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The study of the cosmic microwave background (CMB) lensing potential has established itself by now as
a robust way of probing the physics of large-scale structure growth. The most common estimators of the
lensing potential are derived under the assumption of Gaussianity of the matter distribution and in the Born
approximation of the photon diffusion. In this paper we study the performance of quadratic estimators
when applied to realistic sky maps extracted from multiple-lens ray tracing techniques in cosmological
N-body simulations. These are expected to model accurately the effects due to the non-Gaussianity of the
matter distribution induced by its nonlinearity and the deviation from the Born approximation. We show
that both these effects on their own lead to reconstruction biases, but these tend to partially cancel each
other when both these effects are considered together. We forecast the impact of these biases on the
estimation of cosmological parameters for future high-sensitivity CMB experiments like CMB-S4. We find
that the cold dark matter density, Ωcdm, the optical depth to reionization τ, the amplitude of primordial
inflationary perturbations, As, and the sum of neutrino masses, Mν, could be biased at the 1–2σ level, if no
external data set is used. We also observe a reduction of the bias if external data like baryon acoustic
oscillations is included.
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I. INTRODUCTION

The cosmic microwave background (CMB) photons
detected today have interacted with the matter distribution
in the universe throughout their journey from the last
scattering surface toward us. Such interactions result in the
generation of the so-called secondary anisotropies, i.e.,
fluctuations generated after the epoch of matter-radiation
decoupling (see, e.g., [1] for a review). These can be either
due to scattering between CMB photons and free electrons,
such as inverse Compton or velocity-induced scatterings
(the thermal and kinetic Sunyaev-Zel’dovich effect and the
Ostriker-Vishniac effect), or due to interactions of the
photons with gravitational potential wells (e.g., the inte-
grated Sachs-Wolfe [2] and Rees-Sciama [3] effects).
Within this last class of secondary anisotropies the weak
gravitational lensing of CMB anisotropies in temperature
and polarization is one of the key signals exploited by
current and future experiments to obtain constraints on
cosmological models.

CMB lensing is sourced by the growth of all matter loca-
ted between z ¼ 0 and the last-scattering surface (z ≈ 1100).
It contains thus valuable information on the parameters
affecting the formation of the large-scale structures (LSS) of
the universe such as the sum of neutrino masses (Mν) and the
properties of the dark energy (see [4] for a review).
The effect of lensing on the CMB manifests itself in a

scale-dependent smoothing of the acoustic oscillations in
the angular power spectrum of temperature and E-mode
polarization as well as in an increase of power in the
damping tails. The first evidence of this effect was reported
by the ACBAR experiment [5] and measured with high
significance by SPT [6]. In addition, lensing induces
correlations in the harmonic coefficients of CMB anisot-
ropies that can be used to reconstruct the distribution of the
line-of-sight integrated gravitational potential that lensed
the CMB, i.e., the so-called lensing potential. The first
attempts to measure the latter in CMB data from WMAP
using cross-correlation techniques with external LSS
tracers were performed by [7,8] and the first significant
direct detections were reported by the ACT and SPT
Collaborations [9,10]. Currently, the most precise meas-
urement of the CMB lensing potential has been achieved by
the Planck Collaboration, who measured this signal with a
significance higher than 40σ on nearly the full sky [11].

*Corresponding author.
dbeck@apc.in2p3.fr

†Corresponding author.
giulio.fabbian@ias.u-psud.fr

PHYSICAL REVIEW D 98, 043512 (2018)

2470-0010=2018=98(4)=043512(20) 043512-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.043512&domain=pdf&date_stamp=2018-08-13
https://doi.org/10.1103/PhysRevD.98.043512
https://doi.org/10.1103/PhysRevD.98.043512
https://doi.org/10.1103/PhysRevD.98.043512
https://doi.org/10.1103/PhysRevD.98.043512


The effect of gravitational lensing on the CMB polarization
anisotropies has recently been isolated by the current
generation of ground-based CMB polarization experiments
POLARBEAR [12], SPTpol [13], and ACTpol [14] using
CMB data alone and in cross-correlation with LSS tracers
[14–16]. Additionally, limits on the CMB B-mode power
on subdegree scales have been obtained [17–19]. The
B-mode signal of CMB polarization on these scales is
largely sourced by the lensing distortion of the primordial
E-mode polarization. Hence, achieving high-sensitivity
measurements of the lensed CMB polarization is a crucial
step to increase the precision of the CMB lensing potential
reconstruction. With decreasing noise levels, higher angu-
lar resolutions, and larger areas observed by future experi-
ments (e.g., CMB-S4 [20]), the accuracy of reconstruction
techniques and theoretical modeling of the measurements
has to improve alike.
To date, CMB lensing potential reconstruction analyses

commonly rely on the assumption of Gaussianity of the
unlensed CMB temperature field and of the lensing potential
itself. The lensing potential, however, becomes non-Gaussian
due to nonlinear structure formation mainly at late times.
Although the level of non-Gaussianity is expected to be small
due to the large number of potential wells that deflect CMB
photons, the impact of this effect has to be quantified in light
of future high-precision measurements [21–23].
Moreover, the Born approximation (i.e., the evaluation of

the deflections of the photons with respect to the original
unperturbed line of sight), usually employed for modeling
CMB lensing, does not account accurately for all features of
the actual deflection process (e.g., the correlation between
subsequent lensing events) neglecting therefore some of the
sources of non-Gaussian statistics in the lensing potential.
Earlier attempts to model CMB lensing including the effects
of nonlinear structure formation were presented in
[21,24,25]. Recent works investigated the effect of the
relaxation of the Born approximation on lensed CMB power
spectra and CMB lensing power spectra, from both an
analytical and a numerical point of view [23,26–28].1
Similar analytical studies were previously performed also
in the context of the weak lensing shear power spectrum
[29–32]. While the most recent studies showed that the main
post-Born effects are observed on the higher-order statistics
of the CMB lensing potential rather than on its power
spectrum, the impact of such effects on lensing reconstruc-
tion has not yet been evaluated. Recent theoretical works

further suggested that the presence of non-Gaussianities in
the CMB lensing potential could lead to percent level biases
in the reconstructed CMB lensing potential power spectrum
if they are left unaccounted for [33]. This could in turn lead
to a biased estimation of cosmological parameters.
In this paper we evaluate the impact of the non-Gaussian

statistics of the CMB lensing potential on the commonly
employed quadratic estimator techniques for the CMB
lensing reconstruction. As these effects are often too
complex to model analytically, we use the simulations of
[28] that include both the nonlinear evolution of LSS and
post-Born effects to model and investigate this problem
numerically. The paper is organized in the following way.
In Sec. II we review the theoretical aspects of weak lensing
in the Born and post-Born regimes, and in Sec. III we
review the properties of the statistical estimators to extract
this effect in the CMB. In Sec. IV we review the details of
the modeling implemented in the simulations used in this
work. In Sec. V we show the results of our numerical
experiments as their impact on the lensing potential power
spectrum, and in Sec. VI we describe the impact of our
findings on the estimation of several cosmological param-
eters with a particular focus on the total mass of neutrinos,
Mν, which is one of the main science targets of future CMB
experiments. Finally, conclusions are made in Sec. VII.

II. GRAVITATIONAL LENSING FORMALISM

In the weak lensing formalism the effect of deflections of
light rays coming from a source plane is described by the
lens equation. This maps the final position ðβ; χÞ of a ray to
the angular position of its source θ, i.e.,

βiðθ; χÞ ¼ θi −
2

c2

Z
χ

0

DAðχ − χ0Þ
DAðχÞDAðχ0Þ

Ψ;βi ðβðθ; χ0Þ; χ0Þdχ0;

ð1Þ

where χ is the conformal time, Ψðβ; χÞ is a gravitational
potential located on the photon path, Ψðβ; χÞ;βi are their
angular derivatives,2 and DAðχÞ is the comoving angular
diameter distance. The linearized mapping between an
image at the source plane and the lensed image at a given
lens plane is described by the lensing magnification matrix
(or lensing Jacobian). This can be computed as the simple
derivative of the equation above,3

Aijðθ; χÞ≡ ∂βiðθ; χÞ
∂θj ¼ δKij −

2

c2

Z
χ

0

DAðχ − χ0Þ
DAðχÞDAðχ0Þ

Ψ;βiβk ðβðθ; χ0Þ; χ0ÞAkjðθ; χ0Þdχ0: ð2Þ

1Wewarn the reader that the findings of [26] disagree with later studies of [23,28], probably due to numerical error in the evaluation of
their analytical expressions. We refer the reader to the discussion in [23] for more details.

2The derivatives in the small angle limit should be computed using a coordinate system orthogonal to the current light ray’s direction
of travel. Numerical tests have shown that using angular derivatives causes a negligible error (see, e.g., [34] and references therein).

3We note that the following formula can be extended to the full-sky case by promoting the partial derivatives to covariant derivatives.
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In the weak lensing regime the magnification matrix is
usually decomposed into

Aij ≈
�
1 − κ − γ1 −γ2 þ ω

−γ2 − ω 1 − κ þ γ1

�
; ð3Þ

where κ is the lensing convergence, γ1;2 are the components
of the lensing shear, andω is the lensing rotation angle [35].
The components of the magnification matrix are not
independent and are connected through a series of con-
sistency relations [36,37].
In the leading-order computations of the lensing effect,

the photon path is approximated by the unperturbed photon
geodesic xðχÞ ≈ θχ, such that the line integral of the
Newtonian potential Ψ simplifies to

βiðθ; χÞ ¼ θi −
2

c2

Z
χ

0

DAðχ − χ0Þ
DAðχÞDAðχ0Þ

Ψ;βi ðθ; χ0Þdχ0: ð4Þ

At linear order in Ψ, the overall deflection of a photon α is
then given by

αðθÞ ¼ 2

DAðχ�Þ
Z

χ�

0

dχ
DAðχ� − χÞ

DAðχÞ
∇Ψðθ; χÞ; ð5Þ

where χ� is the distance to the source plane. In the case of
CMB lensing, for instance, it is the distance to the last
scattering surface. The lens equation is usually rewritten in
terms of the lensing potential ϕ, which is connected to the
total photon deflection, as

βðθ; χ�Þ ¼ θ − αðθÞ≡ θ −∇ϕðθÞ: ð6Þ

We note that the lensing potential and the lensing con-
vergence can be connected in the weak lensing regime
through the relations4

κ ¼ −
1

2
∇2ϕ; ð7Þ

Cκκ
L ¼ ½LðLþ 1Þ�

4

2

Cϕϕ
L : ð8Þ

If we want to evaluate the lens equation at higher order, i.e.,
beyond the Born approximation (post-Born), we have to
account for the fact that photons do not travel along the
unperturbed background geodesics. Higher-order correc-
tions are typically introduced perturbatively in Eq. (1) by
Taylor expanding the potential Ψ around the unperturbed
geodesic position.
The distinct additional couplings that arise reflect the

change in the shape of a light ray bundle by one lensing

event affecting the amount of lensing generated by a later
lensing event (lens-lens coupling) as well as by changing
gravitational potentials in the direction in which the ray
path is bent. We refer the reader to [23,29,31,38] for further
details. Post-Born corrections affect the angular power
spectrum of CMB lensing observables in a minor way.
In particular, the amplitude of Cκκ

L is suppressed on scales
L≲ 1000 by roughly 0.2% due to lens-lens coupling and
enhanced above the cosmic variance uncertainties at
L≳ 1000, mimicking thus an additional nonlinear large-
scale structure growth [23]. Higher-order correlations of the
κ field, such as the bispectrum, are, however, more affected,
and we will discuss these effects in the coming sections.
A characteristic signature of post-Born corrections is the

appearance of curl-like modes in the overall lensing
deflection angle [23,39], such that

βðθÞ ¼ θ −∇ϕðθÞ −∇ ×ΩðθÞ: ð9Þ

Here we define ð∇ ×ΩÞi ≡ ϵij∂jΩ, where ϵij is the Levi-
Cività symbol in two dimensions and Ω is a pseudoscalar
field. In analogy to the case of κ and ψ , Ω is related to the
lensing rotation ω as

ω ¼ −
1

2
∇2Ω; ð10Þ

Cωω
L ¼ ½LðLþ 1Þ�2

4
CΩΩ
L : ð11Þ

III. CMB LENSING RECONSTRUCTION
WITH QUADRATIC ESTIMATORS

A. Formalism

Weak lensing by the large-scale structure of the Universe
remaps the primary CMB anisotropies according to Eq. (6)
such that its observed lensed Stokes parameter X along the
θ direction is given by

XðθÞ ¼ X̃ðθ −∇ϕÞ; X ∈ ðT;Q;UÞ; ð12Þ

where X̃ is the primordial unlensed CMB and ϕ the lensing
potential. In the harmonic domain the remapping operation
acts as a convolution that mixes power in different multi-
poles and therefore correlates modes across a band deter-
mined by the power in the lensing potential [40]. The
lensing potential itself can be extracted statistically using
the observed CMB, assuming that the underlying, unlensed
CMB is on average homogeneous and isotropic. This
operation commonly involves the use of the so-called
quadratic estimator [41,42], which relies on the lensing
information in the two-point correlation of the CMB fields.
Although higher-order correlations will become more
important in reconstructing the CMB lensing potential to
exploit the full power of future data sets to a more optimal

4Despite being derived in the Born approximation, these
relations hold in the post-Born regime at subpercent accuracy
as discussed in [28].
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precision [43–45], the quadratic estimator is proven to be a
very robust tool thanks to its well understood biases and
capability of quick forward modeling of instrumental and
systematic effects. In the following, we will use an
implementation of this estimator,5 but we note that, to
date, none of the proposed alternative estimators can
dispense easily with the assumption of Gaussianity of
the CMB lensing potential. In the quadratic estimator
context we assume the primordial unlensed CMB to be
a Gaussian field such that the harmonic coefficients for its
temperature, E-mode and B-mode anisotropies, aXlm,
X ∈ T, E, B, have a variance given by the four nonzero
power spectra CTT

l , CTE
l , CEE

l , and CBB
l . Likewise, for the

harmonic coefficients after lensing, ãXlm, X ∈ T, E, B, we
can write the variance of the harmonic coefficients, com-
puted taking the ensemble average over primordial CMB
and matter realizations, as hãX†lmãYl0m0 i ¼ δll0δmm0C̃XY

l . For a
given realization of the lensing potential, this variance
acquires nondiagonal terms due to the characteristic intro-
duction of correlations in the harmonic coefficients due to
gravitational lensing. This can be used to construct an
estimator for the lensing potential [41,42]. On the full sky,
this estimator takes the form

ϕ̂XY
LM ¼

X
l1m1l2m2

KXY
LMl1m1l2m2

âXl1m1
âYl2m2

; ð13Þ

where the convolution kernel is given by

KXY
LMl1m1l2m2

¼ AXY
L

LðLþ 1Þ ð−1Þ
M

�
L l1 l2

−M m1 m2

�
gXYLl1l2

:

ð14Þ

This kernel has cosmology and experiment-dependent
weights, which read

gXYLl1l2 ¼
fXY�Ll1l2

2C̃XXn
l1

C̃YYn
l1

or gXYLl1l2
¼ fXY�Ll1l2

C̃XXn
l1

C̃YYn
l1

; ð15Þ

if X ¼ Y or X ≠ Y, respectively. These weights are chosen
such that the variance of ϕ̂XY

LM is minimal6 and they adopt
the measured power spectra including the instrumental
noise power spectrum NXY

l , i.e., C̃XYn
l ¼ C̃XY

l þ NXY
l . The

response functions fXYLl1l2 used in this work are those of
[42], with the distinction of using the lensed CMB power
spectra C̃l to mitigate the biases of OðCϕϕ

L
2Þ that arise in

the lensing potential power spectrum calculation using this
estimator [46]. We note that this choice of weights might

still be suboptimal and lead to biased results from a very
small-scale CMB temperature signal [47]. This bias could
be mitigated replacing the temperature autopower spectrum
with the lensed temperature-gradient power spectrum
CT̃∇T̃
l , appearing in the nonperturbative response function

calculation [48]. Because in the following we will compare
lensed CMB realizations among each other and do not
compare to a specific model, this has a negligible effect on
our results.
The normalization vector AXY

L in Eq. (13) is given by

AXY
L ¼ LðLþ 1Þð2Lþ 1Þ

�X
l1l2

gXY�Ll1l2
fXYLl1l2

�
−1

ð16Þ

and ensures that the quadratic estimator is unbiased. The
three CMB anisotropy fields allow for six separate estima-
tors of ϕ. In cosmological scenarios where gravitational
wave perturbations are negligible compared with scalar
perturbations, the estimator for XY ¼ BB has a vanishing
signal-to-noise ratio, effectively reducing the estimators to
five. We will thus ignore it in the following without
introducing an appreciable loss in the overall sensitivity.
The power spectrum of the quadratic estimate of the lensing
potential is then a contraction of the CMB four-point
function, which includes three terms up to first order in ϕ,

1

2Lþ 1

X
M

ϕ̂AB
LMϕ̂

CD
LM ≈ Nð0Þ;ABCD

L þ Cϕϕ
L þ Nð1Þ;ABCD

L :

ð17Þ

The biasesNð0Þ;ABCD
L andNð1Þ;ABCD

L arise from disconnected
Gaussian two-point contractions of the CMB fields and—in
the case of the latter—of the lensing potential up to first
order in Cϕϕ

L [49]. An analytic expression for the zero-order

bias, Nð0ÞABCD
L , can be found in [42]. In practice, the

computation of the realization-dependent zero-order bias
[50,51] with the help of Monte Carlo simulations is
preferred to the evaluation of the analytic formula, since
it accounts for small mismatches in the two-point statistic

between simulation and data. Analytic expressions for Nð1Þ
L

can be found in [49,52] and an analog method to compute it
using Monte Carlo simulations in [13].
The different estimators for ϕ can be combined into an

optimal minimum-variance estimator as

ϕ̂mv
LM ≡X

XY

wABϕ̂AB
LM; ð18Þ

with weights

wAB
L ¼ Nmv

L

X
CD

ðN−1
L ÞABCD ð19Þ

5http://github.com/doicbek/lensquest.
6Correlation between T and E is neglected in the estimator

weights, causing the estimator for XY ¼ TE to be slightly
suboptimal in favor of computational time.
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and minimum variance lensing noise

Nmv
L ¼

�X
ABCD

ðN−1
L ÞABCD

�
−1
: ð20Þ

B. Effect of non-Gaussianities on
quadratic estimators

The formalism derived in the previous section assumes
that all the non-Gaussianity in the CMB are entirely due to
the lensing effect and that the lensing potential is a
Gaussian field. However, this is just an approximation,
and if the lensing potential (or equivalently the lensing
convergence) has nonzero higher-order correlations, there
are additional terms involving four-point functions of
lensed CMB fields that create distinct biases. This problem
was first studied in [33] in the context of assessing the
impact of the nonlinear evolution of the matter distribution
in the lensing reconstruction. In this work the authors
derived expressions for the bias induced by a nonzero
bispectrum in the lensing potential caused by the nonlinear
gravitational collapse that is of order OððCϕϕ

L Þ3=2Þ and is

referred to as Nð3=2Þ
L . The TT reconstruction channel was

found to be the most sensitive on angular scales l≲ 1000
considered in their work and could reach the level of 2.5%
for low noise and large sky coverage experiments. This
level of bias is significant in light of the expected future
experimental sensitivity. Understanding the amplitude
and nature of higher-order biases and their effect on our
ability of constraining the cosmology is therefore crucial.
Modeling these effects analytically becomes cumbersome
very quickly. Therefore, we decide to adopt a numerical
approach and assess the impact of these biases through
accurate and realistic numerical simulations. In order to
tackle the problem in its full complexity we decide to use
simulations that include not only the nonlinear evolution of
matter studied in [33] but also non-Gaussianity induced by
post-Born effects. Analytical predictions of the shape and
amplitude of these non-Gaussian correlations have been
recently computed in [23,27,53].

IV. MODELING CMB LENSING
AT HIGHER ORDER

To test the bias in the lensing reconstruction induced by
non-Gaussian evolution of the matter and post-Born effect
we need to simulate the lensing of CMB anisotropies
including both these effects. For this purpose we use the
simulation method and results of [28] (hereafter FCC18).
This work produced a collection of lensing observables κ,
ω, ϕ, Ω, derived from a ΛCDM N-body simulation of the
DEMNUni suite [54,55] in the Born approximation and
using multiple-lens ray tracing techniques. The N-body
simulation employed in FCC18 used 20483 dark matter
particles and a box size of 2 Gpc=h from z ¼ 99 to z ¼ 0.

This redshift range cover allows one to reproduce the CMB
lensing kernel DAðχ� − χÞ=DAðχÞDAðχ�Þ with subpercent
precision. The mass resolution of the simulation at z ¼ 0 is
MCDM ¼ 8.27 × 1010 M⊙=h and the gravitational soften-
ing length is set to ϵs ¼ 20 kpc=h corresponding to 0.04
times the mean linear interparticle separation. Below, we
briefly summarize the specificities of the light-cone con-
struction and ray tracing algorithm adopted in these
simulations as well as further tests complementary to the
one presented in FCC18 and specifically performed for this
work. We refer the reader to FCC18 for a more detailed
discussion.

A. Ray tracing algorithm for CMB lensing

Starting from a series of snapshots in time of an N-body
simulation, the algorithm adopted in FCC18 reconstructs
the full-sky past light cone of the observer from redshift
z ¼ 0 to the maximum redshift covered by the simulation
zmax (in our case zmax ¼ 99). Because the universe volume
simulated in the N-body is finite, we replicate the box
volume in space to fill the whole observable volume
between 0 ≤ z ≤ zmax. To avoid repeating the same
structures along the line of sight and to recover (at least
partially) structures on scales comparable to the box
size, the algorithm employs a specific randomization
procedure for the particle positions as in [24,56]. The light
cone is then sliced into spherical shells of thickness
Δχ ¼ 150 Mpc=h. The particles inside each of these
volumes are then projected onto spherical planes of surface
mass density, as described in [57]. The algorithm then
converts the surface mass density planes into convergence
fields. With this discrete version of the light cone at hand, it
is convenient to discretize the geodesic and lens equation of
Eqs. (1) and (2) [58–60],

βðθ; χÞ ¼ θ −
XN−1

k¼0

DAðχ − χkÞ
DAðχÞ

αðkÞðβðkÞÞ: ð21Þ

Here k is the shell index, and we define the gradient of the
two-dimensional (2D) projected gravitational potential as

αðkÞðβðkÞÞ ¼ 2

c2

Z
χkþΔχ

χk−Δχ
dχ

∇ΨðβðkÞ; χÞ
DAðχkÞ

: ð22Þ

αðkÞ is easily computed starting from the convergence field
of each shell (k) using a spin-1 spherical harmonic trans-
form [34,61] in the E and B decomposition

1α
ðkÞ;E
lm ¼ 2κðkÞlmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ; 1α
ðkÞ;B
lm ¼ 0: ð23Þ

The latest operation requires the computation of the

spherical harmonic coefficients κðkÞlm using a fast spherical
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harmonic transform up to a given cutoff in power lmax. The
choice of lmax for each different shell is optimized to ensure
the total deflection is computed with subpercent precision
for scales l≲ 8000. The magnification matrix follows
straightforwardly from Eq. (21) as

AN
ijðθ; χNÞ ¼ δKij −

XN−1

k¼0

Dk;N

DN
UðkÞ

ip ðβðkÞ; χkÞAðkÞ
pj ðθ; χkÞ; ð24Þ

where N is the number of planes necessary to reach the
source at comoving distance χN and Uij is the matrix
of the second derivatives of the gravitational potential,
∂Ψ=∂βi∂βj. Uij can be computed easily as derivatives of
the component of the spin-1 field αðkÞ (see Appendix A
of FCC18). In Eq. (24) we use the notation Dk;N ≡
DAðχN − χkÞ and Dk ≡DAðχkÞ for simplicity. Imple-
menting Eq. (24) in numerical simulations becomes quickly
prohibitive for a large number of lens planes and large sky
fraction. FCC18 adopted the multiple lens approach of
[62], who showed that the equation can be rewritten in a
more efficient form that requires one to store in a memory
for a given kth iteration just the position of the light rays at
the two previous positions βðk−2Þ and βðk−1Þ,

βðkÞ ¼
�
1 −

Dk−1

Dk

Dk−2;k

Dk−2;k−1

�
βðk−2Þ

þDk−1

Dk

Dk−2;k

Dk−2;k−1
βðk−1Þ −

Dk−1;k

Dk
αðk−1Þðβðk−1ÞÞ:

ð25Þ

By differentiating with respect to θ as in Eq. (2), we obtain
the recurrence relation for the magnification matrix

AðkÞ
ij ¼

�
1 −

Dk−1

Dk

Dk−2;k

Dk−2;k−1

�
Aðk−2Þ
ij

þDk−1

Dk

Dk−2;k

Dk−2;k−1
Aðk−1Þ
ij −

Dk−1;k

Dk
Uðk−1Þ

ip Aðk−1Þ
pj :

ð26Þ

This algorithm was originally developed in the context of
galaxy lensing, but adapted to spherical geometry in [61]
and developed first in [28,56] for CMB lensing. This
approach is also convenient to derive the magnification
matrix and lensing observables in the Born approximation
that we will use later to isolate the contribution coming
from post-Born effects. Assuming the background distor-
tion, the first-order magnification matrix is

AðNÞ;1st
ij ðθ; χsÞ ¼ δKij −

XN−1

k¼0

Dk;N

DN
UðkÞ

ij ðθ; χkÞ: ð27Þ

We note that the Uij matrix is symmetric because
mixed derivatives commute, and thus the rotation, ω, is
identically zero.

B. Impact of the LSS bispectrum

FCC18 carried out an accurate characterization of the
post-Born corrections on κ, ω, and lensed CMB power
spectra and compared extensively with their analytical
predictions derived in [23,27,38,53,63]. However, the
analysis did not investigate in detail the impact of the
nonlinear evolution of large-scale structures and how
simulation properties match with analytical predictions
of the higher-order statistics of the κ field. Below we
present additional validation tests performed to assess the
reliability of these simulations in modeling higher-order
statistics of post-Born corrections and nonlinear LSS
evolution. We limit our analysis to the statistics of the κ
field and its cross-correlation with ω. Higher-order statis-
tics of the curl mode of the deflection field beyond the
mixed κκω bispectrum [23], which appear at higher order in
the perturbative expansion, are lacking theoretical predic-
tions. The measurement of the κκω and κωω bispectrum in
the simulations used in this work through its effect on
lensed B-modes power spectrum was presented in FCC18,
together with the measurement of the post-Born induced
curl mode on lensed CMB power spectra. We refer the
reader to that work for a more in-depth discussion and
comparison with theoretical predictions.

1. Higher-order statistics of the CMB convergence

To verify the accuracy of the simulations in reproducing
the expected level of non-Gaussianity in κ, we compare its
skewness as measured in the simulations with the values
obtained by contracting the predicted theoretical bispec-
trum including LSS nonlinearity and post-Born corrections.
The definition of skewness given a pixelized map of a
scalar field, X, is

S3½X� ¼ hXXXi ¼ 1

Npix

XNpix

p

X3
p; ð28Þ

where p is the pixel index and Npix the total number of
pixels in the map. Following [64,65], we compute the
skewness in terms of the reduced bispectrum bL1L2L3

as

S3½bL1L2L3
� ¼

XLmax

L1L2L3

ð2L1 þ 1Þð2L2 þ 1Þð2L3 þ 1Þ
ð4πÞ2

�
L1 L2 L3

0 0 0

�
2

bL1L2L3
; ð29Þ
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with corresponding variance dominated by the disconnected six-point function

σ2S3 ≃
6

4π

XLmax

L1L2L3

ð2L1 þ 1Þð2L2 þ 1Þð2L3 þ 1Þ
ð4πÞ2

�
L1 L2 L3

0 0 0

�
2

CL1
CL2

CL3
: ð30Þ

In particular, the skewness of the Born-approximated
convergence, κF, obtained from the first-order magnifica-
tion matrix, provides a measurement of the LSS-induced
bispectrum. The bispectrum of the convergence com-
puted using the multiple lens ray tracing algorithm, κR,
receives a contribution from the LSS-induced bispectrum
as well as from the post-Born corrections induced bispec-
trum. The difference of the skewness of κR and κF gives
thus a direct measurement of the collapsed post-Born-
induced bispectrum.
We use the formulas presented in [23,66] to compute the

bispectrum of κ due to LSS nonlinearity (at tree level
in density perturbations or adopting the nonlinear fitting
formula from [67]) and post-Born effects, respectively.
In Fig. 1 we show a comparison between the skewness
measured in the low-pass-filtered simulations and their
expected theoretical value as a function of the maximum
multipole cutoff used in the calculations. We find a good
agreement between simulation and theoretical expectations
for the post-Born bispectrum part, confirming the findings
of FCC18 on the level of the lensed CMB B-mode power
spectrum. For this observable, the post-Born κκκ bispec-
trum is the dominant correction while the contribution of
the curl mode in terms of the κκω bispectrum is negligibly
small (see also [27]). The LSS skewness agrees well with

theoretical expectation on scales 75≲ Lmax ≲ 2000 and
starts deviating outside this range, yet still with reasonable
agreement. On the largest scales, the discrepancy might
be due to the adoption of Limber approximation or by
spurious numerical correlations induced by the box size
replication during the light-cone construction or simply
sample variance of the matter bispectrum. In fact, the
authors of [68] measured the matter three-dimensional
bispectrum from the same N-body simulation used for
this work and found an excess of power at low values of
k≲ 0.1 Mpc−1h for both squeezed and equilateral con-
figurations. These scales contribute significantly to the
signal on angular scales l≲ 100 (see, e.g., [4]) and could
be responsible for the excess of skewness observed when
only such scales are included. Although in FCC18 the
replication procedure was shown to produce accurate
results on the large scales of Cκκ

L and no significant spurious
excess of power was observed, we tested the stability of our
results on lensing reconstruction with respect to the
minimum multipole employed in the analysis. We found
negligible differences when excluding CMB angular
scales l ≤ 100.
At angular scales Lmax ≳ 2000 we expect to see dis-

crepancies due to the limitation of the fitting formulas used
to compute the theoretical expectation as well as theoretical
uncertainties in the modeling of the nonlinear matter power
spectrum used to compute the theoretical expectation of the
skewness. In particular, at L ≈ 2000, the CMB convergence
receives a non-negligible contribution from structures at
scales k≳ 1 Mpc−1h [4,28] and on these angular scales
uncertainties on the matter power spectrum are already of
the order of 15% [69]. The use of nonlinear fitting formulas
improves the agreement with simulation results with
respect to the tree-level bispectrum. We note that we do
not investigate possible improvement using alternative
nonlinear bispectrum fitting formulas, as, e.g., the one
introduced in [70]. The validity of these equations at high
redshifts was not validated, and the differences with respect
to the Scoccimarro & Couchman formulas [67] were shown
to be marginal and relevant only for a subset of the
bispectrum configurations (see discussion in [23]).

2. LSS bispectrum effect on lensed CMB

Non-Gaussianity in the lensing potential can affect the
shape of the lensed CMB power spectra. The authors of
[27] (hereafter LP16) computed the effect on the CMB
power spectrum induced by the bispectrum of the CMB
convergence due to the nonlinear evolution of matter

FIG. 1. Comparison of the skewness for different cutoff values
of the convergence multipoles. The theory curves are computed
using the tree-level expression of the LSS convergence bispec-
trum including the Scoccimarro & Couchman fit of [67], as well
as post-Born corrections of the bκκκ and bκκωðþÞ bispectra of [23].
Only the absolute values are shown; negative values are marked
by a dashed line or triangular marker.
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(hereafter LSS term) and the one due to post-Born
corrections (hereafter PB term). FCC18 showed that the
corrections computed by LP16 for the PB term match very
well the results extracted from ray tracing simulations. As a
validation test for this work, we focused on measuring the
corrections to lensed CMB power spectra generated by the
LSS term alone, as well as those due to the combination of
LSS and PB terms. We then compared the results of the
simulations with the theoretical prediction of LP16. To
isolate the LSS term, we lens 100 Gaussian realizations of
unlensed CMB maps with a deflection field extracted from
the κF map as performed in FCC18. From the average of
the power spectra of these maps we subtract the average
power spectrum of the 100 CMB realizations that were
lensed with a deflection field computed from a Gaussian
realization of the lensing convergence κG with power
spectrum CκFκF

L . Similarly, to measure the total correction,
we repeat the same procedure with κR and CκRκR

L to produce
the Gaussian realizations of the deflection field. In Figs. 2
and 3 we show the results of this analysis together with a
comparison with the prediction of LP16. The theoretical
predictions for both the total and LSS bispectrum (which is
the dominant term) agree quite well with the simulation
results on the relevant angular scales, especially the ones
implementing the nonperturbative formalism for the TTand
EE power spectrum as discussed in PL16 and FCC18. This
approach accounts for the fact that even in the Gaussian
approximation lensing is a Oð1Þ effect at small scales, and

therefore treating the corrections due to non-Gaussianity as
perturbations around an unlensed field leads to inaccurate
results.
Despite the overall good agreement, however, some

differences can be observed. This is expected because,
unlike the analytical approximations, simulations include

FIG. 2. Impact of CMB convergence bispectrum on lensed temperature (left) and E-mode (right) power spectra. The top panel shows
the total correction accounting for the LSS and post-Born induced bispectrum, while the bottom panel shows the correction due to only
nonlinear LSS evolution. The theoretical predictions of [27] are shown in black and simulation results in red. The green curves show the
values of the nonperturbative corrections computed in [27] for the temperature and E-mode power spectra. Binned theoretical
predictions are shown with empty markers. The error bars include only the uncertainty on the average over the Gaussian MC realizations
and do not include the sample variance of the convergence bispectrum.

FIG. 3. Same as Fig. 2 for the BB power spectrum.
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the effects of non-Gaussianity nonperturbatively and the
exact shape of the correction depends on the detailed shape
of the bispectrum. In particular, simulation results show an
excess of power on the B-mode power spectrum compared
to analytical predictions. This is consistent since B-modes
are more sensitive to small scale lenses, and thus non-
Gaussianities due to strongly nonlinear density fields are
expected to give larger corrections where the perturbative
expansion becomes less accurate. The discrepancies at
scales l≲ 100 could conversely arise due to the excess
of skewness discussed in the previous section, although we
stress that a larger skewness does not seem to affect
significantly the temperature and E-mode power spectrum,
where the corrections are dominated by structures at
l≲ 300. Nevertheless, we decide to perform dedicated
robustness tests in the following section to assess the
impact of this discrepancy as a potential systematic effect.

V. RESULTS

A. Numerical setup

To measure the Nð3=2Þ
L bias, we produce several sets of

lensed CMB maps using the LENSPIX code.7 These are later
combined in different ways to isolate different contribu-
tions to this bias and to perform consistency and robustness
tests. A subset of these simulations are briefly described in
Sec. IV B, and here we review the procedure in more detail.
First, we simulate 100 Gaussian realizations of the pri-
mordial CMB. Each of these simulations is then lensed
using seven different simulated deflection fields αeff ¼
∇ϕþ∇ × Ω and adopting the effective remapping for the
CMB photons as in Eq. (9). The ϕ and Ω potentials are
obtained from the κ and ω field of FCC18 using the
consistency relations in Eqs. (7) and (10) in the harmonic
domain. For this operation as well as in the synthesis of
the unlensed CMB, we adopted a bandlimit parameter
lmax ¼ 6200. According to the findings of [40], this setup
allows us to recover lensed CMB with a precision of
Oð10−3Þ on scales l≲ 4000 andOð10−2Þ at l ≈ 5000. The
full set of deflection fields used to lens the CMB are
therefore as follows:

(i) κG. A Gaussian realization of convergence with
power spectrum CκFκF

L .
(ii) �κF. These simulations measure the bias including

only the effects of the nonlinear LSS evolution.
(iii) �κR alone. These simulations measure the bias

due to LSS nonlinearity and PB effects in the
convergence field.

(iv) �κR and �ωR (�κRω hereafter). They include the
full set of nonlinearity of LSS and PB corrections,

including the so-called mixed bispectrum correla-
tions κκω and κωω (we refer the reader to [23,28] for
further discussion).

We denote the resulting lensed CMB simulations with a
given deflection field by a superscriptG,�F,�R, or�Rω,
respectively. For the results described in this paper we use
maps having an angular resolution of 52 arcsec in HEALPIX

pixelization, corresponding to Nside ¼ 4096. On each of
these sets we run the lensing reconstruction using a
quadratic estimator and compare them to extract different
sources of biases. Each simulation set is designed to
contain a lensing potential with the same mean power
spectrum Cϕϕ

L .8 Remaining relative deviations from the
fiducial Cϕϕ

L due to post-Born corrections are below 0.2%
on the relevant scales considered in this paper. Hence, in the

following, we assume Nð0Þ
L and Nð1Þ

L to be equal for all
simulations. Under this assumption we can write

Ĉϕϕ
L ½κ� ¼ 1

2Lþ 1

X
M

ϕ̂†
LMϕ̂LM

≈ Cϕϕ
L þ Nð0Þ

L þ Nð1Þ
L þ Nð3=2Þ

L ½κ� þOðϕ4;Ω2Þ;
ð31Þ

where only the Nð3=2Þ
L bias depends on the specific statistic

of the κ field used to lens a specific simulation. We will test
the validity of this assumption in Sec. V C.
In order to evaluate the bias in a specific experimental

configuration we add Gaussian noise realizations with
corresponding power spectrum Nl ¼ σ2nB2

l, with white
noise level, σn, and a circular Gaussian beam with
FHWM size, θ [71],

Bl ¼ exp

�
lðlþ 1Þ θ2

16 log 2

�
: ð32Þ

B. Measurements of Nð3=2Þ
L bias

To measure the Nð3=2Þ
L biases from the simulations and

distinguish the contributions to the biases originating from
all the different contributions of the κ bispectrum and
correlations involving curl modes (κκωþ κωω, PBω here-
after), we combine the reconstructed CMB lensing poten-
tial power spectrum on each set of lensed CMB realizations
as follows:

7We found consistent results when analyzing maps simulated
with the LenS2HAT code [40] which implements a different
interpolation scheme to resample the unlensed CMB realization
at the displaced ray position.

8Cϕϕ
L extracted from N-body simulation has a potential bias at

small angular scales due to the presence of shot noise due to the
finite number of particles in the N-body simulation. According to
the estimates of FCC18, the shot noise accounts for roughly 15%
of the amplitude of the power spectrum on the maximum
multipole relevant for this analysis. Because in the following
we compare simulated quantities, all including the shot-noise
term, the impact of the shot-noise term on the results is expected
to be highly reduced.
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LSS Nð3=2Þ
L ¼ hĈϕϕ

L ½κF� − Ĉϕϕ
L ½κG�iLensed CMB

PB Nð3=2Þ
L ¼ hĈϕϕ

L ½κR� − Ĉϕϕ
L ½κF�iLensed CMB

PBω Nð3=2Þ
L ¼ hĈϕϕ

L ½κRω� − Ĉϕϕ
L ½κR�iLensed CMB

Total Nð3=2Þ
L ¼ hĈϕϕ

L ½κRω� − Ĉϕϕ
L ½κG�iLensed CMB,

where we denote in squared brackets the corresponding set
of CMB realizations used in the lensing reconstruction. The
total bias is equal to the sum of the former three, well within
the uncertainties shown later in the text. We report the

measurement of theNð3=2Þ
L as the average over the 100 lensed

CMB simulations at our disposal for each deflection field
configuration. The error bars shown in the following figures
are computed from the dispersion of the lensed CMB
simulations and represent the uncertainty on the mean of
the simulations. Due to the fact that the realizations of
primordial CMB are the same for all sets of simulations, we
avoid realization-dependent biases (up to bispectrum terms)
and cosmic variance noise. In the following we discuss the

impact of Nð3=2Þ
L bias in terms of the ratio between the bias

and the lensing potential power spectrum measured in the
FCC18 simulations. The reported signal-to-noise ratio

(SNR) is computed as the ratio between Nð3=2Þ
L and the

error bar expected for a specific experimental configurationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2Lþ 1

1

fskyΔL

s
ðNð0Þ

L þ Nð1Þ
L Þ; ð33Þ

where we assume the observed sky fraction to be
fsky ¼ 40%, to match the expected sky coverage of
CMB-S4, and the bin size ΔL ≈ 140. For all configurations
the minimal CMB multipole used is lmin ¼ 2.
In Fig. 4 we show the total Nð3=2Þ

L bias for the minimum-
variance quadratic estimator due to non-Gaussianity in the
lensing deflection field, along with the breakdown of the
contribution of each source of non-Gaussianity (LSS, PB,
and PBω). These results are derived performing lensing
reconstruction using a sharp cutoff in harmonic space
that removed all the CMB harmonic coefficients having
l ≥ lmax ¼ 4000 and assuming an experiment with
1.4μK-arcmin white noise in polarization (1 μK-arcmin
in temperature) and a 1 arcmin beam size to match CMB-S4
configuration. We find that post-Born effects produce a
positive bias in the lensing reconstruction, while LSS
effects suppress power in the reconstructed potential.
This leads to an important cancellation of the two effects

and, in fact, the total Nð3=2Þ
L bias becomes a subpercent

effect. The amplitude of Nð3=2Þ
L , however, changes quite

significantly depending on which combination of the
quadratic estimator is used for the lensing reconstruction.
At low multipoles the individual relative contributions to
the biases induced by LSS and PB can reach up to 7% in the
the autopower spectrum of the TT estimator. Generally, the
bias amplitude grows with the number of contributing

FIG. 4. Relative biases in the estimated lensing potential power spectrum induced by non-Gaussian statistics of the underlying lensing
potential (black curves) as measured in the FCC18 simulations. This case included lensed CMB modes up to lmax ¼ 4000 and CMB-
S4-like experimental configuration. We differentiate the effects caused by nonlinearities of large-scale structures (LSS, purple curve),
post-Born lensing effects (PB, orange curve), as well as post-Born mixed bispectrum terms (PBω, yellow curve) accounting for higher-
order correlation between the lensing gradient and curl potential. The shaded areas show the uncertainty on the bias computed from the
dispersion of 100 lensed CMB simulations.
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temperature fields used in the estimator. For polarization-
based estimators the overall bias can reach 2% for both LSS
and PB terms when considered separately. In our exper-
imental setup, the polarization-based estimators provide the
most important contribution to the minimum variance
combination below L ≈ 1500, while for larger multipoles
the temperature reconstruction, which is more sensitive to
small-scale lenses, starts to dominate in the minimum-
variance combination.
The cancellation effect observed between LSS and PB

term can be understood noting that post-Born effects tend
to reduce significantly the bispectrum amplitude on a large
fraction of bispectrum configurations. The post-Born bis-
pectrum has, in fact, mainly negative contributions while
the LSS bispectrum due to nonlinearities has strictly
positive contributions. This effect and its analytical model-
ing was discussed first in [23], and FCC18 observed it as a
general reduction of the amplitude of higher-order
moments on numerical simulations (see also the results
in Fig. 1).
Figure 5 shows the ratio between the CMB convergence

bispectrum including post-Born and LSS nonlinear evolu-
tion effects and the one including only the latter. The LSS
bispectrum is strictly positive, since density perturbations
grow faster if they are denser and, hence, large-scale
overdensities correlate with small-scale lenses. One can
observe a suppression of the bispectrum in the flattened
configurations, when L1 ≈ L2 þ L3, while for equilateral
configurations, i.e., L1 ≈ L2 ≈ L3, the bispectrum gets
enhanced. Simple arguments can be made to understand
why there is a sign difference in the bispectrum when all the
convergence modes are aligned, i.e., in the flattened limit
[23]. In this case lens-lens deflection, i.e., the deflection of
a light ray bundle off two consecutive lenses, dominates. In
this case, the first lens induces a contraction of the light
bundle area. This in turn causes the second lens to have a
smaller effect than it would have without the first lens. This
results in an anticorrelation between large and small scale
convergence modes, leading to a negative sign of the
bispectrum in the flattened limit. The positive contributions
conversely represent a change in the deflection field along
the direction in which the ray is deflected. A ray passing the
edge of an overdensity could be deflected toward the center,
where the potential gradients are larger. This generates
more lensing than if the two contributions had been added
independently and had a positive correlation between
angular scales. The fact that the post-Born and LSS
contributions roughly match in amplitude is coincidental
and not the case anymore when the source plane is at low
redshifts [23].
We note, however, that due to the complex convolution

of the bispectrum configurations in the quadratic estimator,
the details of the cancellations happening on the Nð3=2Þ

L
bias are nontrivial and their analytical modeling for
the different combinations of quadratic estimators is

challenging. A more detailed discussion can be found in
[33,72]. The important cancellation effects between the
LSS and PB terms observed for CMB lensing might not be
as effective in the case of lensing of other diffuse back-
ground emissions that have a redshift kernel peaking at
lower redshift, such as the cosmic infrared background or
line intensity mapping data [73]. With a shorter line of sight
integration, the relative importance of the post-Born effect

is in fact decreased and the LSS term for theNð3=2Þ
L bias will

become the leading one, thus increasing the impact of

Nð3=2Þ
L on the reconstructed power spectrum. The shape

of the Nð3=2Þ
L biases depends not only on the type of

reconstruction channel used, but also on the range of
multipoles included in the reconstruction. We perform
the lensing reconstruction using different cutoff values
lmax for the harmonic coefficient used in the lensing

reconstruction and show the value of Nð3=2Þ
L for the

minimum-variance estimator for a cosmic-variance limited

FIG. 5. The relative suppression or enhancement of the con-
vergence bispectrum from large-scale structure nonlinearity
(derived using the fitting formula of [67]) due to post-Born
effects, for L1 ¼ 200 and L1 ¼ 2000.
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experiment in Fig. 6. Because of the differences with
analytical predictions discussed in Sec. IV B, we test the
stability of our results with respect to the choice of lmin and
verified that increasing the cutoff to lmin ¼ 200 did not
affect our results. As expected, we can observe that the non-
Gaussian effects become more prominent when we include
progressively smaller angular scales in the lensing
reconstruction. For lmax ¼ 2000 the bias is not detectable,
and its signal-to-noise ratio is smaller than one. In the case
of lmax ¼ 3000, at small scales the LSS bias becomes
positive, such that the total bias includes positive contri-
butions from LSS and the post-Born gradient and curl
fields, which causes the previously detected cancellation to
fail. The total bias can therefore reach levels up to 4%,
although at multipoles with poor SNR. Including progres-
sively smaller scales causes the LSS terms to increase in
amplitude faster than the PB term, and as a result, the

cancellation become less effective, causing the Nð3=2Þ
L bias

to grow. In this scenario the bias becomes very significant
and its SNR could be larger than 10. We warn the reader
that such an extreme case serves an illustrative purpose and
should be taken with a grain of salt. In fact, the matter
distribution on scales k ≥ 2 Mpc−1h affects significantly
the CMB lensing signal at l ≃ 5000, and the simulations
employed for this work have significant uncertainties on
these scales due to the limited resolution of the N-body
simulations used to model the deflection field and the
absence of baryonic effects. These might become more
important when analyzing non-Gaussian effects (see, e.g.,
[74,75]). Furthermore, one can observe that the cross-
bispectrum contribution from the curl potential dominates
at scales l≲ 2000 and gets subsequently downweighted in
the reconstruction including larger multipoles.

The changes in the weighting of the CMB harmonic
coefficients used in the lensing reconstruction in the
presence of experimental noise—even with CMB-S4
sensitivity—reduces the sharp features observed in the
results of Fig. 6, and the total Nð3=2Þ

L gets suppressed
compared to the cosmic-variance limit case. Reducing the
cutoff in power for the reconstruction to lmax ¼ 3000 has a
net effect of making the bias practically disappearing,
despite that the individual LSS and PB effects can be of
order of the error bar. In Fig. 7 we show a comparison of the
SNR obtained using these two cutoffs in CMB multipoles.
As can be seen in this figure, we observe a rapid increase in
the bias amplitudes between the two cases, in particular in
the temperature reconstruction channels. Using polariza-
tion-only lensing reconstruction and comparing the results
with temperature-only reconstruction can be appropriate

tools to identify and potentially mitigate the Nð3=2Þ
L biases.

Since the TTTT reconstruction is the most sensitive for the
CMB-S4 experimental configurations for L≳ 1500, drop-
ping this reconstruction channel has an important effect in
terms of the sensitivity of the reconstruction, and thus,
using a different cutoff in power for the temperature-based
and polarization-based reconstruction might be an effective

strategy to minimize the effect of Nð3=2Þ
L biases while

mitigating the loss of sensitivity. The contamination by
unresolved extragalactic foreground residual might in any
case prevent the use of multipoles l ≫ 3000 of temperature
anisotropies. The significance to measure the bias in the
lensing power spectrum, when combining all bins, is
summarized in Fig. 8 in terms of the cumulative signal-
to-noise ratio for different CMB multipole cutoffs.

Finally, we measure the effect of the Nð3=2Þ
L in the cross-

correlation power spectrum between the reconstructed

FIG. 6. Dependence of the Nð3=2Þ
L bias for the minimum-

variance lensing estimator on the maximum lensed CMB multi-
pole used in the reconstruction algorithm in the limit of no
instrumental noise. The shaded areas show the uncertainty on the
bias, computed from the dispersion of the 100 simulations.

FIG. 7. The bias in the reconstructed minimum-variance, TTTT
and EBEB lensing power spectrum for an instrument with
1.4 μK-arcmin white noise in polarization, 1 arcmin beam,
and including only lensed CMB multipoles up to lmax ¼ 3000
in the reconstruction. For comparison the signal-to-noise ratios
of the biases in this case (lmax ¼ 3000) and the case with
lmax ¼ 4000 (cf. Fig. 5) are shown in the bottom two rows.
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lensing potential and an external large-scale structure
tracer. The bias of the cross-spectrum, induced by a
nonzero CMB lensing potential bispectrum, is mainly
caused by the correlation of the external large-scale
structure tracer with the second-order response of the
reconstructed lensing potential to the true lensing potential.
For the sake of simplicity we limit our analysis to the case
of the cross-correlation with a perfect tracer of the CMB
lensing potential, i.e., the lensing potential directly
extracted from the FCC18 simulations. Since in the
cross-correlation case the tracer is almost uncorrelated
with the CMB, there are fewer contractions of the matter

field that contribute to the Nð3=2Þ
L bias, and thus we should

see a reduction in the amplitude of Nð3=2Þ
L by a factor of

roughly 2 with respect to the bias on the autospectrum, in
particular for the TTTT estimator [33]. We verify that this
prediction holds, as we show in Fig. 9. A similar level of
suppression is observed also for other estimators, and, in
particular, for EBEB we saw a reduction of more than a
factor of 4 for L≳ 2000. This analysis might suggest that
cosmological constraints based on cross-correlations of
CMB lensing with an external tracer sufficiently correlated
with the CMB lensing potential might be less biased if we

cannot account for the Nð3=2Þ
L bias in the autospectrum

analysis. However, we stress that due to the distinctive
impact of the post-Born term with respect to the LSS one in
the case of CMB lensing, the overall variation in amplitude
of the bias in cross-correlation might change significantly if
a tracer of structures at lower redshift is considered.
Nevertheless, these techniques might be affected by other
types of biases, such as those due to the galaxy intrinsic
alignments in the case of galaxy weak lensing [76–78].

In addition, the tracers at lower redshift are in fact more
sensitive to the non-Gaussianity due to matter nonlinearity
and less sensitive to post-Born effects. Therefore we expect
to observe an increase in the N3=2 bias as the cancellation
between LSS and post-Born becomes less effective in
this case. We leave the investigation of this topic to future
work.

C. Consistency checks

To ensure that the reported biases were not caused by a
mismatch in the CMB and lensing potential power spectra

and therefore are not residual Nð0Þ
L and Nð1Þ

L biases, we
check the consistency of our measurements with an

alternative method to extract the Nð3=2Þ
L bias. In particular,

we compare the spectra

ΔCϕϕ;1
L ½κX� ¼ hĈϕϕ

L ½κX� − Ĉϕϕ
L ½κG�i100 sims; ð34Þ

ΔCϕϕ;2
L ½κX� ¼ 1

2
hĈϕϕ

L ½κX� − Ĉϕϕ
L ½−κX�i100 sims; ð35Þ

where X ∈ fF;Rg. The averaging in Eq. (34) is performed
over the 100 realizations of lensed CMB derived with the set
of simulations including a Gaussian convergence, and the
averaging in Eq. (35) is computed over the 100 realizations

FIG. 8. Summary of cumulative signal-to-noise ratio of the bias
for an instrument with 1.4 μK-arcmin white noise in polarization,
1 arcmin beam, and different CMB multipole cutoffs lmax,
comparing temperature (T), polarization (P), and minimum-
variance (Tþ P) estimators.

FIG. 9. Top: Nð3=2Þ
L bias for the reconstructed CMB lensing

potential autospectrum (dashed lines) and cross-correlation with
the input CMB lensing potential of FCC18 simulations (solid
lines) for a CMB-S4 experiment and a cutoff in power lmax ¼
4000 for the lensing reconstruction with the temperature esti-

mator. Bottom: The ratio of the Nð3=2Þ
L biases for the cross-

correlation and autopower spectrum compared with the leading
order predictions of [33] (dashed black lines).
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of lensed CMB lensed with the non-Gaussian convergence
κX. We have that

hĈϕϕ
L ½κX�i ≈ Nð0Þ

L ½CCMB
l � þ Cϕϕ

L

þ Nð1Þ
L ½CCMB

l ; Cϕϕ
L �

þ sgnðκXÞNð3=2Þ
L ½CCMB

l ; Cϕϕ
L ; bϕϕϕL1L2L3

�; ð36Þ

where we denote in squared brackets the functional depend-
encies of the biases for clarity. Hence both techniques in

Eqs. (34) and (35) isolate in principle the Nð3=2Þ
L bias.

However, a mismatch of Nð0Þ
L and Nð1Þ

L between simulations
lensed with κF, κR, and κG or correlations at order higher
than the bispectrum should manifest themselves in a
discrepancy between the two spectra. We constructed null
spectra and computed Welch’s t-test statistics for both the κF

and the κR sets of simulations to test separately LSS effects
alone and LSS and PB together. In both cases we use the
spectra from the three most relevant reconstruction channels
(TTTT, EBEB, and the autopower spectrum of the mini-
mum-variance estimator (MVMV)) binned in 21 bins within
L ∈ ½30; 3000�. With this approach we test the hypothesis
that the two curves are realizations of a common underlying
distribution and quantify the validity of the assumptions used
to isolate the biases above. The variances used in the tests are
obtained from simulations. We show a subset of the null
spectra ΔCϕϕ;2

L − ΔCϕϕ;1
L in Fig. 10. The deviations from

zero in the high signal-to-noise regions are subdominant,
while small deviations at mostly large multipoles are well
within the 1σ error bar. We furthermore obtained global p
values by averaging over the bins for each estimator and find

no probability to exceed lower than 5%, as summarized in
Table I.
These results made us conclude that the simulation and

reconstruction pipeline up to the lensing power spectrum
step are internally consistent, increasing our confidence in
the results shown in Sec. V B.

VI. N3=2
L IMPACT ON COSMOLOGICAL
PARAMETER ESTIMATION

Future sensitive measurements of the CMB lensing
potential will provide important constraints on cosmologi-
cal parameters. Therefore a biased reconstruction of the
lensing potential power spectrum could affect their esti-
mation. For example, we find that at the high sensitivities
envisioned for CMB-S4 measurements the total Nð3=2Þ

L bias
could produce deviations of more than 3σ from the fiducial
value of 1 when fitting the lensing amplitude parameter
Alens. In Table II we show the fitted Alens parameter for
different CMB multipole cutoffs obtained by maximizing
the simple one-parameter likelihood defined by

−2 lnL ¼
X
L

ð2Lþ 1Þfsky
�
ln

�
CL

DL

�
þDL

CL
− 1

�
; ð37Þ

FIG. 10. The null spectra obtained taking the difference
between ΔCϕϕ;1

L and ΔCϕϕ;2
L as defined in Eqs. (34) and (35)

for the minimum-variance, TTTT, EEEE, and EBEB lensing
reconstruction in the limit of no instrumental noise. The recon-
structions on κF-lensed CMB fields are shown in purple (LSS
only contribution), the same with κR are shown in orange [LSS
and PB (total) contributions]. The error bars show the uncer-
tainties as measured from the scatter in the simulations while the
shaded area show the expected statistical uncertainty in the
respective bin.

TABLE I. Global p values of null spectra of noiseless con-
figuration and lmax ¼ 3000.

p Value [%] LSS Total

MVMV 13.8 47.2
TTTT 38.9 52.7
TTTE 16.0 17.8
TTEE 87.8 96.0
TTTB 76.3 87.5
TTEB 67.6 99.6
TETE 43.6 47.6
TEEE 5.3 9.2
TETB 97.8 86.0
TEEB 83.6 98.9
EEEE 30.5 27.9
EETB 21.7 20.7
EEEB 46.1 49.0
TBTB 45.2 20.4
TBEB 60.1 73.4
EBEB 17.3 51.5

TABLE II. Fitted Alens parameter of the biased reconstructed
lensing power spectrum with a fiducial value of Alens ¼ 1 for
temperature-only (T), polarization-only (P), and minimum vari-
ance (Tþ P) lensing estimators and no noise in the CMB. Cases
with significant bias are marked in bold.

Total bias lmax ¼ 3000 lmax ¼ 4000 lmax ¼ 5000

T 0.997� 0.006 0.988� 0.003 0.973� 0.002
P 1.005� 0.002 1.009� 0.001 1.005� 0.001
Tþ P 1.004� 0.002 1.004� 0.001 0.992� 0.001
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where CL¼Alens×Cfid
L þNϕϕ;tot

l , DL¼Cfid
L þNϕϕ;tot

l þNð3=2Þ
L ,

and Nϕϕ;tot
L ¼ Nð0Þ

L þ Nð1Þ
L .

Because of the nontrivial scale dependence of the N3=2
L

bias, we expand our cosmological parameter estimation
study to the exploration of a broader parameter space
using Markov chain Monte Carlo (MCMC) techniques.
The goal is to quantify the significance of possible biases in
parameters like the total neutrino mass, Mν, or the
amplitude of primordial inflationary perturbations, As, if
N3=2

L is unaccounted for in the power-spectra modeling and
cosmological parameters sampling. For this purpose we use
the publicly available package MONTEPYTHON9 [79,80]
based on the Metropolis-Hastings sampling algorithm. In
this analysis we consider the CMB and lensing likelihood
for a set of parameters θ given the measured power spectra
of CMB temperature, E-modes, and lensing potential as
Gaussian in the respective fields. Under these assumptions
the likelihood function is given by (e.g., [81])

−2 logLðθjĈÞ ¼
X
l

ð2lþ 1Þfsky
�
ln
jClj
jĈlj

þC−1
l Ĉl − 3

�
;

ð38Þ

where the covariance matrix for the fiducial model Ĉl and
the theoretical signal Cl are constructed as

Cl ¼

0
BB@

CTT
l þ NTT

l CTE
l CTϕ

l

CTE
l CEE

l þ NEE
l 0

CTϕ
l 0 Cϕϕ

l þ Nϕϕ;tot
l

1
CCA;

where NTT
l and NEE

l are the white noise power spectra
for the temperature and the E-modes and Nϕϕ;tot:

l ¼
Nð0Þ

L þ Nð1Þ
L . All these quantities are computed assuming

the fiducial cosmology with CMB-S4 sensitivities and
considered to be independent of the cosmological param-
eters in order to simplify and speed up the sampling. In the
evaluation of the fiducial Ĉl we use the biased lensing

potential power spectrum, C̃ϕϕ
L , which includes the Nð3=2Þ

L
bias measured in the simulations and depends on the
cosmological parameters of the fiducial model as

C̃ϕϕ
L ≡ Cϕϕ

L ½θfid� þ Nð0Þ
L þ Nð1Þ

L þ Cϕϕ
L ½θfid�
Cϕϕsims
L

Nð3=2Þ
L : ð39Þ

This definition allows one to mitigate the impact of the
shot-noise term and the difference in the modeling of the
nonlinear evolution between the simulation results and
the Boltzmann solvers that typically employ the Halofit
fitting formulas [69]. This enables us to have a consistent

modeling of nonlinearity between the fiducial and the fitted
model, reducing the chance to obtain spurious results in the
fitting that are driven by the differences in the CMB lensing
potential power spectrum modeling. We note, however, that
the uncertainties in the modeling of nonlinearity on the
CMB lensing power spectrum reach the 10%–15% level on
the scales considered in this work [23,69] and might
become non-negligible. In the construction of the covari-
ance we neglect the ϕE correlation because it is confined at
very large angular scales and carries little information on
the parameters of interest in our analysis. For the sake of
simplicity we do not include the B-mode power spectrum in
Ĉl and Cl to avoid the need to model the non-Gaussian
covariance between CBB

l and Cϕϕ
L [82]. We note that more

optimal formalisms to deal with the non-Gaussian corre-
lations between CMB and lensing power spectra have been
discussed in the literature [47,83,84]. As the present
analysis is intended to quantify biases on cosmological
parameters estimation due to mismodeling of the lensing
potential bias rather than to provide an accurate forecast of
future CMB experiment constraints, the approximations
adopted here are not expected to affect our conclusions at
the level of accuracy considered in this work.
In the likelihood construction we assume a fiducial

ΛCDM cosmology taken from Planck 2015 results
[85,86] devoid of massive neutrinos, while we allow for
a single neutrino to be massive in the parameter fit. We
include angular scales 30 ≤ l ≤ 3000 and assume an
observed sky fraction fsky ¼ 40% to mimic a CMB-S4-
like survey with 1.4 μK-arcmin white noise in polarization
and a 1 arcmin beam size in the likelihood. We summarize
the values of our fiducial cosmology as well as the details of
the priors adopted for the cosmological parameters sampled
in our analysis in Table III.
We neglect the effects of the LSS non-Gaussianity and

post-Born corrections on the lensed CMB TTand EE power
spectra since the cumulative signal-to-noise ratio for these
corrections is below the detection thresholds even for
CMB-S4 sensitivity. In Fig. 11 we show the 2D posteriors
obtained for the parameter combinations of Ωch2,
ln ð1010AsÞ, and Mν for the minimum-variance lensing
estimator and CMB-S4 sensitivity. The figure shows an
example of the main biases in the parameter estimation

TABLE III. The cosmological parameters from Planck 2015
[85,86] together with their 1σ proposal scale or parameter bounds
used in the cosmological parameter inference.

Ωbh2 0.02225� 0.00016
Ωch2 0.1198� 0.0015
τ 0.058� 0.012
ln 1010As 3.094� 0.034
ns 0.9645� 0.0049
100θs 1.04077� 0.00032
Mν [meV] [0, 300]9http://baudren.github.io/montepython.html.
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induced by different sources (LSS, PB, total) of unac-

counted Nð3=2Þ
L bias. Similar to what was observed in

Sec. V B, the compensating effect between the LSS and
PB biases observed at the level of the lensing power
spectrum is also visible in the cosmological parameter
estimation, where we find a cancellation of the parameter
biases when both these terms are included. Each source of

Nð3=2Þ
L bias might considerably affect the estimation of the

cosmological parameters when considered alone at the

level of CMB-S4 sensitivity. Assuming we can model these
biases analytically we need to include both the terms in the
modeling as the inclusion of only one of the LSS or PB
term would lead to an overcorrection of the effect. This is

clearly visible in the case the LSS-inducedNð3=2Þ
L for As and

Mν, where the large negative bias over a large range of
scales in the power spectrum causes a significant false
detection of a 169þ50

−30 meV neutrino mass. The cancellation
due to post-Born corrections mitigates this bias, reducing it
to 83þ40

−50 , and hence it is still compatible with zero neutrino
mass only at the 2σ level. The same analysis carried out

adding only the Nð3=2Þ
L biases of polarization-based estima-

tors indicates that using these reconstruction channels leads
to more robust constraints on cosmological parameters,
even when including the smaller angular scales in the
lensing reconstruction. In Table IVand Fig. 12 we show the
best-fit values and marginalized posteriors obtained includ-

ing the total Nð3=2Þ
L computed varying the CMB multipole

cutoff used in the reconstruction for the two different cases
including and excluding temperature data when forming
the minimum-variance estimator. Including multipoles up
to l ¼ 5000 in the reconstruction leads to a neutrino mass
bias larger than 1σ, even after excluding temperature data.
Nevertheless, on the level of the parameter estimation we
can observe that the polarization lensing estimator is more
robust to these kinds of biases, which can be attributed in
part to the slightly worse reconstruction lensing noise when
excluding small-scale temperature data and in part to the

smaller amplitude of the Nð3=2Þ
L bias for polarization

estimators. We note, however, that the error on the total
neutrino mass does not decrease significantly with decreas-
ing noise in the CMB lensing potential power spectrum.
This is due to the degeneracy of the total neutrino mass with
the As parameter and the sensitivity of the constraint on the
latter (or, more precisely, on the combination Ase−2τ). Since
we are assuming future data from ground-based CMB-S4

FIG. 11. The 2D posteriors for the cold dark matter density,
Ωch2, the amplitude of primordial inflationary perturbations, As,
and the neutrino mass, Mν, including biases from LSS non-
linearities and post-Born effect in Ĉϕϕ

L , reconstructed using the
minimum variance estimator, CMB modes up to lmax ¼ 4000,
and CMB-S4 experimental specifications.

TABLE IV. The deviation of the best fit from the fiducial values (bias) and 68% confidence level (1σ) uncertainties for the cold dark
matter density, Ωch2, the optical depth to reionization, τ, the amplitude of primordial inflationary perturbations, As, and the neutrino
mass, Mν. A configuration with 1.4 μK-arcmin white noise and 1 arcmin beam with different CMB multipole cutoff and estimator
combinations was used. We show biases using minimum-variance lensing reconstruction including CMB temperature (Tþ P) and using
polarization only (P). Upper limits are given in terms of 95% confidence level.

lmax ¼ 3000 lmax ¼ 4000 lmax ¼ 5000 lmax ¼ 5000þ DESI

Bias 1σ (stat.) Bias 1σ (stat.) Bias 1σ (stat.) Bias 1σ (stat.)

Tþ P Ωch2 × 105 25 85 14 88 −45 85 −66 55
τ × 103 5 9 9 8 14 9 9 10

ln ð1010AsÞ × 103 11 15 18 18 27 16 16 14
Mν [meV] 0 79 90 60 110 50 0 55

P Ωch2 × 105 16 84 26 82 25 80 −37 56
τ × 103 6 9 7 10 7 9 8 9

ln ð1010AsÞ × 103 12 16 13 16 14 15 15 16
Mν½meV� 0 75 0 84 65 60 0 44
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instruments, which are limited to multipoles l ≥ 30, we are
not able to push the uncertainty on τ to the cosmic-variance
limit. However, accessing the reionization bump at l ≤ 20
down to cosmic-variance precision could be achieved by
proposed all-sky polarized CMB surveys such as CLASS
[87], CORE [81], LiteBIRD [88], or PIXIE [89]. This
would provide a tighter constraint on τ [90] and would lead
to the expected decrease in statistical uncertainty with
increasing multipole cutoff in the lensing reconstruction.
Furthermore, a Nð3=2Þ bias in the lensing potential estima-
tion would bias As and τ high. We observe that being able
to include the constraining power of the reionization bump
at large scales would reduce the bias on τ, and consequently
significantly reduce the bias on the total neutrino mass.
This would occur at the expense of a ≤ 1 − σ total bias on
cold-dark matter density Ωm and a negligibly larger χ2

goodness of fit.

VII. CONCLUSIONS

In this work we investigate the properties of higher-order
correlations of the CMB lensing deflection field arising
from nonlinear evolution of the matter as well as post-Born
corrections, modeled through numerical simulations, and
their impact on the CMB lensing potential reconstruction

using quadratic estimators (Nð3=2Þ
L bias). We validate the

numerical simulations used to model these effects com-
paring the expected corrections on the lensed CMB power
spectrum due to both LSS nonlinearity and post-Born
corrections modeled analytically, finding a good agree-
ment. We find that both the matter nonlinearity and
post-Born non-Gaussianity cause significant biases of the
reconstructed CMB lensing potential power spectrum.
However, when these effects are analyzed jointly, the

amplitude of the total Nð3=2Þ
L bias is greatly reduced

both on the CMB lensing autospectrum and in the

cross-correlation. This is directly related to the different
shape and sign properties of the post-Born bispectrum and
the matter bispectrum. The cancellation is more effective in
the presence of experimental noise. Despite this fact, we
find that the estimation of the Alens parameter from the
CMB lensing potential could be biased by more than 3σ for
future high-sensitivity experiments like CMB-S4.
We further perform a MCMC analysis to evaluate the

impact of the residual Nð3=2Þ
L bias on the estimation of other

cosmological parameters at the CMB-S4 sensitivity. We
find that the best-fit value of cosmological parameters such

asMν and As could be biased due to theN
ð3=2Þ
L bias by up to

2σ, but the significance of these biases greatly depends on
the type of quadratic estimator and the maximum multipole
used for the lensing reconstruction. Using multipoles l ≤
3000 for the lensing reconstruction and parameter fitting
would not produce any significant bias on cosmological
parameters. However, the inclusion of smaller angular
scales in the lensing reconstruction in order to improve
the sensitivity, will also bring the lensing reconstruction in
a regime where the details of the cancellation of the post-
Born and LSS term becomes trickier and less effective. As a
consequence, the total bias due to LSS nonlinearity and
post-Born effects, if unaccounted for, becomes more
important. In general we find that the CMB temperature-
based reconstruction channels are more prone to these
biases due to their higher sensitivity to small scale lenses. In
this regime, however, foreground contaminations might be
the major limiting effects [92–94]. Using only polarization-
based estimators for the lensing reconstruction usually
leads to cosmological constraints which are more robust

to both the foreground and Nð3=2Þ
L effects. The latter, in

particular, is caused by a consistently more effective
cancellation of LSS and post-Born effects. As an illustrative
case, we perform the cosmological parameter analysis
including multipoles up to l ¼ 5000. In this case we find

FIG. 12. The one-dimensional posteriors for the total neutrino mass Mν for different CMB multipole cutoffs used in the lensing
reconstruction. lmax ¼ 3000 case is shown as a solid line, while lmax ¼ 4000 and lmax ¼ 5000 are shown as dashed and dotted lines,
respectively. The left figure shows the results obtained including all reconstruction estimators including temperature (Tþ P), while the
right figure uses only polarization-based estimators (P). Each figure also includes the posterior after including a prior using DESI baryon
acoustic oscillations data [91] in the sampling in green, for the most extreme case of lmax ¼ 5000.
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a shift of the likelihood peak causing a detection of a
nonzero neutrino mass at the 2σ level when including all
the lensing reconstruction channels. The inclusion of
external data sets such as DESI baryon acoustic oscillations
seems to help remove the biases, though 1σ tensions might
still remain. Nevertheless, based on the results above, we
could expect inconsistencies between the inferred neutrino

mass estimates from different data sets, if the Nð3=2Þ
L bias is

not accounted for in the parameter estimation for future,
high-sensitivity/high-resolution CMB experiments. Finally,

we find that the Nð3=2Þ
L bias in the cross-correlation with a

perfect tracer of the CMB lensing potential is reduced by a
factor of roughly 2 with respect to the bias on the
autospectrum, in agreement with the prediction of [33].
The bias observed in cross-correlation with lower-redshift
tracers might, however, be different due to the different
weight that the post-Born term has for lower redshift
probes, but we leave the investigation of this aspect to
future work.
During the final stage of this work we compared our

results on the Nð3=2Þ
L -bias with those of [72], who also

performed a similar analysis using a CMB lensing field
extracted from different N-body simulations. Despite their
N-body simulations differing in resolution and box size,
and the simulated sky area used for the lensing
reconstruction being smaller than the full-sky results of
our work, we find similar conclusions. This suggests that
despite some quantitative conclusion, this work might still
be simulation dependent and more complex physical effects

are excluded from our modeling, the higher-order effects in
CMB lensing should be treated carefully in future analyses
in order to exploit the full scientific capacity of a CMB-S4-
like observation.
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