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We study and analyze the dynamic properties of both canonical and noncanonical warm inflationary
models with dissipative effects. We consider different models of canonical warm inflation with different
dissipative coefficients and prove that the behavior at infinity of the quadratic dissipative model distinctly
differs from that of the constant dissipative model, which means that quadratic dissipative coefficient
increases the possibility of the occurrence of inflation. We also show that the different choice of
combination of the parameters in noncanonical warm inflation exhibits dramatically different global phase
portraits on the Poincaré disk. We try to illustrate that the noncanonical field will not expand the regime of
inflation, but it will increase the possibility of the occurrence of inflation as well and the duration of
inflation. Then, by dynamic analysis, we can exclude several inflationary models, like the warm inflation
model, with negative dissipative coefficients, and explain that the model without potential is almost
impossible. With relevant results, we give the condition when reheating occurs.
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I. INTRODUCTION

Inflation is an extremely successful model that provides
a graceful method to overcome the shortcomings of the
standard cosmological model, like the horizon problem and
the flatness problem [1], which is consistent with the
cosmological observations of the large-scale cosmic micro-
wave background [2,3] and large-scale structure [4,5]. In
this simplest and elegant model, the inflation can be
described by a special period when our Universe expands
rapidly driven by a nearly constant energy density arising
from the potential of a scalar field [6,7].
With the success of inflationary scenario, series of

candidate scenarios have been established, among which
warm inflation is a model that reckons the early Universe
has a moderate temperature instead of being cold [1,8].
From the point of view of this scenario, particles interact
with other fields and decay to other particles, which leads to
an effect of a friction term to describe this decay phe-
nomenon during inflation [9,10]. As a result, the primary
source of density fluctuations comes from thermal fluctua-
tions [11,12] rather than from quantum fluctuations.
However, it was realized a few years later that the idea
of warm inflation was not easy to realize in concrete models
and, even simply, not possible [13,14]. Soon after, suc-
cessful models of warm inflation have been established, in
which the inflaton indirectly interacts with the light degrees

of freedom through a heavy mediator field instead of being
coupled with a light field directly [15–17]. The warm
inflation model has been widely studied by a series of
methods, like field theory method [18] and stability
analysis [19,20]. Dynamic analysis is also an effective
method to analyze the dynamical properties of the warm
inflationary system [21–23].
Another simple way to establish the inflationary scenario

involves extending the Lagrangian density from a canonical
kinetic term to a noncanonical one [24,25]. The nonca-
nonical inflationary scenario has some interesting features,
such as that the equations of motion remain second order
and that the slow-roll conditions become easier to realize
compared to canonical inflationary theory [24]. Most
noncanonical models can drop the tensor-to-scalar ratio
considerably [26], and stability analysis shows that many
such models have stable attractors [27]. The work under the
frame of noncanonical inflation has been done numerous
times [28–31]. Recently, relevant researches have shown
that noncanonical warm inflationary models still satisfy the
stability condition as long as each model controls param-
eters at a moderate stage [19], based on which noncanoni-
cal inflationary models are being extended to the warm
scenario, such as the warm-Dirac-Born-Infeld model [26],
warm k-inflation [32,33], and so on [34,35].
In this paper, we attempt to illustrate the global dynamic

behaviors of both canonical and noncanonical warm
inflation on planar phase space. We start from the condition
of canonical inflation and obtain its singularities at the
original point and infinite region in the presence of different
dissipative coefficients. Based on the result from the
canonical one, we further study the global dynamical
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behaviors of warm inflationary models with a different
Lagrangian density of noncanonical field. Then we extend
our work to some models with more complex topological
structures in phase space.
The paper is organized as follows. In Sec. II, we derive

the basic dynamic equations from relevant physical equa-
tions and assumptions and define the inflationary region in
phase space that applies to our study. In Sec. III, we study
the canonical warm inflationary models with a constant
dissipative coefficient and a quadratic field dependent
dissipative coefficient by a mathematical method. In
Sec. IV, we focus on the global dynamic phase portraits
for different noncanonical warm inflation and get a series of
interesting and inspired results. In Sec. V, we study some
models with some strange topological structures, like limit
cycle and Hopf bifurcation, and use them to exclude some
inflationary scenarios and discuss when reheating could be
realized. In Sec. VI, conclusions and relevant further
discussions are given.

II. THE DIFFERENTIAL SYSTEM

The action of noncanonical warm inflation writes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Lnon-conðX;ϕÞ þ LR þ Lint�; ð1Þ

where X ¼ 1
2
gμν∂μϕ∂νϕ, Lnon-conðX;ϕÞ is the noncanonical

Lagrangian density of field,LR is the Lagrangian density of
radiation field, Lint is the Lagrangian density of interaction
between inflaton and other fields, and g is the determinant
of metric gμν ¼ diagð−1; a2ðtÞ; a2ðtÞ; a2ðtÞÞ. The null
energy condition and the physical propagation of pertur-
bations require that LX ≥ 0 and LXX ≥ 0 [25,27], and the
subscript X denotes a derivative with respect to X. The
equation of motion can be obtained by taking the variation
of the action:

�∂LðX;ϕÞ
∂X þ 2X

∂2LðX;ϕÞ
∂X2

�
ϕ̈

þ
�
3H

∂LðX;ϕÞ
∂X þ _ϕ

∂2LðX;ϕÞ
∂X∂ϕ

�
_ϕ −

∂LðX;ϕÞ
∂ϕ ¼ 0;

ð2Þ

where H ≡ _a=a denotes the Hubble parameter, and a dot
means a derivative with respect to the cosmic time t. The
Lagrangian density of the noncanonical field can be written
in a simple form as [31]

Lnon-conðX;ϕÞ ¼ KðϕÞX þ αX2 − VðϕÞ; ð3Þ

where KðϕÞ is called “kinetic function” and VðϕÞ is
the potential function of ϕ. The energy-momentum tensor
is written as Tμν ¼ ð∂L=∂XÞ∂μϕ∂νϕ − gμνL. Thus the
energy density and pressure are, respectively,

ρϕ ¼ KðϕÞX þ 3αX2 þ VðϕÞ; ð4Þ

pϕ ¼ KðϕÞX þ αX2 − VðϕÞ: ð5Þ

In the warm inflation model, there is a dissipation term to
describe the inflaton fields coupling with the thermal bath.
With this assumption and Eq. (3), we obtain [32]

ð3α _ϕ2þKÞϕ̈þ3Hðα _ϕ2þKÞ _ϕþΓ _ϕþ1

2
Kϕ

_ϕ2þVϕ ¼ 0;

ð6Þ

where ΓðϕÞ is the dissipative term.
In order to get the complete differential dynamic

equation, we also need two Einstein equations,

H2 ¼ 8πG
3

ðρϕ þ ρRÞ −
k
a2

; ð7Þ

2 _H þ 3H2 þ k
a2

¼ −8πGðpϕ þ pRÞ; ð8Þ

where pr ¼ 1
3
ρR is the pressure of radiation field. In this

paper, we consider only the condition of homogeneous and
flat spacetime, i.e., k ¼ 0 and X ¼ 1

2
_ϕ2. We have that ρϕ

and ρR evolve in time as [36]

_ρϕ þ 3Hðρϕ þ pϕÞ þ ΓðϕÞ _ϕ2 ¼ 0; ð9Þ

_ρR þ 4HρR − ΓðϕÞ _ϕ2 ¼ 0: ð10Þ

From Eq. (7), We can consider

ρR ¼ 3

8πG
H2 − ρϕ

¼ 3

8πG
H2 − KðϕÞX − 3αX2 − VðϕÞ ð11Þ

as the expression of ρϕ in Eq. (10). Thus, we can write _H as

_H ¼ −2H2 −
8πG
3

ðKðϕÞX − 2VðϕÞÞ; ð12Þ

where we have used pϕ and ρϕ in Eqs. (5) and (11).
Now, from Eqs. (6) and (12), together with _ϕ ¼ dϕ=dt,

we get a three-dimensional dynamic system in phase space
of ðϕ; _ϕ; HÞ. After dimensionless treatment, the differential
system becomes

_x¼ y;

ðKðxÞþαy2Þ_y¼−3ðKðxÞþαy2Þyz−ΓðxÞ−1

2
Kxy2−Vx;

_z¼−2z2−
8πG
3

�
1

2
KðxÞy2−2VðxÞ

�
: ð13Þ
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It is noteworthy that any variable or parameter in the
equations above is dimensionless and its physical meaning
will be introduced in next sections.
The physical region in three-dimensional phase space is

defined by the condition ρR ≥ 0. In general, the dissipative
coefficient is not arbitrary but with the form [21]

ΓðϕÞ ¼ Γnϕ
n; ð14Þ

where n is an even number. In this condition, those
trajectories that initially lie inside the region ρR ≥ 0 remain
holding in this region, in which the trajectories will neither
cross the region ρR ¼ 0 nor enter the region ρR ≤ 0. We
will also show in this paper that any parameter in
Lnon-conðX;ϕÞ or ΓðϕÞ must be a positive number or an
odd exponential functional form. These forms of relevant
functions provide the singularities at infinity is symmetry
about the original point, which keeps all trajectories inside
the Poincar′e disk. The inflationary region is defined by

ä
a
¼ _H þH2 > 0; ð15Þ

labeled as J , which must be located in the region with
positive curvature,

R ¼ 6ð _H þ 2H2Þ > 0; ð16Þ

labeled as R. Generally the analytical form of J is quite
complex, but sometimes there is no need to know the exact
formula. On the contrary, we can plot it on an approximate
region located in R which is tangential with J at infinity.
This approximate method is widely used in Sec. IV.
We attempt, however, to discuss the dynamic system in

two-dimensional phase space ðx; yÞ (consider z as a
constant) instead of three-dimensional. The reasons are
as follows:

(i) The trajectory of z is quite simple in which it is just a
monotone decreasing curve, so the trajectory in three-
dimensional phase space ðx; y; zÞ is the topological
equivalent to the trajectory in two-dimensional phase
space ðx; yÞ.

(ii) Numerical analysis shows that the behavior of z
trajectories evolves very slowly, so the topological
structures of them are almost the same.

(iii) What we are interested in most is the slow-roll
condition; i.e., ε≡ − _H=H2 ≪ 1, which is consistent
with the reason just above.

(iv) The dynamic system in Eq. (13) domains by
variables x and y, and the presence of z will not
generate any complicated structures, like chaos or
singular closed trajectory.

However, there are two points that we need to point out.
First, the approximation above is based on the mathemati-
cal aspect. Physically, the invariance of the Hubble param-
eter means the conservation of entropy, including that of

matter and fields on the cosmic horizon together with those
inside the horizon [37,38]. But in cosmic settings (with the
absence of a black hole), it has been formulated that said
entropy would not diminish. An ordinary way to solve this
problem is by experiencing the Hubble parameter as a
slight decrease function, i.e., HðtÞ ¼ H̄ð1 − ϵðϕÞÞ, where
ϵðϕÞ is a slight increase function with a value much smaller
than the unit during ½0;∞Þ. Now, the existence of ϵ will
make the differential dynamic system (13) a little more
complicated, but, as illustrated above, the existence of such
a slight and small valued function will not change the
topological structure on the Poincaré disk compared with
the original dynamic system. So it is enough for the case of
the constant Hubble parameter to explain the global
dynamical properties on phase space. Secondly, the dis-
sipative coefficient Γ in Eq. (14) is a function only
dependent on inflaton field ϕ. But, generally, it depends
on both inflaton field ϕ and temperature T, as an example
[39] but not established,

ΓðϕÞ ¼ Γn
ϕ2n

T2n−1 : ð17Þ

If we consider T ∝ a−1 ¼ e−Ht, the differential dynamic
system (13) is a nonautonomous system in which the vector
field Qðx; y; tÞ (see the Appendix) consists of times
explicitly. Also, the topological structure of the nonauton-
omous system is the same with the situation of the
autonomous one, since the time dependent function eHt

has no singularity on the duration ½0;∞Þ [40,41]. So, to be
convenient, we only concentrate on the condition that the
dissipative coefficient Γ is independent on T as shown in
Eq. (14). This causes us, however, to study the dynamical
system with the temperature dependent dissipative coef-
ficient Γ ¼ Γðϕ; TÞ together with the temperature depen-
dent effective potential Vðϕ; TÞ. In a word, in this paper, we
focus on the possibility and extent that the trajectories cross
through the inflationary region J , and it is enough to
illustrate these two crucial problems with the conditions of
the temperature independent dissipative coefficient and the
constant Hubble parameter.
Next we will show several examples in two-dimensional

phase space in different models.

III. DYNAMIC ANALYSIS OF
CANONICAL INFLATION

Before analyzing the dynamic properties of noncanoni-
cal warm inflation, we first consider the canonical one,
which will help us better understand the properties of both.

A. ΓðϕÞ = constant
Let us start from a simple condition. As an easy example,

we first consider the canonical warm inflation with a
constant dissipation coefficient. Set the following:
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KðϕÞ ¼ 1, α ¼ 0, ΓðϕÞ ¼ Γ0, and VðϕÞ ¼ 1
2
m2ϕ2.

Redefine the variables t → t=m, ϕ → Mpx, _ϕ → mMpy,
H → mH̄, and Γ0 → mΓ̄0. The expression of such a
dynamic dissipative system is quite simple:

�
_x ¼ y;

_y ¼ −x − ð3H̄ þ Γ̄0Þy:
ð18Þ

To be convenient, we set r≡ 3H̄ þ Γ̄0 ≫ 1.
First, we need to research the topological structure at a

singular point (0,0). The stability topological structure at
(0,0) is determined by the matrix

A ¼
�

0 1

−1 −r

�
; ð19Þ

whose eigenvalues are λ1 ¼ k1 ≪ −1 and λ2 ¼ k2 ≲ 0,
with k1k2 ¼ 1.1 According to Definition 2 in the
Appendix, the singular point (0,0) is a stable node with
a topological structure like the first pattern in Fig. 11 (see
Appendix).
Next we analyze the singularity at infinity. To study the

orbits which tend to or come from infinity, we can apply
Poincaré compactification [42], which will tell us the
topology in the infinite region. Do the coordinate trans-
formation

ϕ∶ ðx; yÞ ↦ ðu; zÞ ¼
�
y
x
;
1

x

�
: ð20Þ

This transformation maps the point on infinity to S2. Then
the system in Eq. (18) is given by2

�
_u ¼ −ðu2 þ ruþ 1Þ;
_z ¼ −zu:

ð21Þ

Set z ¼ 0 (that means the singular point at infinity), then we
get two singularities ðu1; 0Þ and ðu2; 0Þ with u1 ¼ k1 and
u2 ¼ k2. This result tells us that there are four singularities,
which are distributed along the directions y ¼ u1x and
y ¼ u2x. By studying the stability, it is easy to find that
singular points A0 and A00 on y ¼ u2x are saddles which are
symmetric with the original point of the planar ðx; yÞ,
while singular points B0 and B00 on y ¼ u1x are unstable
nodes which are also symmetric with the original point
(see Fig. 1).
The dynamic system has no more singularities on R2. If

we plot the singularities above on one finite plane, which is
also called the Poincaré disk, we obtain the global phase
portrait (also plotted on the panel in Fig. 1). The portrait
shows that the directions y ¼ u1x and y ¼ u2x are not
equivalent, i.e., that y ¼ u2x is more stable than y ¼ u1x.
So the direction along y ¼ u2x is a strong direction, while
y ¼ u1x is called a weak direction. Detailed calculations
show fðx; yÞjy ¼ u2xg ⋂ J ≠ ∅, which means that most
trajectories will cross the inflationary region.

B. ΓðϕÞ=Γ2ϕ2

Let us start from a simple condition. As an easy
example, we first consider the canonical inflation.
Now, set the following: KðϕÞ ¼ 1, α ¼ 0, ΓðϕÞ ¼ Γ2ϕ

2,
and VðϕÞ ¼ 1

2
m2ϕ2. Redefine the variables t → t=m,

ϕ → Mpx, _ϕ → mMpy, H → mH̄, and Γ2 → ðm=M2
pÞΓ̄2;

we obtain the dynamic dissipative system:

�
_x ¼ y;

_y ¼ −x − 3H̄y − Γ2x2y:
ð22Þ

FIG. 1. Global phase portrait of the dynamic system in Eq. (18).

1The system in Eq. (18) satisfies the differential equation

dy
dx

¼ −x − ry
y

¼ −1 − rðy=xÞ
y=x

:

Set k ¼ y=x at (0,0); we have

k2 þ rkþ 1 ¼ 0;

with roots

λ1 ¼ k1 ¼
−r −

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4

p

2
and λ2 ¼ k2 ¼

−rþ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4

p

2
:

2Use the relation

8<
:

_u ¼ 1
x _y −

x
y2
_x ¼ zQ

�
1
z ;

u
z

	
− uzP

�
1
z ;

u
z

	
;

_z ¼ − 1
x2
_x ¼ −z2P

�
1
z ;

u
z

	
:
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According to the slow-roll condition, set 3H̄ ≫ 1.
Obviously, (0,0) is a singularity. According to
Theorem 1 in the Appendix, the stability at (0,0) is
determined by the matrix

A ¼
�

0 1

−1 −3H̄

�
; ð23Þ

whose eigenvalues are λ1 ¼ k1 ≪ −1 and λ2 ¼ k2 ≫ −1,
with k1k2 ¼ 1, which is exactly the same as the analysis in
Sec. III A.
However, the singularities at infinity are quite different

from the those of the system in Eq. (18). Do the trans-
formation as above: u ¼ y=x and z ¼ 1=x. Thus,

�
u0 ¼ −ðΓ̄2uþ z2 þ 3H̄uz2 þ u2z2Þ;
z0 ¼ −z3u;

ð24Þ

where prime denotes the derivative with respect to τ and
dτ ¼ dt=z2. The system in Eq. (24) is not homogeneous
and the singular point (0,0) is called a semihyperbolic
singularity, so we need to do more treatment to it. Do
transformation ϕ∶u ¼ rū, z ¼ rz̄. We first perform a
transformation in the z-direction by setting ū ¼ 1, which
helps us to study the behavior along z-direction. Writing
ðu; zÞ → ðr; rz̄Þ, we get

�
r0 ¼ −ðΓ̄2rþ r2z̄2 þ 3H̄r3z̄2 þ r4z̄2Þ;
z̄0 ¼ þðΓ̄2z̄þ rz̄3 þ 3H̄r2z̄3 þ 2r3z̄3Þ: ð25Þ

So the singular point (0,0) is a saddle. Then setting ū ¼ −1,
similarly to the analysis above, we find (0,0) is also a saddle
(two saddles are located at negative direction and positive
direction, respectively). Moreover, the analysis in the u-
direction becomes simple: according to the semihyperbolic
singularity theorem [42], the vector flow on z-axis satisfies
u0 ¼ −Γ̄2u. Then, we need to put the vector fields on the
planar phase into one point. The topological structure at
(0,0) is shown on the second panel in Fig. 3, which is just a
saddle. Such method is called blowup. After the calcu-
lations above, the singularities A0 and A00 at infinity are
saddles which are located at the x-axis (because u ¼ 0).
Similarly, by performing the transformation v ¼ x=y,
w ¼ 1=y, we get another two singularities at infinity, which
are unstable nodes located at the y-axis.
Comparing Fig. 1 with Fig. 2, we conclude that the

topological structures are almost the same at the singular
point (0,0), and the structures at infinity are also nearly the
same except for their locations. That means the trajectories
in the inflationary region J evolve almost parallel to the y-
axis with y ∼ 0. This result shows us that the warm inflation
model with the dissipative coefficient ΓðϕÞ ¼ Γ2ϕ

2 dra-
matically increases the possibility of the occurrence of
inflation.

FIG. 2. Global phase portrait of the dynamic system in Eq. (22).

FIG. 3. Blowup of the singularity and local phase portrait of Eq. (24).
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IV. NONCANONICAL WARM INFLATION

From now on, we will discuss the dynamic properties of
noncanonical warm inflation. At beginning of this section,
let us start from a condition that is quite analogous with
canonical warm inflation as discussed above.

A. KðϕÞ= 1 + kϕ2, α > 0

Set the following: KðϕÞ ¼ 1þ kϕ2, α > 0, ΓðϕÞ ¼
Γ2ϕ

2, and VðϕÞ¼1
2
m2ϕ2. Redefine the variables t→t=m,

ϕ → Mpx, _ϕ → mMpy, H → mH̄, Γ2 → ðm=M2
pÞΓ̄2,

k→ k̄=M2
p, and α→ ᾱ=ðm2M2

pÞ. According to Theorem 2
in the Appendix, the expression of such a dynamic
dissipative system is written as(
x0 ¼ yð1þ k̄x2 þ 3ᾱy2Þ;
y0 ¼ −x − 3H̄y − 3H̄ k̄ x2y − Γ̄2x2y − k̄xy2 − 3H̄ ᾱ y3;

ð26Þ

where prime denotes the derivative with respect to τ and
dτ ¼ dt=ð1þ k̄x2 þ 3ᾱy2Þ. Using Theorem 1 in the
Appendix once again, it is easy to get the conclusion that
the topological structure of the system in Eq. (26) at the
original point is the same as the one in the system of
Eq. (18) or the system of Eq. (22), which are stable nodes,
and the topological structures at infinity appear identical to
the ones in the system of Eq. (22), which are semi-
hyperbolic singularities located at the x-axis and the
y-axis. So the global phase portrait is almost the same
as the portrait in Fig. 2.

B. KðϕÞ= kϕ2;α > 0

Now, let’ u consider a more complex model. Set
the following: KðϕÞ ¼ kϕ2, α > 0, ΓðϕÞ ¼ Γ2ϕ

2,
and VðϕÞ ¼ 1

4
λϕ4. Redefine the variables t → t=Mp,

ϕ→Mpx, _ϕ→M2
py,H → MpH̄, Γ2 → Γ̄2=Mp, k → k̄=M2

p,
α → ᾱ=M4

p, and V0 ¼ λ; we obtain

�
x0 ¼ k̄x2yþ 3ᾱy3;

y0 ¼ −3H̄ k̄ x2y − Γ̄2x2y − 3H̄ ᾱ y3 − k̄xy2 − x3:
ð27Þ

Next it will be seen that there exist completely different
topological structures by choosing different combinations of
parameters in the system of Eq. (27).

1. Case 1

Set the following: k̄ ¼ H̄ ¼ Γ̄ ¼ V0 ¼ 1, and ᾱ ¼ 1=3.
We have

�
x0 ¼ x2yþ y3;

y0 ¼ −4x2y − y3 − xy2 − x3:
ð28Þ

The singularity at the original point (0,0) is a nonelemen-
tary one, and the expression of the blowup map is given by

φ∶ ðx; yÞ → ðx; uxÞ; ð29Þ

which is also called Briot-Bouquet transformation that
maps (0,0) to the xOu planar. Thus,

�
dx=dη ¼ uxð1þ u2Þ;
dy=dη ¼ −ðu4 þ u3 þ 3u2 þ 4uþ 1Þ≡ fðuÞ; ð30Þ

where dη ¼ x2dτ. There are two singularities in the system
of Eq. (30): (0, u1 ¼ −1.33) and (0, u2 ¼ −0.29). The
linear matrix A reads

�
u1ð1þ u21Þ < 0 0

0 f0ðu1Þ > 0

�
ð31Þ

and

�
u2ð1þ u22Þ < 0 0

0 f0ðu2Þ < 0

�
: ð32Þ

So ð0; u1Þ is a saddle, while ð0; u2Þ is a stable node whose
topological structures on xOu are plotted on the left panel
in Fig. 4. Then we can obtain the vector fields near (0,0) on
the coordinate xOy by map φ−1, which is drawn on the
second panel. Next we turn to the analysis of the singu-
larities at infinity of the system in Eq. (28).
Using coordinate transformation in Eq. (29), we have

�
du=dη ¼ −ðu4 þ u3 þ 3u2 þ 4uþ 1Þ;
dz=dη ¼ −uzð1þ u2Þ; ð33Þ

where dη ¼ dτ=z2. Similar to the analysis above, we
immediately see that singularities A0 and A00 are saddles
that are located at y ¼ u2x, while B0 and B00 are unstable
nodes that are located at y ¼ u1x.
Finally, we get the global phase portrait of the dynamic

system in Eq. (28) in Fig. 6. From Eq. (15), we get the
region with positive curvature R ¼ fðx; yÞjy2 ≤ x2g,
which is the same as the one in Sec. III B. In other words,
the inflationary regions are almost the same as each other.
The direction y ¼ u2x is repelling, while y ¼ u1x is an
attracting direction. So trajectories leave from the direction
y ¼ u2x and converge along the direction y ¼ u1x.
Meanwhile, fðx; yÞjy ¼ u1xg ⋂ J ≠ ∅, which means
the orbit evolves for a longer duration in the inflationary
region J compared to the canonical warm inflationary
scenario.

2. Case 2

Set the following: H̄ ¼ 1, ᾱ ¼ 1=3, k̄ ¼ 1=4, Γ̄2 ¼ 5=4,
and V0 ¼ 3=2. The dynamic system is written as
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(
x0 ¼ 1

4
x2yþ y3;

y0 ¼ −2x2y − y3 − 1
4
xy2 − 3

2
x3:

ð34Þ

The blowup at the original point is

8<
:

dx=dη ¼ ux
�
1
4
þ u2

	
;

du=dη ¼ −ðuþ 1Þ2
�
u2 − uþ 3

2

	
:

ð35Þ

The blowup topological structure is a little peculiar: any
trajectory crossing u ¼ u0 ¼ −1 is tangential to it (see left
panel in Fig. 5). Transformation φ−1 means the trajectories
near (0,0) cross the line y ¼ −x and are tangential to it (see
right panel in Fig. 5). However, singularities A0 and A00 that
are located at infinity exhibit a different stability, neither
saddles nor nodes, but are called saddle-nodes instead
(see Fig. 7).

FIG. 5. Blow up of the singularity and local phase portrait of Eq. (34).

FIG. 6. Global phase portrait of the dynamic system in Eq. (28).

FIG. 4. Blowup of the singularity and local phase portrait of Eq. (30).

DYNAMIC ANALYSIS OF NONCANONICAL WARM INFLATION PHYS. REV. D 98, 043510 (2018)

043510-7



The line y ¼ u0x lies inside the regionR ¼ fðx; yÞjy2 ≤
6x2g and it must intersect with inflationary region J . As a
result, there exist trajectories crossing through the infla-
tionary region, but the condition is weaker than it is in
Sec. IV B 1 because any trajectory will cross the line
y ¼ u0x but it is not a strong attracting direction.

3. Case 3

Set the following: H̄ ¼ 1, ᾱ ¼ 1=3, k̄ ¼ 1=4, Γ̄2 ¼ 5=4,
and V0 ¼ 2. The corresponding system with blowup reads

�
x0 ¼ 1

4
x2yþ y3;

y0 ¼ −2x2y − y3 − 1
4
xy2 − 2x3;

ð36Þ

with blowup

8<
:

dx=dη ¼ ux
�
1
4
þ u2

	
;

du=dη ¼ −
�
u4 þ u3 þ 1

2
u2 þ 2uþ 2

	
:

ð37Þ

Obviously, there is no singular point in Eq. (37), which
means vector fluidswill enter the original point on coordinate
xOy along no special direction,with the topological structure
as something like a stable focus that is plotted on the third
panel of Fig. 11. By the transformation in Eq. (20), we also
see that there is no singularity at infinity as well. The global
phase portrait is plotted in Fig. 8.
Let us have a brief conclusion of this section. It has

been seen that the choice of the noncanonical Lagrangian
action determines the behaviors of the dynamic system. In
Sec. IVA, the topological structure in phase planar is
equivalent to the one in canonical warm inflation with the
dissipative coefficient Γ ¼ Γ2ϕ

2. In Sec. IV B, on the other
hand, the topological structure is determined by the choice

of the combination of parameters. Although we only plot
the portraits of three conditions, there also several other
global phase portraits like three or four damped directions
towards the original point. However, there always exist the
phase trajectories that cross the inflationary region, as long
as we choose an appropriate initial condition. Finally, based
on the accurate analysis above, we reckon that the condition
in Sec. IV B 1 is closer to the physical reality of the
inflation model.

V. OTHER PHASE TRAJECTORY STRUCTURES
OF THE WARM INFLATION MODEL

In the previous sections, we introduced both canonical
and noncanonical warm inflationary models whose attrac-
tors are all located at the original point. In this section, we
will introduce two models with complex topological
structures together with different attractors.

A. Limit cycle

Regularly, the dissipative coefficient in the warm infla-
tion model is a positive constant or a function larger than
zero, and theoretical calculations have also excluded such
conditions that dissipative coefficients range less than zero
[39,43]. On the other hand, the thermodynamic principle
requires a positive dissipative coefficient which is sup-
ported by relevant references as well, where a negative one
means a violation of the second law of thermodynamics.
The second law of thermodynamics in cosmology implies
that there are constraints on the effective equation of state
of the Universe, in the form of energy conditions, which is
obeyed by many known cosmological solutions [44,45]. In
semi–de Sitter space, the entropy of a perfect inviscid fluid
satisfying the dominant energy condition is proved to be
nondecreasing, while, if the fluid is viscous, the generation

FIG. 7. Global phase portrait of the dynamic system in Eq. (34). FIG. 8. Global phase portrait of the dynamic system in Eq. (36).
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of entropy ensures that the second law of thermodynamics
remains followed [46,47].
Now, we will show this conclusion by dynamical system

analysis as well. Redefine variables t → −t, Γ2 → −Γ̄2 with
Γ̄2 > 0, which is similar to the transformation in (22). The
system is a nonlinear oscillation equation

d2x
dt2

− eð1 − rx2Þ dx
dt

þ x ¼ 0; ð38Þ

with e≡ 3H̄ and r≡ Γ̄2=3H̄. Equation (38) is just the
famous von der Pol equation. According Theorem 3 in the
Appendix, we find the system in Eq. (38) satisfies all
the conditions, which means the system has a stable limit
cycle, or the ω limit set of the system is a limit cycle.
However, we should notice that the result above is obtained
under the transformation t → −t with the opposite time
evolutionary orientation, which means the limit cycle of the
initial dynamic equation of warm inflation

ϕ̈þ 3H _ϕþ ΓðϕÞ _ϕþ Vϕ ¼ 0 ð39Þ

is not stable at all; in other words, the original point (0,0)
and infinite region are the attractors of the system in
Eq. (39) instead of a limit cycle (see Fig. 9). Obviously,
there can not exist the inflationary region in such a model
and it represents barely any physical meaning in both
theoretical practice and observational practice.

B. Bifurcation

Consider the potential function VðϕÞ ¼ 1
4
ðϕ2 − σ2Þ2,

which is widely used in the models of symmetry breaking
in gauge field theory [48] and reheating theory in cosmol-
ogy [49,50]. Set the following: KðϕÞ ¼ 0, ᾱ ¼ 1=3, λ ¼ 2,

H̄ ¼ 1, and Γ̄2 ¼ 1, which is similar to the parameters in
Sec. IV B. The dynamic system reads

�
x0 ¼ y3;

y0 ¼ −y3 − x2y − 2xðx2 − σ̄2Þ; ð40Þ

where σ̄ ≡ σ=Mp. Now, assume σ̄2 < 0 (mathematical
respect), the singular point (0,0) is a strong focus. If
σ̄ ¼ 0, the singular point (0,0) is a week focus that is
sensitive to a small perturbation, while, when σ̄2 > 0, there
are three singular points on the finite region, ð�σ̄; 0Þ and
(0,0). We immediately see that (0,0) is an unstable
singularity while two stable focuses ð�σ̄; 0Þ (see the
analysis in Sec. IV B 3) arise near the singularity (0,0).
Such a singularity is called the Hopf bifurcation point
[51,52], and its global dynamical phase portrait is plotted
in Fig. 10.
Now, let us have a further discussion. In the reheating

model, it suggests that the field oscillates at the bottom of
the potential function (at �σ̄). However, as discussed
previously, some models (dependent on the choice of the
parameters) will not oscillate at all, but damp to the bottom
directly, which means very few new particles will generate
during this period. So reheating appears only under the
condition with either a small enough dissipative coefficient
(though λ is small) or with a large enough λ (though the
dissipative coefficient is small) [1,50,53].

VI. CONCLUSION AND FURTHER DISCUSSION

In this work we derive a dynamic dissipative system in
the phase space of the warm inflationary model and analyze
it in both canonical and noncanonical conditions. We first
study dynamic systems describing a canonical inflationary

FIG. 9. Global phase portrait of the dynamic system in Eq. (39). FIG. 10. Global phase portrait of the dynamic system in
Eq. (40).
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dynamic with a different dissipative coefficient. We have
also distinguished them by global dynamical analysis in
planar phase space: (a) If the dissipative coefficient is a
constant, it is a dynamical system just like the standard
inflation established initially. The trajectories are attracted
along a special direction and exponentially damp to the
original point. The singularities at infinity are located at
two special directions whose gradients are just the eigen-
values of linear matrixA. (b) If the dissipative coefficient is
a field dependent function of the quadratic exponential, the
global dynamical behavior is quite different. The topologi-
cal structure at the original point is the same as the one with
a constant dissipative coefficient, but the singularities at
infinity are located at the x-axis and the y-axis, which
means the trajectories in the inflationary region tend more
to the y-axis, i.e., _ϕ ∼ 0, which increases the possibility of
the occurrence of inflation.
The noncanonical condition is another point we mainly

discuss in this work. If we set KðϕÞ ¼ 1þ kϕ2; α > 0 in
noncanonical Lagrangian action, the system exhibits the
same dynamic properties as the model of canonical warm
inflation. While, if we set KðϕÞ ¼ kϕ2; α > 0, the systems
show dramatically different global phase portraits due to
the different combinations of parameters (normalized H̄ to
the unit). From the physical side, we can also reach some
interesting conclusions which may have an important
meaning in inflationary dynamics. The noncanonical warm
inflationary scenarios still have stable attractors of the
inflationary phase. For the condition KðϕÞ ¼ kϕ2, α > 0,
the inflationary region is almost the same as the region of
the canonical, but it keeps a long period during the
inflationary phase. As an alternative to the standard infla-
tionary model, the warm inflationary scenario leads the
Universe to a moderate temperature so that reheating could
be avoided. Our results allow us to reach some conclusions
that concentrate more on the debate about reheating.
Besides the usefulness of studying the dynamical behav-

iors of the inflationary system, dynamic analysis can also
exclude several inflationary models. Canonical warm
inflation with the dissipative coefficient ΓðϕÞ ¼ −Γ2ϕ

2

is the system with an unstable limit cycle that all trajectories
depart from. There are two attracting points of this dynamic
system, the original point and the infinite region, which
mean the system is quite sensitive to the initial condition. If
the initial point is located outside the limit cycle, the system
will evolve to infinity, which cannot occur in the early
Universe. The model without self-interaction potential is
quite difficult to realize. In such a model, all trajectories
distribute nearly parallel to the y-axis in phase space; in
other words, there exists a quite short period during which a
trajectory crosses through the inflationary region. There is
another dynamic system that has the Hopf bifurcation
structure. This model has potential as the form VðϕÞ ¼
1
4
ðϕ2 − σ2Þ2 which is widely used in the models of

symmetry breaking in gauge field theory and reheating

theory in cosmology, and dynamic analysis on such models
will shed some light on studying the reheating stage just
after the inflationary phase.

ACKNOWLEDGMENTS

This work was supported by the National Natural
Science Foundation of China (Grants No. 11575270,
No. 11175019, and No. 11235003).

APPENDIX: DEFINITIONS AND PROPERTIES
IN THE DYNAMIC SYSTEM

We first introduce several definitions and properties in
the planer dynamic system [42,54,55]. Consider the
dynamic system

�
_x ¼ Pðx; yÞ;
_y ¼ Qðx; yÞ; ðA1Þ

with the boundary condition Pð0; 0Þ ¼ Qð0; 0Þ ¼ 0. Then
the system in Eq. (A1) becomes

8<
:

_x ¼ ∂Pð0;0Þ
∂x xþ ∂Pð0;0Þ

∂y yþ fðx; yÞ;
_y ¼ ∂Qð0;0Þ

∂x xþ ∂Qð0;0Þ
∂y yþ gðx; yÞ;

ðA2Þ

where fðx; yÞ and gðx; yÞ are the rest part higher than
second order. The system in Eq. (A2) can also be written in
the form of vectors:

_x ¼ Axþ fðxÞ; ðA3Þ

where x ¼ ðx; yÞ0, fðxÞ ¼ ðfðx; yÞ; gðx; yÞÞ0, and

A ¼

0
B@

∂P
∂x




ð0;0Þ

∂P
∂y




ð0;0Þ

∂Q
∂x




ð0;0Þ

∂Q
∂y




ð0;0Þ

1
CA: ðA4Þ

The linear part

8<
:

_x ¼ ∂Pð0;0Þ
∂x xþ ∂Pð0;0Þ

∂y y;

_y ¼ ∂Qð0;0Þ
∂x xþ ∂Qð0;0Þ

∂y y;
ðA5Þ

i.e.,

_x ¼ Ax; ðA6Þ

of the system in Eq. (A3) determines the behavior at
elementary singular points.
Definition 1: If Pðx0; y0Þ ¼ Qðx0; y0Þ ¼ 0, the point

ðx0; y0Þ is called a singularity. If detA ≠ 0, the point
ðx0; y0Þ is called an elementary singularity; if detA ¼ 0,
the point ðx0; y0Þ is called a nonelementary singularity. If
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λ1 ¼ 0 and λ2 ≠ 0, the point ðx0; y0Þ is called a semi-
hyperbolic singularity.
Let (0,0) be a singular point of the dynamic system, and

λ1 and λ2 be the eigenvalues of the linear part matrix A.
Definition 2: If λ1 < λ2 < 0ð> 0Þ, (0,0) is a stable

(unstable) node. If λ1 · λ2 < 0, (0,0) is a saddle. If λ1 ¼
αþ iβ and λ2 ¼ α − iβ with α < 0, (0,0) is a stable focus. If
λ1 ¼ iβ and λ2 ¼ −iβ, (0,0) is called a center (see Fig. 11).
Consider the dynamic systems in Eqs. (A3) and (A6),

we have:
Theorem 1: Assume that fðxÞ is continuous onR2 and

satisfies the Lipschitz condition about x, if consistently

lim
x→0

kfðxÞk
kxk ¼ 0

and any eigenvalue of matrix A is not vanished, the stability
of the system in Eq. (A3) at (0,0) is the same as the system
in Eq. (A6).
Let X1 and X2 be two vector fields on open subsets D1

and D2 on R2, respectively.
Definition 3: If there exists a homeomorphism

h∶D1 → D2 which maps orbits of X1 to X2 by preventing
the orientation, it is said that X1 is a topological equivalent
to X2.
In this paper, the dynamic system of the warm inflation

model exhibits a different type which does not follow the
same form as Eq. (A1); instead, it satisfies the dynamic
system

8<
:

dx
dt ¼ Pðx; yÞ;
Mðx; yÞ dydt ¼ Qðx; yÞ:

ðA7Þ

However, is hard to study its stability properties and
asymptotic behaviors. We hope that system is topologically
equivalent to the dynamic system below:

8<
:

dx
dτ ¼ Pðx; yÞMðx; yÞ;
dy
dτ ¼ Qðx; yÞ;

ðA8Þ

where dτ ¼ dt=Mðx; yÞ. The theorem below tells us when
they are topologically equivalent to each other.
Theorem 2: IfMðx; yÞ is continuousonR2,Mðx;yÞ> 0

on R2=f0g and

lim
t→þ∞

MðxðtÞ; yðtÞÞ ¼ M0 ≥ 0;

then the system in Eq. (A7) is topologically equivalent to the
system in Eq. (A8).
Consider the nonlinear oscillation equation

d2x
dt2

þ fðxÞ dx
dt

þ gðxÞ ¼ 0; ðA9Þ

where −gðxÞ is the restoring force and fðxÞ is the damping
force with f, g ∈ CðRÞ. Integrate Eq. (A9) on the duration
from 0 to t, we have

dx
dt

þ
Z

x

0

fðuÞduþ
Z

t

0

gðxÞdx ¼ 0:

Set the following: y ¼ −
R
t
0 gðxÞdx and FðxÞ ¼

R
x
0 fðuÞdu;

then we get the Liénard equations

8<
:

dx
dt ¼ y − FðxÞ;
dy
dt ¼ −gðxÞ:

ðA10Þ

Theorem 3: Consider Liénard equations in
Eq. (A10), if
(1) when x ≠ 0, xgðxÞ > 0, and

GðxÞ ¼
Z

x

0

gðuÞdu; Gð�∞Þ ¼ þ∞;

(2) when 0 < jxj ≪ 1, xFðxÞ < 0;
(3) there exist constantsM and k>k0, such that FðxÞ>k

when x ≥ M, and FðxÞ < k0 when x ≤ −M,
then, the system in Eq. (A10) exists as a stable limit cycle.

FIG. 11. Topological structures of elementary singularities.
They are the stable node, saddle, stable focus (β < 0), and center
(β > 0), respectively.
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