
 

Anisotropic inflation in Brans-Dicke gravity with a non-Abelian gauge field

M. Tirandari,* Kh. Saaidi,† and A. Mohammadi‡

Department of Physics, University of Kurdistan, Pasdaran Street, P.O. Box 66177-15175, Sanandaj, Iran

(Received 10 December 2017; published 15 August 2018)

We study anisotropic inflation in the Brans-Dicke gravity in the presence of a non-Abelian gauge field
where the gauge field is nonminimally coupled to the inflaton. We consider the displaced quadratic
potential for the inflation. We find out that the solution of equations of motion is an attractor in the phase
space. Moreover, anisotropy grows with the number of e-folds. It may become either positive or negative in
contradiction to the Abelian gauge field coupling. The anisotropy depends on the Brans-Dicke parameter
and constant parameter of the coupling function of the scalar field and the non-Abelian gauge field.
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I. INTRODUCTION

Cosmological inflation is the leading candidate for the
solution of several difficulties in the Big-Bang cosmology,
such as horizon and flatness problems [1,2]. It also provides
a background that primordial fluctuations are redshifted far
outside the Hubble radius, which account for the formation
of large scale structure of the universe [3–5]. These
primordial fluctuations produce a nearly scale-invariant
and almost statistically isotropic power spectrum with an
almost Gaussian distribution. Deviation from scale invari-
ance, statistical isotropy, and Gaussianity are quite small.
They are results of violation of the temporal part, spatial
part, and translational symmetry of the de Sitter symmetry,
respectively. They have been confirmed by cosmological
observations of WMAP and Planck [6–10].
Brocken statistical isotropy of CMB perturbation has

been found in the studies of the WMAP data [11] for the
first time, and later studies have confirmed it [12,13]. These
studies show that the statistics of CMB do not possess full
rotational invariance. Ackerman et al. were the first to
attempt to put constraints on a preferred direction during
inflation [14]. They parametrized the power spectrum as an
expansion series in the limit of small anisotropy which
truncated at the quadruple term. So anisotropic amplitude
of power spectrum g� is read in the parametrization

PðkÞ ¼ PðkÞð1þ g�cos2θk;nÞ; ð1Þ

here PðkÞ is the power spectrum for the primordial density
perturbations δðkÞ and depends only on the magnitude of
the vector k. Also, n is the privileged direction by which
rotational invariance is broken. Moreover, g� characterizes

the deviation from the isotropy. The obtained bound using
5-year WMAP data at the nine sigma level for the a
preferred direction very close to elliptic pole is g� ¼ 0.29�
0.031 [15]. Since the WMAP scanning strategy is tied to
the elliptic plane, this strongly suggests that the nonzero
value of g� is due to some systematic effect. Another
constrain using 9-year WMAP data is −0.046 < g� <
0.048 at 68% Confidence Level (CL) [16]. A latter analysis
based on Planck data gave the constraint g� ¼ 0.002�
0.016 at 68% CL [17]. The Planck team got very similar
constraints [10]. On different scales (and marginalizing
over the privileged direction, n) Large-Scale-Structure
data analysis constrain −0.41 < g� < 0.38 at 95% CL
[18,19], and from Baryon Oscillation Spectroscopic
Survey Data Release 12 (BOSS DR12) galaxies using
bipolar spherical harmonics constrain −0.09 < g� < 0.08
with a 95% CL [20].
Although, vector fields during inflation are claimed as a

source of such anisotropy, but an inflating solid or elastic
medium [21] is another candidate. It is also interesting that
the apparent breaking of statistical isotropy can actually be
an artifact of non-Gaussianity [22,23]. A pioneer work on
vector field driven inflation was proposed by L. H. Ford
[24]. He considered a Bianchi type-I (BI) metric and
showed that the universe expands anisotropically at the
end of the inflationary era and this anisotropy either
survives until late times or is damped out depending on
the potential. The study of perturbations in a similar model
was proposed by Dimopoulos [25]. A non-minimal cou-
pling of the vector field to gravity was considered in
[26,27]. None of the models have mentioned so far escapes
instabilities related to negative energy of longitudinal
modes. In the self-coupled model a ghost appears at small
wavelengths and in the non-minimally coupled the insta-
bility concerns the region around horizon crossing [28–30].
Models with varying gauge coupling can overcome the
problem of instabilities. In these models a massless vector
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field is non-minimally coupled to the inflaton field and the
longitudinal mode disappears and instabilities are avoided
[31–34]. Such a model is considered in Ref. [35]. The
authors showed that for a suitable choice of the coupling
function of the massless vector field and inflaton field,
anisotropic hair is survived. Their model which is moti-
vated by supergravity, is stable and can be regarded as a
counter example of cosmic no-hair conjecture [36]. This
model has been studied extensively in the literature and it
has been extended to various models [37–51].
The prototype of an alternative to Einstein’s general

relativity was done by Brans and Dicke [52]. The primary
motivation for their theory comes from Mach’s principle,
that the phenomenon of inertia ought to arise from accel-
erations with respect to the general mass distribution of the
universe [53]. Brans-Dicke (BD) theory is an important
branch of the extended theories of gravity in the scalar-
tensor theories. In BD theory, however, the gravitational
coupling is variable. It is determined by all matter in the
universe, accordingly, a scalar field is considered to couple
to the Ricci curvature nonminimally. In spite of declining of
interest in BD gravity in the 1970s, a surge interest has
raised owing to the new importance of scalar fields in
unified theories, in particular string theory. Another reason
for this interest is discovering plausible mechanisms that
allow the parameter ω (a variable in the BD gravity) to get
values of order unity in the early universe and diverge later
[54]. Finally, the using of scalar tensor gravity theories in
inflationary scenarios of the universe, has renewed interest
in BD gravity [55–57].
We extend the model considered in [35] to the BD

gravity in our previous work [58] where the inflaton field
coupled to the Abelian gauge field. In this paper, we extend
our work to the non-Abelian gauge field. We consider the
non-Abelian gauge field belong to the SU(2) subgroup, for
instance we consider the Yang-Mills gauge field. In particle
physics models, we deal with non-Abelian gauge fields.
They offer a richer amount of predictions compared to the
Abelian case. Also, they have multi-gauge-components and
nonlinear self-couplings.
This paper is organized as follows. In Sec. II, the action

of anisotropic inflation in the BD Gravity is considered.
Then, the equations of motion are obtained. In Sec. III,
numerical calculation is performed for a specific potential.
It shows that, there is an attractor solution, phase transition
occurs and anisotropy grows in this model. In Sec. IV,
analytical calculation is performed and anisotropy is
obtained in the terms of the slow roll parameters.
Conclusion remarks are given in Sec. V.

II. ANISOTROPIC BRANS-DICKE INFLATION
WITH YANG-MILLS GAUGE FIELD

In order to generate anisotropic effect during inflation,
we add a non-Abelian gauge kinetic term to the action of

Brans-Dicke model. This term is coupled to the inflaton
field ϕ through the gauge coupling function f2ðϕÞ. So the
action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ϕR −

1

2

ωBD

ϕ
gμν∂μϕ∂νϕ − UðϕÞ

−
1

4
f2ðϕÞtrðFμνFμνÞ

�
; ð2Þ

where ωBD is the BD parameter which is a constant, and
hereafter we drop out its subscript and write it as ω.UðϕÞ is
the potential of the inflaton field. The coupling function
fðϕÞ will be specified later. The non-Abelian gauge field
belongs to the Yang-Mills gauge field. Using Pauli matrices
σa, the generators of SU(2) is defined by Ta ¼ σa=2
(a ¼ 1, 2, 3) satisfying the following algebra,

½Ta; Tb� ¼ iϵabcTc; trðTaTbÞ ¼ 1

2
δab; ð3Þ

where ϵabc is a Levi-Civita symbol and δab is a Kro-
necker delta. The Yang-Mills gauge field is defined
as A ¼ Aa

μTadxμ with three gauge components Aa=2
(a ¼ 1, 2, 3) corresponding to three generators Ta. The
field strength Fμν of the SU(2)-gauge field is defined as
Fμν ¼ ∂μAν − ∂νAμ þ igY ½Aμ; Aν� where gY is the Yang-
Mills coupling constant. The action (2) is invariant under
the local SU(2) gauge transformation. We have also set the
Planck scale M2

p ¼ 1 for convenience. We focus on the BI
metric, given by

ds2 ¼ −dt2 þ e2αðtÞ−4σðtÞdx2 þ e2αðtÞþ2σðtÞðdy2 þ dz2Þ;
ð4Þ

where αðtÞ measures the number of e-folds of average
isotropic expansion of the universe and σðtÞ is spatial shear
which represents deviation from the isotropy. For the
average isotropic expansion rate H, we would have

H ¼ Ha þ 2Hb

3
¼ _α; Ha ¼

_aðtÞ
aðtÞ ; Hb ¼

_bðtÞ
bðtÞ ;

ð5Þ

where a ¼ eα−2σ and b ¼ eαþσ . We will work in temporal
gauge Aa

0 ¼ 0. Imposing the rotational symmetry in the y–z
plane on the gauge field A, it is reduced into the following
form

AðxμÞ ¼ v1ðtÞT1dxþ v2ðtÞðT2dyþ T3dzÞ; ð6Þ

where the gauge field is parametrized by the functions v1ðtÞ
and v2ðtÞ. The equations of motion can be written down as
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1

2
ϕRgμν − ½Rμν þ gμν▽λ▽

λ −▽μ▽ν�ϕ − gμνUðϕÞ

þ ω

ϕ

�
▽μϕ▽νϕ −

1

2
gμν▽λϕ▽

λϕ

�
þ 1

2
f2ðϕÞ ∂ðFλρFλρÞ

∂gμν −
1

4
gμνf2FλρFλρ ¼ 0 ð7Þ

▽λ▽
λϕþ ϕ

2ω

�
−ω
ϕ2

▽λϕ▽
λϕ − 2U0ðϕÞ þ Rþ fðϕÞf0ðϕÞFλρFλρ

�
¼ 0 ð8Þ

Dμðf2ðϕÞFμνÞ ¼ 0 ð9Þ

where▽μ represents a covariant derivative with respect to the metric gμν and a prime denotes a derivative with respect to ϕ
and we have defined the gauge covariant derivative as Dμ ¼ ▽μ þ igY ½Aμ;…�. From Eqs. (7), (8) and using the metric (4)
and the gauge potential (6), we obtain constraint, evolution, and inflaton field equations in the BI space as

ð3 _α2 − 3 _σ2Þϕ ¼ −3 _α _ϕþ 1

2
ω _ϕ2 þ U þ 1

2
f2½ _v21e−2αþ4σ þ 2 _v22e

−2α−2σ þ 2g2Y _v
2
1 _v

2
2e

−4αþ2σ þ g2Y _v
4
2e

−4α−4σ�; ð10Þ

ðα̈þ 3 _α2Þϕ ¼ −
5

2
_α _ϕ−ϕ̈þU þ 1

6
f2½ _v21e−2αþ4σ þ 2 _v22e

−2α−2σ þ 2g2Y _v
2
1 _v

2
2e

−4αþ2σ þ g2Y _v
4
2e

−4α−4σ�; ð11Þ

ðσ̈ þ 3 _α _σÞϕ ¼ − _σ _ϕþ 1

3
f2½ _v21e−2αþ4σ − _v22e

−2α−2σ − 2g2Y _v
2
1 _v

2
2e

−4αþ2σ þ g2Y _v
4
2e

−4α−4σ�; ð12Þ

ϕ̈þ 3 _α _ϕ ¼ −
ϕ

2ω

�
−

ω

ϕ2
_ϕ2 − Rþ 2U0

�
þ ϕ

2ω
ff0½ _v21e−2αþ4σ þ 2 _v22e

−2α−2σ − 2g2Y _v
2
1 _v

2
2e

−4αþ2σ − g2Y _v
4
2e

−4α−4σ�: ð13Þ

Using (6), the equations of motion of the gauge field are obtained as

v̈1 þ 2
f0

f
_v1 _ϕþ ð _αþ 4 _σÞ _v1 þ 2g2Yv1v

2
2e

−2α−2σ ¼ 0; ð14Þ

v̈2 þ 2
f0

f
_v2 _ϕþ ð _α − 2 _σÞ _v2 þ 2g2Yv

2
1v2e

−2αþ2σ þ g2Yv
3
2e

−2α−2σ ¼ 0: ð15Þ

Equation (13) could be written in the following form

ϕ̈þ3 _α _ϕ¼ 2

2ωþ3
ð2U−ϕU0Þþ 2

2ωþ3
ðff0ϕ−2f2Þ½ _v21e−2αþ4σþ2 _v22e

−2α−2σ−2g2Y _v
2
1 _v

2
2e

−4αþ2σ−g2Y _v
4
2e

−4α−4σ�: ð16Þ

When the non-Abelian gauge field goes to zero, and σ → 0
(i.e., the metric is spatially flat Friedmann-Robertson-
Walker (FRW) universe), the model is reduced to that of
the [56,57,59]. Moreover, in the limit v2 ¼ 0 and _v2 ¼ 0, it
is reduced to the Abelian case [58]. Considering the slow
roll conditions j _ϕj ≪ jHϕj and jϕ̈j ≪ j3H _ϕj, and addi-
tionally σ ≪ α, _σ ≪ _α hold, then (11) and (16) reduce to

3ϕ _α2 ≃ UðϕÞ; ð17Þ

3 _ϕ _α≃
2

2ωþ 3
½2UðϕÞ − ϕU0ðϕÞ�: ð18Þ

It should be noted that the second lines of Eqs. (11) and
(16), which is proportional to the energy density of the

gauge field, do not appear in Eqs. (17) and (18), because in
this scenario, the anisotropy is restricted to the condition
that the gauge field is negligible. Beside in [58] we show
that the necessary condition for inflation is satisfied if U
and U0 overcome shear Σ ¼ _σ, energy density of the gauge
field and _ϕ2. Using Eqs. (17) and (18), and following the
same process as [58], the coupling function is obtained as

fðϕÞ ¼ e
−cð2ωþ3Þ

R
U

ϕð2U−ϕU0Þdϕ; ð19Þ

where c > 1 is a constant parameter. In this paper,
we consider displaced quadratic inflationary potential as
follows
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UðϕÞ ¼ 1

2
m2ðϕ − ϕ0Þ2; ð20Þ

where m ¼ 10−5 and ϕ0 is a shift in the potential. This
potential is a generalized version of the Starobinsky R2

inflation in the Einstein frame. Consistency of this potential
with the Planck 2015 data in BD gravity has been
investigated by [57] using the Jordan frame, and with
Planck 2013 data by [60] in the Einstein frame. Using (20),
Eq. (19) becomes

fðϕÞ ¼ ϕ−cð2ωþ3Þ
2 ec

ð2ωþ3Þ
2

ϕ
ϕ0 : ð21Þ

This coupling function is used to solve the equations of
motion numerically in the next section. If we ignore the
effect of the non-Abelian gauge field, the slow-roll param-
eters which have been introduced for this model [56,61] are
as follows

ε1 ≡ −
_H
H2

¼ ðU − ϕU0Þð2U − ϕU0Þ
ð2ωþ 3ÞU2

; ð22Þ

ε2 ≡ ϕ̈

H _ϕ
¼ ε1 þ

2ϕðU0 − ϕU00Þ
ð2ωþ 3ÞU ; ð23Þ

ε3 ≡
_ϕ

2Hϕ
¼ 2U − ϕU0

ð2ωþ 3ÞU ¼ Uε1
ðU − ϕU0Þ ; ð24Þ

ε4 ≡
_E

2HE
¼ 0; ð25Þ

where the parameter E is defined as

E≡ ϕ

�
ω

ϕ
þ 3 _ϕ

2ϕ

�
: ð26Þ

III. NUMERICAL ANALYSIS

Solving Eqs. (11)–(16) numerically for the potential (20)
and the coupling function (21), and considering ϕ0 ¼ 1, the
phase-plane in _ϕ − ϕ is obtained (Fig. 1). Figure 1 shows
that the behavior of phase-plane is similar to that shown for
an anisotropic inflation in the case ofUð1Þ gauge field [58].
It shows that anisotropic inflation in the BD gravity with a
non-Abelian gauge field is an attractor solution in the
phase-plane.
Evolution of the anisotropy parameter Σ=H ¼ _σ= _α with

respect to the e-folding number N for c ¼ 3, ω ¼ 6 and
different value of _v2= _v1 is presented in Fig. 2. It shows that
we have two phases of inflation—isotropic and anisotropic
phases. The trajectory starts with an isotropic inflation
during horizon crossing of the CMB and soon becomes
anisotropic in the second slow roll stage. During the
anisotropic stage the energy density of the gauge field is

increasing and, after sufficient e-folding, it is decreased.
Moreover, the anisotropy can be either positive or negative
depending on the initial ratio _v2= _v1. For 0 < _v2= _v1 < 1 the
anisotropy is positive and for _v2= _v1 > 1 the anisotropy is
negative. But, this feature is in contrast to the Abelian case,
where the generated anisotropy is always positive [58].
Thus, anisotropy in our model depends on the initial
condition of the gauge field. If the sign of Σ=H is negative,
then the sign of g� is positive. This point was implied in
[62,63], where the authors showed that g� ∝ −Σ and g�
may be positive or negative depending on the model. Thus,
the sign of g� is consistent with the observed one [16–20]
for SUð2Þ gauge field. It should be noted that the massive
vector field produces the negative anisotropy too [64].
Moreover, anisotropy is suppressed for _v2= _v1 ¼ 1. All of
these features are similar to the corresponding evolution of
anisotropy, induced by the SUð2Þ gauge field in the
Einstein gravity [65] and in the Gauss-Bonnet set up
[66]. The effect of changing the parameter c is shown in
Fig. 3. This figure shows that by increasing c, anisotropy is

0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

2
× 10

−6

φ

d φ
/d

t

FIG. 1. Phase flow for ϕ is depicted, parameters are assumed
c ¼ 3, ω ¼ 3, initial conditions have been taken as αi ¼ σi ¼
_σi ¼ _ϕi ¼ 0, ϕi ¼ 7, v1 ¼ v2 ¼ 0, _v1 ¼ 10−75 and _v2= _v1 ¼ 0.5.
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FIG. 2. Σ=H as function of N for c ¼ 3, ω ¼ 6, with different
values of _v2= _v1. Other initial values are the same as Fig. 1 except
for the ratio _v2= _v1.
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shifted to the bigger e-folding and the value of anisotropy
Σ=H, is decreased. These behaviors are in contradiction to
the non-Brans-Dicke gravity, in which the anisotropy was
independent of the parameter c. Moreover, the effect of
changing the parameter ω is shown in Fig. 4. It shows that
the anisotropy is very sensitive to the value of ω. By
increasing ω, anisotropy is shifted to the bigger e-folding
number. Thus, the range of N for which Σ=H is constant,
will be increased. On the other hand, the value of the
anisotropy is decreased.

IV. ANALYTICAL ANALYSIS

In Sec. III, we solved equations of motion numerically.
In this section, we try to solve them using slow roll
approximation. During the slow roll inflationary phase
the initial value of the inflaton field is chosen to be ϕi ∼ 7,
the Brans-Dicke parameter is assumed as ω ∼ 3 and
constant parameter of the coupling function is taken as
c ∼ 3. Using (21), the gauge coupling function becomes
fðϕÞ ∼ 1020. Thus, the effective gauge coupling gY=fðϕÞ in
the action (2) becomes very small gY=fðϕÞ ∼ 10−20 during
slow roll inflation. Therefore, we can ignore the Yang-Mills

gauge coupling during inflation. Then, the equation of
motion of the gauge field (14) can be integrated to obtain

_v1 ¼ f−2ðϕÞe−α−4σpA1;

_v2 ¼ f−2ðϕÞe−αþ2σpA2; ð27Þ

where pA1 and pA2 are constants of integration. Ignoring σ,
Eq. (12) can be written as

ðσ̈ þ 3 _α _σÞϕ ¼ − _σ _ϕþ 1

3
f−2e−4αðp2

A1 − p2
A2Þ: ð28Þ

From this equation, it is clear that anisotropy will grow only
when the last term will be a dominant term. Hence,
anisotropy starts to grow at least for fðϕÞ ¼ e−2α, or more
generally for fðϕÞ ¼ e−2cα, where c > 1. Using (19), this
means that the necessary condition in order to commence
the anisotropic inflation is

f0

f
ϕðϕU0 − 2UÞ
ð2ωþ 3ÞU > 1: ð29Þ

Moreover, we can use Eqs. (17) and (18) in the slow-roll
approximation to obtain number of e-folds as follows

N ¼ 2ωþ 3

2

Z
ϕe

ϕi

U
ϕð2U − ϕU0Þ dϕ; ð30Þ

where ϕe is the value of the scalar field at the end of
inflation, ϕi is the value of the scalar field at the horizon
crossing. Equation (30) for the potential (20) reads

N ¼ 2ωþ 3

4

�ðϕi − ϕeÞ
ϕ0

− ln
ϕi

ϕe

�
: ð31Þ

Wewill now use slow roll approximations to estimate Σ=H.
With the approximation σ ≪ α the Σ satisfies the equation
of motion

ð _Σþ 3HΣÞϕ ¼ −Σ _ϕþ 1

3
gðαÞ−1ðp2

A1 − p2
A2Þ: ð32Þ

where gðαÞ is

gðαÞ ¼ f2e4α; ð33Þ

In (33) σ is neglected. By substituting (17) and (18) in (32)
and by assuming _Σ is negligible in (32) (Because Σ=H is
proportional to g�, and g� does not change on different
scales [10,20].), we have

Σ
H

≃
�

3ð2ωþ 3Þðp2
A1 − p2

A2Þ
ð2ωþ 3Þ3U þ 2ð2U − ϕU0Þ

�
gðαÞ−1: ð34Þ

In order to obtain gðαÞ, we use (16) in the slow roll
approximation, which after substituting (27), reads

0 20 40 60 80 100 120 140 160 180
N

Σ/
H

 

 
c=2, ω=4, φ

i
=7

c=3
c=4
c=5

−0.005

0

0.005

0.01

0.015

0.02

0.025

FIG. 3. Σ=H as function of N for ω ¼ 4 and _v2= _v1 ¼ 0.5, with
different values of c. Other initial values are the same as Fig. 1.
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FIG. 4. Σ=H as function of N for c ¼ 3 and _v2= _v1 ¼ 0.5, with
different values of ω. Other initial values are the same as Fig. 1.
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dϕ=dα ¼ 2

2ωþ 3

ϕð2U − ϕU0Þ
U

þ
2ϕðf0f ϕ − 2Þ
Uð2ωþ 3Þ ðp2

A1 þ 2p2
A2ÞgðαÞ−1: ð35Þ

We find that this equation reduces to

dgðαÞ
dα

þ 4ðc − 1ÞgðαÞ ¼ ΩðϕÞ: ð36Þ

Finally,

gðαÞ ¼ gðα0Þe−4ðc−1Þðα−α0Þ þ
ΩðϕÞ

4ðc − 1Þ ; ð37Þ

where

ΩðϕÞ ¼ 4cðp2
A1 þ 2p2

A2Þ
�ð2ð2U −ϕU0Þ þ cð2ωþ 3ÞÞU

ð2U −ϕU0Þ2
�
:

ð38Þ

In the limit of α → −∞, the first term of Eq. (37) is
dominated and gðαÞ diverges to infinity. Consequently,
anisotropy goes to zero, i.e., Σ=H → 0 and Eq. (35) will
become

dϕ=dα ¼ 2

2ωþ 3

ϕð2U − ϕU0Þ
U

: ð39Þ

In this stage the slow-roll parameters are same as Eqs. (22)–
(25), that we call isotropic inflation. On the other hand,
with α → ∞, the second term of (37) is dominated, and
gðαÞ → Ω=4ðc − 1Þ. Therefore anisotropy parameter reads

Σ
H

→

�
3ð2ωþ 3Þðp2

A1 − p2
A2Þ

ð2ωþ 3Þ3U þ 2ð2U − ϕU0Þ
�
4ðc − 1Þ

Ω

¼ 3ðc − 1Þðp2
A1 − p2

A2Þð2ωþ 3Þð2U − ϕU0Þ2
cðp2

A1 þ 2p2
A2Þðð2ωþ 3Þ3U þ 2ð2U − ϕU0ÞÞðð2ð2U − ϕU0Þ þ cð2ωþ 3ÞÞUÞ ; ð40Þ

and Eq. (35) reads

dϕ=dα ¼ 1

c
2

ð2ωþ 3Þ
ϕð2U − ϕU0Þ

U
: ð41Þ

Therefore, the slow-roll parameters are obtained as follows:

ε1 ¼
1

c
ðU − ϕU0Þð2U − ϕU0Þ

ð2ωþ 3ÞU2
; ð42Þ

ε2 ¼ ε1 þ
2ϕðU0 − ϕU00Þ
ð2ωþ 3ÞU ; ð43Þ

ε3 ¼
1

c
2U − ϕU0

ð2ωþ 3ÞU : ð44Þ

We can write Σ=H in the terms of the slow roll-roll
parameter (44) as follows:

Σ
H

¼ 3ðc − 1Þðp2
A1 − p2

A2Þð2ωþ 3Þ
2ðp2

A1 þ 2p2
A2Þ

�
ε23

ð3þ cε3Þð1þ ε3Þ
�
:

ð45Þ

It should be noticed that the result of [58] can be recovered
if we put pA2 ¼ 0 in (45). The anisotropy can be either
positive or negative depending on the ratio _v2= _v1∼
pA2=pA1. The anisotropy becomes negative if pA2 > pA1
as observed in Fig. 2, but it exactly vanishes, when
pA2 ¼ pA1. However, as a matter of fact, we know from

the previous section that by increasing the parameters ω
and c, the value of the anisotropy is decreased and the range
ofN for constant anisotropy is increased. By substituting ε3
in (45), we find out Σ=H ∝ 1=ðcð2ωþ 3ÞÞ. Thus, the value
of anisotropy, Σ=H, is decreased by increasing in ω and c.
Increasing the range of N for constant anisotropy by
increasing ω and c is understood from Eq. (31). Equa-
tion (31) determines that increasing ω leads to the enhance-
ment of the number of e-folds. Therefore, the range ofN for
constant Σ=H lasts for more e-folds. The anisotropy Σ=H,
is proportional to g� [67]. For g� < 10−2, anisotropy must
be of order < 10−9 [67]. Anisotropic inflation in the
Einstein gravity leads the order of ∼10−3 for anisotropy
[35]. Anisotropic inflation in the Brans-Dicke gravity
provides a variable value for Σ=H, which can be controlled
by parameters ω and c. For 2 < ω < 3 and c ¼ 3,
anisotropy is 10−20 < Σ=H < 10−4, where Σ=H is closed
to its observational value.

V. DISCUSSION AND CONCLUSIONS

In the present work, we studied anisotropic inflation in
the Brans-Dicke gravity with the SUð2Þ Yang-Mills gauge
field coupled to the inflaton field. We saw that there is a
phase transition in this model. There are two phases of
inflation—the isotropic and anisotropic phases. The tra-
jectory starts with an isotropic inflation during the horizon
crossing of the CMB and soon becomes anisotropic in the
second slow roll stage. The slow roll parameters in the first
stage are different from the slow roll parameters in the
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second stage. Numerical calculations show that the
anisotropy may become either positive or negative depend-
ing on the initial value of _v2= _v1. This feature is consistent
with the observational value of g�. Increasing c leads N to
be increased, and the range of N for consistent Σ=H lasts
for more e-folds. This behavior is in contradiction to the
non-Brans-Dicke gravity, in which the anisotropy was
independent of the parameter c. Moreover, by increasing
ω, anisotropy is shifted to bigger e-folds. The reason can be

understood from the analytical calculations. The relation-
ship which obtained for N shows that the number of e-fold
is directly proportional to ω. N is increased by increasing
ω. Moreover, the value of anisotropy is decreased by
increasing ω and c. Therefore, anisotropic inflation in
the Brans-Dicke gravity provides a variable value for Σ=H,
which can be controlled by the parameters ω and c. We can
choose the parameters in a way that Σ=H is closer to its
observational value.
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