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We revisit the question of how to calculate correlations of the curvature perturbation, ζ, using the δN
formalism when one cannot employ a truncated Taylor expansion of N. This problem arises when one uses
lattice simulations to probe the effects of isocurvature modes on models of reheating. Working in real space,
we use an expansion in the cross-correlation between fields at different positions and present simple
expressions for observables such as the power spectrum and the reduced bispectrum, fNL. These take the
same form as those of the usual δN expressions, but with the derivatives of N replaced by nonperturbative
δN coefficients. We test the validity of this expansion and, when compared to others in the literature, argue
that our expressions are particularly well suited for use with simulations.
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I. INTRODUCTION

Inflation has been extremely successful in explaining the
generation of the primordial perturbations seeding the
structures of our Universe, but the microphysics of inflation
remains unknown. The simplest model consistent with
existing observational data is to assume that inflaton
fluctuations are solely responsible for the observed curva-
ture perturbations. Although such a scenario is the simplest,
it is quite possible that more complicated scenarios involv-
ing additional fields, as exemplified by the curvaton model
[1,2] and the modulated reheating model [3,4], are actually
realized. To test different inflationary theories against
observations, one must calculate the precise form of the
correlation functions of the primordial curvature perturba-
tion, ζ. One technique used to do this is the separate
universe approximation combined with the δN formalism
[5–9]. In this approach, ζ is given by the perturbation in the
local e-folding number

ζðxÞ ¼ δNðxÞ ¼ Nð χ⃗ðxÞÞ − N̄; ð1Þ

where N is the number of e-folds between an initial flat
hypersurface at some early time (such as horizon crossing)
and a final uniform density hypersurface at some later time
(such as the end of inflation or after reheating), and
N̄ ¼ hNi. Throughout, angle brackets indicate an ensemble
average. We consider n fields labeled, χI , where I runs from

1 to n, and for convenience we introduce the vector, χ⃗,
where each element represents one of the n fields.
N is calculated by assuming that locally the universe can

be approximated as a Friedmann-Robertson-Walker space-
time, and hence is a function of the local field values on the
initial flat hypersurface. Standard practice is to approximate
δN by making a Taylor expansion in the initial field values
and keeping only a small number of terms. In some cases,
however, N depends very sensitively on the initial field
values, and a truncated Taylor expansion is not a good
approximation. Such cases include those in which a light
field in addition to the inflaton influences the dynamics of
nonperturbative reheating [10–13]. In this paper we return
to the issue of how to deal with such cases. As we will see,
an alternative expansion is sometimes possible.
Although the primary motivation for our work is the

interpretation of the results of lattice simulations, here we
study the question generally. Our approach employs many
of the key ideas contained in the work of Suyama and
Yokoyama [14], and our results are broadly equivalent to
theirs. In that work, however, a key step was to make a
Fourier transform of the N function (treated as a function of
a single field value). This is useful for analytic manipu-
lations, but leads to expressions for the correlation func-
tions that are less useful if an exact form for N is unknown,
or, as can be the case for lattice simulations, it is not
efficient even to calculate the form of the N function
explicitly. The expressions we arrive at are more applicable
in this setting, lending themselves to a Monte Carlo
approach, a point we return to later. Our methods are more
closely related to the work of Bethke, Figueroa and
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Rajantie [15,16] who considered the power spectrum of
gravitational waves from massless preheating, though
depart from both these earlier studies by considering n
fields whose initial probability distribution need not be
precisely Gaussian. We perform explicit calculations only
for the two and three-point functions of ζ, but the method
extends trivially to higher point functions. For other related
work with a different approach to ours, see [17,18] where
the authors develop and apply a nonperturbative formu-
lation of δN by incorporating the stochastic corrections
to N.
The remainder of this paper is structured as follows: In

Sec. II, we develop and describe the nonperturbative δN
formalism. Our main results are presented in Sec. II C 3.
We then apply this formalism in Sec. III to both analytic
and nonanalytic examples and make useful comparisons to
regular δN formalism. Finally, we conclude in Sec. IV.

II. NONPERTURBATIVE δN FORMALISM

A. Regular δN

In the standard δN approach, to calculate the correlations
of ζ in Fourier space one first assumes that the statistical
distribution of field space perturbations is known on the
initial flat hypersurface. The field perturbations, δχI ¼
χI − χ̄I, are taken to be close to Gaussian with the power
spectrum defined as

hδχIk1
δχJk2

i ¼ ð2πÞ3ΣIJðkÞδ3ðk1 þ k2Þ: ð2Þ

Higher-order cumulants are either taken to be completely
negligible, or are included in the formalism, order by order,
considering first the three-point function on the initial
hypersurface,

hδχIk1
δχJk2

δχKk3
i ¼ ð2πÞ3αIJKðk1; k2; k3Þδ3ðk1 þ k2 þ k3Þ;

ð3Þ

and then successive higher-order cumulants. To utilize
Eq. (1), one first makes a Taylor expansion of the N
function in terms of δχIðxÞ, such that to second order,

δNðxÞ¼N;Iδχ
IðxÞþ1

2
N;IJðδχIðxÞδχJðxÞ−δχIδχJÞ; ð4Þ

where δχIδχJ ¼ hδχIðxÞδχJðxÞi. One then considers the
Fourier transform of Eq. (4), and forms the desired
correlation of ζðkÞ, typically keeping only the leading
terms. Finally, applying a Wick expansion, and using
Eq. (2) and any nonzero higher-order cumulants, one
produces an expression for the Fourier space correlations
of ζ at the final time in terms of the correlations of the fields
at the early time. For example, the two and three-point
functions of ζ, defined in terms of the power spectrum Pζ

and bispectrum Bζ are given by

hζk1
ζk2

i≡ ð2πÞ3Pζðk1Þδ3ðk1 þ k2Þ
¼ ð2πÞ3N;IN;JΣIJðk1Þδ3ðk1 þ k2Þ ð5Þ

hζk1
ζk2

ζk3
i≡ ð2πÞ3Bζðk1; k2; k3Þδ3ðk1 þ k2 þ k3Þ
¼ ð2πÞ3½N;IN;JN;Kα

IJKðk1; k2; k3Þ
þ N;IN;JN;KLðΣIKðk1ÞΣJLðk2Þ
þ cyclicÞ�δ3ðk1 þ k2 þ k3Þ: ð6Þ

We note that here and throughout when we discuss
correlations of fields we always mean those at the initial
time, and when we discuss correlations of ζ, we always
mean those at the final time. Finally, we also note that
taking αðk1; k2; k3Þ to be zero (along with higher-order
cumulants) is a good approximation for canonical theories
with the field statistics evaluated at horizon crossing, but
not otherwise.

B. δN without a Taylor expansion

1. Preliminaries and notation

We will now consider how to proceed if N is not well
approximated by a Taylor expansion. In this case, it proves
convenient to stay in real space and calculate the correla-
tions of ζ there, including information from all scales, and
only then to Fourier transform the correlation (for each of
the spatial coordinates which appear) to calculate the
Fourier space correlations over observational scales or
equivalently to coarse-grain the correlations over these
scales. This procedure is most convenient because N is a
function of the fields which are in turn a function of spatial
position. One could attempt to treat Nðχ⃗ðxÞÞ as a function
of x and Fourier transform it directly, but given that it is a
nonlinear function of the fields, the result would not be a
simple function of the Fourier coefficients of the fields,
χ⃗ðkÞ, which are the objects we have information about.
For later convenience, therefore, let us introduce some

notation for the statistics of the field space perturbations in
real space as

hδχIðx1ÞδχJðx2Þi ¼ ΣIJðr12Þ; ð7Þ

where r12 ¼ jx1 − x2j, and

hδχIðx1ÞδχJðx2ÞδχKðx3Þi ¼ αIJKðr12; r23; r31Þ: ð8Þ

In an abuse of notation we use the same symbol for the
correlations as for the related objects in Fourier space
[defined in Eqs. (2) and (3)], but it will always be clear from
the context which we mean. We further define the short-
hand notation

hδχIðx1ÞδχJðx1Þi ¼ ΣIJ ð9Þ
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hδχIðx1ÞδχJðx1ÞδχKðx1Þi ¼ αIJK; ð10Þ

since when evaluated at the same spatial position the
correlations are no longer functions of space.
Finally, we introduce more short hand notation such that

the evaluation of a function at a given spatial position is
denoted using a subscript, for example ζ1 ¼ ζðx1Þ, χI1 ¼
χIðx1Þ and N1 ¼ Nðχ⃗ðx1ÞÞ. This is helpful to keep our
expressions to a manageable size when we are considering
many spatial positions in one expression.

2. A nonperturbative expression

When ζ cannot be written in terms of an expansion in
δχIðxÞ, one cannot write the correlations of ζ in terms of a
finite number of correlations of the field perturbations.
Instead one must fall back on the definition of the ensemble
average, and write the m-point function, hζðx1Þ…ζðxmÞi,
in terms of the full n ×m joint probability distribution for
the n fields evaluated at the m spatial positions. This is
given as

hζ1…ζmi ¼ hðN1 − N̄Þ…ðNm − N̄Þi

¼
Z

dχ⃗1…
Z

dχ⃗mðN1 − N̄Þ…ðNm − N̄Þ

× Pðχ⃗1;…; χ⃗mÞ; ð11Þ

where P is the joint probability distribution for the m × n
variables χIi , and we have used the subscript notation
defined at the end of the previous subsection. The integral
is over all the fields evaluated at the m distinct spatial
positions. If N is a simple function, and if P can be taken to
be Gaussian, which is often a very good approximation,
then it is possible to evaluate Eq. (11) analytically. More
generally it is possible to evaluate it numerically. We will
see examples of both for the single field case in Sec. III.
Although not presented explicitly there, Eq. (11) in the

single field case is the starting point for the work of
Suyama and Yokoyama [14]. In that work the focus is on
extracting analytic results for the moments of ζ when an
analytic form for N is known. They proceed by assuming
that the probability distribution is exactly Gaussian, and
by considering the Fourier transform of the NðχÞ function
(when N is treated as function of χ). In this case general
expressions for the correlations of N are known in terms of
the Fourier coefficients of N and the variance of χ (these
are given in Eq. (9) of Ref. [14]), and they proceed to work
directly with these expressions in their paper. In our work,
we work directly with Eq. (11). This more direct route still
allows Eq. (11) to be evaluated analytically for specific
forms of the NðχÞ function, but also allows us to introduce
additional fields, to expand the distribution, and to
consider non-Gaussian initial conditions in a straightfor-
ward manner.

C. Expansions of the probability distribution

While it is possible to work directly with Eq. (11), it is
rather cumbersome in practice, especially if it needs to be
integrated numerically or if the probability distribution, P,
cannot be taken to be Gaussian. Moreover, if a numerical
evaluation is needed the process becomes particularly
involved when the correlations are converted to Fourier
space, to calculate observable quantities such as the power
spectrum and bispectrum on observable scales. In this case
one must Fourier transform the real space correlations in
each of the m spatial coordinates that appear, which
requires that the integral, Eq. (11), is evaluated first at a
sufficient number of points in real space and then trans-
formed to Fourier space.

1. Two expansions

Thankfully, for many applications there is still an approxi-
mate method available even when N cannot be Taylor
expanded. Rather than expanding the N function, the idea
is to employ, instead, expansions of the distribution P.
First P is expanded around a Gaussian distribution

employing a Gauss-Hermite expansion. In the inflationary
context a Gauss-Hermite expansion for the distribution of
field perturbations was used by Mulryne et al. [19], and is
justified since the field perturbations produced by inflation
are very close to Gaussian [20–27] (even for levels of non-
Gaussianity far in excess of observational bounds).
Next this distribution is expanded in the cross-correlation

between fields evaluated at different spatial positions,
ΣIJðrijÞ with i ≠ j, around the distribution for the field
perturbations evaluated at the same spatial position, i.e.,
we assume that ΣIJðrijÞ < ΣIJ (recall ΣIJ ≡ ΣIJð0Þ). This
expansion has been utilized previously by Suyama and
Yokoyama [14] and by Bethke et al. [15,16]. It is at least
partially justified if the power spectrum for the field
fluctuations δχIðk1Þ is close to scale invariant, since then
for two positions, x1 and x2, separated by a distance close
to the size of the observable universe we find that ΣIJðr12Þ
is roughly 2 orders of magnitude smaller than ΣIJ. We will
always be interested either in real space correlations of ζ
coarse-grained on these large observationally relevant
scales, or equivalently in the Fourier space correlations
for small wavenumbers. See, however, § II C 6 for caveats
and a more detailed discussion.

2. An interlude on our expansions

Let us begin in the abstract, before moving to the
inflationary context, and consider the distribution for a
set of close to Gaussian coupled variables yα denoted by the
vector y. This is given by the Gauss-Hermite expansion,

PðyÞ¼PGðyÞ
�
1þA−1

αϵA−1
βηA

−1
γμ αϵημHαβγðzÞ
6

þ���
�
; ð12Þ
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where the subscript G indicates a multivariate Gaussian
distribution with covariance matrix Σαβ ≡ hδyαδyβi ¼
AαϵAβϵ, and where ααβγ ≡ hδyαδyβδyγi. Where δyα ¼ yα −
ȳα and z is the vector with elements A−1

αβ δyβ. The functions
in the expansion are products of Hermite polynomials
defined by a generalized version of Rodrigues’ formula,
such that Hαβγ ¼ −∂n=∂zα∂zβ∂zγ expð−z2Þ. We will only
need the result that HαβγðzÞ ¼ δyαδyβδyγ if α ≠ β ≠ γ. A
multivariate Gauss-Hermite expansion around a Gaussian
distribution has been employed elsewhere in the cosmo-
logical literature for various purposes (see, for example,
[19,28–35]).
Now let us consider the second expansion we will need

to make. We note that if any of the elements of the variance
matrix Σαβ are small in the sense that we can neglect terms
involving their square, it is possible to make a Taylor
expansion of the distribution, Eq. (12), in this element. For
our purposes, to make use of such an expansion, we will
only need the following results

∂PG

∂Σαβ
¼ 1

2
PGδyγδyδΣ−1

γαΣ−1
δβ ; ð13Þ

∂2PG

∂Σαβ∂Σγδ
⊃
1

4
δyϵδyηδyμδyνPGΣ−1

αϵ Σ−1
βηΣ−1

γμ Σ−1
δν : ð14Þ

In this context A ⊃ B denotes that A contains B as well as
some other terms.

3. Calculating correlations of ζ using the expansions

Finally, we can use these expansions in the context at
hand. We assume that the distribution which appears in
Eq. (11) for the m × n independent variables, χIi , is both
close to Gaussian, so that the Gauss-Hermite expansion can
be employed, and moreover that the n ×m variate Gaussian
which appears in this expansion can be further expanded in
the cross-correlations ΣIJðrijÞ where rij ≠ 0. Specializing
to the two-point function and employing Eq. (11) with both
expansions, one finds that at leading order,

Z
dχ⃗1dχ⃗2Pðχ⃗1; χ⃗2ÞðN1 − N̄ÞðN2 − N̄Þ

≈ ΣIJðr12ÞΣ−1
IKΣ−1

JM

Z
dχ⃗1PGðχ⃗1ÞδχK1 ðN1 − N̄Þ

×
Z

dχ⃗2PGðχ⃗2ÞδχM2 ðN2 − N̄Þ; ð15Þ

where Σ−1
IJ is the inverse of ΣIJ, which for clarity we recall

is the covariance matrix of field perturbations evaluated at
the same point in real space. This leading term comes from
the first-order term in the cross-correlation Taylor expan-
sion, which is calculated from Eq. (13). There is no
contribution from the zeroth-order term because one needs

at least one δχi to accompany each Ni function so that the
expectation of a given term isn’t zero. Note that the
Gaussian probability distribution which appears twice on
the right hand side of this expression is the n dimensional
distribution for fields evaluated at only a single position,
and we have retained both the subscripts 1 and 2 only for
clarity as to how the expression arises. We can write
Eq. (15) as

hζ1ζ2i ≈ ÑIÑJΣIJðr12Þ; ð16Þ
where we have defined

ÑI ¼ Σ−1
IJ

Z
dχ⃗1PGðχ⃗1ÞN1δχ

J
1; ð17Þ

which is analogous to the first derivative of N used in
Eq. (4). The spatial position indicated by the subscript 1 is
of course arbitrary.
Following the same procedure for the three-point func-

tion, one finds that we must keep two terms at leading
order: one involves the α term from the Gauss-Hermite
expansion, and the second is second order in the cross-
correlation expansion and arises from the term given in
Eq. (14). These are the first terms to contribute since again
we need at least one δχi to accompany each of the three Ni
functions in the three-point function so that the expectation
value of a given term is not zero. One finds

hζ1ζ2ζ3i≈ ÑIÑJÑKα
IJKðr12;r23;r31Þ

þðÑIÑJÑKLΣIKðr12ÞΣJLðr23Þþ cyclicÞ ð18Þ

where we have defined

ÑIJ ¼ Σ−1
IKΣ−1

JL

Z
dχ⃗1PGðχ⃗1ÞðN1 − N̄ÞδχK1 δχL1 ð19Þ

analogous to the second derivative of N used in Eq. (4).
Using these expressions, and accounting for only the

second term of Eq. (18), the local contribution to the
reduced bispectrum fNL, takes the famous form

6

5
fNL ¼ ÑIÑIJÑJ

ðÑKÑKÞ2
: ð20Þ

It is important to note that Eqs. (16) and (18) combined
with the definition of ÑI and ÑIJ represent a significant
simplification, since the spatial dependence of the two-
point function of ζ is defined entirely through that of the
field fluctuations. This is an important advantage, particu-
larly if the correlation of ζ is to be evaluated numerically,
since otherwise the numerics would need to be repeated
for many values of r12, while in this case ÑI and ÑIJ need
only be evaluated once. This allows us to pass immediately
to Fourier space, and to write the power spectrum and
bispectrum of ζ as
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PζðkÞ ≈ ÑIÑJΣIJðkÞ ð21Þ

Bζðk1; k2; k3Þ ≈ ÑIÑJÑKα
IJKðk1; k2; k3Þ

þ ðÑIÑJÑKLΣIKðk1ÞΣJLðk2Þ
þ cyclicÞ: ð22Þ

4. Further simplifications for typical applications

A further simplification occurs if we assume that the
field fluctuations are uncorrelated such that ΣIJ is diagonal.
The simplest case is if all fields have the same variance,
such that

ΣIJ ¼ δIJPχ ; ð23Þ

which is a good approximation at horizon crossing during
inflation. More generally the covariance matrix might be
diagonal but with different entries, such that

ΣIJ ¼ δIJPχI ð24Þ

where no summation is implied. This would be the case in a
model with one inflaton field and a set of fields that were
purely isocurvature modes during inflation. In this case,
one finds ÑI simplifies to

ÑI ¼
1

PχI

Z
dχ⃗1PGðχ⃗1ÞN1δχ

I
1 ð25Þ

≡ 1

PχI
hδχI1N1iG ð26Þ

and ÑIJ simplifies to

ÑIJ ¼
1

PχIPχJ

Z
dχ⃗1PGðχ⃗1ÞðN1 − N̄ÞδχI1δχJ1 ð27Þ

≡ 1

PχIPχJ
hδχJ1δχI1ðN1 − N̄ÞiG ð28Þ

because in this case, the covariance matrix is diagonal,
PGð χ⃗1Þ ¼

Q
IPUGðχI1Þ, where subscript UG now stands

for a univariate Gaussian.

5. A Monte Carlo approach

In the paper, the examples we consider will be of cases
where there is a known N function, either an analytic one,
or one that has been calculated numerically. When we
utilize the simplified expressions given above, we will
therefore use the known N function and integrate Eqs. (26)
and (28), either analytically or using numerical methods.
However, a major motivation of our work is to allow the
future study of cases in which it may not be desirable to first
calculateN as a function of the initial field values. We defer

doing this to future work, but it is worth laying out a case for
the suitability of our expressions for this purpose. It may be
that the N function is highly featured, such as in the case of
massless preheating [10,11,13,36–38], and that first calcu-
lating the function accurately may not be the most efficient
path to accurately evaluating ÑI and ÑIJ. Instead one might
choose to adopt a Monte Carlo approach, in which values of
the initial field(s) χI are drawn from a Gaussian distribution,
and for each draw N is evaluated numerically. ÑI, for
example, is then calculated by evaluating δχIN for each
draw, and the values summed and divided by the number of
draws. The convergence of the result can be monitored. This
was the approach adopted in the gravitational wave case by
Bethke et al. [15,16]. In contrast to previous work [14], our
expressions are ideal for this purpose.

6. Limitations

Subsections II C 3 and II C 4 represent the main results
of our paper. In Sec. III, we will see them in practice, and
test their validity. First, however, let us consider what we
expect to be their limitations in terms of the approximations
we have employed.
The first limitation stems from the fact that we expand

the probability distribution in the cross-correlations
between distinct spatial positions, and then integrate to
calculate the correlations of ζ. This means that the resulting
expansion is not guaranteed to be a good one (in the sense
that it will converge), even if the expansion of the
probability distribution does converge. So while ΣðrijÞ≪Σ
is sufficient for the probability expansion to be valid, this is
not sufficient for the correlations calculated from it to
converge. This effectively means that we have to test the
validity of our expressions on a case by case basis.
The second related issue comes from the fact that even if

the series does converge, there is no guarantee that the
leading term in the cross-correlations is sufficient. An
extreme example follows from the fact that it is possible
for the “leading” term we quote above to be zero. For the
two-point function this occurs when the N function is
symmetric in one of fields (about χ̄)—an even function in
the single field case. In this case, considering Eq. (26) for a
single field, we see that hδχNðχÞiG ¼ 0. Although realistic
functions of N will never be fully even or fully odd, this
issue should be borne in mind.
In both cases one thing that can be done is to check that

the sub-leading term is subdominant to the leading term.
Although not proof of convergence this is a simple way to
check that the method is working as intended. For example,
in the single field case where the sourcing scalar field is
Gaussian, the leading and subleading terms can be written
explicitly as

hζ1ζ2i ¼
hδχNðχÞi2
hδχ2i2 Σðr12Þ þ

hδχ2ðNðχÞ − N̄Þi2
2hδχ2i4 Σðr12Þ2

þ � � � ð29Þ
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where N̄ ¼ hNi and one can compare the magnitude of the
two terms for a given model.
An alternative approach would be to evaluate the full

expression, Eq. (11) (specializing, for example, to the two-
point function) which always remains valid, and compare
with the results of the expansion method. To do so for a full
range of r12 would, of course, negate the advantage of using
the expansion in the first place, but one could do so for a
single representative value of r12. In the next section, when
we study simple examples numerically we will evaluate the
full expression over a range of r12, but we note that in more
complex cases this may not be feasible.

III. EXAMPLES

Let us now see our expressions in practice. In this paper,
we restrict ourselves to cases in which we already have an
Nð χ⃗Þ function calculated, deferring the Monte Carlo–type
applications discussed in Sec. II C 5 to future work.
In addition to a specific N function, for concrete

applications, we must also specify the statistics of the field
fluctuations δχIðxÞ. In order to do so, at this point, we
specialize to uncoupled Gaussian perturbations, with scale
invariant power spectrum, such that

ΣIJðkÞ ¼ δIJ
P0

k3
; ð30Þ

where P0 is a constant. Moreover, in the examples we
present we will mainly assume that only the perturbations
from one field contribute significantly to ζ, and therefore
we can further specialize to N being a function of just a
single field.
With our convention for the Fourier Transform,

δχðxÞ ¼ 1

ð2πÞ3
Z

d3keik:xδχk; ð31Þ

it follows that

Σ¼hδχ2ðxÞi¼ 1

ð2πÞ3
Z

d3kPχðkÞ¼
P0

2π2

Z
qmax

L−1

dk
k
; ð32Þ

where ∼L−1 is an IR and qmax a UV cutoff. In this case, the
IR cutoff is just the size of the observable universe, in other
words, the scale over which χ̄ is defined. This gives

hδχ2ðxÞi ¼ P0

2π2
lnðqmaxLÞ; ð33Þ

for the two-point function of field fluctuations evaluated at
the same spatial position. Physically, the IR cutoff must be
close to the size of the observable universe so that the average
of δχðxÞ within the observable universe is zero—to be
consistent with our initial definition of δχðxÞ ¼ χðxÞ − χ̄.

Next, consider the correlation of the field fluctuations at
two separated positions. In this case one finds

hδχðx1Þδχðx2Þi¼
P0

2π2

�
−Ci

�
r12
L

�
þCiðqmaxr12Þþ

sinðr12L Þ
r12
L

−
sinðqmaxr12Þ
qmaxr12

�
; ð34Þ

where CiðxÞ is the cosine integral function

CiðxÞ ¼ −
Z

∞

x

cosðtÞ
t

dt: ð35Þ

It is in this cross-correlation that the expansion of
Sec. II C 2 was made. We also define the cross-correlation
normalized to the variance as

Σðr12Þ
Σ

¼ ξðr12Þ ¼
hδχðx1Þδχðx2Þi

hδχ2ðxÞi ; ð36Þ

which we require to be small for the expansion of the
probability distribution to be valid.
For a purely scale invariant spectrum and for distances

much longer than the UV cutoff (i.e., r12 ≫ q−1max), the UV
cutoff drops out and we have ξðr12Þ ≈ 1

N�
lnð L

r12
Þ [16], where

N� ≈ 60 is the number of e-folds before the end of inflation
that perturbations corresponding to the largest observable
scales left the horizon. For observable scales, therefore,
ξðr12Þ ≈ 1

60
¼ 0.017. This ratio is not sufficiently small that

we can have complete confidence in the expansion method,
especially recalling also the limitations mentioned in
Sec. II C 6. We expect, however, that it will likely be
sufficiently accurate in many cases.

A. Analytic examples

The next step is to specify the NðχÞ function. To begin
with, for simplicity and in order to highlight some issues,
we follow Ref. [14] and choose the simple analytic
functions studied there.

1. Sine function

First we consider a sine function

NðχÞ ¼ B sin

�
χ

λ

�
ð37Þ

We compute the two-point function of the curvature
perturbation, hζ1ζ2i, for this example in several ways.
First, we directly integrate the fully nonperturbative

expression for hζ1ζ2i which arises from Eq. (11); this
makes use of the joint probability distribution for χ1 and χ2.
Because of the simple form of the analytical function we
have taken for N, the resulting integration is easily tractable
analytically, and we denote the result by hζ1ζ2iFull.
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In Sec. II C 3, we presented Eq. (16) as the result of our
expansion method, and later presented a simplified expres-
sion for ÑI in Eq. (26). The second way in which we
compute (an approximation to) hζ1ζ2i is therefore to
employ these formulae, leading to

hζ1ζ2iExp ¼ hδχNi2 Σðr12Þhδχ2i2 : ð38Þ

Taking χ̄ ¼ 0 one finds

hζ1ζ2iFull ¼ B2e−
hχ2i
λ2 sinh

�hχ2i
λ2

ξðr12Þ
�

ð39Þ

and to leading order,

hζ1ζ2iExp ¼ B2e−
hχ2i
λ2
hχ2i
λ2

ξðr12Þ; ð40Þ

which also follows from expanding Eq. (39).
This example is useful, because it highlights, as was also

noted in Ref. [14], the possible limitation of our expansion
methods discussed in Sec. II C 6. In this case, for hζ1ζ2iExp
to be a good approximation to hζ1ζ2iFull, it is insufficient
for only ξðr12Þ ≪ 1. We have to impose a more stringent
condition, namely ξðr12Þhχ2i ¼ Σðr12Þ ≪ λ2. One should
note that this is still a significant improvement over the
standard δN method of making a Taylor expansion of the N
function reviewed in Sec. II A. λ is a measure of the width
of a feature in the N function, and the requirement for
standard δN to work is that Σ ≪ λ2, while for our
expansion method only that Σðr12Þ ≪ λ2 is required, which
as we have seen is 2 orders of magnitude less stringent.

2. Gaussian function

For our second analytic example, we consider the NðχÞ
function to be an un-normalized Gaussian

NðχÞ ¼ A
e
−ðχ−m1Þ2

2σ2
1ffiffiffiffiffiffi

2π
p

σ1
ð41Þ

where A, m1 and σ1 are constants defining the amplitude,
position of the peak and width of the function. In Ref. [14]
the authors used a sum of normal distributions with
different amplitudes and widths to represent the spiky
NðχÞ function that arises in massless preheating [10,11,13].
Without loss of generality we can take χ̄ ¼ 0. Here we

denote the variance of the probability distribution of the
field perturbations, Σ, using Σ ¼ σ2, and doing so we find

hζ1ζ2iFull ¼ A2
e
−

m2
1

σ2þσ2
1
þΣðr12Þ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2 þ σ21Þ2 − Σðr12Þ2

p

− A2
e
−

m2
1

σ2þσ2
1

2πðσ2 þ σ21Þ
; ð42Þ

and to leading and subleading order, from Eq. (29), we have

hζ1ζ2iExp ¼ A2
e
−

m2
1

σ2þσ2
1m2

1Σðr12Þ
2πðσ2 þ σ21Þ3

þ A2
e
−

m2
1

σ2þσ2
1ð−m2

1 þ σ2 þ σ21Þ2ðΣðr12ÞÞ2
4πðσ2 þ σ21Þ5

;

ð43Þ
which also follows from expanding Eq. (42).
The ratio of the subleading term to the leading term is

ratio ¼ Σðr12Þð−m2
1 þ σ2 þ σ21Þ2

2m2
1ðσ2 þ σ21Þ2

:

We wish to understand when this is small, and hence when
our expansion method can be trusted. Assuming σ1 ≤ σ
(the N function is of a similar width or narrower than the
distribution of field perturbations), the condition required
for the ratio to be small becomes Σðr12Þ ≪ m2

1σ
4=

ð−m2
1 þ σ2Þ2. For fixed σ, there is then both a lower and

an upper limit on m1 in order for this condition to be
satisfied. This makes sense since if m1 is too small, which
in this case meansm1 ≪ σ the N function becomes close to
even. While if m1 ≫ σ the N function is sampled only by
the tail of the probability distribution, and one would not
expect the expansion to be accurate. A representative case
is m1 ∼OðσÞ, leading to Σðr12Þ ≪ σ2, which is the con-
dition we assumed to make our original expansion.
The other case is where σ1 ≥ σ. In this case the

distribution is now narrower than the N function, and
the ratio implies we must have Σðr12Þ ≪ m2

1σ
4
1=

ð−m2
1 þ σ21Þ2. In this case the ratio can also be satisfied

as long asm1 is not too small or too large, which in this case
means neither m1 ≪ σ nor m1 ≫ σ. In the representative
case of m1 ∼Oðσ1Þ, the condition reduces to Σðr12Þ ≪ σ21,
which is weak given that σ1 > σ. Wewould expect standard
δN to work in the case (σ ≪ σ1), but here, as for the
sinusoidal case, we have relaxed that criteria.

3. Lessons

It is also important to note that in all the cases above, the
expansion fails because the leading contribution to the two-
point function of ζ itself becomes very small. In the second
example, if theN function was made up of a series of spikes
(as is the case where the result of massless pre-heating is
parametrized), even if the expansion failed for some
members of the series, the overall value for the leading
term would be dominated by members of the series for
which m does not fall outside the allowed range, leading to
an accurate overall result. This also gives us hope that for a
realistic N function, calculated, for example, from lattice
simulations the expansion method we advocate will be
accurate.
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It seems therefore that there are two regimes in which the
method has a good chance of working. One either requires
that Σðr12Þ1=2 is smaller than the scale on which the N
function is structured, or that Σ1=2, is much larger than the
scale on which the N function is structured (and so the
structure is averaged over, assuming the average is not
close to zero). In intermediate cases the method seems to
fail. Overall, however, the message of these two analytic
examples is that it is crucial to check for the validity of the
approximation on a case by case basis.

B. A nonanalytic example

Next we turn to a more realistic example. Although
almost all the analysis of the curvaton scenario is based on
the assumption of a perturbative curvaton decay, it is
possible for the curvaton to decay through a nonperturba-
tive process analogous to inflationary preheating [39,40].
For our example, we consider the NðχÞ function presented
in Fig. 3 of Ref. [12], which was generated from a resonant
curvaton decay scenario using classical lattice field theory
simulations [37,41]. The system consists of three fields: an
inflaton, curvaton and a third light field, χ. The curvaton
field decays into particles of χ via parametric resonance
[42–44]. The authors considered only the contribution of
perturbations from the χ field to ζ, and so N is a function
only of this field. In order to perform the integrations
necessary to study this model, we construct an interpolating
function to approximate NðχÞ given the data points
presented in Ref. [12]. We present the data points and
the interpolating function in Fig. 1.

In this section, we will again compute the two-point
function of the curvature perturbation in real space,
hζ1ζ2iFull, from Eq. (11) as described above, and then using
our expansion method (retaining only the leading term) we
will calculate hζ1ζ2iExp. This time both must be computed
numerically, and this means we have to fix the various
parameters which enter the expression presented at the start
of Sec. III, in particular, the IR cutoff L−1 and the UV cutoff
qmax. We do so by assuming that perturbations which exited
the horizon 60 e-folds before the end of inflation correspond
to the largest observable scales today. We associate the
largest observable scale today with L, and include in the
calculation all shorter modes which exit the horizon until
the end of inflation. Taking the scale of the shortest modes to
be rmin, it then follows that L ¼ e60 × rmin ≈ 1026rmin. The
UV cutoff, defined as qmax ¼ 2π

rmin
.

We will also compute the power spectrum in Fourier
space, and the methods we use for this are discussed in the
next subsection. Since the scales constrained by CMB
anisotropy data correspond to the modes which exited
during roughly four e-folds of inflation, when presenting
our results, we are interested in the range of k values from
2π
L to e4 × 2π

L , i.e., from the horizon size today down to about
e4 times smaller than the horizon size.
In addition to the full and expanded expressions, we will

also plot the results for the power spectrum that one attains
from the regular δN method, calculating the derivatives of
N locally at our choice of the value of χ̄. Finally using our
expansion method, we will also calculate the reduced
bispectrum fNL for this model, comparing with the results
which would be obtained from regular δN.

1. The power spectrum

Our expansionmethod, Eq. (16), allows us to pass directly
to Fourier space and to write the power spectrum as
PζðkÞExp ≈ ÑIÑJΣIJðkÞ where ΣIJðkÞ ¼ δIJ P0

k3 . However,
if one wishes to work with the fully nonperturbative
hζ1ζ2iFull, one needs to Fourier transform the real space
two-point function of ζ. The routewe take to achieving this is
as follows. First, we define

F ½hζ1ζ2iFull� ¼ hζk1
ζk2

iFull
¼ ð2πÞ3δ3ðk1 þ k2ÞPζðk1ÞFull: ð44Þ

Then, given that the two-point function is always some
function of r12 ¼ jr1 − r2j, we define hζ1ζ2iFull ¼ Aðr12Þ
and note

F ½Aðr12Þ� ¼
Z

∞

−∞
d3r1

Z
∞

−∞
d3r2Aðr12Þe−ik1:r1e−ik2:r2 : ð45Þ

By making a change of variables from r1 to r12, we can pull
out a delta function to write

FIG. 1. An example of a realistic mapping obtained from lattice
field theory simulations and centered around χ̄ ¼ 0.001 [12]. Red
dots are the data points, the black dashed line shows the
interpolating function and the solid red line represents a quadratic
fit to the data points. Wewill use the interpolating function for our
regular δN analysis.
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F ½Aðr12Þ� ¼ ð2πÞ3δ3ðk1 þ k2Þ
Z

∞

−∞
d3r12Aðr12Þe−ik1:r12 :

ð46Þ

Therefore, we arrive at the expression

Pζðk1ÞFull ¼
Z

∞

−∞
d3r12Aðr12Þe−ik1:r12 ; ð47Þ

which on moving to spherical polar coordinates leads to the
one-dimensional integral

Pζðk1ÞFull ¼ 4π

Z
∞

0

dr12r212Aðr12Þ
sinðk1r12Þ
k1r12

: ð48Þ

To evaluate the power spectrum, therefore, one possibil-
ity is to first use the NðχÞ function to calculate Aðr12Þ, for a
range of values of r12, and then to perform this one-
dimensional integration. Rather than sampling Aðr12Þ at all
positions needed by an integration algorithm, one could fit
Aðr12Þ with an interpolating function. A problem that
arises, however, is that the integral is sensitive to the value
of the integrand even for r12 ≫ L. A second issue is that the
integrand is highly oscillatory. These issues mean we
cannot get accurate results using this strategy. An alter-
native is to evaluate instead Eq. (47), using a fast (discrete)
Fourier transform. Although this is effectively a three-
dimensional integral, the speed of the algorithm involved
means it is more tractable than integrating Eq. (48). To
avoid aliasing, we must sample Aðr12Þwith a small enough
uniform intervals such that the sampling frequency is at
least twice the highest frequency contained in the signal. In
this case, the highest frequency that we are interested in is
e4 × 2π

L , and we always ensure this criteria is easily met. We
must also ensure that the lowest frequency sampled is at
least an order of magnitude smaller than 2π

L . Even when
these constraints are met, the results of the Fourier trans-
form will have a number of spurious points. In order to
present a clean plot, therefore, we fit the data in log space to
a polynomial. Finally, we plot this fitted function. As a test
that we are sampling the correct range and the method is
working, we first applied it to a sampled version of
Eq. (34), to ensure we recovered Eq. (30) with precision.

2. Three cases

We perform our analysis for three cases and present our
analysis of the two-point function and the power spectrum
in Figs. 2–7. The cases we consider are
(1) χ̄ ¼ 0.001 and hδχ2i ≈ 7 × 10−15

(2) χ̄ ¼ 0.0009998 and hδχ2i ≈ 7 × 10−15

(3) χ̄ ¼ 0.001 and hδχ2i ≈ 6 × 10−14

For the power spectrum, we plot PζðkÞ=Pζpivot against
k=kpivot. We arbitrarily choose kpivot ¼ 2π

L . We also fix
Pζpivot to be PζFull jk¼kpivot for all three (“Full,” “Expanded,”

“Regular δN”) methods for easy comparison; otherwise, all
three lines will lie on top of each other initially as dividing
by each of their corresponding pivot value of Pζ will force
them to start at the same point.
In all cases we see that the expansion method is a much

better approximation to the fully nonperturbative method
than regular δN, and in two of the cases does a good job at
recovering the amplitude and initial scale dependence of
the power spectrum. In the third case however, we can see
the method is breaking down even for the largest scales.

FIG. 2. Case 1: Correlation function of ζðχÞ for one realization
with χ̄ ¼ 0.001 and hδχ2i ≈ 7 × 10−15 on a Log-Log plot. The
exact correlation function (“Full”) is calculated from Eq. (11).
The approximated correlation function (“Expanded”) is given by
Eq. (16). As expected, the approximated correlation function
becomes progressively worse on shorter scales.

FIG. 3. Case 1: Log-Log plots of the power spectrum of ζ,
calculated using the full, expansion and regular δN methods
respectively.
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In all three cases, we see that the ‘Expanded’ power
spectrum either matches or is smaller that the ‘Full’ power
spectrum on all scales while the ‘Regular’ power spectrum
can be smaller or larger than the ‘Full’ answer, depending
on the value of χ̄ and hδχ2i

3. The Reduced Bispectrum

First, we calculate the reduced bispectrum using regular
δN. For case 1, fNL isOð1010Þ, fNL is negative andOð107Þ
for case 2 and finally, fNL is Oð1010Þ for case 3. Using
Eq. (20), i.e., using the expansion method we can also
calculate the reduced bispectrum in each case. We find that

fNL is enormous for all three cases: fNL is Oð109Þ, Oð108Þ
and Oð1010Þ for case 1, 2 and 3 respectively. This is to be
expected since in all cases the higher-order terms in the
nonperturbative δN expansion are relatively large (since by
eye one can see the full line deviate from the expanded line
plotted using only the leading term).
However, we also find that the amplitude of the curvature

perturbation for these specific examples is too small to
explain the observed amplitude: Oð10−20Þ, Oð10−19Þ and
Oð10−20Þ for case 1, 2 and 3 respectively. It is likely this
can be altered by changing hδχδχi. But given the NðχÞ

FIG. 4. Case 2: Here, we plot the correlation function of ζðχÞ
for one realization with χ̄ ¼ 0.0009998 and hδχ2i ≈ 7 × 10−15 on
a Log-Log plot.

FIG. 5. Case 2: Log-Log plots of the power spectrum of ζ,
calculated using the full, expansion and regular δN methods
respectively.

FIG. 6. Case 3: Here, we plot the correlation function of ζðχÞ
for one realization with χ̄ ¼ 0.001 and hδχ2i ≈ 6 × 10−14. The
approximated correlation function is worse in this case because
the shorter tail distribution ‘sees’ less of the mapping.

FIG. 7. Case 3: Log-Log plots of the power spectrum of ζ,
calculated using the full, expansion and regular δN methods
respectively. The effect of the shorter tail distribution is also
reflected in the difference between the “Full” and “Expanded”
power spectra.
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function we began with, we are limited to assuming
hδχδχi1=2 is much smaller than the range of χ over which
the N function has been calculated. Ultimately hδχδχi1=2 is
fixed by the energy scale of inflation, but unlike in the usual
approach we can’t account for the effect of changing this
energy scale after calculating the derivatives of N, because
the nonperturbative nature of the calculation means the
nonperturbation δN coefficients are affected by hδχδχi1=2.
In terms of the parameters we are working with,

therefore, in order to agree with observation we would
require that the total curvature perturbation is a mixture of
the subdominant component that we have and another
dominant component. Taking the observed amplitude to
be 10−9 [45] and taking the dominant component to be the
standard adiabatic Gaussian perturbation from the infla-
ton, this mixture dilutes the non-Gaussianity of the total
curvature perturbation and as a result, fNL becomes
Oð10−13Þ, Oð10−12Þ and Oð10−12Þ for case 1, 2 and 3
respectively (assuming the inflaton contribution is com-
pletely Gaussian) which is far below the observational
sensitivity [46].

IV. CONCLUSION

In the regular δN formalism, the mapping between the
curvature perturbation ζ and the scalar field(s) fluctuations
is approximated by a Taylor expansion in the fields. This
standard technique fails in some cases. Examples include
the massless preheating model and the nonperturbative
curvaton decay model we revisited in the examples section
of this work. In this work, we discuss how to calculate
correlation functions of ζ when the mapping is an arbitrary
function of the scalar field(s) without making a Taylor
expansion. This entails integrating the full probability
distribution of the field fluctuations against copies of the
N function relating e-folds to initial field values (non-
perturbative δN formalism). We discuss how to calculate
results using a “Full” (not approximated) implementation
of this formalism, but show that this can be convoluted in
practice. For observationally relevant scales, the task can be
made simpler using an expansion method. This leads to a
set of expressions for observable quantities in terms of
nonperturbative δN coefficients analogous to the usual δN
coefficients (“Expanded”). We argue that the validity of the

expansion method must be tested on a case by case basis
and suggest ways to do this, but show that at least in the
realistic example we consider it leads to a marked improve-
ment over regular δN, and can approximate well the full
result.
Our results are closely related to the work of Suyama and

Yokoyama [14] and Bethke et al. ([15,16]), but we diverge
from their work in a number of ways. First, we show how to
incorporate the perturbations from n fields whose initial
probability distribution need not be precisely Gaussian, and
we present our expressions in an alternative way to those
authors, which is more suitable for numerical analysis. The
expressions are, as we discuss in Sec. II C 4, particularly
well suited to settings in which a Monte Carlo approach
can be advantageous. We intend to employ our results in
this setting in forthcoming work, directly utilizing lattice
simulations.
It might seem odd at first that we can use the separate

universe approach and information from lattice simula-
tions, which simulate only very short scales, to infer
information about perturbations on observable scales.
This works, however, because the nonpertubative method
works in real space initially, and at first calculates quantities
such as hζðxÞζðyÞi without coarse-graining. As long as the
simulations are of regions larger than the horizon during
reheating, therefore, there is then no barrier to using this
method together with δN to calculate hζðxÞζðyÞi. This is
not directly observable, since it includes information about
all scales which aren’t observable. After calculating it,
however, we can take its Fourier transform and consider
the Fourier modes over the range of observable scales (or
equivalently coarse-grain the real space result on these
scales) to compare with observations. The method we
present, therefore, represents a unique opportunity to
extract for the first time observable predictions for the
curvature perturbation directly from lattice simulations.
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