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Teruyuki Kitabayashi* and Masaki Yasuè†
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To discuss the possible contribution of parafermions to the dark matter abundance, we extend the
Boltzmann equation for fermionic dark matter to include parafermions. Parafermions can accommodate r
particles per quantum state ð2 ≤ r < ∞Þ, in which the parafermion of order r ¼ 1 is identical to the
ordinary fermion. It is found that the parafermionic dark matter can be more abundant than the fermionic
dark matter in the present Universe.
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I. INTRODUCTION

Understanding the nature of dark matter is one of the
outstanding problems to be solved in the particle
physics and cosmology [1]. There are lots of candidates
of dark matter in particle physics, such as weakly
interacting massive particles, axions, sterile neutrinos,
and so on. All currently proposed candidates of particle
dark matter are classified as fermions or bosons.
Fermions and bosons are characterized by the maximum
occupation number r. One particle per quantum state is
allowed for one fermion (r ¼ 1), while an infinite
number of particles per quantum state is allowed for
one boson (r ¼ ∞). On the other hand, other particles
satisfying a nonstandard statistics, parafermi statistics
[2], have been discussed to find the possible realization
in physics. It is called “parafermion,” which accom-
modates r particles per quantum state ð2 ≤ r < ∞Þ.
The quantum field theory of parafields satisfies the

basic conditions in general quantum field theory such as
the cluster property, the existence of the unique vacuum,
and the positive property of the norm of the physical
state vector [2]. In spite of these theoretically accepted
properties, the two limiting cases corresponding to the
lower limit of r as a fermionic field (r ¼ 1) and to the
upper limit of r as a bosonic field (r ¼ ∞) are chosen in
the current physics. However, we have experienced that
a new discovery in physics sometimes arises from a
theoretical possibility supported by mathematical con-
sistency. For parafields, the simple algebra to be shown

in the next section supports the existence of parafer-
mions (and parabosons). To study yet unknown proper-
ties of parafermi fields may give a clue to finding
answers to the following questions. Why do the
extremes survive in nature? Is there any privilege in
physics for fermions and bosons to serve as building
blocks of the Universe? For parafermi fields, it was
pointed out that the parafermi fields of orders 1 and 3
occupied a very privileged position in parafermi theory
[3]. Although parafermions have never been observed
and there is yet no successful model including paraf-
ermions, we expect that the study of parafermions gives
us some hints to reveal some of answers to these
questions. This is our motivation to discuss a possible
realization of parafermions in physics.
Some problems, which may be inherent in the conven-

tional statistics, can be solved considering generalized
statistics [4,5]. For an example, the modification of the
entropy bounds of the Bose, Fermi statistics supplied by the
gravitational stability condition is discussed [5]. The
relationship between quantum gravity and non-standard
statistics including infinite statistics is also clarified [6–9].
In this paper, we would like parafermions to enjoy their

physics at the initial stage of the expanding Universe,
during which parafermions may serve as seeds of dark
matter. To be realistic, we derive a simple-formed
Boltzmann equation to estimate the relic abundance of
parafermionic dark matter. As a result, we find that the
parafermionic dark matter can be more abundant than the
fermionic dark matter in the present Universe.
This paper is organized as follows. In Sec. II, some

thermodynamical or statistical quantities, such as the par-
tition function, distribution function, energy density, etc., for
the parafermion are shown. In Sec. III, first, we review the
usually used simple form of the Boltzmann equation to
calculate the relic abundance of fermionic dark matter
(Sec. III A). Second, we extend the Boltzmann equation
to include parafermionic dark matter (Sec. III B). In Sec. IV,
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we perform a numerical calculation to estimate the relic
abundance of parafermionic dark matter. Section V is
devoted to a summary.

II. PARAFERMION

The theoretical possibility of parafermions is readily
seen from the well-known algebra of the creation and
annihilation operators [2], respectively denoted by aþ and
a−ð¼ a†þÞ, which are required to satisfy ½N; a�� ¼ �a�,
where N is the number operator. Furthermore, N ¼
½aþ; a−�=2 can be chosen as the simplest solution to the
Jacobi identity for a� and N. The relations among a�
and N coincide with the algebra of SOð3Þ, which has
three generators J1;2;3 satisfying ½J3; J�� ¼ �J� and
½Jþ; J−� ¼ 2J3, where J� ¼ J1 � iJ2. It is readily under-
stood that a� and N can be identified with a� ¼ J� and
N ¼ J3, which finally explain the spectrum of parafer-
mions of order r to be determined by r ¼ 2l with 2lþ 1
states for l ¼ 0; 1=2; 1; 3=2;….
A parafermion of order r is described by rþ 1 states

spanned by j0i; j1i ;…; jri, where jni (n≧0) is the eigen-
vector of N for a given eigenvalue nþ N0 (N0 ¼ −l). A
parafermion of order r ¼ 1 has two states, j0i and j1i,
which describe the states of the ordinary fermion. Similarly,
a parafermion with r ¼ 2 has three states, j0i, j1i, and j2i,
and is allowed to accommodate at most two particles
per quantum state. Noticing that the relation of ½N; a�� ¼
�a� is equivalent to ½a−; ½aþ; a−�� ¼ fa−; fa−; aþgg−
faþ; fa−; a−gg ¼ 2a−, we observe that it is, for example,
satisfied by fa−;aþg¼1 with a2−¼0 for r ¼ 1 and by
fa2−;aþg¼ 2a− and a−aþa− ¼ 2a− with a3− ¼ 0 for r ¼ 2.
For a paraboson of order r, this analysis is, however,

irrelevant because N ¼ ½aþ; a−�=2 becomes a c number
for a paraboson of order 1 identical to the ordinary boson.
The right answer is to choose N ¼ faþ; a−g=2 as the
next simple solution to the Jacobi identity. After some
manipulation, it turns out that the identification of J3 ¼
N=2 and J� ¼ a2�=2 leads J1;2;3 to the algebra of
SOð2; 1Þð≃Spð2;ℜÞÞ instead of SOð3Þ. Since SOð2; 1Þ
is a noncompact group, N has an infinite number of
eigenvalues, which allows parabosons to have an infinite
number of states per quantum state.
Let us discuss a statistical property of parafermions.

The grand-canonical partition function for quantum
parafermionic gas of the chemical potential μ with temper-
ature T is

Ξ ¼
Y
i

Xri
ni¼0

e−ðEi−μÞni=T; ð1Þ

where ri denotes the maximum occupation number corre-
sponding to the energy Ei [10,11]. The distribution
function for parafermions

f ¼
P

r
n¼0 ne

−ðE−μÞn=TP
r
n¼0 e

−ðE−μÞn=T

¼ x
d
dx

ln
Xr

n¼0

xn
�����
x¼e−ðE−μÞ=T

ð2Þ

is derived from Eq. (1). It is obvious that the distribution
function for fermions fFD is given by r ¼ 1. Furthermore,
the limit of r ¼ ∞ leads to the distribution function for
bosons fBE. Namely, fFD and fBE are obtained as

fFD ¼ fjr¼1

¼ x
d
dx

lnð1þ xÞ
����
x¼e−ðE−μÞ=T

¼ 1

eðE−μÞ=T þ 1
ð3Þ

and

fBE ¼ lim
r→∞

f

¼ x
d
dx

lnð1 − xÞ−1
����
x¼e−ðE−μÞ=T

¼ 1

eðE−μÞ=T − 1
: ð4Þ

The number density ni, energy density ρi, pressure Pi, and
entropy density si of a parafermionic species i with internal
degrees of freedom (d.o.f.) gi (gi ¼ 2 [2]) are given by

niðtÞ ¼
gi

ð2πÞ3
Z

fiðp⃗iÞd3pi; ð5Þ

ρiðtÞ ¼
gi

ð2πÞ3
Z

Eðp⃗iÞfiðp⃗iÞd3pi; ð6Þ

PiðtÞ ¼
gi

ð2πÞ3
Z jp⃗ij2

3E
fiðp⃗iÞd3pi; ð7Þ

and

si ¼
ρi þ Pi − μini

Ti
; ð8Þ

where E2 ¼ jp⃗j2 þm2 [12].
For the relativistic particles (Ti ≫ mi), in the isotropic

universe, we have

nrelai ¼ gi
2π2

T3

Z
∞

x
fðuÞu2du; ð9Þ

ρrelai ¼ gi
2π2

T4

Z
∞

x
fðuÞu3du; ð10Þ

Prela
i ¼ gi

6π2
T4

Z
∞

x
fðuÞu3du; ð11Þ

where
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x ¼ m
T
; u ¼ E

T
: ð12Þ

The total energy density ρrela and total entropy density srela

of relativistic particles are

ρrela ¼ π2

30
g�T4; srela ¼ 2π2

45
g�sT3;

where g� and g�s are defined by

g� ¼
X

i¼bosons

gi

�
Ti

T

�
4

þ 7

8

X
i¼fermions

gi

�
Ti

T

�
4

þ γ�
X

i¼parafermions

gi

�
Ti

T

�
4

ð13Þ

and

g�s ¼
X

i¼bosons

gi

�
Ti

T

�
3

þ 7

8

X
i¼fermions

gi

�
Ti

T

�
3

þ γ�s
X

i¼parafermions

gi

�
Ti

T

�
3

; ð14Þ

respectively, denote the relativistic effective d.o.f. for the
energy density and for the entropy density. The factor 7=8
accounts for the difference between the Fermi and Bose
statistics, and the factors

γ� ¼
ρrelai¼parafermion

ρrelai¼boson

ð15Þ

and

γ�s ¼
srelai¼parafermion

srelai¼boson

¼ ρrelai¼parafermion

ρrelai¼boson

¼ γ�; ð16Þ

respectively, account for the difference between the paraf-
ermi and Bose statistics.
Since the parafermi statistics is regarded as the Fermi

statistics in the case of r ¼ 1 and as the Bose statistics in the
case of r ¼ ∞, the relation

γ�jr¼1 ¼
7

8
; lim

r→∞
γ� ¼ 1 ð17Þ

should be satisfied. Figure 1 shows the dependence of the
factor γ� on the maximum occupation number r. The
relation in Eq. (17) is satisfied as we expected.

III. BOLTZMANN EQUATION

A. Fermionic dark matter

The time evolution of the phase space distribution
functions as well as the number density for dark matter
can be controlled by the Boltzmann equation [12]. Before
we derive a Boltzmann equation for parafermionic dark
matter, we review the usually used simple-formed
Boltzmann equation for fermionic dark matter.
In the homogeneous and isotropic universe, the relativ-

istic Boltzmann equation for the 1þ 2 ↔ 3þ 4 process is
written in the form [12]

dn1
dt

þ 3Hn1 ¼
g1

ð2πÞ3
Z

C½f�
E1

d3p1; ð18Þ

whereH ¼ πT2M−1
pl

ffiffiffiffiffiffiffiffiffiffiffiffi
g�=90

p
denotes the Hubble parameter

and C½f� denotes the collision term. The collision term
evolves depending on the equation

g1
ð2πÞ3

Z
C½f�
E1

d3p1 ¼ −
Z

dΠ1dΠ2dΠ3dΠ4ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þ

× fjM1þ2→3þ4j2f1f2ð1þ ζ3f3Þð1þ ζ4f4Þ − jM3þ4→1þ2j2f3f4ð1þ ζ1f1Þð1þ ζ2f2Þg; ð19Þ

where

ζi ¼
�þ1 ðbosonsÞ
−1 ðfermionsÞ ð20Þ

and

dΠi ¼
gi

ð2πÞ3
d3pi

2Ei
: ð21Þ
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FIG. 1. The dependence of the statistical factor for parafermion
γ� on the maximum occupation number r. The relations of
γ�jr¼1 ¼ 7=8 and limr→∞γ� ¼ 1 are satisfied as we expected.

PARAFERMIONIC DARK MATTER PHYS. REV. D 98, 043504 (2018)

043504-3



The term of ð1þ ζifiÞ shows the Pauli blocking of
fermions (ζi ¼ −1) or the stimulated emission of bosons
(ζi ¼ þ1).
We use a simpler version of the Boltzmann equation,

accepting the following assumptions:
(1) CP invariance is satisfied.
(2) The particles 1,2,3, and 4 are fermions (ζi ¼ −1),

where the particle 1 and 2 are assigned to a fermionic
dark matter χ and its antiparticle χ̄ and particles 3
and 4 are assigned to a standard model fermion f
and its antiparticle f̄.

(3) The number density of dark matter χ is only
affected by pair annihilation and pair creation
processes: χ þ χ̄ ↔ f þ f̄.

(4) Although the equilibrium distribution does not
exactly satisfy the Boltzmann equation, the equilib-
rium is approximately described by a distribution
function with a time-dependent effective chemical
potential αðtÞ [13]:

f ¼ 1

eEðpÞ=TðtÞþαðtÞ þ 1
: ð22Þ

The distribution of antiparticles has ᾱðtÞ instead
of αðtÞ.

(5) In the beginning, the initial condition αðtÞ¼ ᾱðtÞ¼0
holds [14]. Since the evolution equations for par-
ticles and antiparticles are identical, at a later time,
we have αðtÞ ¼ ᾱðtÞ [13].

(6) The annihilation products f and f̄ are in thermal
equilibrium, e.g., ff ¼ fEQf and ff̄ ¼ fEQ

f̄
(or,

equivalently, μf ¼ μf̄ ¼ 0), where fEQf and fEQ
f̄

denote equilibrium distribution functions of f and
f̄, respectively.

(7) The dark matter χ (and χ̄) approximately obeys the
Maxwell-Boltzmann distribution.

(8) Since the energies of f and f̄ are much greater than
the temperature, ff≪1, ff̄≪1, and the Pauli block-
ing factors are replaced by unity: ð1−ffÞð1−ff̄Þ¼1.

Under assumptions 1 to 6, the Boltzmann equation for
fermionic dark matter becomes

dnχ
dt

þ 3Hnχ ¼ −
Z

dΠχdΠχ̄dΠfdΠf̄

× ð2πÞ4δ4ðpχ þ pχ̄ − pf − pf̄ÞjMj2
× ffχfχ̄ð1 − ffÞð1 − ff̄Þ
− ffff̄ð1 − fχÞð1 − fχ̄Þg; ð23Þ

where

jMχþχ̄→fþf̄j2 ¼ jMfþf̄→χþχ̄ j2 ¼ jMj2; ð24Þ

and

fχfχ̄ð1 − ffÞð1 − ff̄Þ − ffff̄ð1 − fχÞð1 − fχ̄Þ
¼ fχfχ̄ð1 − fEQf Þð1 − fEQ

f̄
Þð1 − e2αÞ

¼ fEQχ fEQχ̄ e−2αð1 − fEQf Þð1 − fEQ
f̄
Þð1 − e2αÞ: ð25Þ

From assumption 7, we have

nχ ¼ e−αnEQχ ; nχ̄ ¼ e−αnEQχ̄ ð26Þ

and

e−2α − 1 ¼ ðnEQχ Þ−2½n2χ − ðnEQχ Þ2�; ð27Þ

which, finally, leads to the commonly used Boltzmann
equation

dnχ
dt

þ 3Hnχ ¼ −hσvi½n2χ − ðnEQχ Þ2�; ð28Þ

where, from assumption 8, the thermally averaged cross
section can be estimated by

hσvi ¼ ðnEQχ Þ−2
Z

dΠχdΠχ̄dΠfdΠf̄

× ð2πÞ4δ4ðpχ þ pχ̄ − pf − pf̄ÞjMj2
× e−Eχ=Te−Eχ̄=T: ð29Þ

B. Parafermionic dark matter

The Boltzmann equation for fermionic dark matter is
extended to include parafermions. Recall that the term of
ð1 − fiÞ shows the Pauli blocking of fermion i, which
suggests we use ðri − fiÞ as a parafermi blocking factor
for a parafermion i with maximum occupation number ri.
The extended Boltzmann equation for the 1þ 2 ↔ 3þ 4
process is

dn1
dt

þ 3Hn1 ¼ −
Z

dΠ1dΠ2dΠ3dΠ4ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þ

× fjM1þ2→3þ4j2f1f2ðR3 þ Z3f3ÞðR4 þ Z4f4Þ − jM3þ4→1þ2j2f3f4ðR1 þ Z1f1ÞðR2 þ Z2f2Þg; ð30Þ
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where

Ri ¼

8>><
>>:

1 ri → ∞ ðbosonsÞ
1 ri ¼ 1 ðfermionsÞ
ri other ðparafermionsÞ

ð31Þ

and

Zi ¼

8>><
>>:

þ1 ri → ∞ ðbosonsÞ
−1 ri ¼ 1 ðfermionsÞ
−1 other ðparafermionsÞ:

ð32Þ

Taking into consideration the eight assumptions for
fermionic dark matter, we employ the following assump-
tions for parafermionic dark matter:
(1) Assumptions 1, 3, 5, and 6 for fermionic dark matter

can be applied to parafermionic dark matter.
(2) Particles 1 and 2 are parafermions (Ri¼ ri,Zi ¼ −1),

and 3 and 4 are fermions (Ri ¼ 1, Zi ¼ −1), where
particles 1 and 2 serve as parafermionic dark matter χ
with maximum occupation number r ð2 ≤ r < ∞Þ
and its antiparticle χ̄ and particles 3 and 4 are assigned
to a standard model fermion f and its antiparticle f̄.

(3) Parafermions are controlled by the distribution
function also with a time-dependent effective chemi-
cal α defined by

f ¼
P

r
n¼0 ne

−ðE=T−αÞnP
r
n¼0 e

−ðE=T−αÞn : ð33Þ

(4) Recall that nχ ¼ e−αnEQχ if the fermionic dark matter
χ approximately obeys the Maxwell-Boltzmann
distribution. Similarly, for parafermions, we assume
that

fχ ∼ e−αfEQχ ; fχ̄ ∼ e−αfEQχ̄ ð34Þ

as well as

nχ ∼ e−αnEQχ ; nχ̄ ∼ e−αnEQχ̄ : ð35Þ

To see the validity of this assumption, we have
performed numerical calculations, and the results
are shown in Fig. 2. The upper panel shows the
dependence of the ratio nχ=ðe−αnEQχ Þ on x ¼ mχ=T
for mχ ¼ 100 GeV and α ¼ 0.001, where the num-
ber density nχ is obtained from Eq. (9). The lower
panel is the same as the upper panel but for α ¼ 0.01.
The curve for r ¼ 1 denotes the ratio for the
fermion, and for r ≥ 2 denotes the ratio for the
parafermion with maximum occupation number r.

The anticipated relation of nχ=ðe−αnEQχ Þ ∼ 1, as well

as nχ ∼ e−αnEQχ , is satisfied without α dependence.
We have obtained similar results for mχ ¼ 500 GeV
and mχ ¼ 1000 GeV.

(5) For fermions, ff ≪ 1 and ff̄ ≪ 1 are good approx-
imations, and the Pauli blocking factors are
replaced by unity: ð1 − ffÞð1 − ff̄Þ ¼ 1. Similarly,
for parafermions, we use fχ ≪ 1 and fχ̄ ≪ 1 and
the parafermi blocking factors replaced by
ðr − fχÞðr − fχ̄Þ ∼ r2.
Figure 3 shows the validity of this assumption.

The upper panel shows the dependence of the ratio
ðr − fχÞ=r on x ¼ mχ=T for mχ ¼ 100 GeV and
α ¼ 0.001. The lower panel is the same as the upper
panel but for α ¼ 0.01. The anticipated relation
of ðr − fχÞ=r ∼ 1, as well as r − fχ ∼ r, is satisfied
without α dependence for x≳ 20 (the typical
freeze-out temperature x ∼ 25 [12]). We have
obtained the similar results for mχ ¼ 500 GeV
and mχ ¼ 1000 GeV.

According to assumptions 1 to 3, the Boltzmann
equation for parafermionic dark matter can be approxi-
mated as

 0.997

 0.998

 0.999

 1

 1.001

 0.1  1  10  100

mχ=100GeV, α=0.001

n χ
/(

e-α
n χ

E
Q

)

x

r=10
r=4
r=2
r=1

 0.997

 0.998

 0.999

 1

 1.001

 0.1  1  10  100

mχ=100GeV, α=0.01

n χ
/(

e-α
n χ

E
Q

)
x

r=10
r=4
r=2
r=1

FIG. 2. The validity of assumption 4 for parafermions. The
upper panel shows the dependence nχ=ðe−αnEQχ Þ on x ¼ mχ=T
for α ¼ 0.001. The lower panel is the same as the upper panel but
for α ¼ 0.01. The anticipated relation of nχ=ðe−αnEQχ Þ ∼ 1 is
satisfied.
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dnχ
dt

þ 3Hnχ ¼ −
Z

dΠχdΠχ̄dΠfdΠf̄

× ð2πÞ4δ4ðpχ þ pχ̄ − pf − pf̄ÞjMj2
× ffχfχ̄ð1 − ffÞð1 − ff̄Þ
− ffff̄ðr − fχÞðr − fχ̄Þg; ð36Þ

where

fχfχ̄ð1 − ffÞð1 − ff̄Þ − ffff̄ðr − fχÞðr − fχ̄Þ
¼ fEQχ fEQχ̄ ðe−2α − r2Þ: ð37Þ

From assumptions 4 and 5, we can rewrite the factor
e−2α − r2 as

e−2α − r2 ¼ ðnEQχ Þ−2½n2χ − r2ðnEQχ Þ2�; ð38Þ

and we have the form of the Boltzmann equation for
parefermionic dark matter

dnχ
dt

þ 3Hnχ ¼ −hσvi½n2χ − r2ðnEQχ Þ2�; ð39Þ

where the thermally averaged cross section is the same as
in Eq. (29).
Using the standard definitions Yχ ¼ nχ=s and

x ¼ mχ=T, we obtain

dYχ

dx
¼ −

λhσvi
x2

½Y2
χ − r2ðYEQ

χ Þ2�; ð40Þ

where

λ ¼ 4πffiffiffiffiffi
90

p Mplmχ
ffiffiffiffiffi
g�

p
: ð41Þ

IV. RELIC ABUNDANCE

The present relic abundance of the parafermionic
dark matter χ can be described by the density parameter
Ωχ times the scale factor of the Hubble expansion rate
h ¼ 0.677 [15],

Ωχh2 ¼
ρχ
ρcrit

h2 ¼ mχs0Yχðx → ∞Þ
ρcrit

h2; ð42Þ

where s0 ¼ 2.89 × 103 cm−3 and ρcrit ¼ 3H2
0=ð8πGÞ ¼

1.05h2 × 10−5 GeVcm−3 are the present entropy density

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.1  1  10  100

mχ=100GeV, α=0.001

(r
-f

χ)
/r

x

r=10
r=4
r=2
r=1

 0.5

 0.6
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 0.8

 0.9

 1

 1.1

 0.1  1  10  100

mχ=100GeV, α=0.01

(r
-f

χ)
/r

x

r=10
r=4
r=2
r=1

FIG. 3. The validity of assumption 5 for parafermions. The
upper panel shows the dependence ðr − fχÞ=r on x ¼ mχ=T for
α ¼ 0.001. The lower panel is the same as the upper panel but for
α ¼ 0.01. The anticipated relation of ðr − fχÞ=r ∼ 1 is satisfied
for x≳ 20.

 0.09

 0.1

 0.11
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 1.8  1.9  2  2.1  2.2

b=0, mχ=100GeV

Ω
χh

2
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FIG. 4. Relic abundance of parafermionic dark matter in the
s-wave annihilation dominant case (upper) and in the p-wave
annihilation dominant case (lower). The parafermionic dark
matter (r ≥ 2) is more abundant in the present Universe than
the fermionic dark matter (r ¼ 1).

TERUYUKI KITABAYASHI and MASAKI YASUÈ PHYS. REV. D 98, 043504 (2018)
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and the present critical density, respectively, with the
Hubble expansion rate H0 ¼ 100h km s−1 Mpc−1 and
the Newtonian gravitational constant G ¼ 6.67×
10−11 m3 kg−1 s−2 [16]. The observed energy density of
the cold dark matter component in theΛCDMmodel by the
Planck Collaboration is Ωh2 ¼ 0.1188� 0.0001 [15].
The existence of relativistic parafermions yields the

change of the relativistic d.o.f. g� [see Eq. (13) and
Fig. 1 for relativistic parafermions]. However, contributions
to g� become negligible, in general, for nonrelativistic
particles at freeze-out temperature. In this paper, we assume
that parafermionic dark matter is cold dark matter consist-
ing of nonrelativistic particles, which is described by the
standard freeze-out scenario of nonrelativistic particles. As
a result, we can ignore the effect from the existence of
parafermions on g�.
Figure 4 shows the relic abundance of parafermionic

dark matter. The standard approximation of the averaged
cross section

hσvi ¼ aþ 6bx−1 ð43Þ

is employed [17]. The upper panel shows the dependence
of relic abundance Ωχh2 for s-wave annihilation dominant
case (a ≠ 0 and b ¼ 0) with m ¼ 100 GeV and g� ¼ 90.
The lower panel shows the same of the upper panel but for
the p-wave annihilation dominant case (a ¼ 0 and b ≠ 0).
The parafermionic dark matter (r ≥ 2) can be more

abundant in the present Universe than the fermionic dark
matter (r ¼ 1) if the annihilation cross section σ does not

strongly depend on the maximum occupation number r. For
example, the relic abundance is increased by a few percent
from fermion r ¼ 1 to a parafermion with maximum
occupation number r ¼ 2. We have obtained similar results
for mχ ¼ 500 GeV and mχ ¼ 1000 GeV.
This increase of relic abundance is qualitatively under-

stood from the Boltzmann equation in Eq. (40). Since the
increase of maximum occupation number r yields the
increase of the effective initial number density rYEQ

χ , we
observe that the parafermionic dark matter survives longer
than fermionic dark matter, provided that σ is independent
of r.

V. SUMMARY

We have extended the Boltzmann equation for fermionic
dark matter to include parafermions. The parafermion
accommodates r particles per quantum state ð2 ≤ r < ∞Þ.
The extended Boltzmann equation has the parafermi block-
ing factor ðri − fiÞ for a parafermion i with maximum
occupation number ri.
Considering the commonly accepted assumptions for

fermionic dark matter, we have derived a simple-formed
Boltzmann equation to estimate the relic abundance of
parafermionic dark matter. As a result, we find that the
parafermionic dark matter can be more abundant than the
fermionic dark matter in the present Universe. For example,
the relic abundance is increased by a few percent from
fermion r ¼ 1 to a parafermion with maximum occupation
number r ¼ 2.
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