
 

Lagrangian theory of structure formation in relativistic cosmology.
V. Irrotational fluids

Yong-Zhuang Li,1 Pierre Mourier,2 Thomas Buchert,2,* and David L. Wiltshire1
1School of Physical & Chemical Sciences, University of Canterbury,

Private Bag 4800, Christchurch 8140, New Zealand
2Univ Lyon, Ens de Lyon, Univ Lyon1, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574,

F–69007 Lyon, France

(Received 15 June 2018; published 7 August 2018)

We extend the general relativistic Lagrangian perturbation theory, recently developed for the formation
of cosmic structures in a dust continuum, to the case of model universes containing a single fluid with a
single-valued analytic equation of state. Using a coframe-based perturbation approach, we investigate
evolution equations for structure formation in pressure-supported irrotational fluids that generate their rest-
frame spacetime foliation. We provide master equations to first order for the evolution of the trace and
traceless parts of barotropic perturbations that evolve in the perturbed space, where the latter describes the
propagation of gravitational waves in the fluid. We illustrate the trace evolution for a linear equation of state
and for a model equation of state describing isotropic velocity dispersion, and we discuss differences to the
dust matter model, to the Newtonian case, and to standard perturbation approaches.
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I. INTRODUCTION

Relativistic cosmological perturbation theory is based on
evolving the Einstein equations with a global foliation of the
spacetime metric, via the 3þ 1 formalism [1,2]. In the
standard approach a spatially homogeneous and isotropic
Friedmann-Lemaître-Robertson-Walker (FLRW) geometry
is assumed as the unperturbed global background spacetime,
and Einstein’s equations are then solved to some order on
this predefined background [3]. The standard approach is
Eulerian in the sense that perturbations are represented and
propagate on this background that corresponds, in the
Newtonian limit, to Eulerian perturbation theory. In this
latter case, a perturbation method for the density and
velocity fields is used to solve the Euler-Poisson system
of equations that governs the fluid evolution [4]. Cosmo-
logical structure formation in the nonperturbative regime is
also generally modeled within the Newtonian framework.
An alternative approach to structure formation has also

been developed, principally in the Newtonian regime, which
is directly tied to fluid elements. It is consequently known as
Lagrangian perturbation theory [5–22] to distinguish it from
the Eulerian approach based on coordinates on an assumed
global background. The Lagrangian approach uses a single
perturbationvariable, the fluid’s deformation field. This gives
it the advantage of also applying in the nonlinear regime,
where Eulerian density perturbations are large. In recent
years, Lagrangian perturbation theory has been generalized

to general relativistic cosmologies with a dust continuum
[23–26]; see also [27–33].
In the Newtonian regime, an extension of Lagrangian

perturbation theory to fluids with dynamic pressure
was considered first in terms of isotropic pressure [34].
The resulting Lagrangian perturbation equations have been
solved up to second order for a polytropic fluid [35,36]. For
third-order perturbative solutions in Newtonian Lagrangian
perturbation theory with pressure, see Ref. [37]. Models
with isotropic pressure can also be considered as phenom-
enological models for the generally anisotropic pressure
originating from the velocity dispersion of dust particles
[38–40], by taking velocity moments of the collisionless
Vlasov equation [41,42]. For a sequence of modeling
assumptions used in nonperturbative extensions of
Lagrangian perturbation theory, see the summary [43].
In this paper we will extend relativistic Lagrangian

perturbation theory for a dust matter model [23–26] to
the case of irrotational perfect fluids, and also to cases that
are relevant for the modeling of multistream regimes where
the dust approximation breaks down. This will provide a
framework not only to deal with a relativistic generalization
of Newtonian Lagrangian perturbation theory with pressure
at late epochs, but also to the fully relativistic situation of
the early Universe.
A primary motivation for such an investigation is to estab-

lish a framework which is better suited to studies of the
backreaction of inhomogeneities in cosmology as compared
to standard perturbation theory. In particular, standard cos-
mological perturbation theory conventionally assumes that
average cosmic evolution is exactly described by a solution to
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Einstein’s equations with a prescribed energy-momentum
tensor on a global hypersurface irrespective of the scale of
coarse-graining of thematter fields. No fundamental physical
principle demands such an outcome [44].
The scalar averaging scheme introduced in [45–48] is

an example of an approach to backreaction of inhomoge-
neities in cosmology, in which the Einstein equations are
assumed to hold on small scales, where they are well tested,
but not for the average cosmic evolution on arbitrarily large
spatial scales. This is a consequence of the fact that a generic
averaging operation includes nonlocal fluctuation terms, and
it should not be confused with modified gravity approaches
which change the Einstein-Hilbert action. A variety of
phenomenological interpretations of the Buchert scheme
are possible [49–58], since additional ingredients are
required to relate statistical quantities to physical observables
determined from our own cosmological observations.
To date, no phenomenological approach to backreaction

has fully utilized the general scalar averaging framework
for perfect fluids [46]. In the timescape scenario [51–53],
solutions to the corresponding system of averaged scalar
equations have been given with matter and radiation [59]
extending smoothly into the early radiation-dominated
epoch in the early Universe. However, in deriving these
solutions it was assumed that backreaction is insignificant
before photon-electron decoupling, so that backreaction
involving pressure terms was neglected.
Neglecting backreaction in the primordial plasma may

seem to be a reasonable approximation for the evolution of
the background universe to leading order, given that it is
extremely close to being spatially homogeneous and
isotropic at early times. However, backreaction can none-
theless make a significant difference when considering the
growth of perturbations. In particular, even if the difference
from the Friedmann equation is of order 10−5 as a fraction
of energy density at decoupling, this is nonetheless of the
same order as the density perturbations. A recent study of
cosmic microwave background (CMB) anisotropies in
the timescape model found that neglecting such small
differences in initial conditions at last scattering leads to
systematic uncertainties of 8–13% for particular cosmo-
logical parameters at the present epoch [60]. This remark
applies to the conservative assumption that the background
universe does not already contain backreaction arising
from earlier epochs that could be compatible with large-
scale homogeneity and isotropy [57].
For these reasons, we desire a new approach to cosmo-

logical perturbation theory which is intrinsic to the fluid and
not anchored to an embedding space. Relativistic Lagrangian
perturbation theory represents a promising avenue, as it is
intimately tied to physical particles. To proceed to a fully
realistic theory will require important steps beyond those
which we investigate in this paper. Such steps will include

(i) An extension from one fluid to the many fluids
pertinent to the early Universe, which requires

considering a tilt between various fluid flow vectors
and the normal to the spatial hypersurfaces1;

(ii) Identifying relevant physical scales and volume
partitioning the model universe into regions whose
average evolves by averaged dynamical equations,
rather than by global Friedmann equations;

(iii) Aiming at a background-free description. While
perturbations are still formulated in the present paper
as deviations from a fixed background cosmology,
a general volume partitioning can be implemented
without referring to a background [54,62].

As a first step towards these goals, in the present paper we
will firstly consider relativistic Lagrangian perturbation
theory for the same system that was considered in
Ref. [46], namely a single component perfect fluid with
barotropic equation of state. We will also include an explicit
cosmological constant term.
This paper is organized as follows. In Sec. II we employ a

3þ 1 formalism [1,2] with Lagrangian spatial coordinates,
presenting the general framework and foliation structure for
a general irrotational matter model. We then restrict our
attention to a barotropic fluid and discuss in detail the fluid
variables and their equation of state. In this context, in
Sec. III we introduce Cartan’s coframe formalism, proceed-
ing with the relativistic Lagrangian perturbation approach.
We develop the first-order Lagrangian scheme and derive
master equations for the trace and trace-free parts of the
perturbation field. In Sec. IV we apply the first-order
Lagrangian scheme to particular matter models, allowing
us to explicitly derive solutions for the trace part, and we
illustrate and discuss the results. Particular solutions for the
gravitoelectric traceless part are studied in the Appendix. We
summarize our main results in Sec. V.

II. SPACETIME FOLIATION STRUCTURE AND
3+ 1 EINSTEIN EQUATIONS

In this paper we will consider a model universe containing
a single irrotational fluid, so that a foliation of spacetime into
flow-orthogonal hypersurfaces can be introduced.

A. Decomposition of Einstein’s equations
for flow-orthogonal hypersurfaces

The irrotationality assumption on the fluid amounts to
the existence of two scalar functions, N and t, such that the
1-form dual to the normalized 4-velocity vector uμ of the
fluid can be written as2

1Note that in the standard approach, the same FLRW frame is
used for different matter components. (Even in this idealized case
there are important differences to be respected for the different
matter components [61].)

2In the convention we use here, greek letters μ; ν;… are
spacetime indices running from 0 to 3, while lowercase latin
letters i; j;… are spatial indices running from 1 to 3. We use units
in which c ¼ 1, if not otherwise stated.
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uμ ¼ −N∂μt; N ≔ ð−∂μt ∂μtÞ−1=2: ð1Þ

The level sets of t then define flow-orthogonal hypersurfaces,
labeled Σt, which foliate spacetime, with unit normal uμ,
uμuμ ¼ −1. We will now follow the 3þ 1 formalism [1,2]
and define our time coordinate as coinciding with this
function t. In this case, Nðt; xiÞ is the lapse function.
In addition, we choose the spatial coordinates to be

spatial Lagrangian (or comoving) coordinates, denoted Xi,
that are assumed to be constant along each flow line. In the
set of coordinates ðXμÞ ¼ ðt; XiÞ, the components of the
fluid 4-velocity vector and its dual are then, respectively,

uμ ¼ 1

N
ð1; 0; 0; 0Þ; uμ ¼ ð−N; 0; 0; 0Þ; ð2Þ

while the line element can be written as

ds2 ¼ gμνdXμdXν ¼ −N2dt2 þ gijdXidXj: ð3Þ
Here, gij corresponds both to the spatial coefficients of the
4-metric gμν and to the components of the 3-metric that it
induces on the hypersurfaces Σt. Introducing the projector
onto Σt, hμν ¼ gμν þ uμuν, this 3-metric is indeed

hij ≔ gμνhμihνj ¼ gij: ð4Þ
The spatial metric and the lapse function N together
encode the inhomogeneities. (We will later use the more
elementary coframe coefficients instead of the 3-metric
coefficients). We use Ri

j to denote the Ricci tensor
coefficients of this spatial metric, withR the corresponding
Ricci scalar.
Without loss of generality, the energy-momentum tensor

of the fluid is given by

Tμν ¼ ðϵþ pÞuμuν þ pgμν þ πμν þ qμuν þ qνuμ; ð5Þ

where πμν is an anisotropic pressure, with π½μν� ¼ 0,
uμπμν ¼ 0 and πμμ ¼ 0, and qμ the heat flux, with
qμuμ ¼ 0.
Introducing the expansion tensor (as minus the extrinsic

curvature) of the hypersurfaces,

Θij ≔ ∇νnμ hμihνj ¼
1

2N
∂tgij; ð6Þ

Einstein’s equations with a cosmological constant may
be cast into a set of constraint and evolution equations.
The constraint equations are the energy and momentum
constraints3:

Rþ Θ2 − Θi
jΘj

i ¼ 16πGϵþ 2Λ;

Θi
jki − Θjj ¼ −8πGqj: ð7Þ

The propagation equations are given by

Θi
j ¼

1

2N
gik∂tgkj;

N−1∂tΘi
j ¼ −ΘΘi

j −Ri
j þAi

j

þ 4πG½ðϵ − pÞδij þ 2πij� þ Λδij; ð8Þ

where aμ ≔ uν∇νuμ ¼ N−1Nkμ is the covariant accelera-
tion of the fluid (with ∇ denoting the 4-covariant deriva-
tive), and Ai

j ≔ aikj þ aiaj ¼ N−1Nkikj. Combining the
trace of the second equation with the energy constraint
yields the Raychaudhuri equation:

N−1∂tΘ ¼ −
1

3
Θ2 − 2σ2 − 4πGðϵþ 3pÞ þAþ Λ; ð9Þ

where A ≔ Ai
i ¼ ∇μaμ ¼ N−1Nkiki.

With the spacetime described by the given metric, the
energy-momentum conservation laws are expressed as
follows:

∂tϵþ NΘðϵþ pÞ ¼ −Nðqμkμ þ 2qμaμ þ σμνπ
μνÞ; ð10Þ

ðϵþpÞaμþpkμ ¼−ðπμνkνþaνπμνÞ

−
�
4

3
Θqμþqνσμνþuν∇νqμ−qνaνuμ

�
:

ð11Þ

In what follows, we will specialize to the case of isotropic
pressure, πμν ¼ 0, and vanishing heat flux, qμ ¼ 0. Note
that with these assumptions we do still allow for some
nonperfect fluids, since p is not necessarily the local
thermodynamic equilibrium pressure [63]. Such a restric-
tion is required here since both extra terms in general create
vorticity, which cannot be covered by the class of flow-
orthogonal foliations considered in this work.
Let us illustrate this by considering more closely the

irrotationality condition for a fluid with negligible heat
flux, qμ ¼ 0, to see how this condition constrains the
equation of state and the anisotropic pressure. The vanish-
ing of the vorticity 2-form implies vanishing of the
antisymmetrized projected gradient of the acceleration,
a½νkμ� ¼ 0, since aμ ¼ ðlnNÞkμ from (1), being a conse-
quence of the existence of the fluid-orthogonal foliation.
From this, one obtains through (11) the following con-
straint on the energy-momentum components:

ϵk½μpkν� þ ðϵþ pÞk½μhρν�∇σπ
σ
ρ

− ðϵþ pÞhρ½μhσν�∇ρ∇τπ
τ
σ ¼ 0: ð12Þ

3The symbol k denotes the covariant derivative with respect
to the 3-metric hij. When applied to scalars it reduces to a
partial derivative, denoted j, with respect to the Lagrangian
coordinates, Xi.

LAGRANGIAN THEORY OF …. V. IRROTATIONAL FLUIDS PHYS. REV. D 98, 043507 (2018)

043507-3



Since ∇μπ
μ
ν ¼ 0 would imply the vanishing of the right-

hand sides of (10)–(11), an anisotropic pressure that does
contribute to the dynamics will satisfy ∇μπ

μ
ν ≠ 0 and thus

will not fulfill the above condition in general, producing a
vortical flow. Conversely, a barotropic fluid flow with
πμν ¼ 0 and an effective equation of state of the form p ¼
βðϵÞ automatically satisfies the above constraint. Moreover,
for such a fluid, (11) allows one to write the acceleration as
a flow-orthogonal projected gradient, and it will indeed
obey the relativistic equivalent of the Kelvin-Helmholtz
theorem, so that irrotationality will be preserved along the
flow lines [63,64].

B. Barotropic perfect fluid spacetimes

For the remainder of this paper we will only consider
fluids with qμ ¼ 0 and πμν ¼ 0. The energy-momentum
tensor (5) then reduces to perfect fluid form:

Tμν ¼ ðϵþ pÞuμuν þ pgμν; ð13Þ
while its conservation equations (10)–(11) become,
respectively

∂tϵþ NΘðϵþ pÞ ¼ 0; ð14Þ

aμ ¼ −
pkμ
ϵþ p

: ð15Þ

As a further restriction we will assume that the fluid flow is
barotropic; i.e., we assume a local relation of the form
p ¼ βðϵÞ to effectively hold throughout the entire fluid,4

that we will henceforth call the “equation of state” or EoS.
As noted earlier, such a relation will ensure that the flow
remains irrotational. For such a fluid, setting some refer-
ence constant energy and rest mass density values ϵ1, ϱ1,
we may use the EoS to define a formal rest mass density
ϱðϵÞ and a related specific enthalpy hðϵÞ—as an injection
energy per fluid element and unit formal rest mass [65]—
respectively, by

ϱ ≔ FðϵÞ ≔ ϱ1 exp
Z

ϵ

ϵ1

dx
xþ βðxÞ ; ð16Þ

hðϵÞ ≔ ϵþ βðϵÞ
FðϵÞ ¼ ϵþ p

ϱ
: ð17Þ

The energy-momentum conservation equations (10) and
(11) then, respectively, provide a conservation law for ϱ,

∂tϱþ NΘϱ ¼ 0; ð18Þ

and a relation between the specific enthalpy (17) and the
lapse,

Nkμ
N

¼ aμ ¼ −
hkμ
h

∶ ðNhÞji ¼ 0: ð19Þ

By an appropriate choice of the hypersurface-labeling
function t, the lapse can thus be rescaled so that [46,63]

N ¼ 1

h
¼ FðϵÞ

ϵþ βðϵÞ : ð20Þ

If we assume that the fluid remains in thermodynamic
equilibrium locally, and if it has a nonvanishing rest mass
density, then this density will follow the same evolution law
(18) as ϱ ¼ FðϵÞ, by rest mass conservation. This formal ϱ
and the actual rest mass density will then coincide up to a
possible different spatial dependence (cf., footnote 4).
These two quantities may be made equal by a suitable
choice of initial conditions for the rest mass density or local
thermodynamic equilibrium assumptions.5 This would then
ensure the validity of the interpretation of ϱ and h as the
physical rest mass density (or particle number density) and
specific enthalpy of the fluid, respectively. We will not,
however, make such assumptions in the following Sec. III,
to keep its level of generality. This will allow us to consider
the case of a zero rest mass fluid [for which FðϵÞ ≠ 0
and hðϵÞ are still well defined], as well as that of a nonzero
rest mass density with less constrained initial conditions. It
will also allow us to consider the variable p as an effective
pressure term—e.g., modeling velocity dispersion—
instead of the local thermodynamic equilibrium pressure.

4Considering the local dynamical solution for these variables,
there is always a freedom of integration constant that depends on
the Lagrangian coordinates, i.e., on the particular fluid element.
We assume here that the same relation holds for all fluid elements.
Only this assumption makes the dynamical relation an apparent
equation of state that is valid throughout the fluid flow. All related
variables then also depend on this assumption, which is a
restriction imposed on initial data.

5Let us take the local state of the fluid to belong to a
thermodynamic Gibbs space admitting the equation of state
uðs; vÞ, where s is the specific entropy, v is the specific volume
and u ¼ ϵv is the specific internal energy. If we now assume that
p is the local thermodynamic equilibrium pressure of the fluid, it
can then be expressed as pðs; vÞ ¼ −∂u=∂v. Provided that a
specific equation of state does not render the above relations
degenerate, then these relations may be inverted to provide
vðϵ; pÞ. Within a barotropic flow satisfying p ¼ βðϵÞ, the actual
rest mass density v−1 thus only depends on the energy density ϵ,
which fully determines its initial conditions. From the conserva-
tion equations of both quantities, ∂tϵ=ðϵþ βðϵÞÞ ¼ −NΘ ¼
∂tðv−1Þ=v−1, this dependency must be v−1 ¼ FðϵÞ, for Θ not
identically vanishing, up to a constant prefactor which can be
absorbed in the choice of ϱ1. Hence, in this case, FðϵÞ is indeed
the rest mass density of the fluid with no further loss of generality.
Also note that under the same assumptions, s is also a function
of ϵ, preserved along the flow lines as the flow is adiabatic:
∂ts ¼ 0 ¼ ðds=dϵÞ∂tϵ, while ∂tϵ is not identically vanishing. The
flow is thus isentropic, s being a constant s1 that depends neither
on time nor on the fluid element. The barotropic relation then
corresponds to the equation pðϵ; sÞ deduced from the thermo-
dynamic equation of state, and taken at constant s, βðϵÞ ¼
pðϵ; s ¼ s1Þ (see [63–68]).
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For the general treatment including these cases it will
suffice to formally define ϱ and h from Eqs. (16) and (17)
using the single barotropic assumption p ¼ βðϵÞ. We
follow the notation of Ref. [46] here.

III. LAGRANGIAN PERTURBATION SCHEME

In this section we will introduce the coframe formalism
to describe spacetime, which is a set of four deformation
1-form fields dual to a generally noncoordinate basis of
vectors at every point of the manifold [69–71]. A general
relativistic version of a coframe-based perturbative approach
for an irrotational dust continuum has been proposed in
Ref. [28], developed further in Ref. [29] and in final form,
featuring only the coframes as the single perturbation
variable in Ref. [23].

A. Coframe formulation

Following [24–26], we construct a set of three spatial
coframes ηa such that the spatial metric can be rewritten in
the form

ð3Þg ¼ Gab ηa ⊗ ηb∶ gij ¼ Gab η
a
iη

b
j: ð21Þ

Here GabðXÞ is the Gram matrix that encodes all the initial
spatial metric perturbations, GabðXÞ ≔ δa

iδb
jGijðXÞ, with

the initial metric coefficients, GijðXÞ ≔ gijðti;XÞ. On the
other hand we can also include the temporal component
into the matrix and rewrite it as

G̃αβ ¼
�−1 0

0 Gab

�
: ð22Þ

With this we introduce a full set of four spacetime coframes
ηα to describe the 4-metric ð4Þg:

ð4Þg ¼ G̃αβ ηα ⊗ ηβ; ð23Þ
by defining the coframe components as

η0μ ¼ ð−N; 0; 0; 0Þ; ηaμ ¼ ð0; ηaiÞ: ð24Þ
We now define the transformation between coordinate and

noncoordinate bases as J ¼ ffiffiffiffiffiffi−gp
=

ffiffiffiffiffiffiffi
−G̃

p
¼ ffiffiffiffiffiffi−gp

=
ffiffiffiffi
G

p
[the

signature adopted here being ð−1; 1; 1; 1Þ, and using the
notation g ≔ detð ð4ÞgÞ, G̃ ≔ detðG̃αβÞ and G ≔ detðGabÞ].
This corresponds to J ¼ − detðηaμÞ, or

1

4!
ϵαβγδ ηα ∧ ηβ ∧ ηγ ∧ ηδ

¼ −
1

4!
J ϵμνρσ dXμ ∧ dXν ∧ dXρ ∧ dXσ: ð25Þ

From Eq. (24), in terms of the spatial components of the
coframes, J becomes

J ¼ 1

3!
Nϵabcϵ

ijkηaiη
b
jη

c
k ¼ N detðηaiÞ; ð26Þ

while correspondingly, the dual vector basis can be
described by the four frames eα ¼ eαμ∂=∂Xμ:

eαμηαν ¼ δμν; eαμηβμ ¼ δα
β;

eαμ ¼ −
1

6J
ϵαβγδϵ

μνϱσηβνη
γ
ϱη

δ
σ;

eai ¼
1

2J
Nϵabcϵ

ijkηbjη
c
k;

e0μ ¼
1

N
ð−1; 0; 0; 0Þ; eaμ ¼ ð0; eaiÞ: ð27Þ

With this choice, the evolution equations for J and the
expansion tensor coefficients Θi

j read

∂tJ ¼ ∂tN
N

J þ JNΘ;

Θi
j ¼

1

2J
ϵabcϵ

iklð∂tη
a
jÞηbkηcl;

∂tΘi
j

N
¼ −ΘΘi

j þ
1

2J
ϵabcϵ

ikl∂t

�
1

N
∂tη

a
j

�
ηbkη

c
l

þ 1

NJ
ϵabcϵ

iklð∂tη
a
jÞð∂tη

b
kÞηcl: ð28Þ

From the constraint and evolution equations (7)–(9),
together with the definition of J and Eq. (28), the
Lagrange-Einstein system of an irrotational barotropic fluid
model is cast into the following form:

Gab∂tη
a½iηbj� ¼ 0; ð29Þ

1

2J
ϵabcϵ

ikl∂t

�
1

N
ð∂tη

a
jÞηbkηcl

�
¼ Ai

j −Ri
j þ ½4πGðϵ − pÞ þ Λ�δij; ð30Þ

ϵabcϵ
ijkð∂tη

a
iÞð∂tη

b
jÞηck¼ð16πGϵþ2Λ−RÞNJ ; ð31Þ

�
1

J
ϵabcϵ

iklð∂tη
a
jÞηbkηcl

�
ki
¼
�
1

J
ϵabcϵ

iklð∂tη
a
iÞηbkηcl

�
jj
;

ð32Þ
p ¼ βðϵÞ: ð33Þ

Equations (29)–(32) are not closed unless an EoS, here
(33), is specified. Recall that the lapse appearing above
can be replaced by its expression in terms of ϵ, N ¼
ðϵþ βðϵÞÞ−1FðϵÞ. The evolution equation (30) may be split
into a trace part, which we then combine with the energy
constraint (31) to obtain the Raychaudhuri equation, and a
traceless part, yielding respectively

1

2J
ϵabcϵ

ikl∂t

�
1

N
∂tη

a
i

�
ηbkη

c
l ¼ A − 4πGðϵþ 3pÞ þ Λ;

ð34Þ
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1

2J

�
ϵabcϵ

ikl∂t

�
1

N
ð∂tη

a
jÞηbkηcl

�

−
1

3
ϵabcϵ

mkl∂t

�
1

N
ð∂tη

a
mÞηbkηcl

�
δij

�
¼ ξij − τij; ð35Þ

where τij ≔ Ri
j − 1

3
Rδij are the coefficients of the trace-

less part of the spatial Ricci tensor, and ξij ≔ Ai
j − 1

3
Aδij.

The Lagrange-Einstein system, Eqs. (29)–(33), is closed
and provides the components ηai of coframes, from which
one can calculate the evolution of the perturbations. The
system comprises 14 equations, where 9 equations describe
the evolution for the coefficient functions of 3 spatial
Cartan coframe fields, and the remaining 5 equations
originate from the 4 constraints and the EoS defining the
properties of the fluid.

B. Perturbation ansatz

1. Background

We will choose a spatially flat, homogeneous and
isotropic model universe as the background spacetime,
with the same barotropic EoS, and including a possible
constant curvature term into the first-order perturbations
(cf., e.g., [25]). Accordingly, the spatial metric coefficients
of the background will be a2ðtÞδij, aðtÞ being the back-
ground scale factor. We prescribe a homogeneous lapse
NHðtÞ for this homogeneous and isotropic background, by
setting its relation to the background energy density ϵH,
formal rest mass density ϱH ≔ FðϵHÞ and pressure pH ¼
βðϵHÞ as being the same relations as those for the
inhomogeneous quantities,

NH ¼ ϱH
ϵH þ pH

¼ FðϵHÞ
ϵH þ βðϵHÞ

: ð36Þ

We may then write the background line element as

ds2H ¼ −N2
HðtÞdt2 þ a2ðtÞδijdXidXj: ð37Þ

Note that the evolution of the background lapse function
NHðtÞ will be given by its definition (36) and the EoS,
making it time-dependent for pH ≠ 0. One should keep in
mind that our choice of time coordinate twill consequently
not coincide in general with the usual “cosmic time”
coordinate for the background, and it will evolve at a
different rate. The usual cosmic time t̃ would rather be
defined by dt̃ ¼ NHðtÞdt, so that the background line
element (37) would take the usual Friedmannian form
for homogeneous and isotropic model universes6:

ds2H ¼ −dt̃2 þ a2½t̃�δijdXidXj: ð38Þ
With this time variable, the standard Friedmann equations
would indeed be recovered:

3
∂2
t̃ a

a
¼ −4πGðϵH þ 3pHÞ þ Λ;

3

�∂ t̃a
a

�
2

¼ 8πGϵH þ Λ;

∂ t̃ϵH þ 3
∂ t̃a
a

ðϵH þ pHÞ ¼ 0: ð39Þ

However, for consistency with the lapsed foliation used for
the full inhomogeneous spacetime, in what follows we
include the homogeneous lapse NH into the background
and use the coordinate t. In terms of this variable, the
acceleration and Friedmann equations are respectively

3

N2
H

∂2
t a
a

¼ −4πGðϵH þ 3pHÞ þ Λþ 3
∂ta
a

∂tNH

N3
H

;

3

N2
H

�∂ta
a

�
2

¼ 8πGϵH þ Λ; ð40Þ

while the energy-momentum conservation equation is
formally unchanged:

∂tϵH þ 3
∂ta
a

ðϵH þ pHÞ ¼ 0: ð41Þ

2. Coframes decomposition

It is important to express the full set of equations in
terms of a single perturbation variable, the coframes, so
that the Lagrangian perturbation approach is well defined.
Although this is not made fully explicit in the Lagrange-
Einstein system (29)–(33), it is implicitly the case as the
Ricci tensor and covariant derivatives are functionals of the
metric, and hence of the coframes, and ϵ,p,N andAi

j can be
expressed in terms of the coframes and initial energy density
data. The latter relations are obtained via the conservation
equation (18) for ϱ ¼ FðϵÞ and the evolution equation for
J ≔ J =N ¼ detðηaiÞ from the first equation in (28):

NΘ ¼ −
∂tFðϵÞ
FðϵÞ ¼ ∂tJ

J
; ϵ ¼ F−1

�
FðϵiÞ
J

�
; ð42Þ

where for any quantity A, Ai denotes the quantity at initial
time ti. Here Ji ¼ 1 as a result of the choice of initial
conditions for the coframes. The barotropic EoS and choice
of N then allow us to determine p, N and Ai

j ¼ N−1Nkikj,
and to express these fields as functions of J ¼ detðηaiÞ.
We then follow the previous papers [23–26] and decom-

pose the coframes into a FLRW coframe set and deviations
thereof,

ηa ¼ ηaidXi ¼ aðtÞðδai þ Pa
iÞdXi: ð43Þ

6The notation a½t̃� signifies that the scale factor still takes the
same values, a½t̃� ≔ aðtÞ, but has a different functional depend-
ence on the alternative time coordinate.
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At this nonperturbative level, the metric coefficients are
then related to the deformation field by

gij ¼ a2ðtÞðGij þ 2PðijÞ þGabPa
iPb

jÞ; ð44Þ
where we have defined

Pi
j ≔ δa

iPa
j; P ≔ Pk

k ¼ δa
kPa

k; Pij ≔ GaiPa
j:

ð45Þ
Recall that the Gram matrix coefficients Gab have been
defined to encode the initial metric inhomogeneities, so that
the coefficients Pa

i can be set to zero initially. Also recall
that this coframe split is made with respect to a FLRW
background with a nontrivial lapse included, and that the
functional dependence of a, or of the deformation field, on
the time coordinate t will be affected accordingly.
We then expand the deformation fields Pa

i into a
perturbative sum, so that the coframes are given by

ηa ¼ aðtÞ
�
δai þ

X∞
m¼1

Pa
i
ðmÞ

�
dXi; ð46Þ

where the m th-order deformation field coefficients Pa
i
ðmÞ

are of order εm for some bookkeeping parameter ε ≪ 1. In
this paper we will only focus on first-order deformations.

3. Initial conditions

We will follow the steps of Refs. [25,26] to prescribe the
initial data. The deformation field and its time derivatives
are given at some initial time ti by

Pa
iðtiÞ ¼ 0;

ð∂tPa
iÞðtiÞ≕Ua

i;

ð∂2
t Pa

iÞðtiÞ≕Wa
i − 2HiUa

i; ð47Þ
where H ≔ ∂ta=a is the Hubble function. Hereafter, we
will normalize the scale factor as ai ¼ 1. The six 1-form
fields Ua ¼ Ua

idXi and Wa ¼ Wa
idXi are 1-form gener-

alizations of the initial Newtonian peculiar-velocity and
peculiar-acceleration gradient fields, respectively.
The Lagrange-Einstein system with its split into trace

and traceless parts according to (29)–(35) then translates
into constraints on the initial data:

U½ij� ¼ 0; W½ij� ¼ 0; ð48Þ

W−U

�∂tN
N

�
i
¼ 3Hi

��∂tN
N

�
i
−
�∂tNH

NH

�
i

�
þΛðNi

2−N2
HiÞþNi

2Ai

−4πG½ðϵiþ3piÞNi
2− ðϵHiþ3pHiÞN2

Hi�;
ð49Þ

tlWa
jδa

i þ
�
Hi −

�∂tN
N

�
i

�
tlUa

jδa
i

þ U tlUa
jδa

i −
�
Ua

kδa
iUb

jδb
k −

1

3
Ua

lδa
kUb

kδb
lδij

�
¼ N2

i ðξijðtiÞ − τijðtiÞÞ; ð50Þ

U2 −Ua
iδa

jUb
jδb

i þ 4HiU

¼ 16πGðϵiNi
2 − ϵHiN2

HiÞ þ 2ΛðNi
2 − N2

HiÞ −RiNi
2;

ð51Þ

ðNi
−1Ua

jδa
iÞki ¼ ðNi

−1UÞjj þ 2HiðNi
−1Þjj; ð52Þ

pi ¼ βðϵiÞ; pHi ¼ βðϵHiÞ: ð53Þ

The abbreviations U ≔ Ua
kδa

k, W ≔ Wa
kδa

k, and tlWa
i ≔

Wa
i − ð1=3ÞWδai, tlUa

i ≔ Ua
i − ð1=3ÞUδai are used for

the trace and traceless parts, respectively.

C. First-order Lagrange-Einstein system

We now expand the above Lagrange-Einstein system and
its initial conditions to first order7 in the only dynamical
variable in this Lagrangian perturbation approach, namely
the deformation field Pa

i. In what follows we omit the
index ð1Þ for the first-order deformation field and the
associated initial conditions Uij, Wij, but keep the index
for the other variables, as functionals of Pa

i. We first need
to express these functionals explicitly at first order.

1. Dependent variables at first order

In order to express the first-order Ricci tensor and scalar
curvature in terms of the coframes, we expand the initial
metric coefficients to first order as GijðXÞ ¼ δij þ Gð1Þ

ij ðXÞ
since they reduce to δij at the unperturbed zero-order level.

Introducing the first-order quantities Gð1Þij ≔ δikδjlGð1Þ
kl ,

Pij ≔ δikδjlPkl for the inverse metric, we can then sub-
stitute the metric and its inverse, truncated to first order,

gij ¼ a2ðδij þGð1Þ
ij þ 2PðijÞÞ; ð54Þ

gij ¼ a−2ðδij −Gð1Þij − 2PðijÞÞ; ð55Þ

into the definitions of the spatial Christoffel symbols and of
the spatial Ricci tensor. We thereby obtain

Γk
ij
ð1Þ ¼ 1

2
δklðGð1Þ

iljj þGð1Þ
ljji − Gð1Þ

ijjlÞ
þ δklðPðilÞjj þ PðljÞji − PðijÞjlÞ; ð56Þ

7Note that initial data can be assumed, without loss of
generality, to be first order.
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Rð1Þ
ij ¼ ℛij þ Pk½jjk�ji þ P½jkjk�ji þ PðikÞjjjk − PðijÞjkjk; ð57Þ

Rð1Þ ¼ a−2ℛþ 2a−2ðPkijijk − PjkjkÞ; ð58Þ

where ℛij≔Gð1Þjk
i½kjj� þGkð1Þ

½jjk�ji and ℛ ≔ δijℛij ¼ 2Gl½kjl�jkð1Þ

are the initial conditions for the curvature tensor coeffi-
cients and their trace, respectively.
An important difference from the dust case is that

here the spatial Ricci scalar will in general not be con-
strained to evolve as ℛðXÞaðtÞ−2 at first order, due to the
contributions from the lapse in the momentum constraints.
As will be shown below, these contributions give rise to
a nonzero evolution for the (initially vanishing) second
term ðPkijijk − PjkjkÞ, or equivalently a nonconserved scalar
curvature, ∂tRð1Þ þ 2HRð1Þ ¼ a−2∂tða2Rð1ÞÞ ≠ 0, in con-
trast to the dust case.
Using the barotropic EoS and the corresponding solution

(42) to the energy conservation equation (14), we can also
expand ϵ, p, N and Ai

j in terms of the first-order
deformation field. We write ϵi ≔ ϵHið1þ δϵiÞ at first order,
and expand J−1 ¼ a−3 detðδai þ Pa

iÞ−1 at the same order
as a−3ð1 − PÞ. The solution (42) for ϵ as a function of J can
then be expanded to first order in the perturbation as

ϵ ¼ F−1
�
FðϵHiÞ þ F0ðϵHiÞϵHiδϵi − FðϵHiÞP

a3

�

¼ F−1
�
FðϵHiÞ
a3

�

þ
�
1

a3
ϵHiF0ðϵHiÞδϵi − P

FðϵHiÞ
a3

�
ðF−1Þ0

�
FðϵHiÞ
a3

�
:

ð59Þ

The energy-momentum conservation equation (42) still
holds for background quantities, giving

FðϵHÞ ¼
FðϵHiÞ
a3

: ð60Þ

This can be substituted into (59) to give

ϵ ¼ ϵH

�
1þ FðϵHÞ

ϵHF0ðϵHÞ
�
ϵHiF0ðϵHiÞ
FðϵHiÞ

δϵi − P

��
: ð61Þ

The further use of the definition of F, Eq. (16), allows us to
simplify the above to

ϵ ¼ ϵH

�
1 −

�
1þ pH

ϵH

�
P̄

�
; ð62Þ

which we have written for convenience in terms of a shifted
deformation trace,

P̄ ≔ P − αHiδϵi; ð63Þ

where αHi ≔ ðϵHi þ βðϵHiÞÞ−1ϵHi is a constant, and δϵi is
the initial energy perturbation.
The pressure can in turn be expanded to first order as

p ¼ βðϵÞ, yielding

p ¼ pH − β0ðϵHÞðϵH þ pHÞP̄: ð64Þ

Note that the factor β0ðϵHÞ corresponds to the (generally
time-dependent) dimensionless ratio of the background
speed of sound to speed of light squared, β0ðϵHÞ≕
c2SðtÞ=c2, if pH is the thermodynamic equilibrium pressure
for the background fluid.
We then expand the lapse N ¼ ðϵþ pÞ−1FðϵÞ as

N ¼ NH½1þ β0ðϵHÞP̄� ð65Þ

at first order in the deformation field. At this order, one will
then have (with ∂tP ¼ ∂tP̄)

∂tN
N

¼ ∂tNH

NH
þ β0ðϵHÞ∂tP̄

− 3HðϵH þ βðϵHÞÞβ00ðϵHÞP̄; ð66Þ

with

∂tNH

NH
¼ 3Hβ0ðϵHÞ: ð67Þ

This also allows one to obtain the first-order expression for
Ai

j ¼ N−1Nkikj:

Ai
j
ð1Þ ¼ a−2β0ðϵHÞδikP̄jjjk: ð68Þ

2. First-order system

Using the above expansions, the Lagrange-Einstein
system (29)–(32) can be rewritten at first order in the
deformation field as follows:

∂tP½ij� ¼ 0; ð69Þ

∂2
t Pi

j þ 3H½1 − β0ðϵHÞ�∂tPi
j

þH½1 − β0ðϵHÞ − VðtÞ�∂tP̄ δij

¼ N2
HA

i
j
ð1Þ − N2

HðRi
j
ð1Þ −

VðtÞ
4

Rð1ÞδijÞ; ð70Þ

∂tðPi
jji − P̄jjÞ ¼ −2Hβ0ðϵHÞP̄jj; ð71Þ

H∂tP̄þ 4πG½ϵH þ pH − ð2ϵH þ Λ̃Þβ0ðϵHÞ�N2
HP̄

¼ −
1

4
N2

HR
ð1Þ; ð72Þ

with ∂tP ¼ ∂tP̄, and where Ai
j
ð1Þ, Ri

j
ð1Þ ¼ a−2δikRð1Þ

kj

andRð1Þ are expressed as functions of Pa
i according to the
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formulas given above, Λ̃ ≔ Λ=ð4πGÞ, and we introduce
the abbreviation

VðtÞ ≔ ½ϵH þ pH − ð2ϵH þ Λ̃Þβ0ðϵHÞ�−1
× fϵH þ pH − ð3ϵH − pH þ 2Λ̃Þβ0ðϵHÞ
þð2ϵH þ Λ̃ÞðϵH þ pHÞβ00ðϵHÞg: ð73Þ

Equation (70) has been obtained from the first-order
expansion of the extrinsic curvature evolution equation (30)
by combining it with the first-order energy constraint (72).
The EoS (33) has already been used to expand ϵ, p andN in
terms of the first-order deformation field.

D. First-order master equations

Following the approach of Ref. [26] the above system
can be reexpressed by decomposing the deformation fields
into trace, trace-free symmetric and antisymmetric parts:

Pi
j ¼

1

3
Pδij þ Πi

j þPi
j; ð74Þ

where Πij ¼ PðijÞ − 1
3
Pδij and Pij ¼ P½ij�.

We will now derive the governing equations for these
parts, named “master equations.” For the trace part we use
the new variable P̄ from Eq. (63). Accordingly, (69)–(71)
become

∂tPij ¼ 0∶ Pij ¼ PijðtiÞ ¼ 0; ð75Þ

∂2
t P̄þ 3H½2 − 2β0ðϵHÞ − VðtÞ�∂tP̄

¼ N2
HA

ð1Þ − N2
H

�
1 −

3

4
VðtÞ

�
Rð1Þ; ð76Þ

∂2
tΠi

j þ 3H½1 − β0ðϵHÞ�∂tΠi
j ¼ N2

Hðξijð1Þ − τij
ð1ÞÞ; ð77Þ

∂t

�
Πi

jji −
2

3
P̄jj

�
¼ −2Hβ0ðϵHÞP̄jj: ð78Þ

Once again the first-order quantities Að1Þ, ξijð1Þ, Rð1Þ and
τij

ð1Þ are used as shorthand notations but are meant to be
expressed in terms of the deformation field. These expres-
sions are obtained from the results above, Eqs. (56), (58),
(68), as follows8:

a2Að1Þ ¼ β0ðϵHÞΔ0P̄; ð79Þ

a2ξijð1Þ ¼ β0ðϵHÞ
�
P̄jijj −

δij
3
Δ0P̄

�
; ð80Þ

a2Rð1Þ ¼ ℛþ 2

�
Πkijkji −

2

3
Pjkjk

�
; ð81Þ

a2τijð1Þ ¼ Ti
j þ 2Πi

kjjjk − Πi
j
jk
jk

−
1

3

�
2Πk

ljkjlδij þ Pjijj −
1

3
Δ0Pδij

�
; ð82Þ

with Ti
j ≔ ℛi

j − 1
3
Rδij ¼ τij

ð1ÞðtiÞ, and with Δ0 the
coordinate Laplacian operator in the Lagrangian coordi-
nates fXig, Δ0 ≔ δij∂i∂j.

1. Master equation for the trace

Contracting the momentum constraints (78) with a
spatial derivative jj yields the first-order evolution equation
for the nontrivial part of the scalar curvature:

∂tðPkijkji − PjkjkÞ ¼ ∂t

�
Πkijkji −

2

3
P̄jkjk

�
¼ −2Hβ0ðϵHÞΔ0P̄: ð83Þ

From the respective expressions (58) and (79) for Rð1Þ and
Að1Þ, this amounts to the following evolution for Rð1Þ:

∂tRð1Þ þ 2HRð1Þ ¼ −4Ha−2β0ðϵHÞΔ0P̄

¼ −4HAð1Þ; ð84Þ

which unlike the case of dust does remain coupled to the
dynamics of the inhomogeneous perturbation.
Combining this evolution equation with the linearized

energy constraint (72) and its time derivative one then
obtains the master equation for the evolution of the trace
(63) of the first-order deformation field9:

∂2
t P̄þ 2Hð1 − 3β0ðϵHÞÞ∂tP̄ −WðtÞN2

HP̄

¼ a−2N2
Hβ

0ðϵHÞΔ0P̄; ð85Þ

where pH ¼ βðϵHÞ and NH ¼ FðϵHÞ=ðϵH þ pHÞ still, and

WðtÞ ≔ 4πG½ϵH þ pH − ð2ϵH þ Λ̃Þβ0ðϵHÞ�½4 − 3VðtÞ�
¼ 4πG½ϵH þ pH þ ðϵH − 3pH þ 2Λ̃Þβ0ðϵHÞ�
− 12πGð2ϵH þ Λ̃ÞðϵH þ pHÞβ00ðϵHÞ: ð86Þ

8The expression given for τijð1Þ makes use of the momentum
constraints (78), which imply, through their spatial derivative,
∂tΠk½ijj�jk ¼ 0, and thus Πk½ijj�jk ¼ Πk½ijj�jkðtiÞ ¼ 0. Also note that
since P and P̄ differ by an initial spatial function, we can express
(79)–(82) in terms of either variable. Here we have adopted the
most compact possibility, noting that the initial value of P̄ is
nonzero, whereas (81) and (82) involve the initial curvature
which is independent of the initial perturbation field.

9This equation can also be derived by combining the energy
constraint (72) with the trace (76) of the evolution equation
to eliminate Rð1Þ, or equivalently by directly expanding the
Raychaudhuri equation (34) to first order. In both cases, the
master equation for the trace would then be recovered after
replacing the first-order acceleration divergence Að1Þ by its
explicit expansion (79).
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To avoid potential confusion, since the time coordinate t
used in this paper has a different rate as compared to the
conventional cosmic time, it will sometimes be convenient
for further applications to use the (time-coordinate-
independent) background scale factor a as the time variable
instead. With this change of parametrization, the energy
constraint (72) and the master equation for the trace (85)
may be rewritten as follows:

a
∂P̄
∂a þ α0P̄ ¼ −

N2
H

4H2
Rð1Þ; ð87Þ

∂2P̄
∂a2 þ

α1
a
∂P̄
∂a −

α2
a2

P̄ ¼ α3
a4

Δ0P̄; ð88Þ

respectively, with time-dependent coefficients,

α0 ≔ 4πG
N2

H

H2
½ϵH þ pH − ð2ϵH þ Λ̃Þβ0ðϵHÞ�;

α1 ≔ α0 þ 4πG
N2

H

H2
½Λ̃ − 2pH�;

α2 ≔ N2
HWðtÞ=H2; α3 ≔ N2

Hβ
0ðϵHÞ=H2; ð89Þ

where we recall that from the background Friedmann
equation we have H2=N2

H ¼ 4πGð2ϵH þ Λ̃Þ=3.
From Eq. (88) we can introduce a time-dependent

background Jeans wave number kJðϵHÞ by10

kJðϵHÞ ≔
1

c

ffiffiffiffiffi
α2
α3

r
¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
WðtÞ
β0ðϵHÞ

s
; ð90Þ

provided that the term in the square root is positive.
Pressure should be positive for sound waves to resist
gravitational collapse, and the existence of the Jeans length
is intimately related to the energy conditions satisfied by
the matter field.
A remark is in order here. In general, one would expect

the evolution of the inhomogeneous deformation to be
affected by the local, inhomogeneous speed of sound and
density, so that a nonperturbative Lagrangian realization
would rather feature a local Jeans wave number kJðϵÞ [43].
The dynamics in the presence of a significant density
contrast will thus only be partially captured by the above
first-order equation, where ϵ has been expanded in Pa

i and,
accordingly, only zero-order background factors such as
kJðϵHÞ survive in front of the first-order P̄.
As in the dust case, the advantages of the Lagrangian

approach are only fully realized via nonlinear extrapola-
tion, e.g., by computing the energy density as a full
nonlinear functional from the first-order deformation.
This is part of the Relativistic Zel’dovich Approximation
scheme, as defined for dust fluids in [23]. As in the dust

case and in contrast to standard Eulerian linear perturbation
schemes, applying this procedure to compute the energy
density out of the solution to first-order equations such as
(85) will already capture part of the nonlinear features. This
is due to the nonlinear extrapolation and to the use of
Lagrangian spatial coordinates which follow the fluid
propagation in an exact manner. Further nonlinear effects
of inhomogeneous pressure will, however, still be missed
due to the absence of local Jeans length contributions in the
equation used for P̄, compared to what should appear in the
nonperturbative evolution equation.
We will not go beyond this procedure in the present

paper. Let us nonetheless suggest here a possible direction
for improvement. It would require properly defining the
local Jeans length in the relativistic context as a functional
of the deformation. This quantity would then replace
the background Jeans length in the trace master equation.
The corresponding nonlinear master equation could then
be solved in an iterative manner, by computing at each step
the local Jeans length via functional extrapolation out of the
previous estimate for the deformation field. Note that each
step would also involve a search for the traceless part of the
deformation, as all of its components would be required for
the extrapolation.
The evolution equation (85) may be rewritten in an

alternative form via a time-dependent rescaling of the
variable P̄ ↦ P̄=NHðtÞ. Using the variation rate (67) of
the background lapse one finds the more transparent form:

∂2
t

�
P̄
NH

�
þ 2H∂t

�
P̄
NH

�
− 4πGðϵH þ pHÞN2

H

�
P̄
NH

�

¼ a−2N2
H β

0ðϵHÞΔ0

�
P̄
NH

�
: ð91Þ

Dust limit.—Setting pH ¼ βðϵHÞ ¼ 0, we find
WðtÞ ¼ 4πGϵH ¼ 4πGϱH ¼ 4πGϱHia−3 and NHðtÞ¼
ðϵHþpHÞ−1ϱH¼1, and consequently both t-variable
forms of the trace master equation, Eqs. (85) and (91),
reduce to the dust deformation trace evolution equation of
[23–26]. The trace master equation becomes

∂2
t Pþ 2H∂tP − 4πGϱHia−3P ¼ −4πGϱHia−3δϵi: ð92Þ

With NH ¼ 1 the time variable used is the standard FLRW
time coordinate t̃ ¼ t, so that the above time derivatives
coincide with those used in [23–26] (denoted there by
overdots). Finally, as evaluating Eq. (92) at the initial time
gives W ¼ −4πGϱHiδϵi, its right-hand side can always be
rewritten as Wa−3, and the dust-case master equation for
the trace [e.g., Eq. (41) of [26] ] is thus recovered.

Newtonian limit.—The Newtonian limit is obtained by the
joint application of the Minkowski Restriction (MR) for the
deformation field, as introduced for dust in [23,24], and of

10We include the factor c explicitly so that the dimensional
content of this relation is clear. The right-hand side of (86) must
be divided by c2 if units c ≠ 1 are restored.
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the c → ∞ limit together with the assumption of a non-
relativistic pressure.
The latter two assumptions imply that the pressure is no

longer a source of the gravitational field, as the energy
density is then ϵ ≃ ϱc2 ≫ p (where the constant c has been
temporarily restored), so that all source terms reduce to the
contribution of ϱ. Note that ϱ can be considered as equal to
the actual rest mass density in this limit. A further con-
sequence of this is that the lapse becomes trivial, N ¼
ϱc2=ðϵþ pÞ ≃ 1, consistent with its spatial variation rate,
N−1Nji¼−ðϵþpÞ−1pji≃−ðϱc2Þ−1pji→0 when c→∞, for
any pressure spatial gradient. It is also the case for the
(already homogeneous, but generally time-dependent)
background lapse that NH ≃ 1. Consequently, the fluid-
orthogonal hypersurface time label t now coincides with the
fluid’s proper time τ (since 1 ≃ N ¼ ∂tτ) as well as with the
standard background cosmic (proper) time t̃. All these
notions thus consistently define a time reference that can
be used as the Newtonian absolute time. We will denote the
corresponding Lagrangian time-derivative operator by an
overdot.
With N ¼ 1 the line element (3) reduces to the one used

in [23,24] for irrotational dust, and one can thus directly use
the corresponding definition of the MR in this context.11

This restriction amounts to assuming that the initial metric
is Euclidean and that the spatial coframes are exact in the
three-dimensional hypersurfaces, i.e., that there exist spa-
tial coordinates xa ¼ faðXi; tÞ such that Gab ¼ δab and

ηai ¼ aðtÞðδai þ Pa
iÞ ¼ faji: ð93Þ

In any t ¼ const hypersurface, the spatial line element then
reads ds2 ¼ δabdxadxb. The coordinates xa thus define
Cartesian-type Eulerian coordinates in which the metric
coefficients are manifestly Euclidean at each time, and they
can be used to define a Newtonian spatial reference frame.
Through its second equality, Eq. (93) also implies that the
deformation 1-forms Pa are also exact and accordingly
define a deformation vector P, with components Pa,

x ¼ aðtÞ½X þ PðX; tÞ�; Pa
i ≕Paji: ð94Þ

With these two assumptions the master equation (91) on the
trace P ¼ δa

iPa
i becomes an equation on the Lagrangian

divergence ∇0 · P ≔ δa
iPaji of P:

∇0 · P̈þ 2H∇0 · _P − 4πGϱHð∇0 · P − δϱiÞ

¼ a−2
dpH

dϱH
Δ0ð∇0 · P − δϱiÞ; ð95Þ

with ϱH ¼ a−3ϱHi still, and ϱi ≕ ϱHið1þ δϱiÞ. Note that,
although the pressure itself no longer contributes as a
source of gravitation, its spatial gradient still produces an
acceleration (as obviously expected in a Newtonian frame-
work), which is why it still affects the dynamics of ∇0 · P
above through the sound speed squared factor dpH=dϱH in
front of its Laplacian.
The above Eq. (95) matches12 the corresponding equation

for the deformation vector obtained in the Newtonian
Lagrangian framework, Eq. (24b) in [34] or Eq. (45) in
[42] written for the longitudinal part of the deformation
vector. By definition, this part obeys the same evolution
equation as the Lagrangian divergence of the vector, as can
be seen in the unnumbered equations involving that diver-
gence before Eq. (24a) in [34]. Note that in this reference, the
Laplacian term features a local sound speed squared (related
to the local Jeans length) dp=dϱ, but it is already noted
there that it should actually be replaced by the background
value for consistency with the first-order expansion, and
it is indeed replaced by the corresponding background
expression in [42].

2. Master equation for the traceless part

The first-order evolution of the traceless symmetric part
Πi

j is given by Eq. (77), with ξij
ð1Þ and τij

ð1Þ replaced by
their expressions (80) and (82), respectively. Eliminating
the initial traceless curvature Ti

j by evaluation of the
evolution equation at the time corresponding to the initial
condition (114), then first yields the following evolution
equation for the traceless symmetric part:

∂2
tΠi

j þ 3H½1 − β0ðϵHÞ�∂tΠi
j

þ N2
H

a2

�
2Πi

kjjjk − Πi
jjkjk −

2

3
Πk

ljkjlδij

�

¼ N2
H

3a2
ð½1þ 3β0ðϵHÞ�Di

jP̄ − ½1þ 3β0ðϵHiÞ�Di
jP̄iÞ

þ N2
H

a2N2
Hi

ðtlWi
j þHi½1 − 3β0ðϵHiÞ�tlUi

jÞ: ð96Þ

11Note that the Minkowski Restriction introduced for the dust
case is in principle independent of a possible c → ∞ limit and can
still otherwise be applied in a Minkowskian regime, as the name
suggests. In the present case, when c is still finite, this procedure
would need to be extended to the presence of pressure and
consequently of an inhomogeneous lapse. We believe, however,
that such an extension to this case would require a modification of
the perturbation framework used so far in this paper, through the
use of a spacetime foliation better adapted to this purpose, and we
will consequently not attempt to provide such a generalization
here.

12Equation (95) features additional contributions from the
initial density perturbations δϱi as compared to the original
Newtonian result obtained in [34]. These perturbations were
actually neglected there, by assuming ϱi ¼ ϱH i, as is also
assumed in Zel’dovich’s original work for the dust case [22].
However, as is demonstrated in Appendix A of [34], such an
assumption can be made without loss of generality in the
Newtonian context within the first-order perturbation scheme
in the deformation vector, through a suitable change of Lagran-
gian coordinates, making both approaches equivalent.
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Here P̄i ¼ −αHiδϵi due to the vanishing of the initial
spatial perturbation field, and we have introduced the
coordinate traceless spatial Hessian operator Di

j ≔
δik∂k∂j − ð1=3ÞδijΔ0.
This equation still explicitly features the trace, but it can

be fully expressed in terms of Πi
j by making use of the

momentum constraints (78). This can be achieved by
rewriting (78) as

1

NH
∂tΠi

jji ¼
2

3
∂t

�
P̄jj
NH

�
: ð97Þ

A time-integration and spatial differentiation of this equa-
tion allows one to express Di

jP̄ as

Di
jP̄

NH
¼ Di

jP̄i

NHi
þ 1

2

Z
t

ti

∂tð3Πk
jjkji − Πk

ljkjlδijÞ
NH

dt0: ð98Þ

The pair of equations {(96), (98)} together comprise the
master equation for the traceless part. When pH ¼ 0, one
simply has NHðtÞ ¼ 1 and β0ðϵHÞ ¼ 0 so that this master
equation reduces to the corresponding one in the dust case,
Eq. (43) in [26].

3. Master equations for free and
scattered gravitational waves

Following the approach developed in [25,26], we can
gain more insight into the evolution of Πi

j by splitting the
full master equation for the traceless variable into gravito-
electric and gravitomagnetic parts.
To this end, we first define a corresponding split of the

initial conditions for the traceless variables:

tlUi
j ¼ tl;EUi

j þ tl;HUi
j;

tlWi
j ¼ tl;EWi

j þ tl;HWi
j; ð99Þ

tl;HUi
jji ¼ 0; tl;HWi

jji ¼ 0; ð100Þ

2Δ0
tl;EUi

j þ tl;EUk
ljkjlδij − 3tl;EUi

kjjjk ¼ 0; ð101Þ

2Δ0
tl;EWi

j þ tl;EWk
ljkjlδij − 3tl;EWi

kjjjk ¼ 0: ð102Þ

These conditions can be jointly required because of the
following geometric identity (taking its first two time
derivatives and evaluating them at the initial time):

ð2Δ0Πi
j þ Πk

ljkjlδij − 3Πi
kjjjkÞji ¼ 0: ð103Þ

This in turn is due to Πk½ijj�jk ¼ 0, which is a consequence
of the momentum constraints (see footnote 8).
We can then define the gravitoelectric and gravitomag-

netic traceless parts, respectively, EΠi
j and HΠi

j, from their
vanishing initial values and their respective initial first time
derivatives tl;EUi

j and tl;HUi
j, requiring them to obey the

following evolution equations:

∂2
t
HΠi

j þ 3H½1 − β0ðϵHÞ�∂t
HΠi

j −
N2

H

a2
Δ0

HΠi
j

¼ N2
H

a2N2
Hi

ðtl;HWi
j þHi½1 − 3β0ðϵHiÞ�tl;HUi

jÞ; ð104Þ

∂2
t
EΠi

j þ 3H½1 − β0ðϵHÞ�∂t
EΠi

j þ
N2

H

3a2
Δ0

EΠi
j

¼ N2
H

3a2
ð½1þ 3β0ðϵHÞ�Di

jP̄ − ½1þ 3β0ðϵHiÞ�Di
jP̄iÞ

þ N2
H

a2N2
Hi

ðtl;EWi
j þHi½1 − 3β0ðϵHiÞ�tl;EUi

jÞ: ð105Þ

Equation (104) is the master equation for free gravitational
waves, while Eq. (105), after elimination of the coupling to
the trace, is the master equation for the gravitational wave
part that is scattered at the fluid source. We will discuss
the coupling to the trace of this latter equation in more
detail below.
The above evolution equations ensure that we indeed

get a decomposition of the traceless deformation field
obeying (96) at all times:

Πi
j ¼ EΠi

j þ HΠi
j: ð106Þ

They will also propagate the initial constraints (99)–(102)
that define the split of tlUi

j and tlWi
j. This will ensure the

preservation at all times of the divergence-free nature of
free gravitational waves as well as the geometric identity on
their scattered part, similar to the dust case (cf., [25,26]):

HΠi
jji ¼ 0; ð107Þ

2Δ0
EΠi

j þ EΠk
ljkjlδij − 3EΠi

kjjjk ¼ 0: ð108Þ

The (also propagating) momentum constraints (97) split as
follows:

HΠi
jji ¼ 0;

1

NH
∂t

EΠi
jji ¼

2

3
∂t

�
P̄jj
NH

�
: ð109Þ

Observe that HΠi
j decouples from the trace in both the

momentum constraints and the evolution equation, while
EΠi

j remains coupled to the trace in both cases.
Alternatively, using a time integral of the momentum

constraints,

EΠi
jji ¼

2

3

Z
t

ti

NH∂t

�
P̄jj
NH

�
dt0; ð110Þ

the geometric constraint (108) on EΠi
j can be expressed as

follows:

Δ0
EΠi

j ¼ Di
j

�Z
t

ti

NH∂t

�
P̄
NH

�
dt0

�
: ð111Þ
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This is to be compared to the dust-case relation, Eq. (51) in
[26], to which it reduces when pH ¼ 0 and accordingly
NHðtÞ ¼ 1: Δ0

EΠi
j ¼ Di

jðP̄ − P̄iÞ ¼ Di
jP. Hence, in the

presence of pressure, in contrast to the dust case, the gravi-
toelectric traceless part and the trace, although still tightly
coupled, will in general have different time behaviors.
With the antisymmetric part vanishing at all times, the

evolution equations for the trace and for the gravitoelec-
tromagnetic split of the traceless symmetric part, coupled
through the momentum constraints, characterize the behav-
ior of the first-order Lagrangian deformation field for this
general barotropic single fluid. These evolution equations
have yet to be complemented by the set of initial constraints
(48)–(53), to which we turn now.

E. First-order initial conditions

The constraints on the initial conditions for the defor-
mation field, the density and the spatial curvature are
expressed at the first-order level as follows:

U½ij� ¼ 0; W½ij� ¼ 0; ð112Þ

W − 6Hiβ
0ðϵHiÞU

¼ −N2
HiαHi½WðtiÞδϵi þ β0ðϵHiÞΔ0ðδϵiÞ�; ð113Þ

tlWi
j þHi½1 − 3β0ðϵHiÞ�tlUi

j

¼ −N2
HiT

i
j − N2

HiαHiβ
0ðϵHiÞ

�
ðδϵiÞjijj −

1

3
Δ0ðδϵiÞδij

�
;

ð114Þ

HiU ¼ −
1

4
ℛN2

Hi þ 4πGN2
HiαHiδϵi

× ½ϵHi þ pHi − ð2ϵHi þ Λ̃Þβ0ðϵHiÞ�; ð115Þ
Ui

jji − Ujj ¼ 2HiαHiβ
0ðϵHiÞðδϵiÞjj; ð116Þ

pi ¼ pHi þ ϵHiβ
0ðϵHiÞδϵi; pHi ¼ βðϵHiÞ: ð117Þ

This set of initial conditions can also be obtained by
evaluating the linearized Lagrange-Einstein system at the
initial time. It can be complemented by the requirements
(99)–(102) which define the initial split into gravitoelectric
and gravitomagnetic parts of the traceless deformation
field.
Note that the above set keeps more variables coupled

than the corresponding ones in [26]. This is to be expected,
since in the dust case a vanishing pressure and a constant
lapse allowed for the elimination of ϵ and Λ between the
first two constraints, leaving only a relation among U, W
andℛ. Here, we also have contributions from p, Λ (due to
the lapse factor in the Λ term) and the nonvanishing Ai

ð1Þ.
Accordingly, the dependence on the initial energy density
ϵi and its spatial derivatives can no longer be explicitly
removed in general. However, as in the dust case, the scalar

constraints (113) and (115), together with the initial EoS
(117), show that only two independent first-order initial
conditions need to be given for the scalar variables U, W,
ℛ, ϵi, and pi. One could for instance only specifyU andW
as can be done in the dust case, fully determining the
other scalar initial conditions. In contrast to the dust case,
however, determining ϵi in this situation would involve
solving for the Laplacian differential equation (113).

IV. APPLICATION TO SPECIFIC
EQUATIONS OF STATE

Concrete results can be obtained by looking at special
cases of the barotropic EoS. In this section, we will first
consider the family of linear relations between the pressure
and the energy density. We then proceed to a special
nonlinear polytropic EoS that allows one to model the
isotropic part of a velocity dispersion field up to late epochs
of nonlinear structure formation.

A. Case of a linear equation of state: p=wϵ

In the previous section we have derived the evolution
equations for the first-order deformation field, sourced by a
general barotropic fluid. In this section we will consider as
an example the simplest barotropic EoS, p ¼ βðϵÞ ¼ wϵ
with w a constant parameter obeying the dominant energy
condition, −1 ≤ w ≤ 1. In addition to the radiation fluid,
with w ¼ 1=3, other interesting cases include a “stiff fluid”
corresponding to a free scalar field source, with w ¼ 1,
and a “curvature” or “string gas” equation of state, with
w ¼ −1=3. For this class of linear EoS we can readily apply
the procedure suggested in [25,26] to find the relativistic
Lagrangian first-order solutions.
The formal rest mass density FðϵÞ and the lapse are

found to be as follows:

FðϵÞ ¼ ϱ1

�
ϵ

ϵ1

�
1=ð1þwÞ

; N ¼ ϱ1
ϵ1ð1þ wÞ

�
ϵ

ϵ1

�
−w=ð1þwÞ

;

ð118Þ
if w ≠ −1. (The case w ¼ −1 for a “vacuum energy
equation of state” can be treated separately by the explicit
cosmological term.)
The solution (42) of the energy conservation law then

yields the energy density, and the lapse as deduced from
(118), as the following respective functionals of the
coframes, with J ¼ detðηaiÞ:

ϵ ¼ ϵiJ−ð1þwÞ; N ¼ NiJw: ð119Þ
Similar equations hold for the background spacetime,

ϵH ¼ ϵHia−3ð1þwÞ; NH ¼ NHia3w;
∂tNH

NH
¼ 3wH:

ð120Þ
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Given the linear barotropic EoS, the pressure and back-
ground pressure are immediately deduced from the expres-
sion of the corresponding energy densities, and will share
their functional dependencies.

1. First-order equations

With the linear EoS βðϵÞ ¼ wϵ, β0ðϵHÞ reduces to the
constant value w, β00ðϵHÞ vanishes at all times, and
αHi ¼ ð1þ wÞ−1. Consistent with a first-order evaluation
of the exact formulas above, the first-order expressions
(62)–(66) for P̄, ϵ, p, FðϵÞ,N (and its rate of evolution) thus
simplify to

P̄ ¼ P − ð1þ wÞ−1δϵi;
ϵ ¼ ϵH½1 − ð1þ wÞP̄�; p ¼ pH − wð1þ wÞϵHP̄;

FðϵÞ ¼ FðϵHÞ½1 − P̄�;

N ¼ NH½1þ wP̄�; ∂tN
N

¼ 3wH þ w∂tP̄: ð121Þ

Equation (73) reduces to

VðtÞ ¼ ϵHð1 − wÞ2 − 2wΛ̃
ϵHð1 − wÞ − wΛ̃

; ð122Þ

and the first-order Lagrange-Einstein system (72), (75)–(78)
becomes13

∂tPij ¼ 0∶ Pij ¼ PijðtiÞ ¼ 0;

∂2
t P̄þ 3H

ϵHð1 − wÞ2 þ 2w2Λ̃
ϵHð1 − wÞ − wΛ̃

∂tP̄

¼ N2
Hia

6w

�
Að1Þ −

ϵHð1 − wÞð1þ 3wÞ þ 2wΛ̃
4ϵHð1 − wÞ − 4wΛ̃

Rð1Þ
�
;

ð123Þ

∂2
tΠi

jþ3Hð1−wÞ∂tΠi
j¼N2

Hia
6wðξijð1Þ−τij

ð1ÞÞ; ð124Þ

H∂tP̄þ 4πG½ϵHð1 − wÞ − wΛ̃�N2
Hia

6wP̄

¼ −
1

4
N2

Hia
6wRð1Þ; ð125Þ

∂t

�
Πi

jji −
2

3
P̄jj

�
¼ −2wHP̄: ð126Þ

The acceleration gradient and its trace and traceless parts
are expressed in terms of the deformation field at first order
according to Eqs. (68), (79), and (80), yielding

Ai
j
ð1Þ ¼ a−2wP̄jijj; ð127Þ

Að1Þ ¼ a−2wΔ0P̄; ð128Þ

ξij
ð1Þ ¼ a−2wDi

jP̄; ð129Þ

while the first-order expressions (58), (81), and (82) of the
Ricci tensor and its trace/traceless split are formally
unchanged. Since for the chosen EoS, WðtÞ yields
WðtÞ ¼ 4πG½ϵHð1 − wÞð1þ 3wÞ þ 2wΛ̃�

¼ 4πG½ϵHia−3ð1þwÞð1 − wÞð1þ 3wÞ þ 2wΛ̃�;
ð130Þ

the master equation (85) for the trace of the perturbation
now reads

∂2
t P̄þ 2Hð1 − 3wÞ∂tP̄

− 4πGN2
Hi½ϵHið1 − wÞð1þ 3wÞa3ðw−1Þ þ 2wΛ̃ a6w�P̄

¼ wN2
Hia

6w−2Δ0P̄: ð131Þ
In turn, the master equation (96) for the traceless symmetric
part of the deformation field becomes

∂2
tΠi

j þ 3Hð1 − wÞ∂tΠi
j

þ N2
Hia

6w−2
	
2Πi

kjjjk − Πi
jjkjk −

2

3
Πk

ljkjlδij

−
1

3
ð1þ 3wÞDi

jðP̄ − P̄iÞ



¼ a6w−2½tlWi
j þ ð1 − 3wÞHi

tlUi
j�; ð132Þ

with, from the momentum constraints (126),

a−3wDi
jP̄ ¼ Di

jP̄i þ
Z

t

ti

∂tð3Πk
jjkji − Πk

ljkjlδijÞ
2a3w

dt0:

ð133Þ
We can finally rewrite the set of initial conditions (112)–

(117) for the linear EoS:

U½ij� ¼ 0; W½ij� ¼ 0; ð134Þ

W − 6wHiU ¼ −
N2

Hi

1þ w

�
wΔ0ðδϵiÞ

þ 4πG½ϵHið1 − wÞð1þ 3wÞ þ 2wΛ̃�δϵi
�
;

ð135Þ

tlWi
j þ ð1 − 3wÞHi

tlUi
j ¼ −N2

Hi

�
Ti

j þ
w

1þ w
Di

jðδϵiÞ
�
;

ð136Þ

13It is worth noting in the case when Λ ¼ 0, VðtÞ simplifies
further and reduces to the constant 1 − w, so that (123) becomes

∂2
t P̄þ 3Hð1 − wÞ∂tP̄ ¼ N2

H ia
6w

�
Að1Þ −

1þ 3w
4

Rð1Þ
�
:
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HiU ¼ −
1

4
ℛN2

Hi þ
4πGN2

Hi

1þ w
½ϵHið1 − wÞ − wΛ̃�δϵi;

ð137Þ

Ui
jji −Ujj ¼ 2

w
1þ w

HiðδϵiÞjj; ð138Þ

pi ¼ pHi þ wϵHiδϵi; pHi ¼ wϵHi: ð139Þ

2. Solutions for the trace of the deformation field

Similarly to [23,24], we will now further investigate
the behavior of the trace P of the first-order deformation.
For simplicity, we will restrict attention to the case of a
vanishing cosmological constant, Λ ¼ 0, as may be rea-
sonably assumed during the radiation-dominated era. In
this case Eqs. (87)–(89) reduce to

a
∂P̄
∂a þ 3

2
ð1 − wÞP̄ ¼ −3

32πGϵHi
a3ð1þwÞRð1Þ; ð140Þ

∂2P̄
∂a2 þ

α1
a
∂P̄
∂a −

α2
a2

P̄ ¼ α3ia3w−1Δ0P̄; ð141Þ

with the constant parameters

α1 ¼
3ð1 − 3wÞ

2
; α2 ¼

3ð1 − wÞð3wþ 1Þ
2

;

α3i ¼
3w

8πGϵHi
: ð142Þ

If w > 0 (implying α3i > 0), as we will assume in the
following, then Eq. (141) is a second-order hyperbolic
partial differential equation (PDE).14 This equation is
formally analogous to the standard Eulerian propagation
equations for a linearized density contrast [63,72,73] once
those are reexpressed in terms of the variable a.15 In the
Eulerian case, assuming global flat-space spatial coordi-
nates, one can find the analytical general solution using a
Fourier transformation. A discussion of the differences
between the Eulerian and Lagrangian approaches has been
given in [26]. (See also the related discussion in [21].)
Reference [26] also elucidated a procedure for finding
general-relativistic Lagrangian first-order solutions for the
deformation field in the dust case. We show here that this
procedure can be readily extended to the presence of

pressure and apply it to the determination of a
Lagrangian solution for the trace part.16

First, we can use the formal identity of Eq. (141), written
in Lagrangian coordinates on the nontrivial spacetime
manifold, with an equation written in Euclidean space.
We can thus work within this flat space with its effective
“Eulerian” Cartesian spatial coordinates xi and solve
Eq. (141) with Δ0 ↦ δij∂xi∂xj for the unknown P̄ða;xÞ.
On this space we can then apply an inverse Fourier
transformation

P̄ða;xÞ ¼
ZZZ

P̄kða;kÞe−ik·xd3k; ð143Þ

and thus get a second-order linear ordinary differential
equation:

d2P̄k

da2
þ α1

a
dP̄k

da
− ðα2a−2 − α3ik2a3w−1ÞP̄k ¼ 0; ð144Þ

where we have used k · x ≔ δijkixj and k ≔ ðδijkikjÞ1=2.
In this case the background Jeans wave number (90)

satisfies

kJðϵHÞ2 ¼
α2
α3i

a−3ð1þwÞ

¼ 4πGϵHi
ð1 − wÞð3wþ 1Þ

wa3ð1þwÞ ; ð145Þ

where we recall that 0 < w ≤ 1 is assumed. The behavior of
the solution to Eq. (141) will then depend on the relative
values of k and akJðϵHÞ.
One can first proceed by investigating the extreme

cases, as is commonly done in the Eulerian analyses.
When k ≪ akJðϵHÞ, Eq. (144) may be solved as

P̄k ¼ a1þ3wCk;1 þ a
3
2
ðw−1ÞCk;2; ð146Þ

where Ck;1ð2Þ are two functions of k encoding the
initial conditions. This corresponds, as expected, to the
unstable regime since the term with coefficient Ck;1 is a
growing mode.
In the opposite situation when k ≫ akJðϵHÞ, the

solution reads

P̄k ¼ a
9w−1
4 ½Jν̂ðBa1þ3w

2 kÞCk;1 þ Y ν̂ðBa1þ3w
2 kÞCk;2�;

B ≔
2

ffiffiffiffiffiffi
α3i

p
1þ 3w

; ν̂ ≔
9w − 1

2þ 6w
; ð147Þ

with different k-dependent coefficients Ck;1ð2Þ, and where
JνðxÞ and YνðxÞ denote the Bessel functions of the first and

14It would be an elliptic PDE for w < 0 (i.e., α3i < 0), while
for the parabolic case w ¼ 0 (and consequently α3i ¼ 0) it
reduces, as expected, to the evolution equation for the dust case,
with decoupled time and space variables.

15Note that in terms of the conventional cosmic time t̃
introduced in (38), Eq. (141) reduces to ∂2

t̃ P̄þð2−3wÞa−1 ×
∂ t̃a∂ t̃P̄−4πG½ð1−wÞð1þ3wÞϵHþ2wΛ̃�P̄¼wa−2Δ0P̄. This is
formally equivalent to the linearized Eulerian equation (3.2.17)
of Ref. [73] in that the coefficients agree, but both the dependent
and (spatial) independent variables differ.

16A complementary picture of an equivalent procedure is
shown in Appendix A 2 and applied to the search for a particular
solution for the traceless part.
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second kind, respectively. This corresponds to a “stable”
regime of acoustic oscillations, although their amplitude
will grow over time [as að3w−1Þ=2 for large a] for an unusual
EoS with w > 1=3. The latter remark includes the “stiff
fluid” EoS w ¼ 1, for which the above solution is exact at
all times, since it corresponds to kJðϵHÞ ¼ 0.
From the expression (145) of kJðϵHÞ, the noncomoving

Jeans wave number akJðϵHÞ decreases over time, so that
even an initially unstable solution will eventually enter the
stable regime. Such a solution will cross the threshold
k ≃ akJðϵHÞ and it may be useful to be able to describe this
transition period as well.
As in the Newtonian case in the Eulerian approach,

with different coefficients (see, e.g., [74]), the Bessel
functions actually allow for an explicit solution of
Eq. (144) for any mode at all times. The general solution
is the same as (147) up to a change of the order of the
Bessel functions:

P̄k ¼ a
9w−1
4 ½JνðBa1þ3w

2 kÞCk;1 þ YνðBa1þ3w
2 kÞCk;2�;

B ¼ 2
ffiffiffiffiffiffi
α3i

p
1þ 3w

; ν ¼ 5þ 3w
2þ 6w

: ð148Þ

The integration constants Ck;1ð2Þ are derived from the initial
conditions on P̄ and its time derivative, P̄iðXÞ andUðXÞ. To
this end, one formally replaces these quantities by functions
of the “Eulerian” coordinates xi on the Euclidean space,with
the same functional dependence, P̄iðxÞ and UðxÞ. One is
then working on flat space, and the respective Fourier
transforms P̄kða ¼ ai ¼ 1;kÞ and ð∂tP̄kÞða ¼ 1;kÞ ¼
Hið∂aP̄kÞða ¼ 1;kÞ can be computed, from which
Ck;1ð2ÞðkÞ are deduced.Knowing these, P̄ða;kÞ is expressed
as the full solution given by Eq. (148) and its inverse Fourier
transform (143) gives P̄ða;xÞ in Euclidean space.
Finally, one can formally replace the Eulerian spatial

coordinates by the Lagrangian ones in P̄ða;xÞ while
preserving the functional form. The resulting Lagrangian
function P̄ða;XÞ then gives a solution to the evolution
equation (141) in the nonconstant curvature spatial
sections, thanks to the algebraic identity of this equation
with its Euclidean space counterpart. It is now a
Lagrangian solution, however, and must be interpreted
as such: the coordinates Xi are comoving with the
inhomogeneous fluid flow. They are local coordinates
on the perturbed manifold; thus the solution Pða;XÞ
describes perturbations as they evolve in the perturbed
space. This perturbed space is in general not isometric to
Euclidean space. Note that the Fourier modes P̄ða;kÞ are
only an intermediate resolution step as they only corre-
spond to modes in the ancillary Euclidean space. As the
inversion of the solution (148) does not allow for an
explicit general analytic expression, it requires the speci-
fication of the initial conditions and will usually involve
numerical integration with the given Ck;1ð2ÞðkÞ to realize
this solution procedure.

B. Case of a polytropic equation of state: p= κϱγ

As a second class of models we will now turn to the
nonlinear case of polytropic equations of state.

1. Equation of state and resolution procedure

We consider the polytropic EoS, p ¼ κϱγ , ϱ ¼ FðϵÞ,
where κ is the polytropic constant, and γ > 1 the polytropic
exponent. For such flows the pressure and the energy
density obey the relation [63,75]

ϵ ¼ β−1ðpÞ ¼ 1

γ − 1
pþ Ap1=γ ¼ 1

γ − 1
κϱγ þ Aκ1=γϱ;

ð149Þ
where A is a constant parameter. We will assume in this
section that the formal ϱ ¼ FðϵÞ actually coincides with the
rest mass density of the fluid, e.g., via suitable initial
conditions. For A ¼ 0, we again obtain the (nondust) linear
case p ¼ wϵ with w ≔ γ − 1 > 0. In the following, we will
instead consider the case Aκ1=γ ¼ 1 (in particular A > 0),
corresponding to an EoS of the type of a nonrelativistic
adiabatic ideal gas, the energy density being the sum of
the rest mass density and an internal energy density equal
to p=ðγ − 1Þ.
As a relevant example, we will focus on the case

γ ¼ 5=3, which is an exact solution for a locally isotropic
distribution with velocity dispersion, derived from the
relativistic kinetic theory of collisionless matter [76]. (See
also [77] and references therein.) This EoS also coincides
with the corresponding exact solution inNewtonian cosmol-
ogyderived fromkinetic theory [41,42]. In these latter papers
it is also shown that this particular EoS arises in the
inhomogeneous case by closing the hierarchy of kinetic
equations through truncation of the third and higher reduced
moments. In the inhomogeneous case this law is, however,
phenomenological, since there is a nonvanishing anisotropic
part. Neglecting this part strictly results in shear-free
motion confirming the exactness of the law in the homo-
geneous case.
The conservation law (18), combined with p ¼ κϱγ ,

gives for the evolution of p

∂tpþ γNΘp ¼ 0; γ ¼ 5

3
: ð150Þ

The same relation holds within the background spacetime,
so that pHa5 ¼ pHiai5. The assumption of the background
sources following the same EoS also gives, for γ ¼ 5=3,

ϵH ¼ β−1ðpHÞ ¼
3

2
pH þ Ap3=5

H ;

β0ðϵHÞ ¼
2

3

5

5þ 2Ap−2=5
H

; β00ðϵHÞ ¼
80Ap−7=5

H

9ð5þ 2Ap−2=5
H Þ3

:

ð151Þ
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The procedure outlined in the last subsection for solving the
trace master equation, Eq. (88), in terms of Fourier trans-
formation within a set of coordinates formally equivalent
to Eulerian spatial coordinates, is still applicable in this
case. We can thus substitute (151) and (89) in the Eulerian
coordinate analogue of (88), and solve the corresponding
ordinary differential evolution equation for each Fourier
mode. This has to be performed by numerical integration as
the more complicated time evolution of the coefficients
prevents an explicit analytic solution. Once initial con-
ditions are specified we can then numerically compute the
inverse Fourier transform and formally replace the
(Eulerian) spatial coordinates by the Lagrangian coordi-
nates Xi (see Sec. IVA 2) to obtain the solution for P̄ðt; XiÞ.

2. Behavior of the first-order trace for
a model overdense region

As an instructive toy model, we will now consider the
evolution of an initial spherical Gaussian deformation:

−P̄i ¼ αHiδϵi ¼ ci exp

�
−

R2

2σ2

�
; ð152Þ

where σ and ci respectively define the characteristic scale
and maximum amplitude of the initial perturbation, and
R ≔ ðδijXiXjÞ1=2 is a Lagrangian coordinate “radius.”17 We
will take ci > 0 and ci ≪ 1. The perturbation can then be
seen to describe a small initial local overdensity, since the
initial rest mass density contrast,

δi ≔
ϱi
ϱHi

− 1 ¼ FðϵiÞ
FðϵHiÞ

− 1 ¼ FðϵHi½1þ δϵi�Þ − FðϵHiÞ
FðϵHiÞ

;

ð153Þ
is well approximated by αHiδϵi ¼ −P̄i for ci ≪ 1.
The actual value of the amplitude ci is irrelevant for the

evolution of P̄ itself, since it obeys a linear equation.
However, it will matter for the nonlinear evaluation of any
physical quantity such as ϱ determined by the first-order
solution for P̄ through the extrapolation procedure
mentioned above from the Relativistic Zel’dovich
Approximation. To best illustrate the effect of this pro-
cedure, we choose a rather large overdensity with the
arbitrary amplitude ci ¼ 10−3 at an initial time that
corresponds to the epoch of last scattering. As we will
see, this will let the unstable perturbations enter the mildly

nonlinear regime (where jP̄j < 1 but is of order 1) around
the present epoch, i.e., around a ¼ a0 ≃ 1090 since we
set ai ¼ 1.
The other independent initial condition amounts to

specifying the first time derivative ð∂tP̄ÞðtiÞ. For this we
simply consider an initially stationary deformation and
set ð∂tP̄ÞðtiÞ ¼ U ¼ 0.
The present formalism focuses on the description of a

single fluid source, as it allows for a description in terms of
a single velocity field and a single EoS. We will con-
sequently make the simplifying assumption of a model
universe filled with a single-component matter fluid and a
cosmological constant. The description of model universes
with multicomponent fluids is beyond the scope of the
present paper and is left to future work. The background
density parameters Ωm, ΩΛ for the matter component
and the cosmological constant, respectively, satisfy Ωmþ
ΩΛ ¼ 1. We will take the present epoch value Ω0

Λ ¼ 0.692
in agreement with the best-fit ΛCDM parameters from the
Planck Collaboration [78].
The background is also affected by the polytropic EoS

(149) of the source fluid. As noted above, our polytrope is
exact for the background and is parametrized by the arbitrary
constant κ, or equivalently A as we set Aκ1=γ ¼ 1. Specifying
its value amounts to choosing the initial instability scale as
determined by kJðϵHiÞ. It also controls the ratio between
pressure and rest mass density at a given time, and hence the
deviation of the background from a dust-fluid ΛCDM
model. The value we adopt for our examples below,
ApHi

−2=5 ¼ 3=2, requires the background fluid pressure
to be relativistic (and radiationlike) at the initial time,
pHi ¼ ϵHi=3, with pHi=ϱHi ¼ 2=3. However, it sub-
sequently quickly becomes negligible as pH=ϱH ∝ a−2,
keeping the late-time dynamics of the background very
close to that of the ΛCDM model.
We choose to make the lengths R, σ dimensionless by

setting the initial instability scale kJðϵHiÞ−1 [as derived
from substituting (151) into (90) at the initial time] to be
our length unit. Thus σ < 1 means that the scale of the
initial perturbation is below the Jeans scale kJðϵHiÞ−1 and
above it for σ > 1. For the value of A adopted in the present
example and estimating ϱHi fromΛCDM background para-
meters [78], this length unit is approximately 98 kpc. This
would correspond to a large background comoving initial
overdensity size of a0kJðϵHiÞ−1 ≃ 107 Mpc.18

17We have chosen the set of Lagrangian coordinates Xi such
that the components of the spatial metric at initial time, Gij, are
approximately δij (at leading order) in these coordinates. They
can thus be considered as Cartesian-like coordinates, and R is
thus a fluid-comoving radial coordinate. It does not, however,
coincide with the spatial metric distance between the fluid
elements of the respective Lagrangian coordinates ðXiÞ and
(0,0,0). [This is true irrespective of a possible normalization by
aðtÞ to make it a background comoving distance.]

18Note that kJðϵH iÞ−1 defines an initial instability “scale” only
in terms of Lagrangian coordinates, e.g., in terms of R. This
means that the corresponding “background comoving” distance,
aðtÞkJðϵH iÞ−1 evaluated at present time, does not coincide with
the present-day physical size of an object that would initially
have been of this scale, as such a size must be evaluated using
the actual, deformed, spatial metric. (See previous footnote.)
a0kJðϵH iÞ−1 may be seen as a rough estimate of this physical size,
as obtained by fully neglecting the deformations Gð1Þ

ab , P
a
i, in the

evaluation of the integrated spatial line element.
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Figures 1–3 show the numerical results for P̄ with the
procedure, initial conditions and parameters given above,
for three different values of σ.
The first case, σ ¼ 10 (Fig. 1), corresponds to a super-

Jeans length, and hence unstable, initial perturbation.
Figures 1(a) and 1(b) show the numerical results for the
evolution of the perturbation −P̄ as a function of the scale
factor at several values of R, and over the whole range of
radii R for increasing values of a, respectively. As
expected, this perturbation is unstable and remains so by
growing at all times, the pressure gradient being insufficient

to prevent the collapse of the structure. The evolution is
similar to the dust case with the fast onset of a linear growth
of the perturbation with a before a late-time slowdown due
to the presence of Λ.
The second case, σ ¼ 0.2 (Fig. 2), illustrates the opposite

situation of an initially sub-Jeans length perturbation.
Figures 2(a) and 2(b) show the numerical solution for
−P̄ in this situation along the same reasoning as for
Figs. 1(a) and 1(b). At the early stage, the pressure gradient
dominates and opposes the gravitational collapse. The
perturbation behaves as an acoustic wave and is damped

(a) (b)

FIG. 1. Numerical solution for the first-order trace −P̄ in Lagrangian space, for an initial spherical Gaussian overdensity with a peak
amplitude of 10−3 at R ¼ 0 and a standard deviation σ such that kJðϵHiÞσ ¼ 10. (a) Evolution of −P̄ as a function of a for fixed values of
the Lagrangian radius R. From top to bottom, R ¼ 0, 10, 20 and 30. (b) Spatial variation of −P̄ with R, for several values of the
background scale factor. From bottom to top, a ¼ 1, 10, 200, 500 and 1000. The perturbation strongly grows over time, corresponding
to a collapsing structure.

(a) (b)

FIG. 2. Numerical solution for the first-order trace −P̄ in Lagrangian space, for an initial spherical Gaussian overdensity with a
peak amplitude of 10−3 at R ¼ 0 and a standard deviation σ such that kJðϵH iÞσ ¼ 0.2. (a) Evolution of −P̄ as a function of a at fixed
distance R. From top to bottom at a ¼ 1000, R ¼ 3, R ¼ 4, R ¼ 1 and R ¼ 0. The inset panel shows a detail of the early evolution
(small values of a), where only the R ¼ 0 (solid line) and R ¼ 1 (dashed line) are visibly nonzero. (b) Spatial variation of −P̄ with the
Lagrangian radius, for several values of the background scale factor. The structure is first damped and spread out by the Lagrangian
pressure gradient, before starting to grow back after the critical wave number akJðϵHÞ has increased, as the perturbation enters the
unstable regime.
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as it propagates away from the initial peak at R ¼ 0.
However, the instability wave number akJðϵHÞ quickly
starts increasing over time (cf., Fig. 4). That is why around
a ¼ 50 to 100 the perturbation starts to grow as its typical
wave number (estimated by σ−1 ¼ 5) ends up below the
critical value, with akJðϵHÞ ¼ 5 for a ≃ 94, and it enters
the unstable regime. The peak of this growing structure
remains at a mostly stationary Lagrangian position, at
R ≃ 3.7, while its increasing amplitude still remains small
and below the initial value −P̄ða ¼ 1; R ¼ 0Þ ¼ 10−3 up to
present time (a ≃ 1090).
For comparison we also consider the special case where

the initial scale lies at the stability threshold, σ ¼ 1. The
evolution of the corresponding solution for −P̄ with a at
several radii is shown in Figs. 3(a) and 3(b), with the latter
highlighting the early evolution (1 ≤ a ≤ 20). Figure 3(c)
shows the spatial dependence of −P̄ with R at some values

of the scale factor. The behavior of the perturbation in this
case is as expected intermediate, with an initial acoustic
damping and propagation away from R ¼ 0 similarly to the
σ ¼ 0.2 case, but more rapidly entering an unstable regime,
after a ≃ 5. The amplitude of the perturbation then starts
growing with a dustlike behavior up to beyond 20 times its
initial value at present time, with a shifted peak as in the
σ ¼ 0.2 case, that stays around R ≃ 2.5.

3. Evaluating the nonlinear density contrast

As we recalled above, even the first-order Lagrangian
perturbation scheme allows one to probe part of the
nonlinear regime in the evaluation of observable quantities.
This involves extrapolating these observables as exact,
nonlinear functionals of the deformation field, the latter
being evaluated as a solution to its first-order evolution
equations and constraints.

(a) (b)

(c)

FIG. 3. Numerical solution for the first-order trace −P̄ in Lagrangian space, for an initial spherical Gaussian overdensity with a peak
amplitude of 10−3 at R ¼ 0 and a standard deviation σ such that kJðϵHiÞσ ¼ 1. (a),(b) Evolution of −P̄ as a function of a at a given
distance R, for late and early times, respectively. From top to bottom at a ¼ 1000 for (a), R ¼ 3, R ¼ 1, R ¼ 0, R ¼ 4, R ¼ 5; same
order for (b) at a ¼ 20. (c) Spatial variation of −P̄ with R, for fixed values of the background scale factor. From top to bottom at R ¼ 0,
a ¼ 1000, a ¼ 500, a ¼ 200, a ¼ 1, a ¼ 20, a ¼ 4. The behavior is rather similar to the previous case of kJðϵH iÞσ ¼ 0.2; as expected,
the unstable regime is, however, reached sooner, and the perturbation then grows similarly to the case of kJðϵH iÞσ ¼ 10, up to much
above its initial amplitude.
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Adopting this procedure for the rest mass density we
evaluate it as the exact integral to the rest mass conservation
equation (18):

ϱ ¼ ϱi
J
; J ¼ detðηaiÞ ¼ a3 detðδai þ Pa

iÞ; ð154Þ

where Pa
i are the components of the deformation field.

The density contrast δ is then deduced from the above:

δ ≔
ϱ − ϱH
ϱH

¼ ϱi
ϱHia−3J

− 1; a−3J ¼ detðδai þ Pa
iÞ;

ð155Þ
and it is evaluated by replacing Pa

i by the first-order
solution.
Using the polytropic EoS and the parameters adopted

here, the lapse may then be computed from

N ¼ ϱ

ϵþ p
¼ ϱ

ϱþ γ
γ−1 κϱ

γ ¼
1

1þ 5
3
ð1þ δÞ2=3a−2 ; ð156Þ

with δ expressed from the deformation field as above. This
formula shows that the lapse is 1 in pressure-free (here empty)
regions (δ ¼ −1) and decreases with increasing density con-
trast at a given time. The deviation (1 − N) rapidly decreases
over time as∝ a−2, with late time values of order 10−6 (when
a ≃ 1000), as long as δ remains at most of order unity.
We will now illustrate this process for the density con-

trast with two examples using the same polytropic EoS as
above. Note that this evaluation requires the knowledge
of all components of the deformation field, including the
traceless part. We specify procedures in Appendix to obtain
a particular (gravitoelectric) solution for the first-order
traceless part from the initial conditions for the trace in
specific cases. These procedures have been used to deter-
mine a consistent solution for the full deformation field in
the examples below. We have also made use of the fact that
the initial density ϱi ¼ FðϵHi½1þ δϵi�Þ is well approxi-
mated by FðϵHiÞð1þ αHiδϵiÞ ¼ ϱHið1 − P̄iÞ for a small,
still linear, initial density perturbation (with αHi ¼ 3=4 for
the chosen EoS parameters) for the evaluation of δ.

FIG. 4. Evolution of the instability wave number akJðϵHÞ with
the scale factor a for the polytropic EoS considered here, with the
unit of length convention kJðϵH iÞ ¼ 1. As this wave number only
depends on the background by construction, this result applies to
all examples considered in Sec. IV B. After a small initial dip,
akJðϵHÞ exceeds its initial value around a ≃ 4 and enters the
increasing power law regime akJðϵHÞ ∝

ffiffiffi
a

p
[valid as long as

ðΩΛ=ΩmÞða=aiÞ−2 ≪ 1, which is satisfied up to the present
epoch] as expected from the large a expansion of its expression
for the present polytropic EoS.

(a) (b)

FIG. 5. Numerical evaluation of the nonlinear density contrast δ as extrapolated from the first-order Lagrangian perturbation, where
the initial −P̄ is the same spherical Gaussian field as for Fig. 1, with peak value of 10−3 and kJðϵH iÞσ ¼ 10. (a) Evolution of δ with the
background scale factor at fixed distances R. From top to bottom, R ¼ 0, 10, 20 and 30. (b) Spatial variation of δ with the Lagrangian
radius, for given values of a. From bottom to top, a ¼ 1, 10, 200, 500 and 1000. The overall behavior of δ is similar to the results of
Fig. 1 for the first-order −P̄ in the same situation, but the extrapolated density contrast grows faster at late times near the R ¼ 0maximal
overdensity. Additional nonlinear effects concerning the comparison with a standard perturbation approach, not studied here, could also
be revealed by using instead as the x-axis for (b) the actual spatial metric distance to the R ¼ 0 fluid element (as an “Eulerian radius”),
altering the spatial dependence. (See the discussion in Sec. IV B 4.)
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Localized overdensity.—Let us first retain the “spherical”
initial overdensity example studied thus far in this section,
with the initial conditions for the trace given by (152), with
ci ¼ 10−3, and U ¼ 0. The first-order solution for the trace
in this situation has been determined above, and it is
complemented by a gravitoelectric solution for the first-
order traceless part through the use of the procedure given
in Appendix A 2 that directly applies to this case. The
determinant J is then computed from this solution as in
Appendix A 4, giving δ from Eq. (155).
Note that when all components of the deformation field

are very small, i.e., when it lies fully in the linear regime,
then the extrapolated δ remains quantitatively close to −P̄,
which corresponds to its expansion at first order in the
deformation field. This is the case in the initially stable or
marginally stable cases σ ¼ 0.2 and σ ¼ 1, where the initial
acoustic damping of the perturbation keeps its amplitude
small up to the present time despite the late-time growth. In
both of these cases, the resulting density contrast indeed
remains indistinguishable from the value of −P̄ already
depicted above (Figs. 2–3).
We will consequently focus, from now on, on the case

σ ¼ 10, where the unstable deformation reaches into the
mildly nonlinear regime before the present time, as can be
seen for the trace (whose amplitude reaches about 0.5 at the
present epoch).
Figures 5(a) and 5(b) show the result of the nonlinear

evaluation of the density contrast in this situation, as a
function of a at given radii R, and as a function of the radius
at several moments in its evolution, respectively. Although
the general behavior is roughly similar to that of −P̄ (cf.,
Fig. 1), nonlinear effects are visible in the amplified growth
of δ at late times near R ¼ 0, with a maximal overdensity
reaching about 0.7 at present.

This nonlinear deviation of the density contrast func-
tional with respect to its first-order estimate −P̄ is made
explicit by the direct comparison of the peak (R ¼ 0)
amplitude evolution of δ and −P̄ as a function of the
background scale factor in Fig. 6(a). The spatial depend-
ence on R of both quantities at late times, compared in
Fig. 6(b) at a ¼ 1000, is also visibly affected by the
amplified growth of the density contrast where P̄ is no
longer small, i.e., around R ¼ 0.

Lagrangian monochromatic wave.—The second toy model
we consider is that of a single Lagrangian monochromatic
wave deformation. The choices of background parameters
and the length unit [kJðϵHiÞ ¼ 1] are unchanged. The initial
perturbation is now chosen to be

−P̄i ¼ ci cosðKXÞ; U ¼ 0; ð157Þ
where we will again take ci ¼ 10−3 as an initial amplitude.
This situation corresponds to an initially stationary
monochromatic wave in the given Lagrangian coordinate
set,19 −P̄i ¼ ci cosðδijKiXj þ ϕ0Þ with ϕ0 ¼ 0, and a

(a) (b)

FIG. 6. Comparison of the extrapolated nonlinear density contrast δ (dashed line) with the first-order solution for the sign-inverted
deformation trace −P̄ (solid line) within the same setting as Figs. 1 and 5. (a) Comparison of the evolution of both quantities as a
function of a at the center of the overdensity (R ¼ 0). (b) Comparison of the spatial variation of both quantities with R at a late time
(a ¼ 1000). In this situation, the perturbation grows large enough to enter the nonlinear regime and to render the time evolution and
spatial behavior of the extrapolated δ clearly deviating from those of −P̄.

19Similarly to the interpretation of R for the previous example,
it is important to keep in mind that the perturbation we are
considering here only has a sinusoidal dependence in the chosen
Lagrangian coordinates Xi. It would have a different functional
dependence in terms of actual physical (metric) spatial distance
between two points on a given hypersurface t ¼ const. One
expects for instance, at a given late time t and along a given
spatial geodesic line, the distance between the successive
perturbation nodes at KX ¼ −π=2 and KX ¼ π=2 (surrounding
a collapsing overdensity) to be shorter than the distance between
the nodes at KX ¼ π=2 and KX ¼ 3π=2 (surrounding an ex-
panding underdensity), despite all nodes being equally separated
in terms of the Lagrangian coordinate X.
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Lagrangian wave vector K along the first coordinate X,
with components Ki ¼ ðK; 0; 0Þ.
The first-order trace solution then remains in this

monochromatic mode form in the Lagrangian coordinates
at all times, P̄ ¼ P̂KðtÞ cosðKXÞ. The amplitude P̂KðtÞ
evolves according to the ordinary differential equation (A2)
which is solved by numerical integration for a given wave
number K. A gravitoelectric solution for the traceless part
is then determined along the lines of Appendix A 1, where
the relevant amplitude Q̂KðtÞ is again numerically evalu-
ated, knowing P̂KðtÞ, through its defining time integral
formula (A3). From these, one can calculate the density
contrast in the same way as in the previous example, with
the determinant J evaluated as detailed in Appendix A 4.
Here we again study three cases distinguished by their

wave number in direct analogy to the previous example,
with K−1 playing the role of the characteristic length σ. We
accordingly choose K−1 ¼ 0.2, K−1 ¼ 1 and K−1 ¼ 10,
which at the initial time are stable, marginally stable and
unstable, respectively. The corresponding spatial depend-
ence of δ as a function of KX for the three wave number
choices is shown at an early time (a ¼ 10) in Fig. 7(a) and
at a late time (a ¼ 1000) in Fig. 7(b).
In this situation, in the first two cases the components of

the deformation field again remain small at all times, due to
initial acoustic oscillations, and the density contrast thus
follows the sinusoidal shape of −P̄ at all times. This is also
the case for the unstable mode K−1 ¼ 10 at a ¼ 10 when it
is still in the linear regime. At a ¼ 1000, however, this
mode clearly deviates from this behavior as its amplitude is

no longer linear. In particular, an asymmetry develops
between the under- and overdensity magnitudes as the latter
is sharply amplified by the nonlinear evolution of δ.

4. Discussion

In both examples above, the Lagrangian scheme and the
proposed extrapolation procedure exhibit nonlinear effects
on the overdensity for unstable perturbations when they
become large enough. The amplitude of large overdensities
in these examples is clearly underestimated when they are
approximated by the first-order expression −P̄ instead of
using the nonlinear extrapolation for δ.
An even higher initial overdensity amplitude could

actually lead to a vanishing determinant a−3J at the
maximum overdensity at a late enough time, implying
ϱ → ∞ with deformation coefficients still of order 1. This
situation corresponds to a shell crossing, beyond which the
first-order Lagrangian scheme in no longer valid.
The presence of pressure can delay its occurrence by

damping the perturbation. An improvement of the perturba-
tive scheme to account for further local nonlinear effects
in the dynamical evolution, e.g., allowing for a nonlinear
coefficient to define the Jeans length, is needed, however, to
fully circumvent this problem. Velocity dispersion effects
may in principle allow us to model the multistream regime,
and the stabilization of structure formation in the form of
virialization,whichmay help to avoid shell crossings [42,79].
We emphasize that the current Lagrangian perturba-

tion scheme already contains another effect of nonlinear
structure evolution, which lies in the exact propagation of

(a) (b)

FIG. 7. Numerical evaluation of the nonlinear density contrast δ as extrapolated from the first-order Lagrangian perturbation. The first-
order deformation trace is taken as a plane wave in Lagrangian coordinates of wave vector K (of norm K) along the X coordinate,
−P̄ ∝ cosðKXÞ, of initial amplitude 10−3. The result is shown at a given time as a function ofKX for three possible values of K, which is
expressed in units kJðϵH iÞ ¼ 1. (a) At a ¼ 10, for K ¼ 0.1 (K−1 ¼ 10), K ¼ 5 (K−1 ¼ 0.2) and K ¼ 1 by order of decreasing
amplitude. (b) At a ¼ 1000, for K ¼ 0.1 (K−1 ¼ 10), K ¼ 1 and K ¼ 5 (K−1 ¼ 0.2) by order of decreasing amplitude. The side panel
displays the (otherwise barely visible) latter two curves on a different vertical scale. The most unstable perturbation, for K−1 ¼ 10,
displays a nonsinusoidal asymmetric shape at late times as it reaches the mildly nonlinear regime. This shape would be further
nonlinearly modified, via a different x-axis dependence, if this axis were expressed alternatively in terms of an Eulerian-type, regularly
spaced (in terms of spatial metric distances) x coordinate.
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the spatial coordinates used along the fluid flow lines. This
is analogous to the inclusion of quadratic convection terms
within linear Lagrangian time derivatives in the Newtonian
framework.20

Let us suggest a procedure that would be required to
make these effects explicit also in the relativistic context; its
concrete application is beyond the scope of this paper.
Eulerian-like coordinates could first be recovered, at

least along a given spatial geodesic direction, by labeling
points at equal intervals of spatial metric distances. This
would involve solving for the initial metric components
Gab such that their Ricci tensor is consistent with the initial
conditions (114)–(115) for given initial deformation field
data, and then functionally evaluating and integrating the
line element as given by (A18) from the first-order solution
for Pa

i. The resulting length, as a function of a Lagrangian
coordinate, could then be used as an estimate of the
Eulerian coordinate distance. Finally, this relation would
have to be numerically inverted so that a given Lagrangian
function obtained through the Relativistic Zel’dovich
Approximation, such as ϱðXiÞ, could be expressed as a
function of the Eulerian coordinate x along the chosen line.
A different functional dependence on this spatial dis-

tance [which may be normalized by aðtÞ to become a
background comoving distance], as compared to the fluid-
comoving coordinates Xi, would thus include nonlinear
effects of the fluid-propagation-dependent coordinate
transformation.
Recall, however, that a three-dimensional family of

Eulerian observers generally does not exist in a relativistic
(intrinsic) description. Strictly, a coordinate transfor-
mation to Eulerian space can only be conducted after
the Minkowski Restriction of the relativistic solution has
been executed.

V. CONCLUSION

In this paper we have generalized the Lagrangian
perturbation approach to the nonlinear evolution of inho-
mogeneous general relativistic model universes containing
a single irrotational fluid obeying a general barotropic
relation.
By choosing a suitable set of coframes, we obtained the

master partial differential equations for the evolution of the
trace and traceless parts of the first-order deformation field
that reduce to the corresponding equations in the dust case.
The trace part also matches the Newtonian limit of the
corresponding Lagrangian perturbation problem.

We discussed the procedure proposed in previous papers
of how to find the solution for perturbations that propagate
in the perturbed space, and we applied this procedure to
specific toy models, illustrating the mildly nonlinear evolu-
tion of the density contrast. We also discussed the limits of a
first-order Lagrangian scheme, and we proposed ideas for a
nonperturbative generalization, which is needed especially in
application to cases where the pressure term is taken to
model multistreaming beyond the mildly nonlinear regime.
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APPENDIX: EXAMPLES OF SOLUTIONS FOR
THE GRAVITOELECTRIC TRACELESS PART

In this paper we will not attempt to find the general
solution of Eqs. (96) and (97) for the traceless part. We will,
however, discuss a procedure for finding one possible
solution for suitably chosen traceless-part initial conditions.
For any barotropic EoS, this yields one example of a full
gravitoelectric solution for all components of the deforma-
tion field Pa

i. It can then be substituted into exact nonlinear
formulas to extrapolate functionals of the coframes such as
metric distances or the rest mass density.
To find such an example solution, we will focus on the

gravitoelectric part which is directly coupled to the trace,
and accordingly we set the gravitomagnetic part to zero.

1. Case of a Lagrangian monochromatic wave

Let us first assume that the first-order trace solution can
be written as a single monochromatic wave mode in the
given set of Lagrangian spatial coordinates Xi:

P̄ðt; XiÞ ¼ φðK ·XÞP̂KðtÞ; ðA1Þ

with constant Lagrangian wave vector K, where
K ·X ≔ δijKiXj, and φðK ·XÞ ¼ cosðK ·Xþ ϕ0Þ, for
some constant phase ϕ0. This form is a solution of the
first-order trace master equation, if and only if P̂KðtÞ is a
solution of the ordinary differential equation

20In addition to the time derivatives being taken at different
fixed spatial coordinates, a difference also comes from the
spatial derivative operators, such as the Laplacian Δ0 appearing
in the trace master equation (85), being expressed in terms of
Lagrangian coordinates and thus differing from the correspond-
ing Eulerian operators. (See [34] for the explicit transformation in
the Newtonian case.)
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d2

dt2
P̂K þ 2Hð1 − 3β0ðϵHÞÞ

d
dt
P̂K −WðtÞN2

HP̂K

¼ −a−2N2
Hβ

0ðϵHÞK2P̂K; ðA2Þ

with K ≔ ðδijKiKjÞ1=2. Then P ¼ P̄ − P̄i ¼ φðK ·XÞ×
ðP̂KðtÞ − P̂KðtiÞÞ.
Setting

Q̂KðtÞ ≔
Z

t

ti

NHðt0Þ∂t

�
P̂K

NH

�
ðt0Þdt0

¼ P̂KðtÞ − P̂KðtiÞ − 3

Z
t

ti

Hðt0Þβ0ðϵHÞðt0ÞP̂Kðt0Þdt0;

ðA3Þ
the time integral of the momentum constraints (97) is

Πi
jji ¼

2

3
Q̂KðtÞKj φ

0ðK ·XÞ: ðA4Þ

We now take Πi
j to be a purely longitudinal mode and get

the following solution to the momentum constraints (with
Kj ≔ δjlKl):

Πi
j ¼

�
KiKj

K2
−
1

3
δij

�
Q̂KðtÞφðK ·XÞ ðA5Þ

¼
�
KiKj

K2
−
1

3
δij

��
Q̂KðtÞ

P̂KðtÞ − P̂KðtiÞ

�
Pðt; XiÞ: ðA6Þ

Substituting this form into the master equation (96) shows
that it is consistently a solution of both equations for the
traceless part. It is straightforward to show from the above
formula that 2Δ0Πi

j þ Πk
ljkjlδij − 3Πi

kjjjk ¼ 0; i.e., this
Πi

j obeys the defining relation (108) for the gravitoelectric
part and evolves according to (105). This solution is thus
a pure gravitoelectric one, amounting to setting the grav-
itomagnetic part to zero by the choice of vanishing
gravitomagnetic traceless part of the initial deformation:
Πi

j ¼ EΠi
j.

Choosing this solution amounts to specifying the follow-
ing (gravitoelectric) initial conditions:

tlUi
j ¼

�
KiKj

K2
−
1

3
δij

�
ðU þ 3Hiβ

0ðϵHiÞαHiδϵiÞ; ðA7Þ

tlWi
j ¼

�
KiKj

K2
−
1

3
δij

��
W þ 3Hiβ

0ðϵHiÞU

þ 3½∂tðHβ0ðϵHÞÞðtiÞ þ 2H2
i β

0ðϵHiÞ�αHiδϵi

�
: ðA8Þ

This is compatible with the set of constraints on the initial
conditions given in Sec. III E, in particular the initial
momentum constraints (116) and Eq. (114), provided that
the latter is used to specify the traceless part of the initial
first-order Ricci tensor Ti

j.

The corresponding full perturbation field Pi
j ¼ Πi

j þ
1
3
δijP then reads

Pi
j ¼

KiKj

K2

�
Q̂KðtÞ

P̂KðtÞ − P̂KðtiÞ

�
P

þ 1

3
δij

�
1 −

Q̂KðtÞ
P̂KðtÞ − P̂KðtiÞ

�
P: ðA9Þ

Note that the corresponding deformation 1-forms Pa ¼
δakPk

idXi are not exact due to the different time evolution
of the trace and gravitoelectric traceless parts. This con-
trasts with the dust case where a purely gravitoelectric
perturbation would lead to integrable coframes [26], so that
only the nonflat initial metric would prevent one obtaining
a Euclidean spatial metric at all times in that situation.
By linearity of the equations, a solution for Πi

j can also
be obtained when the trace is a finite sum of such mono-
chromatic waves, or the sum of the two time-evolution
modes’ solutions of the evolution equation (A2) for a given
wave vector K, simply by summing the corresponding
solutions as given by (A5).

2. Case of a spatially localized solution

We assume here either that the spatial slices are globally
diffeomorphic to the Euclidean space R3, i.e., that they can
be covered by a single chart, or that the deformation field
can be assumed to vanish outside a given chart. In either
case it suffices to work within the Euclidean space spanned
by the spatial coordinates in a given chart.
Let us now consider a spatially localized solution for the

trace, e.g., a local overdensity evolving from an initial
Gaussian perturbation in terms of the given set of spatial
Lagrangian coordinates, as studied in the numerical exam-
ples of Sec. IV. More specifically, we require the solution
for the trace to always be a square-integrable function of the
spatial coordinates in the chart, so that its Fourier transform
in these coordinates can be performed and inverted. We can
thus write

P̄ðt; XiÞ ¼
ZZZ

e−iK·XP̂ðt;KÞd3K; ðA10Þ

where P̂ðt;KÞ is a solution of the evolution equation (A2)
at fixed K, with the initial conditions set by the forward
Fourier transform in the chart coordinates:

P̂ðti;KÞ ¼ −
1

ð2πÞ3 αHi

ZZZ
eiK·XδϵiðXÞd3X; ðA11Þ

ð∂tP̂Þðti;KÞ ¼ 1

ð2πÞ3
ZZZ

eiK·XUðXÞd3X: ðA12Þ

Note that the above approach represents an alternative
and complementary formulation of the method of solution
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presented in [26] which formally replaces the Lagrangian
coordinates by Eulerian ones. In the present paper it is
applied in Secs. IVA 2 and IVB. The reformulation sug-
gested here allows us to be more explicit about the required
assumptions, as well as expressing the coordinate compo-
nents of tensors such as Πi

j in a more convenient form.
In both formulations, the use of plane-wave modes and
flat-space Fourier transformations is sufficient since the
Lagrangian first-order master equations to be solved only
involve the metric-independent coordinate spatial derivatives
ji and Laplacian Δ0 ¼ ji jj δij as spatial derivative operators.
By linearity of the equations, a solution for the (gravito-

electric) traceless part is obtained by summation of the
plane-wave solutions for all Fourier modes:

Πi
j ¼ EΠi

j ¼
ZZZ

e−iK·X KiKj

K2
Q̂ðt;KÞd3K

−
1

3
δij

ZZZ
e−iK·XQ̂ðt;KÞd3K; ðA13Þ

with

Q̂ðt;KÞ ≔
Z

t

ti

NHðt0Þ∂t

�
P̂ðt;KÞ
NHðtÞ

�
ðt0Þdt0: ðA14Þ

Using this solution again implies a specific choice of initial
conditions for the traceless deformation field (in particular
taking it to be gravitoelectric) and for the traceless part of
the spatial Ricci tensor.
In the case of spherically symmetric initial conditions in

the chart coordinates, i.e., when δϵiðXiÞ and UðXiÞ only
depend on R ≔ ðδijXiXjÞ1=2, their Fourier transform will
also depend only on K. From the evolution equation (A2),
this feature is preserved over time, so that one can write
P̂ðt;KÞ as P̂ðt; KÞ and consequently Q̂ðt;KÞ as Q̂ðt; KÞ
and P̄ðt; XiÞ as P̄ðt; RÞ. The above solution for Πi

j can then
be computed as

Πi
j ¼

�
XiXj

R2
−
1

3
δij

�
qðt; RÞ; ðA15Þ

with Xj ≔ δjkXk and

qðt; RÞ ≔ 4π

R

Z
∞

0

K sinðRKÞQ̂ðt; KÞdK

−
4π

R3

Z
∞

0

�
sinðRKÞ

K
− R cosðRKÞ

�
Q̂ðt; KÞdK:

ðA16Þ

3. Time integral of the gravitoelectric
evolution equation

The above procedure gives a way of obtaining a traceless
part consistent with the momentum constraints and

evolution equations in particular situations, and when only
initial conditions on the trace part (or on the energy density)
are explicitly specified. Alternatively, and still focusing on
a purely gravitoelectric traceless part, a solution can be
derived from the gravitoelectric traceless evolution equa-
tion (105), if the trace part and the (gravitoelectric) traceless
initial conditions are known. It can be achieved by rewriting
this evolution equation as follows:

∂t

�
a3

NH
∂t

EΠi
j

�

¼ −
aNH

3
Di

j

�Z
t

ti

NH∂t

�
P̄
NH

�
dt0

�

þ aNH

3

�
½1þ 3β0ðϵHÞ�Di

jP̄ − ½1þ 3β0ðϵHiÞ�Di
jP̄i

�

þ aNH

N2
Hi

�
tl;EWi

j þHi½1 − 3β0ðϵHiÞ�tl;EUi
j

�
; ðA17Þ

after replacing Δ0
EΠi

j by its integral expression (111) in
terms of P̄. It can be readily time integrated twice to give
EΠi

j. This yields the full Πi
j if the initial conditions are

chosen such that the gravitomagnetic part vanishes.
In contrast to the previous subsections, this procedure

can be applied in general, allowing the gravitoelectric initial
conditions for the traceless part to be freely set. However,
this requires the initial conditions tlUi

j ¼ tl;EUi
j and tlWi

j ¼
tl;EWi

j to be explicitly specified. While the trace parts relate
to the energy density and spatial scalar curvature, the trace-
free parts are related to properties of the gravitational wave
components at the initial time. The latter have to be set in
such a way as to fulfill the momentum constraints and their
time derivative at the initial time, as well as the geometric
constraints (101)–(102) for the gravitoelectric parts.

4. On the evaluation of physical quantities

From given solutions for the trace and traceless parts, the
full deformation field is straightforwardly obtained as
Pi

j ¼ Πi
j þ ð1=3ÞPδij, with P ¼ P̄ − P̄i. This expression

can then be inserted into the Lagrangian functional
expressions for various physical quantities in terms of
the deformation field. They can then be directly evaluated
without any further linearization. This extrapolation is a
crucial part of the Relativistic Zel’dovich Approximation as
defined in [23], and it generally requires the knowledge of
all components of the deformation field.
One would for instance directly compute a spatial

distance from the line element

ds2 ¼ aðtÞ2Gabðδai þ Pa
iÞðδbj þ Pb

jÞdXidXj; ðA18Þ

where knowledge of GabðXkÞ is also required. In turn, the
rest mass density [with initial conditions set in such a way
that it does coincide with ϱ ¼ FðϵÞ] would be computed as
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ϱ ¼ ϱi
J
¼ ϱHið1þ αHiδϵiÞ

a3 det ðδai þ Pa
iÞ
: ðA19Þ

For the evaluation of the latter, note that in the case of a
monochromatic wave (with one or both time-evolution
modes), the deformation field components can be written as
follows:

Pi
j ¼ λ1

KiKj

K2
þ λ2δ

i
j; ðA20Þ

and similarly in the case of a localized spherically sym-
metric perturbation,

Pi
j ¼ λ1

XiXj

K2
þ λ2δ

i
j: ðA21Þ

The coefficients λ1ðt; XkÞ, λ2ðt; XkÞ for the monochromatic
case are directly deduced from (A9) or from a sum of two
such solutions, while in the localized spherically symmetric
case, λ1ðt;XkÞ¼qðt;RÞ and λ2ðt;XkÞ¼ðPðt;RÞ−qðt;RÞÞ=3.
The determinant of the spatial coframe coefficients,

from which ϱ is evaluated, is then expressed in both
cases by

J ¼ a3ð1þ λ2Þ2ð1þ λ1 þ λ2Þ; ðA22Þ
leading to an infinite rest mass density (from shell crossing)
whenever λ2 → −1 or λ1 þ λ2 → −1.
Such an extrapolation procedure provides the exact

metrical distances, density and other physical properties
as produced by the deformation field at a given order. In
particular, this gives powerful approximations for the Ricci
and Weyl curvatures that are not available in standard
perturbation theory. It is, however, clear that the resulting
expressions are approximations that must be controlled.
We can further combine the exact functionals for a given

deformation with exact averages of Einstein’s equations.
An example was given in [24] that also showed that the
resulting prescription can even lead to exact results. For
example, the combination of the first-order Lagrangian dust
model with exact averages led to an exact formula for the
kinematical backreaction within a class of averaged
Lemaître-Tolman-Bondi solutions [24].
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