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The generalized Chaplygin gas is usually defined as a barotropic perfect fluid with an equation of state
p ¼ −Aρ−α, where ρ and p are the proper energy density and pressure, respectively, and A and α are
positive real parameters. It has been extensively studied in the literature as a quartessence prototype
unifying dark matter and dark energy. Here, we consider an extended family of generalized Chaplygin gas
models parametrized by three positive real parameters A, α, and β, which, for two specific choices of β
[β ¼ 1 and β ¼ ð1þ αÞ=ð2αÞ], is described by two different Lagrangians previously identified in the
literature with the generalized Chaplygin gas. We show that, for β > 1=2, the linear stability conditions and
the maximum value of the sound speed cs are regulated solely by β, with 0 ≤ cs ≤ 1 if β ≥ 1. We further
demonstrate that in the non-relativistic regime the standard equation of state p ¼ −Aρ−α of the generalized
Chaplygin gas is always recovered, while in the relativistic regime this is true only if β ¼ ð1þ αÞ=ð2αÞ. We
present a regularization of the (α → 0, A → ∞) limit of the generalized Chaplygin gas, showing that it leads
to a logarithmic Chaplygin gas model with an equation of state of the form p ¼ A ln ðρ=ρ�Þ, where A is a
real parameter and ρ� > 0 is an arbitrary energy density. We finally derive its Lagrangian formulation.
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I. INTRODUCTION

Back in 1998 observations of distant supernovae of type
Ia (SNIa) [1,2] led to the discovery that the Universe is
currently expanding at an accelerated rate. Dark energy
(DE) models can realize the observed late-time acceleration
of the Universe provided that the ratio between the proper
pressure p and energy density ρ is sufficiently close to −1
near the present time (p=ρ ¼ −1, in the simplest case of a
cosmological constant Λ). In addition, a pressureless cold
dark matter (CDM) component is required in order to
explain the dynamics of large scale structures, such as
galaxies and clusters of galaxies. In the standard cosmo-
logical model (ΛCDM model) about 95% of the present
energy density of the universe is composed by these two
distinct dark components (CDMþ DE), with most of the
remaining 5% being in the form of baryons. So far the
ΛCDM model successfully explains a broad range of
observational data, such as SNIa observations [3], baryonic
acoustic oscillations (BAO) [4] or cosmic microwave
background (CMB) anisotropies [5]. However, there are
outstanding fundamental questions regarding the nature of
DM and DE [6] which motivate the search for extensions
beyond the standard cosmological model, including

dynamical DE, interacting DE or modified gravity (see
[7,8] for a review).
Unified dark energy (UDE) models are also interesting in

this regard, having the advantage of mimicking the DM and
DE properties with a single underlying fluid. The first UDE
prototypewas the Chaplygin gas (CG) [9], usually defined as
a perfect fluid with an equation of state given by p ¼ −A=ρ
with A > 0. The equation of state (EoS) parameter of the CG
(w≡ p=ρ) interpolates from w ¼ 0 at early times and
w ¼ −1 at late times when the CG energy density reaches
a minimum value. This model attracted considerable interest
also due to its connection to string theory d-branes [10].
The CG model has been subsequently generalized to

include an extra parameter α in the definition of its equation
of state p ¼ −A=ρα [11]. For 0 ≤ α ≤ 1 the sound speed
squared c2s ≡ dp=dρ ¼ −αw is greater than or equal zero
(ensuring classical stability) and less than unity (ensuring
that the sound speed is always subluminal). On the other
hand, the case with α ¼ 0 and finite A is completely
equivalent to the ΛCDM model [12]. Furthermore, the
generalized Chaplygin gas (GCG) has been shown to be
described by real scalar field Lagrangians [13–16] belong-
ing to a subclass of k-essence models [17–19]. Several
other k-essence models that can work as UDE have also
been found in the literature (see, e.g., [20,21]).
The GCG has been claimed to be essentially ruled out

[22], except for a very small region of parameter space very
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close to the α ¼ 0, due to the large absolute values of the
linear sound speed attained at late times. However, it has
been later realized that the impact of nonlinearities can
dramatically change the evolution of the GCG (and UDE
models in general) significantly enlarging the parameter
space volume consistent with observations [23–25].
Here we investigate an extended family of GCG models,

including two particular subclasses previously identified in
the literature with the GCG. The outline of the paper is as
follows. In Sec. II we introduce an extended family of GCG
Lagrangians having a single extra parameter β with respect
to the standard GCG. We discuss its main features, in the
relativistic and nonrelativistic regimes, including the equa-
tion of state and sound speed of the underlying barotropic
perfect fluid and their dependence on β. In this section we
also determine sufficient conditions for linear stability and
subluminal sound speeds. In Sec. III we investigate the
properties of a logarithmic Chaplygin gas model obtained
through the regularization of the α → 0, A → ∞ limit of the
GCG, and derive its Lagrangian formulation in the non-
relativistic regime. We finally conclude in Sec. IV.
Throughout this paper we use units such that c ¼ 1,

where c is the value of the speed of light in vacuum, and we
adopt the metric signature ð−;þ;þ;þÞ. The Einstein
summation convention will be used when a index variable
appears twice in a single term, once in an upper (super-
script) and once in a lower (subscript) position. Greek or
latin indices are used for spacetime or spatial components,
respectively.

II. EXTENDED FAMILY OF GCG MODELS

Consider a k-essence model with Lagrangian

L≡ LðXÞ ð1Þ
where X ¼ 1

2
∇μϕ∇μϕ, ∇μ represents a covariant derivative

with respect to the coordinate xμ, ∇μ ¼ gμν∇ν, gμν are the
components of the metric tensor, gμγgγν ¼ δμν, δμν is the
Kronecker delta, and ϕ is a real scalar field. Provided that
∇μϕ is timelike, the corresponding energy-momentum
tensor defined by

Tμν ¼ 2
δL
δgμν

þ gμνL; ð2Þ

takes the form of a perfect fluid

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð3Þ
with

uμ ¼
∇μϕffiffiffiffiffiffi
2X

p ; p ¼ LðXÞ; ρ ¼ 2Xp;X − p; ð4Þ

being, respectively, the components of the four-velocity, the
proper pressure, and the proper energy density of the fluid
(also p;X ≡ ∂p=∂X).

The k-essence Lagrangian

L ¼ −ρΛ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ð2XÞβÞ 2α

1þα

q
; ð5Þ

with 0 ≤ 2X ≤ 1, is a simple extension of the Lagrangians
proposed in the literature to describe the GCG (with β ¼ 1
[13,16] and β ¼ ð1þ αÞ=ð2αÞ [11,14,26]). Here, α and β
are positive real model parameters, and ρΛ is a positive
constant energy density. Using Eq. (4), the energy density

ρ ¼ ρΛ

�
1þ ð2XÞβ

�
β

2α

1þ α
− 1

��
ð1 − ð2XÞβÞ− 1

1þα; ð6Þ

can be computed for the proposed family of models
described by Eq. (5). It is always non-negative for positive
ρΛ, α and β. The corresponding equation of state parameter
reads

w≡ p
ρ
¼ −

1 − ð2XÞβ
1þ ð2XÞβðβ 2α

1þα − 1Þ ; ð7Þ

and is bounded between −1 and 0 (−1 ≤ w ≤ 0). The
sound speed squared is given by

c2s ≡ p;X

ρ;X
¼ α

1 − ð2XÞβ
1þ ð1þ α − αð2XÞβÞðβ 2α

1þα − 1Þ ; ð8Þ

with c2s > 0 at all times if β > 1=2. Given that, for β > 1=2,
c2sðXÞ is a monotonically decreasing function of X, the
maximum sound speed

c2s;max ¼
1

2β − 1
; ð9Þ

is attained for X ¼ 0. On the other hand, the requirement
that c2s ≤ 1 at all times is satisfied if β ≥ 1. Hence, the
conditions of classical stability and subluminal sound speed
are satisfied by this class of models if β ≥ 1. Quantum
stability is also ensured since the Hamiltonian of the model
described by Eq. (5) is bounded from below (see for a
discussion of the stability of k-essence models [27]).
Rewriting Eq. (6) as

ρ ¼ ρΛ

�
1þ

�
1 −

�
−

p
ρΛ

�1þα
α

��
β

2α

1þ α
− 1

���
−

p
ρΛ

�
−1
α

;

ð10Þ
it is clear that only the particular choice β ¼ ð1þ αÞ=2α
leads to the standard GCG equation of state, i.e.,

p ¼ −
A
ρα

; ð11Þ

with A ¼ ρ1þα
Λ , w ¼ −Aρ1þα, and c2s ¼ −αw, independ-

ently of the value of ρ.
In Fig. 1 we plot EOS parameter w (upper panel) and the

sound speed squared c2s (lower panel) as a function of the
proper density ρ for different values of β [(β ¼ ð1þ αÞ=2α,
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solid line), (β ¼ 0.1, dashed line), (β ¼ 0.5, dotted-dashed
line), and (β ¼ 2, dotted line)], while keeping α fixed to
unity. The upper panel of Fig. 1 shows that the value of w
interpolates from w ¼ 0 (ρ ≫ ρΛ) to w ¼ −1 (ρ ¼ ρΛ) for
any value of β (this is also true for any other value of
α > 0). Nevertheless, it also shows that the shape of the
function p ¼ pðρÞ is dependent on the value of β. The
lower panel of Fig. 1 shows that for β ¼ 0.5, 1, and 2
the sound speed cs is always a decreasing positive function
of ρ, with cs → 0 for ρ=ρΛ → ∞ and cs → ð2β − 1Þ−1=2,
for ρ=ρΛ → 1 (note that this is true for any β ≥ 0.5, and that
if β ¼ 0.5 then cs → ∞ for ρ=ρΛ → 1). On the other hand,
it shows that for β ¼ 0.1 the sound speed cs is no longer a
monotonic function of ρ (in this case the sound speed
diverges and changes sign at a specific value of ρ > ρΛ).
In the following we will show that the GCG equation

of state is always recovered in the nonrelativistic regime,
independently of the value of β.

A. Nonrelativistic regime

Consider the (high-density) non-relativistic regime of
Eq. (5) with 2X ∼ 1 and LNR ¼ p ≈ 0. The Taylor expan-
sion of Eq. (5) at first order in ϵ ¼ 1−2X ≈ 0 gives

LNR ¼ −ρΛβ
α

1þα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2XÞ 2α

1þα

q
; ð12Þ

which coincides with the Lagrangian considered in [13,16]
to describe the generalized Chaplygin gas.
Using Eq. (4), a relation between p and ρ may be

computed explicitly:

ρ

ρΛ
¼

�
−

p
ρΛ

��
2α

1þ α
− 1

�
þ β

2α

1þ α

�
−

p
ρΛ

�
−1
α

: ð13Þ

The first term on the right-hand side of Eq. (13) is
negligible in the nonrelativistic regime (p ≈ 0), thus lead-
ing to the standard GCG EoS, given by Eq. (11), with

A ¼ ρ1þα
Λ

�
2α

1þ α
β

�
α

: ð14Þ

Hence, the GCG equation of state is recovered in the
nonrelativistic regime for any β > 0.
The usual non-relativistic Lagrangian of the GCG can be

obtained by considering the irrotational nonrelativistic
dynamics of a barotropic perfect fluid [13,16]. Alter-
natively, it may be obtained from Eq. (12) with the
identification ϕ ¼ −tþ θ, where vi ¼ θ;i is the three-
velocity of the fluid [16]. Keeping only linear terms on _θ

L ¼ −A 1
1þαð2βÞ α

1þα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
_θ þ 1

2
θ;iθ

;i

� 2α
1þα

s
; ð15Þ

where a dot stands denotes a time derivative.

III. LOGARITHMIC CHAPLYGIN GAS

In this section we shall consider a barotropic perfect fluid
with sound speed squared given by

c2s ≡ dp
dρ

¼ α
A

ρ1þα ; ð16Þ

which is characteristic of the standard GCG [β ¼ ð1þ αÞ=
ð2αÞ] independently of the value of ρ, and of the non-
relativistic regime (large ρ) of the extended family of GCG
models described by the Lagrangian given in Eq. (5). The
corresponding EOS parameter for α ≠ 0,

w≡ p
ρ
¼ −

A
ρ1þα þ

C
ρ
¼ −

c2s
α
þ C

�
c2s
αA

� 1
1þα

; ð17Þ

may be obtained by integrating Eq. (16), where C is a real
constant which is usually assumed to be equal to zero.
Let us rewrite Eq. (11) as

p ¼ −
A
ρα�

�
ρ�
ρ

�
α

þ C; ð18Þ

with A=ρα� ¼ ρΛ. Expanding around α ¼ 0 one obtains

FIG. 1. The equation of state parameter w and the sound speed
squared c2s as a function of ρ for the GCGmodel (β ¼ ð1þ αÞ=2α,
solid line),(β ¼ 0.1, dashed line), (β ¼ 0.5, dotted-dashed line),
and (β ¼ 2, dotted line). Here, α has been fixed to unity.
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p ¼ A

�
−1þ α ln

�
ρ

ρ�

�
þOðα2Þ

�
þ C: ð19Þ

Consider the following limit

A ¼ lim
A→∞
α→0

αA; ð20Þ

with finite A and C ¼ A. In this limit, the EoS parameter is
given by

w≡ p
ρ
¼ A

ρ
ln

�
ρ

ρ�

�
; ð21Þ

and the sound speed squared is equal to

c2s ≡ dp
dρ

¼ A
ρ
: ð22Þ

The model defined by Eq. (21) shall be referred as
logarithmic Chaplygin gas (logCG), and is one of the
simplest extensions of the standard ΛCDM model contain-
ing a single extra parameter. By tuning the value of A and
the reference density ρ� this model allows for the study
small deviations from the ΛCDM model. On the other
hand, the ΛCDMmodel can be obtained by considering the
A → 0, ρ� → ∞ limit, with finite A ln ρ�.

A. Relativistic Lagrangian formulation

The relativistic form LðXÞ of the Lagrangian of the
logCG may be found taking into account that if p ¼ L ¼
A lnðρ=ρ�Þ then ρ ¼ 2Xp;X − p ¼ ρ�ep=A, which implies
that

dX
X

¼ 2
dp

pþ ρ�ep=A
ð23Þ

or, equivalently,

ln

�
X
X�

�
¼ 2

Z
p

p�

dp0

p0 þ ρ�ep
0=A ð24Þ

where X� is an arbitrary integration constant.
Unfortunately, the right-hand side of Eq. (24) does not
have a simple analytical solution, and has to be evaluated
numerically. Nevertheless, in the following we shall obtain
an analytical form of the Lagrangian valid in the non-
relativistic regime.

B. Lagrangian formulation: Nonrelativistic regime

Here we shall derive the nonrelativistic Lagrangian for
the logCG model obeying an EoS given by Eq. (21). In
classical fluid dynamics the Hamiltonian of an irrotational
perfect fluid is given by

Hðρ;θ; tÞ¼
Z

dx3H¼
Z

dx3
�
1

2
ρθ;iθ

;iþVðρÞ
�
; ð25Þ

where VðρÞ is some potential, and Hðρ; θ; xi; tÞ is equal to

Hðρ; θ; xi; tÞ ¼ _ρθ − Lðρ; ρ;i; _ρ; xi; tÞ; ð26Þ

The Lagrangian reads

L ¼ _ρθ −
1

2
ρθ;iθ

;i − VðρÞ; ð27Þ

with ρ and θ being canonically conjugate, i.e.,

θ ¼ ∂L
∂ _ρ ; ð28Þ

and

_θ ¼ ∂L
∂ρ ¼ −

1

2
θ;iθ

;i −
dV
dρ

: ð29Þ

Assuming isentropic motion then

p ¼ ρ
dV
dρ

− V; ð30Þ

where the enthalpy is equal to dV=dρ. Equations (21) and
(30) imply that

V ¼ −A
�
1þ ln

�
ρ

ρ�

��
þDρ ð31Þ

¼ −A
�
1þ ln

�
ρ

ρ�

��
; ð32Þ

where D is an arbitrary integration constant which is taken
to be zero. Using Eq. (29) one finds

ρ ¼ A
�
_θ þ 1

2
θ;iθ

;i

�
−1
: ð33Þ

One may now eliminate ρ from Eq. (27) to obtain

L ¼ A
�
ln

�
A
ρ�

�
− ln

�
_θ þ 1

2
θ;iθ

;i

��
: ð34Þ

Equation (34) may also be obtained by considering the
Lagrangian given in Eq. (15)

L ¼ −A 1
1þα

�
1þ α

α

� α
1þα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
_θ þ 1

2
θ;iθ

;i

� 2α
1þα

s
þ A; ð35Þ

with an added constant term A which does not affect the
dynamics of θ, and β ¼ ð1þ αÞ=ð2αÞ.

V. M. C. FERREIRA and P. P. AVELINO PHYS. REV. D 98, 043515 (2018)

043515-4



Performing a Puiseux series expansion of Eq. (35)
around α ¼ 0 and keeping up to first order terms in α
one obtains

L ¼ αA

�
ln

�
α
A
ρ�

�
− ln

�
_θ þ 1

2
θ;iθ

;i

��
: ð36Þ

Considering the α → 0, A → ∞ limit with finite A ¼ αA,
as given by Eq. (20), then the Lagrangian given in Eq. (36)
is equal to that given in Eq. (34). It describes a non-
relativistic perfect fluid with a logCG EoS.

IV. CONCLUSIONS

In this paper we presented a Lagrangian formulation of
an extended family of perfect fluid models which include
two particular subclasses identified in the literature with
the GCG. We have shown that in the nonrelativistic (high
density) regime these models are characterized by the GCG
standard equation of state, and asymptotically approach a
cosmological constant in the relativistic (low density)

regime. This extension of the standard GCG model
includes a single parameter β, which we have shown to
control both the linear stability conditions and the maxi-
mum value of the sound speed, the standard GCG model
being recovered for β ¼ ð1þ αÞ=ð2αÞ. We have also
demonstrated that a regularization of the (α → 0,
A → ∞) limit of the GCG gives rise to a logCG model,
which may be regarded as the simplest one parameter
extension of the standard ΛCDM model.
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