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We simulate the formation and evolution of ultralight bosonic dark matter halos from cosmological
initial conditions. Using zoom-in techniques, we are able to resolve the detailed interior structure of the
halos. We observe the formation of solitonic cores and confirm the core-halo mass relation previously
found by Schive et al. The cores exhibit strong quasinormal oscillations that remain largely undamped on
evolutionary time scales. On the other hand, no conclusive growth of the core mass by condensation or
relaxation can be detected. In the incoherent halo surrounding the cores, the scalar field density profiles and
velocity distributions show no significant deviation from collisionless N-body simulations on scales larger
than the coherence length. Our results are consistent with the core properties being determined mainly by
the coherence length at the time of virialization, whereas the Schrödinger-Vlasov correspondence explains
the halo properties when averaged on scales greater than the coherence length.
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I. INTRODUCTION

The hypothesis that dark matter is composed of an
ultralight bosonic field with particle mass m≳ 10−22 eV is
well-motivated from the point of view of fundamental
theories with weakly broken shift symmetries, where they
naturally occur as axionlike particles [1–3]. In these scenar-
ios, their self-interaction can typically be neglected for
questions of structure formation, making them candidates
for ultralight scalar, or “fuzzy,” dark matter (FDM) [4,5].
In spite of the simplicity of FDM which is fully specified

by the single parameter m, its fundamentally wavelike
behavior on scales near the de Broglie wavelength gives
rise to interesting new phenomena that can potentially be
probed by purely gravitational interactions. In their pio-
neering work, Schive et al. [6] used adaptively refined
simulations of the Schrödinger-Poisson equations to
resolve the density structure of collapsed dark matter halos
for the first time. Their results revealed the formation of
coherent, solitonic cores embedded in incoherent, granular
halos with CDM-like density profiles. The inner dark
matter profile of dwarf galaxies can be probed by stellar
kinematics and so far observations favour a cored central
density profile over the cuspy profile predicted by CDM
simulations [7,8]. FDM thus potentially solves the cusp-
core problem of the ΛCDM model if m ∼ 10−22 eV
[5,9–13] which is, however, in tension with the reported
lower bound from the Lyman-alpha forest of m > 2 ×
10−21 eV [14,15] and may not explain the observed core
density profiles [16]. Constraints from the cosmic micro-
wave background and large scale structure [17–20], high-z

galaxy luminosity functions and reionization [21–23], or
the abundance of dark matter halos and subhalos [24–27]
are similar but weaker by about an order of magnitude.
A recent investigation of the stability of FDM subhalos in
the Milky Way suggests a bound closer to the Lyman-alpha
forest result [28]. Several different scenarios for the for-
mation of FDM cores and the dynamics governing their
time evolution have been proposed. Schive et al. [29] found
that the core masses obey a scaling relation with the mass of
their host halos that was explained heuristically with a
variant of the uncertainty relation. In [3], core formation is
explained as a relaxation process of quasiparticles with
sizes given by their de Broglie wavelength. Following this
idea, [30] predicted the core mass of a halo depending on its
age. Wave condensation described by kinetic theory was
considered in [31] as the relevant mechanism for core
formation. Using the empirical equivalence between aver-
aged radial profiles of FDM and N-body halos on scales
greater than the coherence length, [32] derive a relation
between core and halo mass and argue that it holds near the
classical limit. Virialized halos of Milky Way-sized gal-
axies have also been investigated using self-consistent
constructions with prescribed distribution functions [33].
As for CDM, detailed insight into structure formationwith

FDM relies heavily on numerical simulations. Depending
on the particular goals, different numerical techniques have
been employed. Arguably, the most precise method is to
directly solve the Schrödinger-Poisson (SP) equations using
either finite-difference [6,34] or pseudo-spectral methods
[28,32,35,36]. Explicitly resolving the granular interference
structure on scales of the spatial and temporal coherence
length, thesemethods require large computational resources.
On the other hand, when focusing on the impact of the linear*jvelt@astro.physik.uni-goettingen.de
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suppression of small-scale power in FDM cosmologies, the
correspondence of the coarse-grained SP and Vlasov-
Poisson (VP) equations [37,38] on large scales permits the
use of standard N-body simulations with FDM initial
conditions [14,15,22,39]. An intermediate approach is to
modifyN-bodyor SPHcodeswith an additional force term in
order to capture the effects of the scalar field gradient energy
[40–42]. While these methods have lower demands on
resolution than direct SP simulations, they struggle to
accurately treat interference phenomena of FDM.
The focus of this work lies on the cosmological evolution

of FDM halos, including the formation and time depend-
ence of solitonic cores and the statistical distribution of
density and velocity in the incoherent halo outside of the
core. Both phenomena are intrinsically wavelike effects
that depend on the halo’s formation history. Our simula-
tions therefore require both a sufficiently large spatial
domain with cosmological initial conditions to simulate
realistic halos, and an accurate representation of the scalar
field by solving the SP equations inside the halo. Regions
outside of collapsed regions, on the other hand, to reason-
able approximation only affect the large-scale gravitational
field and the mass accretion onto the halo. Providing
appropriate boundary conditions we can thus treat them
with N-body dynamics, saving considerable computational
costs. Adaptive-mesh refinement (AMR) offers a suitable
framework for combining both approaches in a hybrid
SP/N-body scheme.
The remainder of this paper is structured as follows.

After describing our numerical method in Sec. II, we report
the results of our simulations in Sec. III, followed by a
discussion of core formation, time dependence, and halo
properties in the context of known theoretical results. We
conclude in Sec. V.

II. METHODS

The time evolution of the nonrelativistic FDM density
ρ ¼ jΨj2 obeys the comoving SP equations,

iℏ
∂Ψ
∂t ¼ −

ℏ2

2ma2
∇2Ψþ VmΨ ð1Þ

and

∇2V ¼ 4πG
a

ðρ − ρ̄Þ; ð2Þ

with the scale factor a and the mean cosmic density ρ̄.
Our simulations are performed with a modified version

of the public cosmology code ENZO1 [43]. Most of the
simulation domain is simulated by the standard N-body
procedure already implemented in ENZO to simulate CDM.
In each simulation, one individual halo is resolved further

by additional refinement levels (see below for further details).
On the most refined level, called the “Schrödinger domain”
in the following, we solve the SP equations using the fourth-
order Runge-Kutta solver that was employed in [34]. A
crucial point in this approach is the treatment of the boundary
conditions of the Schrödinger domain where infalling
particles are converted into a representation of the wave
function Ψ.
We use the “classical wave function” formulation [44]

for the initial conditions and boundaries of the Schrödinger
domain. The classical wave function approximates the
actual Schrödinger wave function under the assumption
that interference effects are negligible. In this representa-
tion, particles carry a classical phase Si which is evolved
according to the Hamilton-Jacobi equation [44]

dSi
dt

¼ 1

2
vi2 − VðxiÞ; ð3Þ

where vi and xi are the velocity and location of the ith
particle, respectively.
Before each Runge-Kutta time step on the most refined

level, the classical wave function,

ΨcðxÞ ¼ RcðxÞeiScðxÞm=ℏ; ð4Þ

is constructed at the boundaries. Using a second-order
interpolation kernel,

Wðjx − xijÞ ¼ mi
3

πξ3

�
1 −

jx − xij
ξ

�
ð5Þ

for jx − xij < ξ and 0 elsewhere, the classical amplitude is
given by

RcðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

Wðx − xiÞ
r

: ð6Þ

Sc is interpolated from the particle positions to the grid by
taking the complex phase of the dummy field

ΨdðxÞ ¼
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wðx − xiÞ

p
eiðSiþvi·aðx−xiÞÞm=ℏ

¼ RdðxÞeiScðxÞm=ℏ: ð7Þ

Note that Eq. (3) describes the evolution of the central phase
of a localized wave package moving in a potential V
according to Eq. (1). Equation (7) can, therefore, be under-
stood as the superposition of particles acting like wave
packages. By using Rc instead of Rd in Eq. (4), we erase
interference patterns in the superposition but ensure mass
conservation. Although the classical wave function is only
similar to the exact solution of Eq. (1), if interference is not
present (in the single stream regime), it can still provide
appropriate boundary conditions for the Schrödinger domain1http://enzo-project.org.
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when the condition is not necessarily fulfilled, i.e., at late
cosmological times. Most importantly, the method yields the
correct rate of mass inflow, as we checked by comparing the
totalmass of theSchrödinger fieldwith the total particlemass
in the Schrödinger domain, showing amaximumdeviation of
10% at all times in all simulations. Thus, the simulations in
the Schrödinger domain reproduce the generic and statistical
properties of FDM halos with the given accretion history.
Because of the significant approximations in the boundary
conditions however, we do not claim that fine-grained
properties like positions of individual granules at any given
time are the exact solution for the given initial conditions.
The smoothing radius ξ must be chosen to provide a

sufficiently smooth interpolation of the particle density. We
used ξ ¼ 8ΔxwhereΔx is the cell width at the most refined
level. We checked that increasing the radius further does
not systematically lead to different results. However, the
core mass in Fig. 6 can differ by up to 30% owing to the
approximations in the employed boundary conditions.
Particles inside the Schrödinger domain are evolved

further but do not contribute to the density field that
sources gravity. Instead, the density of the Schrödinger
field jΨj2 acts as a source of gravity in this region.

A. Simulation setup

We generate initial conditions with MUSIC [45] using a
transfer function for FDM generated by AxionCAMB [18].
All our simulations have a side length of 2.5 Mpc=h. We
choose H0 ¼ 70 km=s=Mpc, ΩΛ ¼ 0.75, Ωm ¼ ΩFDM ¼
0.25 andm22 ¼ m=ð10−22 eVÞ ¼ 2.5. Starting from redshift
z ¼ 60 we sample phase space with ∼2.8 × 108 particles.
Employing the Poisson solver implemented in ENZO, the

initial particle phases Si are computed by solving

∇ · v ¼ a−1∇2S ð8Þ

and interpolating from the grid to the particle positions.
Here, v is the velocity field generated by MUSIC.
On top of the root grid with 5123 cells, two nested static

refinement levels with a side length of roughly a quarter of
the total domain are centered on the Lagrangian patch of a
previously chosen halo. Three additional refinement levels
with side lengths of 0.0625 Mpc=h trace the position of the
halo’s maximum density. Using a refinement factor of 2
between levels, we resolve the finest one with a cell width
of 150 pc=h. In order to determine the halo’s Lagrangian
patch and the position of its maximum density over time,
we run low resolution standard N-body simulations.
To minimize computational cost, the SP solver is applied

only after a redshift of z ≈ 7, where the particles are still in
the single stream regime and the gradient energy of Ψ is
negligible. At this redshift, the classical wave function is
constructed at the most refined level and serves as an initial
condition for the SP solver. Like for the smoothing radii,
initializing at earlier times has no systematic effects but

produces statistical scattering of the resulting core mass
of 30%.
In total, we have simulated seven halos with a mass range

between 8 × 108 M⊙ and 7 × 1010 M⊙. For comparisons
with standard CDM dynamics, we have rerun five of these
simulations with only the N-body solver using identical
grid resolution and level setup.

III. RESULTS

For this work, we only consider halos that evolve without
major mergers. These are more abundant in FDM cosmol-
ogies relative to CDM, owing to the low-mass cut-off in the
initial power spectrum. Figure 1 shows a typical snapshot
of our simulations.

A. Averaged properties

Radial density profiles centered around the maximum
density of four representative halos are compared with
results from pure N-body runs in Fig. 2. Here, the virial
mass of a halo is the mass enclosed by the virial radius, rvir,
defined as the radius where the enclosed mean density is
equal to ζðaÞρ̄ with [46]

ζðaÞΩmðaÞ ¼ 18π2 þ 82(ΩmðaÞ − 1) − 39(ΩmðaÞ − 1)2:

ð9Þ

Taking radial density profiles already involves smoothing the
density by averaging over spherical shells. Consequently, the
granular structure of FDM halos which deviates strongly

z = 1.07
2.5 Mpc/h

9 kpc/h

FIG. 1. Volume rendering of a typical simulation. The large box
shows the N-body density in the full simulation domain, the inlay
shows the density of the Schrödinger field in the central region of
the indicated halo. The density thresholds in the inlay are set to
0.75, 0.05 and 0.01 times the maximum density.
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from the smooth CDM density field on small scales, is not
visible apart from a small region around the solitonic core.
The radially averaged core profile agrees well with previous
results [6,34,36]. Among the five halos in our sample that
were rerun with a pure N-body solver, the maximum FDM
core density was exceeded by the maximum density of the
correspondingCDMhalo in all cases but one, by amaximum
factor of 7.5. The density at the outer edge of the core is not a
constant fraction of the maximum core density in our
simulations. Their ratio depends both on the phase of the
large-amplitude core oscillations discussed below and the
time since core formation, with a trend towards decreasing
values. It varies between initial values of roughly 0.05 and
0.15 and reaches a minimum value of 0.015 in one of the
simulated halos.
Outside of the core, the FDM and N-body (CDM)

profiles deviate by at most 50%, while the overall density
varies by multiple orders of magnitude. To highlight the
differences, we plot the residuals between the CDM and
FDM halo profiles in Fig. 3. The deviations are not
correlated among different halos and may be caused by
nonlinear amplification of numerical noise.
In order to compare FDM and CDM halos in momentum

space, we consider the Wigner quasiprobability distribution,

fWðx;pÞ ¼
Z

d3y
ðπℏÞ3 exp

�
2
i
ℏ
p · y

�
Ψðx − yÞΨ�ðxþ yÞ;

ð10Þ

which matches the six-dimensional phase space distribution
function givenby theVlasov-Poisson equations,fCDM,when
both are coarse-grained with a Gaussian filter obeying
σxσp ≥ ℏ=2 [37,38]. The momentum distribution is thus
obtained from the Fourier transform of Ψ,

fWðpÞ ¼
1

N

Z
d3xfWðx;pÞ

¼ 1

N

����
Z

d3x exp
�
−
i
ℏ
p · x

�
ΨðxÞ

����
2

; ð11Þ

withp ¼ mv and a normalization factorN. InFig. 4,fWðvÞ is
compared to the velocity distribution fðvÞ from the corre-
sponding CDM simulations. As predicted by the Vlasov-
Schrödinger correspondence, the normalized distribution of
Fourier amplitudes matches very well the velocity distribu-
tion of particles in the N-body runs inside of the virial radius.
Since the velocity distribution of virialised CDM halos is in
rough approximation given by a Maxwellian distribution,

fðvÞdv ¼ 4

π

�
3

2

�
3=2 v2

v3rms
exp

�
−
3

2

v2

v2rms

�
dv; ð12Þ

where vrms is the root-mean-square velocity [47], we also
show Maxwellian distributions fitted to the Schrödinger
results in Fig. 4.
A powerful illustration of the difference between the core

and the granular density fluctuations that make up the outer
(incoherent) halo can be obtained by comparing their virial
parameters (Fig. 5). They are computed by taking spherical
regions around local maxima in the density field and
calculating the total kinetic and potential energy in these

FIG. 2. Radial FDM and CDM density profiles of four
representative halos. The labels indicate their virial masses.

FIG. 3. Residuals of the same profiles as in Fig. 2 in a linear
plot.

FIG. 4. Velocity distribution of plane waves in the Schrödinger
field inside the virial radius (solid lines) and of particles in the
same region (dotted lines). The grey solid lines show fitted
Maxwellian distributions.
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spheres. The radii of the spheres are given by the radius at
which the angular averaged density drops to half its central
value. The kinetic energy is computed by subtracting the
center of mass velocity from the phase gradient and
integrating

Ekin ¼
Z

ℏ2

2m2
j∇Ψj2d3x ð13Þ

over the volume of the sphere. The potential energy is
approximated by the potential energy of a uniform sphere,

Epot ¼ −
3

5

GM2ð< r1=2Þ
r1=2

: ð14Þ

This approximation is reasonable since the density profiles
around local maxima are typically flattened within r1=2. As
can be seen in Fig. 5, the core of the halo is the only local
maximum that is in itself gravitationally bound and close to
virialized. It is therefore a stable object whereas the
granules have a finite lifetime of order τ ¼ ℏ=mv2vir, as
confirmed by the temporal correlation functions inside and
outside of the core discussed below (cf. Fig. 8).

B. Time evolution

Schive et al. [29] found the following relation between
the core massMc and the total halo massMh [their Eq. (6)],

Mc ¼
1

4
a−1=2vir

�
ζðavirÞ
ζð0Þ

�
1=6

�
MhðavirÞ

M0

�
1=3

M0; ð15Þ

with ζðaÞ from Eq. (9) and M0 ∼ 4.4 × 107m−3=2
22 M⊙. For

comparison with [29], we also define Mc as the mass
enclosed by the radius xc where the peak density drops by a
factor of 1=2 and the density is assumed to follow a ground-
state soliton profile [their Eq. (3)]. As discussed below, this
is only approximately true owing to the strong oscillations
of the core (see Fig. 7).

Note that we define Mc using fixed values for a,
evaluated roughly at the time of halo virialization, instead
of using the time-dependent scale factor and halo mass as
done in [29]. This is motivated by our current under-
standing of the dynamics of core formation which deter-
mines Mc (cf., Sec. IV). Figure 6 shows the evolution of
core masses from our sample of halos as a function of time,
normalized to Eq. (15). Using the time-dependent values
for a, ζ and Mh for the normalization produces differences
that are small and unrelated to the halo mass. The time of
virialization is determined by the requirement that the
measured virial mass has settled to a slowly varying value.
Spurious fluctuations of Mc resulting from oscillations of
the peak density on much smaller time scales are smoothed
by taking a moving average. As can be seen, there is a small
tendency towards smaller core masses than predicted by
Eq. (15). No systematic growth of Mc by relaxation is
observed for the majority of cores. Whether or not the
mass increase of two of our simulated cores is related to
ongoing condensation cannot be unambiguously answered
at this point.
Analysis of the core density with much finer temporal

resolution reveals oscillations with amplitudes of more than
a factor of 2 and a standard deviation of 33%, the mean
density close to the dynamical time scale of the core
(Fig. 7). The frequency spectrum exhibits a peak at the
quasinormal frequency [48]

f ¼ 10.94

�
ρc

109 M⊙ kpc−3

�
1=2

Gyr−1; ð16Þ

with the central soliton density ρc. We thus find that cores
form in a state with strong quasinormal excitations, failing
to relax to the ground state by gravitational cooling on
evolutionary time scales. This result may open up new
directions for observational probes of FDM cores.

FIG. 5. Virial parameter of local maxima (granules) at various
distances to the center of the halo.

FIG. 6. Core masses from simulated halos normalized by
Eq. (15) at formation time as a function of halo age. The data
points are smoothed in time with a Gaussian filter with
σ ¼ 0.3 Gyr. The shaded area represents the local standard
deviation associated with the smoothing process.
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C. Correlation functions

The spatial correlation function normalized to the virial
de Broglie scale of the halo, λdB ¼ ℏ=mvvir,

CðxÞ ¼ hδðx1Þδðx2Þix
hδ2ix

; ð17Þ

with x ¼ jx1 − x2j and δðxÞ ¼ ρðxÞ − hρix for a fixed halo
at different redshifts can be seen in the top panel of Fig. 8.
As expected, the correlation length is of order λdB across a
large range of redshifts.
The temporal correlation function in the bottom panel of

Fig. 8 is defined as

Cðt; rÞ ¼ hhδðt1;xÞδðt2;xÞitix
hhδ2ðxÞitix

; ð18Þ

with t ¼ jt1 − t2j, δðt;xÞ ¼ ρðt;xÞ − hρðxÞit, hit denoting
the temporal average, and hix the spatial average within a
radial bin with distance r to the center. x is comoving with
the halo’s center of mass. The temporal correlation function
confirms the enhanced coherence of the core with respect to
the incoherent halo. Again, the curves are normalized to the
coherence time scales expected for halo virialization,
τc ¼ ℏ=mv2vir. The transition between the regions of high
and low temporal coherence occurs at around r ¼ 3.5xc,
which was previously found to be the radius where the
solitonic radial profile turns into an NFW-like radial
profile [36].

IV. DISCUSSION

A. Core formation and evolution

The results of our simulations present a consistent
picture of the structure and dynamics of FDM halos and
their cores. When coarse-grained on scales greater than the
coherence length, the classical phase-space distribution of
fields governed by the SP equations approaches that of a
collisionless self-gravitating gas of particles. As is well-
known from CDM simulations and shown above for FDM,
the virialized velocity distribution is in good approximation
given by a Maxwellian distribution, Eq. (12), peaking
at vrms ∼ vvir with the virial velocity vvir ∼ ðMh=rvirÞ1=2∼
a−1=2M1=3

h . If a mode with the wave number k locally
exceeds the amplitude ΨsolðkÞ ∼ ðℏ=mÞk2, a self-bound,
coherent solitonic state can form. This is most likely to
occur at the center of the halo where the density is maximal,
and the probability peaks at kvir ∼mvvir=ℏ since the
spectrum of Ψ is given by Eq. (12). If multiple solitons
form initially, they rapidly merge into a single remnant with
mass of the order of the most massive one [34]. The
outcome is a solitonic core with radius Rc ∼ k−1vir exhibiting

FIG. 7. Top: Maximum comoving density of a halo over time.
Bottom: Fourier transform of the same data. The boundaries of
the shaded region are the expected quasinormal periods given the
minimum and maximum central density in the time series above.

FIG. 8. Autocorrelation function of the density field in space
(top) and time (bottom) inside the virial radius of a halo. The time
correlation function is averaged over locations inside a given
radial bin at some factor of the core radius xc. The coordinate
system is comoving with the center of mass of the halo. Space and
time units are normalized to the de Broglie wavelength corre-
sponding to the virial velocity of the halo.
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strong quasinormal oscillations, embedded in a halo of
incoherent field modes that follows a CDM-like density
profile for radii r ≫ Rc. The core mass is given by Mc ∼
Ψ2

solk
−3
vir ∼ ðℏ=mÞ2kvir which explains the halo-core mass

relation Mc ∝ a−1=2ðℏ=mÞM1=3
h . Accounting for the red-

shift dependence of overdensities and geometrical factors
yields Eq. (15), in agreement with [29].
In a very interesting recent paper by Levkov et al. [31],

the formation of Bose stars is described in terms of classical
wave condensation with gravitational interactions. While
their model is consistent with our observation (first made
by Schive et al. [6]) that solitonic cores form during the
gravitational time scale of the halo, it is not clear whether it
can explain the core-halo mass relation Eq. (15) and the
strongly excited state of the core (Fig. 7). Moreover, the
homogeneous kinetic regime considered in [31] may not
apply in our situation, see below. Comparing the time
dependence of Mc predicted by this approach with our
simulations is an interesting direction for future work.
Our results regarding the evolution of Mc on cosmo-

logical time scales are still inconclusive. Two out of seven
simulated cores show continuing mass growth after for-
mation (Fig. 6). We verified that it is unrelated to the time-
dependent quantities in Eq. (15) (a, ζ, andMh), confirming
that Mc is determined by the formation process itself. A
growing core mass could be understood in terms of
condensation [31] or, more phenomenologically, by two-
body relaxation of quasiparticles produced by the wavelike
granularity of the incoherent halo [3]. In any case, the
simulations show only weak time dependence of Mc after
formation, consistent with the observation that the coher-
ence time of granular wave patterns in the incoherent halo,
τc ∼ ℏm−1v−2vir (cf. Fig. 8), is short compared to the halo
dynamical timescale. This suggests that granular quasipar-
ticles decay too quickly to experience any significant two-
body momentum exchange. Note, however, that we have
not yet explicitly explored most of the phenomena related
to enhanced relaxation suggested in [3]; this is the subject
of ongoing work.
The equivalence of the density and velocity distribution

of the incoherent halo with the behavior of CDM halos
comes as no surprise. As first pointed out in the context of
cosmological simulations by Widrow and Kaiser [37] and
explored as an alternative to N-body methods by Uhlemann
et al. [38] (see also [32,49]), both are governed by the VP
equations on scales larger than the coherence length.
Specifically, the Wigner transform of a field described
by the SP equations, coarse-grained by a Gaussian filter of
width σx and σp with σxσp ≥ ℏ=2 obeys the equally coarse-
grained VP equations to first order in σ2x and σ2p. Therefore,
any statistical quantity averaged on scales greater than σx
and σp can be expected to be indistinguishable between
CDM and FDM. By directly comparing FDM and CDM
simulations, our results provide direct evidence for this fact
in the context of cosmological structure formation. On the

other hand, we do not propose to invoke the SP-VP
equivalence on scales of the coherent soliton to predict
Mc (cf. [32]) because local nonlinear effects are not
adequately captured by the coarse-grained description.

B. Relation to wave turbulence and incoherent solitons

Systems described by classical wave dynamics have
been investigated successfully using a kinetic formulation
based on the concepts of wave turbulence [50,51]. One
particular example is the field of statistical nonlinear optics,
see [52,53] for an overview. Different types of kinetic
equations apply depending on the degree of spatial or
temporal homogeneity of the wave statistics and the level of
nonlocality of the nonlinear interaction.
For instance, a system with local nonlinearity that is

statistically homogeneous in space is governed by the wave
turbulence kinetic equation describing the statistical behav-
ior of random weakly nonlinear waves. The structure of this
kinetic equation is analogous to the Boltzmann kinetic
equation for a dilute gas. In the case of wave turbulence,
four-wave interactions give rise to an irreversible evolution
toward a Rayleigh-Jeans distribution and classical con-
densation of a long-wavelength coherent mode, in complete
analogy to Bose-Einstein condensation [54].
On the other hand, the gravitational interaction in the SP

equations is characterized by long-range nonlocality (in
noncomoving coordinates):

iℏ
∂Ψ
∂t ¼

�
−
ℏ2

2m
∇2 −Gm

Z jΨðx0Þj2
jx − x0j d

3x0
�
Ψ: ð19Þ

As shown in [55] in the context of nonlinear optics,
Schrödinger systems with long-range nonlocal nonlinear-
ities are subject to the modulational instability (translating
into gravitational instability in our context) and form
incoherent solitons trapped by a self-consistent potential
corresponding to (incoherent) dark matter halos in FDM
cosmology. Moreover, the nonlocality strongly suppresses
thermalization and condensation. The growth of modula-
tional/gravitational instabilities renders the wave statistics
inhomogeneous which may quench the condensation
described in [31] on the scales of FDM cores.
Again, this behavior is related to the analogy with

collisionless gases with long-range interactions described
by the Vlasov equation. [52] show that theWigner transform
of the autocorrelation function ofΨ obeys a Vlasov equation
to first order in a multiscale expansion, similar to the coarse-
graining approach used by [37,38]. The self-consistent
potential for a gravitylike nonlinearity is given by

V ¼ G
Z hjΨðx0Þj2i

jx − x0j d3x0; ð20Þ

where the squared field amplitude is averaged over an
appropriate intermediate-scale spatial domain. It is also

FORMATION AND STRUCTURE OF ULTRALIGHT BOSONIC … PHYS. REV. D 98, 043509 (2018)

043509-7



shown that in the highly nonlocal limit, V can be treated as a
fixed potential, and (19) reduces to a linear Schrödinger
equation describingwaves that propagate in this background.
Crucially, thermalization toward thermodynamic equilib-
rium is absent for long-range nonlocal interactions at this
level of approximation, a featurewhich is consistent with the
formal reversibility of the Vlasov equation.

V. CONCLUSIONS

Using zoom-in simulations with a hybrid N-body and
finite difference method to solve the coupled Schrödinger-
Poisson (SP) equations, we studied the formation and time
evolution of halos composed of ultralight bosonic dark
matter (FDM) from cosmological initial conditions. Our
sample contains seven halos with masses ranging from
8 × 108 M⊙ and 7 × 1010 M⊙. We confirm the general
structure of FDM halos of coherent solitonic cores
embedded in incoherent halos reported by [6,29], as well
as their core-halo mass relation Eq. (15) evaluated at the
time of core formation with a small tendency towards lower
core masses than predicted.
Considering the core mass on cosmological time scales,

we found no conclusive indications of mass growth by
condensation. The maximum overall mass increase in our
sample of cores was 70% over a period of∼3 Gyr. The core
mass does not obviously follow the time-dependent quan-
tities in the core-halo mass relation. It appears to be
governed chiefly by the coherence length of the FDM
field at the time of virialization of the host halo which
determines the core radius and thus its mass.
The simulated cores form in a highly excited state with

strong quasinormal oscillations that do not decay on the
halo evolutionary time scale. These oscillations might give
rise to new observational probes for the existence of FDM

cores, providing an independent determination of the core
mass if the oscillation frequency can be measured.
The radial density profile of the incoherent halo sur-

rounding the core shows only small and local deviations
from comparison N-body runs for corresponding CDM
halos. This, as well as the approximate Maxwellian dis-
tribution of the velocity spectrum, is consistent with the
equivalence of the SP and Vlasov-Poisson (VP) equations
on scales far greater than the coherence length. We were
unable to detect any signatures of enhanced gravitational
relaxation as proposed by [3] but note that further work is
required for a definitive answer.
We only considered halos without major mergers in this

work. The core-halo mass relation for merger-dominated
systems was predicted by [56] based on the mass change in
individual core mergers [34]. Halos with higher masses and
merger activity require higher resolution simulations. We
hope to return to this question after further optimizations.
One of the most interesting open questions is the

behavior of FDM cores and halos in the presence of
baryons. This will be addressed in forthcoming work.
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