parameter ξ (at the 95.4% lower C.L.) is constrained to be
(see Table II)
(1) ξ > −0.004884 (CMB only),
(2) ξ > −0.001285 (CMBþ BAOþ HST),
(3) ξ > −0.001384 (CMBþ BAOþ RSD),
(4) ξ > −0.001278 (CMBþ BAOþ RSDþ HST),

FIG. 9. Contour plots for different combinations of the cosmological parameters at the 68.3% and 95.4% confidence levels are shown
for distinct observational combinations. Additionally, we also show the one-dimensional posterior distributions for those parameters in
the extreme right corners of each row. From the two-dimensional contour plots one can notice that the addition of any external data to
CMB decreases the error bars of the cosmological parameters in a significant way.
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(5) ξ > −0.000959 (CMBþ BAOþ RSDþ HSTþ
JLAþ CC),

(6) ξ>−0.000935, for the last combined analysis
(CMBþBAOþRSDþHSTþJLAþCCþWL),

while we must note that within 68.3% C.L. ξ ¼ 0 is
allowed, which means that, effectively, IDE may recover
the noninteracting wxCDM cosmology. In Fig. 10, we
show the dependence of ξ on the other cosmological
parameters for this model. Now, from the constraints on
the dark energy equation of state summarized in Table II,
it is quite clear that wx assumes values that are close to
−1. To better understand this, in Fig. 11, we show the
dependence of wx on the other important cosmological
parameters. From the left panel of Fig. 11 we see that as

H0 decreases, wx approaches the cosmological constant
limit, while from the right panel of Fig. 11 we observe
that Ωm0 takes large values as wx → −1. Further, in
Fig. 12 we explicitly show the two-dimensional contour
plots in the planes (σ8, wx), ðσ8; H0Þ, and ðσ8; ξÞ in order
to measure the variation in σ8 in the presence of the
coupling. Our analysis shows that an increased coupling
strength effectively lowers the values of σ8, which means
that the model deviates significantly from the ΛCDM
model. We also observe that for a more phantom state in
the dark energy equation of state the value of σ8 increases.
In addition, we also observe that in the presence of the
coupling, higher values of the Hubble parameter also
indicate higher values of σ8.

FIG. 10. The dependence of the coupling strength on some important cosmological parameters is shown in the (ξ, H0), ðξ; wxÞ, and
(ξ, Ωm0) planes at the 68.3% and 95.4% confidence levels using different combinations of the observational data displayed above.
We observe that correlations exist between the parameters in the plots. Upper left panel: We see that the CMB data allow a nonzero
interaction in the dark sector for lower values of the Hubble parameter; however, from the combined analysis no conclusive statement
can be made on the dependence ofH0 and the coupling strength ξ. Upper right panel: The plot shows that the allowance of wx < −1 is an
indication of an interaction in the dark sector. Lower panel: One can notice that only CMB data indicate that the coupling strength has a
direct dependence on the density parameterΩm0, while the combined analysis does not show any relation between the parameters. Thus,
in order to clarify such issues we show three-dimensional scatter plots in Fig. 13 with detailed discussions.
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Furthermore, we analyze the MCMC chains for all
combined analyses focusing on the behavior of the cou-
pling strength, dark energy equation of state, and the
density parameter for the matter sector monitored by the
Hubble parameter values. The analysis is shown in Fig. 13.
In particular, this analysis shows the qualitative behavior
of the interacting model in terms of the coupling strength
and the dark energy equation of state. The analysis shows
that the lower values of the Hubble parameter signal a
nonzero interaction in the dark sector, but the dark energy
equation of state still lies within a close neighborhood of
the cosmological constant boundary −1. Also, the density
parameter for matter takes larger values for lower values of
the Hubble parameter as well.
Last, we compare the χ2min values between IDE and the

ΛCDM model obtained for different combined analyses
(see Table III). We observe that for some combined
analyses, the χ2min achieved for IDE is bigger than that
for the ΛCDM model. We notice that almost all combined
analyses return a greater χ2min for IDE compared to the
standard ΛCDM.

B. IVS: Results

As a particular case, we consider the simplest possibility,
i.e., when dark energy is the cosmological constant.
Now, we also constrain this interacting scenario using
the same combined analyses as employed in Sec. VA. The
results are summarized in Table IV, and Fig. 14 shows
the two-dimensional contour plots at the 68.3% and
95.4% confidence levels for different combinations of
the free model parameters using the six different combined
analyses. Additionally, in the extreme right corner of each

row of Fig. 14 we show the one-dimensional posterior
distributions for some selected model parameters of this
interacting scenario. From Fig. 14 we see that the addition
of any other external data to CMB significantly decreases
the allowed region in the parameter space, and hence the
parameters are well constrained when any external data set
is added to CMB.
From the analysis we notice that the coupling strength of

the interaction is very small and it is very close to zero. In
particular, at the 95.4% lower confidence level, we find that
(1) ξ > −0.001953 (for CMB alone),
(2) ξ > −0.000490 (CMBþ BAOþ HST),
(3) ξ > −0.000726 (CMBþ BAOþ RSD),
(4) ξ > −0.000549 (CMBþ BAOþ RSDþ HST),
(5) ξ > −0.000563 (CMBþ BAOþ RSDþ HSTþ

JLAþ CC),
and finally,

(6) ξ>−0.000557, for the last combined analysis
(CMBþBAOþRSDþHSTþJLAþCCþWL).

Additionally, we must mention that within the
68.3% confidence level, the noninteracting scenario (i.e.,
ξ ¼ 0) is recovered (excluding the CMB analysis). Thus,
one can see that this interaction scenario is effectively very
close to the noninteracting ΛCDM scenario.
Similar to the IDE model described in Sec. VA, here we

also investigate the three-dimensional scatter plots in the
ðξ;Ωm0Þ plane for all of the combined analyses colored by
the Hubble parameter values. The analysis is shown in
Fig. 15 from which one can notice that, for lower values of
the Hubble parameter, the coupling parameter seems to
have a tendency to take values away from ξ ¼ 0, while for
higher values of H0 the coupling parameter takes values
very close to zero.

FIG. 11. 68.3% and 95.4% confidence-level contour plots in the two-dimensional planes (wx, H0) and (Ωm0, wx) are shown for
different combined analyses. Left panel: Here we notice that for lower values of the Hubble parameter, the dark energy equation of state
increases, which means that jwxj decreases. Right panel: Here we notice that as Ωm0 decreases, the dark energy equation of state moves
toward a more phantom region.
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Similarly to the IDE model, we compare the χ2min values
for this scenario with respect to the base ΛCDMmodel. We
make similar conclusions for this interaction scenario: the
χ2min values for this model are larger for almost all combined
analyses with respect to the ΛCDM cosmological model.

C. On the tension on H0: The role of interaction

One of the most popular issues in current cosmological
research is the tension on the parameter H0. Some recent
investigations in the context of interacting dark energy
models fueled further investigations aiming to reach a
definite and satisfactory explanation of this tension, and
consequently people have focused on how interacting dark
energy models may alleviate the tension on H0. The first
question that immediately arises is what exactly this tension
is. To illustrate this notion, we need to take into account its

distinct measurements from different observational mis-
sions. The estimation of H0 by the Planck 2015 missions
from the ΛCDM-based cosmological model yields H0 ¼
67.27� 0.66 km=s=Mpc (Planck TT, TE, EEþ lowP) [1],
while the local measurement ofH0 using the Hubble Space
Telescope gives H0 ¼ 73.24� 1.74 km=s=Mpc [85]: this
huge difference between these estimations is generally
known as the tension on the Hubble constant. Some recent
investigations have already shown that interacting dark
energy might be able to release such tension onH0 [20,94].
Since interacting dark energy is purely model dependent, it
is naturally quite justified to wonder how other phenom-
enological interaction models react with the tension on H0.
To make this more clear, in Table V we summarize the
constraints on H0 for both IDE and IVS up to the 3σ
confidence level. We see that the addition of one extra

FIG. 12. 68.3% and 95.4% confidence-level contour plots in the two-dimensional planes (σ8, wx), ðσ8; H0Þ, and ðσ8; ξÞ are shown.
Upper left panel: We notice that if the strength of the interaction increases, σ8 takes lower values. Upper right panel: It is clearly seen that
as long as the dark energy equation of state moves toward a more phantom region, the parameter σ8 takes larger values. Lower panel:
The larger values of the Hubble parameter allow larger values of σ8.
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FIG. 13. In each panel we show three-dimensional scatter plots colored by the H0 values of the MCMC chains of the corresponding
combined analysis. The combined analyses from top to bottom are (i) CMBþ BAOþ HST, (ii) CMBþ BAO þ RSD,
(iii) CMBþ BAO þ RSDþ HST, (iv) CMBþ BAOþ RSDþ HSTþ JLAþ CC, and (v) CMBþ BAOþ RSDþ HSTþ JLAþ
CCþWL. First column: From the MCMC chains of all combined analyses, we notice that as the values of H0 decrease (represented by
the points in blue) the dark energy equation of state moves toward the cosmological constant boundary. Second column: The MCMC
chains of all combined analyses infer that the lower values of H0 prefer a nonzero coupling in the dark sector, which is statistically
consistent with zero. Last column: With lower values of H0, the dark energy equation of state moves toward the cosmological constant
boundary and a nonzero coupling in the dark sector is favored, which is indeed very close to zero.
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degree of freedom (d.o.f.) in terms of the coupling
parameter significantly increases the error bars on H0

compared to Planck 2015 [1]. And the increase of error
bars on H0 is prominent for IDE compared to IVS because
the estimated values of H0 for IVS using different com-
bined analyses look similar to Planck 2015 [1]. Naturally,
for the IDE scenario one may infer that, due to the
large error bars present on H0, the estimated values of
H0 are in agreement with the local measurement
(H0 ¼ 73.24� 1.74 km=s=Mpc) [85]. Thus, one can see
that the interaction in the dark sector may provide a way to
reduce the tension on H0.

D. The Bayesian evidence

Model selection [98] plays an important role in dis-
tinguishing various cosmological models. Keeping the
same motivation, in this work we compare both interact-
ing dark energy scenarios with the ΛCDM cosmological
model using Bayesian analysis. The Bayesian evidence
is a powerful statistical technique that quantifies the
cosmological models based on their performance with
the observational data. In the following, we briefly
describe how the Bayesian evidence is calculated for a

cosmological model. In the Bayesian analysis one needs
the posterior probability of the model parameters
(denoted by θ), given a particular data set x to test the
model, any prior information, and a model M. Now,
recalling Bayes theorem, one may write

pðθjx;MÞ ¼ pðxjθ;MÞπðθjMÞ
pðxjMÞ ; ð37Þ

where pðxjθ;MÞ is the likelihood function dependent
on the model parameters θ with the data set fixed;
πðθjMÞ is the prior used in the analysis. The denominator
pðxjMÞ on the right-hand side of Eq. (37) is the
Bayesian evidence for the model comparison and it is
the integral over the un-normalized posterior p̃ðθjx;MÞ≡
pðxjθ;MÞπðθjMÞ,

E≡ pðxjMÞ ¼
Z

dθpðxjθ;MÞπðθjMÞ: ð38Þ

We note that Eq. (38) is also referred to as the marginal
likelihood. Now, for any particular model Mi and the
reference model Mj (the base model, here ΛCDM), the
posterior probability is given by

TABLE III. The χ2min obtained for the best-fit values of the parameters of the two interacting dark energy scenarios and noninteracting
ΛCDM cosmology.

Model CMB
CMBþ BAO

þHST
CMBþ BAO

þRSD
CMBþ BAO
þRSDþ HST

CMBþ BAO
þRSDþ HST
þJLAþ CC

CMBþ BAO
þRSDþ HST

þJLAþ CCþWL

IDE: χ2min (best-fit) 12 960.778 12 981.276 12 975.450 12 982.168 13 689.092 13 723.708
IVS: χ2min (best-fit) 12 961.606 12 980.844 12 971.080 12 982.742 13 693.894 13 724.124
ΛCDM: χ2min (best-fit) 12 964.062 12 978.886 12 974.124 12 981.336 13 693.560 13 722.170

TABLE IV. The observational constraints of the cosmological parameters for the IVS at the 68.3% confidence level for different
combinations of observational data. For the coupling parameter ξ, we report only values at the 95.4% lower confidence level.

Parameters CMB
CMBþ BAO

þHST
CMBþ BAO

þRSD
CMBþ BAO
þRSDþ HST

CMBþ BAO
þRSDþ HST
þJLAþ CC

CMBþ BAO
þRSDþ HST

þJLAþ CCþWL

Ωch2 0.1225þ0.0021
−0.0031 0.1178þ0.0010

−0.0010 0.1193þ0.0011
−0.0011 0.1183þ0.0011

−0.0012 0.1182þ0.0011
−0.0011 0.1178þ0.0010

−0.0010

Ωbh2 0.0223þ0.0002
−0.0002 0.0224þ0.0001

−0.0001 0.0223þ0.0001
−0.0001 0.0224þ0.0002

−0.0001 0.0224þ0.0001
−0.0001 0.0224þ0.0001

−0.0001

100θMC 1.0402þ0.0004
−0.0004 1.0408þ0.0003

−0.0003 1.0405þ0.0003
−0.0003 1.0407þ0.0003

−0.0003 1.0407þ0.0003
−0.0004 1.0407þ0.0003

−0.0003

τ 0.0765þ0.0192
−0.0178 0.0915þ0.0185

−0.0155 0.0781þ0.0138
−0.0157 0.0796þ0.0165

−0.0163 0.0793þ0.0156
−0.0162 0.0750þ0.0169

−0.0160

ns 0.9695þ0.0048
−0.0049 0.9788þ0.0037

−0.0038 0.9750þ0.0035
−0.0036 0.9771þ0.0039

−0.0038 0.9773þ0.0039
−0.0041 0.9783þ0.0035

−0.0038

lnð1010AsÞ 3.0966þ0.0373
−0.0339 3.1214þ0.0373

−0.0311 3.0960þ0.0275
−0.0283 3.0979þ0.0311

−0.0319 3.0965þ0.0316
−0.0350 3.0863þ0.0327

−0.0316

Ωm0 0.3425þ0.0159
−0.0271 0.3064þ0.0063

−0.0064 0.3167þ0.0074
−0.0071 0.3096þ0.0068

−0.0077 0.30911013þ0.0065
−0.0077 0.3064þ0.0061

−0.0065

σ8 0.8118þ0.0212
−0.0170 0.8262þ0.0156

−0.0127 0.8169þ0.0120
−0.0120 0.8167þ0.0124

−0.0125 0.8161þ0.0134
−0.0143 0.8108þ0.0128

−0.0127

H0 65.2375þ1.8234
−1.1629 67.8090þ0.5004

−0.4817 67.0308þ0.5368
−0.5437 67.5675þ0.5413

−0.5259 67.6067þ0.5796
−0.5032 67.7953þ0.4983

−0.4735

ξ ξ > −0.001953 ξ > −0.000490 ξ > −0.000726 ξ > −0.000549 ξ > −0.000563 ξ > −0.000557
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pðMijxÞ
pðMjjxÞ

¼ πðMiÞ
πðMjÞ

pðxjMiÞ
pðxjMjÞ

¼ πðMiÞ
πðMjÞ

Bij; ð39Þ

where Bij ¼ pðxjMiÞ
pðxjMjÞ is the Bayes factor of the model Mi

relative to the base or reference model Mj. For Bij > 1,
the data support the model Mi more strongly than the
model Mj. The behavior of the models is usually
quantified using different values of Bij (or, alternatively,
lnBij). Here, we shall use the widely accepted Jeffreys

scales [99] (see Table VI) that summarizes the model
comparison.
Now, one can calculate the Bayesian evidence using the

MCMC chains which directly extract the parameters of the
underlying cosmological model. For a detailed explanation
of the implementation of the Bayesian evidence for any
cosmological model, we refer to Refs. [100,101] where we
used the code MCEVIDENCE.1

FIG. 14. Contour plots for different combinations of the cosmological parameters at the 68.3% and 95.4% confidence levels for the
IVS are shown for distinct observational combinations. Additionally, we also show the one-dimensional posterior distributions for those
parameters at the extreme right corners of each row. From the two-dimensional contour plots one can see that the addition of any external
data to CMB decreases the error bars of the cosmological parameters.

1This code is available for free at https://github.com/
yabebalFantaye/MCEvidence.
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FIG. 15. For the interacting vacuum scenario, we analyze the MCMC chains of the combined analysis in the two-dimensional ðξ;Ωm0Þ
plane colored by the Hubble parameter values. The upper left and upper right panels, respectively, represent the analyses
CMBþ BAOþ HST and CMBþ BAOþ RSD. The center plot shows the combined analysis CMBþ BAOþ RSDþ HST. Finally,
the lower left and lower right panels, respectively, represent the analyses CMBþ BAOþ RSDþ HSTþ JLAþ CC and
CMBþ BAOþ RSDþ HSTþ JLAþ CCþWL. From all of the plots one thing is clear: lower values of the Hubble parameter
signal a nonzero interaction in the dark sector, while statistically this is consistent with zero and, in addition, the density parameter for
the matter sector is also allowed to take higher values.
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Thus, using the code MCEVIDENCE, we calculate the
logarithm of the Bayes factor, i.e., lnBij where i stands
for IDE or IVS and j is the reference model (ΛCDM). In
Table VII we show the calculated values of lnBij for the
two interacting scenarios with respect to ΛCDM. From the
table, we see that for all of the observational data employed
in this work, the values of lnBij are negative, which from
the point of view of the Bayesian evidence shows that the
reference model (ΛCDM) is preferred over the two inter-
acting scenarios. For some combined analyses the prefer-
ence for ΛCDM is strong, while for others it is positive.
Overall, we see that the present observational data always
favors ΛCDM with respect to the interacting scenarios
discussed in this work.

VI. CONCLUDING REMARKS

We have considered an interacting scenario between a
pressureless dark matter and a dark energy fluid with a
constant barotropic equation of state. The underlying
geometry of the universe is characterized by the spatially
flat FLRW line element, and the interaction rate Q ¼
Qðρ0tÞ ¼ Qðρc; ρxÞ has been given explicitly in Eq. (8) or
Eq. (9). This interaction rate is very appealing in the sense
that the evolution equations for the dark sectors (cold dark
matter and dark energy) can be exactly solved, and thus,
one can directly measure their deviation from the standard
evolution laws of the dark fluids with no interaction. We
note that initially this kind of interaction was introduced by
Chimento in Ref. [30], where the author proposed a very
general interaction rate that recovers the interaction in
Eq. (9) and discussed its theoretical implications. Later, its
observational viability was tested with dark energy as the
cosmological constant but at the background level [42];
consequently, in a recent article [61], the authors general-
ized this study for both wx ¼ −1 and wx ≠ −1 at the
background level with recent observational data. However,
it is quite certain that the dynamics of such interaction
models on large scales is a promising tool to better
understand the entire scenario. This means that the most

TABLE V. The 68%, 95%, and 99% confidence-level constraints on H0 and σ8 for different combined analyses for the interacting
scenario with wx < −1 (IDE) and wx ¼ −1 (IVS). We note that the estimation of H0 by the latest Planck missions for the base ΛCDM
model yields H0 ¼ 67.27� 0.66 km=s=Mpc (Planck TT, TE, EEþ lowP) [1].

Parameter CMB
CMBþ BAO

þHST
CMBþ BAO

þRSD
CMBþ BAO
þRSDþ HST

CMBþ BAO
þRSDþ HST
þJLAþ CC

CMBþ BAO
þRSDþ HST

þJLAþ CCþWL

H0 (IDE) 65.52þ4.51þ7.53þ9.45
−3.93−8.02−10.22 70.77þ1.11þ2.31þ2.78

−1.15−2.32−2.47 67.97þ0.83þ1.86þ2.56
−1.02−1.77−2.05 69.19þ0.87þ1.79þ2.46

−0.89−1.72−2.22 69.64þ0.83þ1.69þ2.79
−0.85−1.75−2.20 68.89þ0.68þ1.52þ1.93

−0.82−1.36−1.88

H0 (IVS) 65.24þ1.82þ2.67þ3.21
−1.16−3.06−4.14 67.81þ0.50þ0.97þ1.17

−0.48−0.98−1.24 67.03þ0.54þ1.08þ1.46
−0.54−1.09−1.41 67.57þ0.54þ0.96þ1.31

−0.53−1.01−1.35 67.61þ0.58þ0.98þ1.39
−0.50−1.03−1.34 67.80þ0.50þ1.06þ1.23

−0.47−1.04−1.54

TABLE VI. Revised Jeffreys scale used to test the observational
support of any model Mi with respect to another model Mj.

lnBij Strength of evidence for model Mi

0 ≤ lnBij < 1 Weak
1 ≤ lnBij < 3 Definite=Positive
3 ≤ lnBij < 5 Strong
lnBij ≥ 5 Very strong

TABLE VII. Summary of lnBij, for the two interacting scenarios with respect to the reference model ΛCDM, for
different observational data sets. From the Bayesian evidence point of view, negative values of lnBij mean that the
reference model ΛCDM is preferred over the two interacting scenarios.

Data set Model lnBij Strength of evidence for ΛCDM

CMB IDE −2.0 Positive
CMB IVS −1.9 Positive
CMBþ BAO þ HST IDE −4.8 Strong
CMBþ BAO þ HST IVS −3.5 Strong
CMBþ BAO þ RSD IDE −2.9 Positive
CMBþ BAO þ RSD IVS −1.7 Positive
CMBþ BAO þ RSDþ HST IDE −3.6 Strong
CMBþ BAO þ RSDþ HST IVS −3.3 Strong
CMBþ BAO þ RSDþ HSTþ JLAþ CC IDE −1.7 Positive
CMBþ BAO þ RSDþ HSTþ JLAþ CC IVS −2.2 Positive
CMBþ BAO þ RSDþ HSTþ JLAþ CCþWL IDE −4.0 Strong
CMBþ BAO þ RSDþ HSTþ JLAþ CCþWL IVS −3.7 Strong
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important question related to the interaction model is how
the structure formation of the Universe changes when such
an interaction is included in the cosmological scenario.
Thus, in the present work we discussed the perturbations
and structure formation of the Universe when such an
interaction is present between the dark fluids. Now, in order
to test the resulting cosmological scenarios with the
available observational data, we used COSMOMC, a
Markov chain Monte Carlo package that extracts the model
parameters with a sufficient convergence following the
Gelman-Rubin statistics [92]. The observational data
include cosmic microwave background radiation, baryon
acoustic oscillations, redshift-space distortions, the local
Hubble constant, supernovae type Ia data from joint light
curve analysis, Hubble parameter values at different red-
shifts from cosmic chronometers, and finally weak gravi-
tational lensing data. For a better analysis, we have
considered two distinct interacting scenarios, namely, when
the dark energy is and is not (i.e., wx ≠ −1) the cosmo-
logical constant.
For the IDE scenario, the constraints on the model

parameters are summarized in Table II where we presented
the 95.4% (lower) confidence limits on the coupling
parameter ξ. In Fig. 9, we showed the contour plots for
different combinations of model parameters at the 68.3%
and 95.4% confidence levels. The right corners of Fig. 9
also show the one-dimensional posterior distributions for
some selected model parameters. From the observational
constraints on the coupling parameter ξ, summarized in the
last row of Table II, we find that ξ ¼ 0 is consistent with
the observational data. Moreover, from the constraints on
the dark energy equation of state wx, one can see that it is
actually very close to the cosmological constant boundary.
Thus, we see that the interaction model is actually equiv-
alent to the noninteracting ΛCDM background. However,
in the large-scale distribution, the interaction model may
exhibit some differences even for a very small coupling
strength. From the imprints on the CMB TT spectra (see the
right panel of Fig. 1) and also from the matter power spectra
(see the right panel of Fig. 2), it is evident that for a very
small coupling strength (ξ ¼ −0.0001), the model presents
a very minimal deviation from the noninteracting ΛCDM
cosmology.
The results for the interacting cosmological constant

(IVS) are summarized in Table IV. The corresponding
contour plots at the 68.3% and 95.4% confidence levels
are also shown in Fig. 14 with the one-dimensional
posterior distributions for some selected parameters of this
model. From the estimation of the coupling strength shown
in Table IV, one can see that ξ is consistent with the
noninteraction limit (i.e., ξ ¼ 0), at least according to the

current observational data. In fact, for this model we have
realized a similar trend as in IDE. For instance, from
Fig. 15, similar to the IDE model, we found that lower
values of the Hubble parameter allow nonzero interaction in
the dark sector. The deviation of this interaction scenario
from the noninteracting ΛCDM cosmology is also found to
be insensitive (see the right panels of Figs. 5 and 6), unlike
the IDE scenario where (although small) the deviation is
detectable.
We also addressed one interesting point that has become

a hot issue in current cosmological research: the observed
tension on H0 between its global [1] and local measure-
ments [85]. We found that the allowance of the interaction
increases the error bars on the Hubble parameter measure-
ments, and consequently, the parameter space for H0 is
increased. This effectively partially releases the tension
and is reflected in some combinations for IDE only, while
the interacting vacuum model is not suitable to release the
tension. One may argue that the allowance of extra d.o.f.
in the parameter space of the interacting dark energy
models (for IDE the number of parameters is eight, while
for IVS it is seven) might be suitable to alleviate such
tension. Similar results have been reported in some recent
works [20,94]; however, since the theory of interaction is
phenomenological and hence its conclusions are as well,
an analysis with a different interaction model might be
important to see whether the model can alleviate this
tension. The relation between the extra d.o.f. and the
tension onH0 in the interacting dark energy models surely
needs further attention.
Finally, we computed the Bayesian evidence for each

interacting scenario with respect to the noninteracting
ΛCDM model (see Table VII). Our analysis shows that
the noninteracting ΛCDM is preferred over the two
interacting dark energy scenarios, at least according to
the current observational data sets.
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