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Cosmological data can be used to search for—and characterize—light particles in the standard model, if
these populate our Universe. In addition to the well-known effect of these light relics in the background
cosmology, usually parametrized through a change in the effective number Neff of neutrino species, these
particles can become nonrelativistic at later times, affecting the growth of matter fluctuations due to their
thermal velocities. An extensively studied example is that of massive neutrinos, which are known to
produce a suppression in the matter power spectrum due to their free streaming. Galaxies, as biased traces
of matter fluctuations, can therefore provide us with a wealth of information about both known and
unknown degrees of freedom in the standard model. To harness this information, however, the galaxy bias
has to be determined in the presence of massive relics, which is expected to vary with scale. Here, we
present the code RELICFAST, which efficiently computes the scale-dependent bias induced by relics of
different masses, spins, and temperatures, through spherical collapse and the peak-background split. Using
this code, we find that, in general, the bias induced by light relics partially compensates for the suppression
of power and should be accounted for in any search for relics with galaxy data. In particular, for the case of
neutrinos, we find that both the normal and inverted hierarchies present a percent-level step in the
Lagrangian bias, with a size scaling linearly with the neutrino-mass sum, in agreement with recent
simulations. This effect persists at the subpercent level even if one defines the Eulerian bias with respect to
dark matter only, suggesting that it has to be properly included in cosmological searches for the neutrino
mass. RELICFAST can compute halo bias in under a second, allowing for this effect to be properly included
for different cosmologies, and light relics, at little computational cost.
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I. INTRODUCTION

Cosmology can be a powerful tool in the search for
physics beyond the standard model. Specifically, new light
particles, with weak couplings to the visible sector, are
expected to decouple from it in the early Universe, while
they are relativistic. This freezes their distribution function,
causing these particles to have a non-negligible thermal
motions even at late times. Wewill refer to these particles as
light relics, and will parametrize them via their spin, mass,
and temperature today.
Relics with very small masses contribute to the radiation

energy density of our Universe at all times, which is
commonly described as a change in the effective number
Neff of neutrino species present at a given era [1,2].
Measurements of Neff both during recombination [3], as
well as during big bang nucleosynthesis (BBN) [4], are in
agreement with the ΛCDM prediction of Neff ¼ 3.046
within 10%, thus constraining part of the light-relic param-
eter space. Likewise, large-scale-structure (LSS) surveys are
expected to reach similar sensitivities in Neff [5–7].

Massive relics can, in addition, leave striking cosmo-
logical signatures if they are nonrelativistic today, for
which they are just required to have masses above an
meV. Let us take as an instance the case of neutrinos, which
were relativistic when they decoupled, and are known to
have a total mass of at least 60 meV [8,9], qualifying as
massive relics. Their low mass guarantees that neutrinos
have a significant thermal velocity throughout cosmic
history, setting a free-streaming scale beyond which they
do not cluster [10]. As a consequence, small-scale fluctua-
tions grow slower in a Universe with massive neutrinos,
causing an observable suppression in the matter power
spectrum. Additionally, neutrinos change the background
cosmology, producing a mismatch between high- and low-
redshift measurements of the clustering of matter. Current
observations have constrained the sum of neutrino masses
to be

P
imνi ≲ 0.12–0.2 eV at 95% C.L., depending on the

specific data sets considered and assumptions taken
[3,11–13], and it is expected that the next generation of
cosmological observables will provide a measurement of
the sum of the neutrino masses [9,14–17].
Any massive relic will leave an imprint in matter

fluctuations parallel to that of neutrinos. As opposed to
cosmologies with fully warm or fuzzy dark matter, in which
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the matter power spectrum nearly vanishes below some
scale [18–20], the presence of massive relics only causes a
small suppression in the power spectrum, albeit at larger
scales, which are easier to model. Therefore, high-precision
large-scale observables provide an ideal footing to search
for these particles [21–23]. Amongst these observables,
measurements of clustering statistics of biased tracers, such
as galaxies, are improving dramatically, and surveys like
DESI [24], EUCLID [25], and the LSST [26] will yield
unprecedented measurements of galaxy power spectra. In
order to make progress, however, the galaxy bias has to be
modeled (see Ref. [27] for a recent review), since massive
relics are known to induce a scale dependence on this
quantity, as pointed out in Ref. [28] for the case of
neutrinos. Here we perform the first step towards that goal
by calculating the linear galaxy bias in the presence of any
massive relic.
We numerically solve the spherical collapse of haloes,

taking into account the scale-dependent growth caused by
the massive relics. We have developed a software package,
RelicFast, which we make publicly available.1 Given
the relic parameters, as well as the cosmological ones,
RelicFast provides the linear biases (Lagrangian and
Eulerian) in a fraction of a second. In particular, finding
this bias is of critical importance in the search of neutrino
masses, where the scale dependence in the bias partially
compensates for the induced suppression in power [28],
reducing it by a factor of ∼3, depending on the neutrino
and halo masses (we find, for instance, a reduction from
2% to 0.5% suppression for

P
mνi ¼ 0.09 eV for haloes

of M ¼ 1013hM⊙).
Direct measurements of the scale dependence of the bias,

for instance through cross-correlations of CMB lensing
and galaxy surveys, have been shown to be less sensitive to
the neutrino mass than other observables [29]. However,
the different effects caused by neutrinos, and other relics,
add or subtract coherently, so even if the scale dependence
induced by neutrinos is not observable at high significance
in isolation, it should be included when searching for these
particles. Additionally, if any deviation on Neff from the
ΛCDM prediction was found in next-generation CMB
studies, lower-redshift galaxy data would help to disen-
tangle the characteristics of the particle sourcing it.
We note that galaxy bias is most reliably found through

N-body simulations, or similar techniques [30–36].
However, there are several advantages to using a quasia-
nalytical approach, as the one we present here. First, it
allows us to explore the parameter space more efficiently.
This might not be critical for the case of massive neutrinos,
as there is one relevant parameter: the sum of neutrino
masses [37–45]; but in the case of light relics, both their
masses and temperatures (or abundances) can vary, so
any complete set of simulations would require a significant

computational effort, whereas the bias for different relic
cases can be found at low cost with RelicFast. Secondly,
a great deal of intuition can be gained from quasianalytic
studies. For instance, we can easily find the galaxy bias for
different cosmologies, allowing us to explore the degener-
acies of theΛCDM parameters with the light-relic degrees of
freedom (d.o.f.). Thirdly, we are able to find the galaxy bias
over a broader range of scales than commonly accessible
to simulations, allowing us, for instance, to study wave
numbers both above and below the neutrino free-streaming
scale. Lastly, RelicFast can run in a fraction of a second,
which allows for a rapid change in input parameters
(including cosmological ones), and can therefore be imple-
mented in any Markov-chain Monte Carlo search of light
relics, including neutrinos.
In this paper we will show our formalism, and explore

the capabilities of RelicFast. We start reviewing the
spherical-collapse method in Sec. II and comparing with
the results from simulations for ΛCDM. In Sec. III, we
take a step back to describe the light relics, and their
effects on linear perturbations, which we use in Sec. IV to
compute the halo bias and power spectrum for a universe
with a light relic. We, then, use the same methods in
Sec. V to explore the effects of general relics, including
eV-mass sterile neutrinos and bosonic particles, and in
Sec. VI to study the scale-dependent bias caused by
massive neutrinos. Finally, we conclude in Sec. VII.

II. SPHERICAL COLLAPSE AND BIAS

We start by reviewing how to compute the bias of
haloes in the spherical-collapse approximation, using the
peak background-split argument [46–48]. This section
draws heavily from Ref. [28], and readers familiar with
the notation might want to skip to Sec. III. Throughout this
work we set our fiducial cosmological parameters to a
(physical) baryonic density Ωbh2 ¼ 0.022, dark-matter
density Ωdh2 ¼ 0.12, h ¼ 0.67, and a nearly scale-free
spectrum of primordial perturbations with an amplitude
and tilt of As ¼ 2.2 × 10−9 and ns ¼ 0.9655, consistent
with the values measured by the Planck collaboration [3],
unless otherwise stated. For convenience, wewill also define
the CDMþ baryon (CDMþ b) density as Ωc ≡Ωd þΩb,
and the Hubble parameter H0 ¼ 100h km s−1Mpc−1. We
also assume that the three active neutrinos are massless,
unless specified, contributing a total Neff ¼ 3.046 at the
CMB epoch.We set the dark-energy densityΩΛ by requiring
a flat Universe.
Schematically, we will obtain the bias of haloes of mass

M by using the peak background-split argument, and
finding how a long-wavelength perturbation δL modulates
their number density nðMÞ. We approach this problem by
assuming that the halo, which was initially formed of a
short-wavelength overdensity δS over a radius Rini, under-
goes spherical collapse until it virializes. We then find
the necessary δS to make it collapse at redshift zcoll, as a

1At: https://github.com/JulianBMunoz/RelicFast.
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function of the long-wavelength overdensity δL. However,
the halo mass function (HMF)—which tells us how many
haloes of a certain mass there are—is generally a function
of the critical overdensity δcrit, which is obtained by
extrapolating δS to the time of collapse. Thus, the collapse
procedure provides us with δcrit as a function of the long-
wavelength perturbation and, by assuming a functional
form for the HMF, we will obtain the halo bias.

A. Collapse

Here, and throughout, we work in natural units, with
c ¼ ℏ ¼ kB ¼ 1. We start with a halo of massM and radius
RðtÞ. Assuming spherical collapse, its evolution is given by
[28,49–52]

R̈ðtÞ ¼ −
GM
R2ðtÞ −

4πGRðtÞ
3

X
i

½ρiðtÞ þ 3PiðtÞ�; ð1Þ

where G is Newton’s constant, ρi and Pi are the energy
density and pressure of species i, and the index i runs over
all non-CDMþ baryon species. Once a starting redshift is
selected, which we choose at zini ¼ 200, we can compute
the average (physical) size of haloes of mass M at that
redshift as

R̄ini ¼
�
H2

0Ωc

2GM

�−1=3
ð1þ ziniÞ−1: ð2Þ

We obtain the initial conditions for Eq. (1) in the presence
of both long- and short-wavelength CDMþ b perturba-
tions (δL and δS, respectively), as

Rini ¼ R̄ini

�
1 −

δS þ δL
3

�
; ð3Þ

and

_Rini ¼ Rini

�
HðziniÞ −

_δS þ _δL
3

�
; ð4Þ

where the Hubble parameter is given by

HðzÞ ¼ 8πG
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcðzÞ þ

X
i

ρ̄iðzÞ
r

; ð5Þ

ρcðzÞ is the CDMþ b density at redshift z, and ρ̄iðzÞ is the
spatial average of ρiðzÞ. We emphasize that i includes all
non-CDMþ b species, and δL and δS are always evaluated
at zini.
There are two simple ways to obtain the small-scale

perturbation velocity, _δS, from δS. The first is through the
variance of fluctuations in the scale of the halo,

σ2ðM; zÞ ¼
Z

dkk2

2π2
PccðkÞW2ðkRMÞ; ð6Þ

where PccðkÞ is the CDMþ b power spectrum, obtained
from the baryon (b) and CDM (d) power spectra through

ΩcPcc ¼ ΩdPdd þΩbPbb; ð7Þ

and we choose a top-hat window function WðxÞ ¼
3½sinðxÞ=x − cosðxÞ�=x2, defining the comoving halo
radius as

RM ≡
�
H2

0Ωc

2GM

�−1=3
: ð8Þ

In this case we can set the initial perturbation velocity as

_δS
δS

¼ _σðM; ziniÞ
σðM; ziniÞ

: ð9Þ

We could, instead, set the velocity through

_δS
δS

¼
_T cðk�; ziniÞ
T cðk�; ziniÞ

; ð10Þ

where T cðk; zÞ is the CDMþ b transfer function, obtained
from a Boltzman code, like CLASS [53] or CAMB [54], and
k� ¼ π=RM is chosen to match the scale of the halo. We
find that these two methods produce nearly identical
results, and we will use the first one throughout this work.
In the presence of a long-wavelength CDMþ b pertur-

bation δLðkÞ, with a wave number k, the rest of components
see their densities and pressures modulated as

ρiðzÞ ¼ ρ̄iðzÞ½1þ δiðzÞ�; ð11aÞ

PiðzÞ ¼ P̄iðzÞ
�
1þ c2s;iðzÞ

wiðzÞ
δiðzÞ

�
; ð11bÞ

where P̄iðzÞ ¼ wiðzÞρ̄iðzÞ is the spatially averaged pressure
of component i, wiðzÞ is its equation of state, and cs;i is its
sound speed. For convenience we have defined

δiðzÞ≡ δL
T iðk; zÞ
T cðk; ziniÞ

; ð12Þ

where T i is the transfer function of the i-th component.
Note that, as opposed to Ref. [28], we properly incorporate
the nonvanishing sound speed cs;i for all species we study,
including massive neutrinos. In the neutrino case, on which
we will focus on Sec. VI, we find that artificially setting
c2s;i ¼ 0 (and thus ignoring pressure fluctuations) overesti-
mates the scale dependence of the bias by asmuch as a factor
of two. This is perhaps not surprising, as for free-streaming
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relics c2s;i ∼ wi, so pressure and density fluctuations can be
comparable on the right-hand side of Eq. (1). We note that
this issue does not arisewhen evolving δSðzÞ instead ofRðzÞ,
as done for instance in Ref. [42], where the information on
the sound speed of all components is contained in the
evolution of the long-wavelength CDMþ b mode.
The procedure consists of solving for RðzÞ, given a fixed

cosmology and halo mass M, and varying δS until the halo
collapses (R → 0) at our chosen redshift zcoll. In reality,
of course, haloes virialize and possess a finite radius at
collapse, although solving for R → 0 is a good proxy for
virialization [28,49]. For computational simplicity we solve
Eq. (1) using redshift, as opposed to physical time, as a
coordinate. We detail, in Appendix A, the coordinate
transformation required. We will repeat this procedure with
different values of δL, in order to find δSðδLÞ. We obtain the
critical overdensity as

δcrit ¼ δS
σðM; zcollÞ
σðM; ziniÞ

; ð13Þ

although if we had chosen to set the initial conditions
with Eq. (10) instead, we would find the critical overdensity
with T ðk�; zcollÞ=T ðk�; ziniÞ. Finally, we also evolve δL to
the redshift of collapse to find

δL;collðkÞ ¼ δLðkÞ
T cðk; zcollÞ
T cðk; ziniÞ

: ð14Þ

B. Bias

Given the resulting function δcrit½δL;collðkÞ�, we can find
the linear Lagrangian bias, with respect to CDMþ b,
through the peak background-split argument [46,47], to be

bL1 ðkÞ ¼
�∂ log n

∂δcrit
�����

δL;coll¼0

�
dδcrit

dδL;collðkÞ
�
; ð15Þ

where we assume that the only change to the halo mass
function (HMF) is through δcrit, and its functional form is
otherwise unaltered by any new particles. To perform this
calculation we need to assume a shape of the HMF. We use
a fit to the MICE simulations of Ref. [55], which has been
shown to yield a good approximation to the mass function
even in the presence of light relics (massive neutrinos) [39].
The derivative for the HMF that we take is then

∂ logn
∂δcrit ¼ −

2cðzÞδcrit
δ2refσ

2
þ aðzÞ
δcrit½1þ bðzÞðδrefσ=δcritÞaðzÞ�

;

ð16Þ

obtained by performing the transformation σ → σδref=δcrit
to the fit in Ref. [55], with δref ¼ 1.686, and with para-
meters aðzÞ ¼ 1.37ð1þ zÞ−0.15, bðzÞ ¼ 0.3ð1þ zÞ−0.084,

and cðzÞ ¼ 1.036ð1þ zÞ−0.024. We obtain the CDMþ b
variance σ2 with Eq. (6).
For completeness, we have also implemented the result

for the HMF from Refs. [47,56]. The scale dependence of
bL1 is, by construction, independent of the chosen HMF, as
the first term in Eq. (15) is evaluated at δL;coll ¼ 0 and thus
does not depend on k. The three HMFs produce, however,
different normalizations of bL1 at the percent level, which
has a negligible impact on all the scale dependences that we
study in this work, as we show in Appendix B.
We now move on to compute the Eulerian bias.

By transforming from Lagrangian space (defined by the
CDMþ b fluid) to Eulerian space, we find the halo
overdensity

δh ¼ ð1þ bL1 Þδc; ð17Þ

in terms of the CDMþ b overdensity δc. This is to be
compared with the equivalent definition as a function of the
matter fluctuation δm,

δh ¼ b1δm; ð18Þ

where b1 is the linear Eulerian bias, which we can then
easily find to be

b1 ¼
Phm

Pmm
¼

ffiffiffiffiffiffiffiffiffi
Phh

Pmm

s
; ð19Þ

where Phh is the halo (auto) power spectrum, Pmm is the
matter power spectrum, and Phm is the halo-matter cross
spectrum. Throughout this work we will often drop the
“Eulerian” label and refer to b1 simply as linear bias, unless
confusion can arise.
When adding relics, we will account for a number Nsp of

matter species, including CDMþ b. Then, we calculate the
matter power spectrum as

Pmm ¼
XNsp

i;j

fifjPij; ð20Þ

where fi ¼ Ωi=Ωm are the fractions of the total matter in
each component today, given that Ωi is their abundance
and Ωm ≡P

iΩi, and Pij are their power/cross spectra.
Additionally, the halo-matter cross spectrum is found as

Phm ¼ ð1þ bL1 Þ
XNsp

i

fiPci: ð21Þ

As an example, in the case of a cosmology with CDMþ b
and a light relic, which carries a fraction fX of the total
matter, the matter power spectrum is given by
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Pmm ¼ ð1 − fXÞ2Pcc þ 2fXð1 − fXÞPcX þ f2XPXX; ð22Þ

whereas the halo-matter cross spectrum is

Phm ¼ ð1þ bL1 Þ½ð1 − fXÞPcc þ fXPcX�: ð23Þ

The ratio of these two quantities gives us the linear
Eulerian bias.
Before moving on to specific realizations of halo bias,

let us end this discussion with two cautionary remarks.
First, the spherical-collapse model we employ is expected
to be a good approximation for massive haloes, as smaller
haloes are expected to deviate from sphericity [57–59].
Additionally, different effects, such as those from a tidal
shear, can cause a dispersion in the barrier for collapse
(δcrit) [60,61], which we ignore here. This, nonetheless, is
expected to affect less the bias of smaller-mass haloes [62].
Second, we are using haloes as proxies for galaxies [63],
and we are not including any information on their envi-
ronment, or assembly history, which are known to produce
additional biases and stochasticity2 [64–67]. Nevertheless,
our calculation suffices to show the scale-dependent effect
of light relics in the galaxy power spectrum, and we do not
expect any of the aforementioned effects to substantially
change this behavior in the linear regime. This has been
confirmed for the case of massive neutrinos, where a
spherical-collapse calculation has been shown to agree with
N-body simulations [42]. In addition,massive neutrinos have
also been shown to also induce a scale-dependent bias in
voids [68]. We leave refining the calculation by studying the
effects of environment and nonspherical collapse in the
calculation for future work.

C. An example

We will illustrate the procedure in the simplest scenario
of ΛCDM with massless neutrinos. In this case there are
three components that contribute to the right-hand side of
Eq. (1): photons (with wγ ¼ c2s;γ ¼ 1=3 and temperature

Tð0Þ
γ ¼ 2.73 K today), massless neutrinos (also with wν ¼

c2s;ν ¼ 1=3, but with Tð0Þ
ν ¼ 1.95 K), and dark energy (with

wΛ ¼ −1, no fluctuations, and energy density given by the
closure equation).
We find the Eulerian bias trivially from the Lagrangian

one through b1 ¼ ð1þ bL1 Þ, as CDMþ b is the only matter
fluid (since massless neutrinos are radiation even at z ¼ 0),
and we show it in Fig. 1 for two different redshifts, as a
function of the mass M of the halo. Here we have set the
long-wavelength mode to be k ¼ 10−3 Mpc−1, although
the results do not depend sensitively on this number.
This figure shows the well-known results that, at a given
redshift, heavier haloes are more biased, as they are harder

to form; and that, for any given halo mass, the bias
increases with redshift, as one needs larger overdensities
to collapse earlier. Moreover, we compare our results with
the bias measurements from two-point halo-matter cross-
correlations on simulations from Ref. [69], at both red-
shifts, finding excellent agreement. For this figure, we have
modified our fiducial cosmology to h ¼ 0.7, ns ¼ 0.966,
and Ωdh2 ¼ 0.10, in order to match that of Ref. [69] and
the MICE simulations3 [55].

III. LIGHT RELICS

Now that we have outlined the procedure to obtain the
halo bias, let us describe the properties of light relics, on
which will focus for the rest of this work. Our motivation
to study this case is twofold. First, many extensions of the
standard model predict light d.o.f., which could be in
thermal contact with the visible sector in the early Universe
[70]. These would leave a cosmological imprint as they
contribute to the cosmic energy budget. Current and
upcoming galaxy surveys can be sensitive to intermediate-
mass relics, which might otherwise be inaccesible with
CMB data. Second, neutrino-oscillation experiments have
shown hints for an eV-mass sterile neutrino [71,72], which
could compose a small fraction of the dark matter [73,74].
Galaxy power spectra can, therefore, settle the issue of
whether sterile neutrinos are cosmologically present.

A. Cosmology of light relics

We begin with a brief review of the cosmology of light
relics. Particles that decouple while being relativistic keep
their distribution function intact, with their temperature TX
given by that of photons, Tγ, at the time of decoupling, and

redshifting simply as TXðzÞ ¼ ð1þ zÞTð0Þ
X , where Tð0Þ

X is

FIG. 1. Linear (Eulerian) bias of haloes of different masses M,
at two redshifts, computed with RelicFast, where we have
joined the points for visual aid. We have adopted a cosmology
consistent with the MICE simulations, as explained in Sec. II C.
The results of simulations from Ref. [69] are shown as black
squares for z ¼ 0 and dark-green triangles for z ¼ 0.5.

2Stochasticity causes a difference between Phh and P2
hm=Pmm,

which our formalism neglects. 3http://maia.ice.cat/mice/.
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their temperature today. Light relics can, as opposed to
adiabatically cooling d.o.f., exhibit large thermal motion,
even at low redshifts. The temperature of relics today is not
necessarily the same as that of photons, since photons are
heated by the annihilation of standard-model d.o.f. For
instance, neutrinos started decoupling before electron-
positron annihilation, when Tγ ∼MeV, which causes the
neutrino temperature today to be a roughly a factor of
ð4=11Þ1=3 smaller than that of photons. Previous to that,
no significant heating is expected to occur until Tγ ∼
200 MeV, when the QCD phase transition erased a myriad
of d.o.f., so any relic that decoupled between BBN and the
QCD phase transition would roughly have the same

temperature today as neutrinos, Tð0Þ
X ∼ 2 K. Relics that

decoupled before (or during) the QCD phase transition
would be colder, reaching temperatures today as low as

Tð0Þ
X ∼ 1 K [1]. Therefore, the range Tð0Þ

X ¼ ½1 − 2� K
brackets the reasonable values of relic temperatures, unless
large amounts of new (and unknown) d.o.f. are active in the
very early Universe.
We will be agnostic about the origin of the relics, and

parametrize any new d.o.f. X through its mass mX and

temperature Tð0Þ
X at redshift zero. We assume that these

particles are part of one family with two spin-1=2 d.o.f.
(just like active neutrinos), which decoupled while relativ-
istic, so they keep a Fermi-Dirac distribution

fFDX ðq; zÞ ¼ 1

eq=TXðzÞ þ 1
; ð24Þ

where q is their momentum and TXðzÞ ¼ Tð0Þ
X ð1þ zÞ.

Then, their energy density and pressure are given by

ρ̄XðzÞ ¼ 2

Z
d3q
ð2πÞ3 EðqÞf

FD
X ðq; zÞ; ð25aÞ

P̄XðzÞ ¼ 2

Z
d3q
ð2πÞ3

q2fFDX ðq; zÞ
3EðqÞ ; ð25bÞ

where we have defined EðqÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

X

p
for conven-

ience. From these two parameters we can find their
equation of state as

wXðzÞ ¼
P̄XðzÞ
ρ̄XðzÞ

ð26Þ

and their abundance as ΩX ¼ ρ̄Xðz ¼ 0Þ=ρcrit, where ρcrit is
the critical energy density. For this one-family case, the
light-relic abundance can be well approximated by4

ΩXh2 ≈
mX

93.14 eV

�
Tð0Þ
X

Tð0Þ
ν

�3

: ð27Þ

We will relax these assumptions later, and show how other
light relics, even with integer spins, can be expressed in
terms of an “equivalent neutrino” given mX and ΩX.
Additionally, the fluidlike nature (or lack thereof) of a

light relic determines its sound speed and viscosity. It has
been argued that it can be distinguished whether light relics
behave as a fluid or stream freely, through their effect on the
phase of the acoustic peaks [77–81]. Wewill assume that all
light relics, including neutrinos, have no important inter-
actions, and thus are freely streaming. In this case we can
write the sound speed of a relic as

c2s;X ≈ c2ad;X ¼
_̄PX

_̄ρX
; ð28Þ

where cad;X is their adiabatic sound speed, which is a good
approximation to the sound speed at a lower computational
cost [76]. Likewise, we will assume that relics have the
usual viscosity due to their freely streaming nature, which
does not enter our formalism, although it can be modified
in CLASS.

B. Current constraints

Any new relavistic particles alter the rate of expansion,
as they behave as radiation, which can be constrained with
CMB anisotropies and with measurements of the cosmic
abundances resulting from BBN.We can write the radiation
energy density as

ρR ¼ π2

15
T4
γ

�
1þ 7

8

�
Tν

Tγ

�
4=3

Neff

�
; ð29Þ

where the 7=8 factor arises because of the fermionic nature
of neutrinos. We can parametrize new light d.o.f. through
their contribution to Neff at both the CMB and BBN
epochs. The noninstantaneous decoupling of neutrinos
leaves a signature in the effective number Neff of neutrino
species, which has the value Neff ¼ 3.046 in the standard
model [75] (recently revised to Neff ¼ 3.045 [82]). Current
Planck data of CMB temperature anisotropies, plus large-
scale polarization information (TTþ lowP), can constrain
deviations from this prediction to be jΔNCMB

eff j < 0.3within
68% C.L. [3], which improves to jΔNCMB

eff j < 0.2 within
68% C.L. when including small-scale polarization or BAO
data. Additionally, the upcoming CMB-S4 experiment is
expected to improve this figure by an order of magnitude
[17]. However, relics with masses above an eV will not
fully contribute to ρR at decoupling, rendering them
difficult to constrain with CMB measurements alone. All
relics that we study are, nonetheless, relativistic during

4In RelicFast we use Tð0Þ
ν =Tð0Þ

γ ¼ 0.71599, known to be a
better approximation to the noninstantaneous neutrino decou-
pling than ð4=11Þ1=3 [75,76]. This dictates the value of the
denominator in Eq. (27).
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BBN (if they were present in that era), where the 1-σ
constraint is jΔNBBN

eff j < 0.3 [4].
As long as new particles are relativistic, their contribu-

tion to Neff depends solely on their temperature and d.o.f.,
gX, and can be written as

ΔNeff ¼
2gX
3

�
Tð0Þ
X

Tð0Þ
ν

�4

: ð30Þ

RequiringΔNeff < 0.3 at BBN thus forces Tð0Þ
X ≤ 1.4 K for

a new neutrinolike family, with gX ¼ 3=2. We are inter-

ested in relics that are nonrelativistic today, i.e.,mX ≫ Tð0Þ
X ,

which requires mX ≳meV. For ease of visualization we
will express our results in terms of the relic mass mX and
fraction fX ≡ΩX=Ωm, where Ωm ≡Ωc þΩX is the total
matter density (and we remind the reader that Ωc is the
CDMþ b density).

C. Effect on the matter power spectrum

The effects of light relics on matter perturbations can be
divided in two broad categories, those caused by a mis-
match in the definition of (clustering) matter at small scales,
and those caused by feedback on the rest of the matter.
The relics we are studying are included as matter in the

cosmic inventory, so the total matter perturbations at low
redshift are sourced by both CDMþ b (c) and light relics
(X), with

δm ¼ fcδc þ fXδX; ð31Þ

where fc ¼ Ωc=Ωm. As opposed to CDM, light relics can
have enough thermal velocities to stream out of potential
wells. In analogy with the case of neutrinos, we can
approximate the small-scale light-relic perturbations as [10]

δXðk ≫ kfsÞ ∼
�
k
kfs

�
−2
δm; ð32Þ

where kfs is the relic free-streaming scale, given by [41]

kfsðzÞ ¼
�
3

2
hv−2X ðzÞiFD

�
1=2 HðzÞ

ð1þ zÞ

≈
0.08ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
�

mX

0.1 eV

��
Tð0Þ
X

Tð0Þ
v

�−1
h Mpc−1; ð33Þ

assuming matter domination and our fiducial cosmology.
Here we have assumed that X are nonrelativistic particles
with temperature TX, following a Fermi-Dirac distribution,
so hv−2ðzÞiFD¼2logð2Þm2

X½3ζð3ÞT2
XðzÞ�−1. Therefore, just

from the absence of X perturbations for k > kfsðzÞ, the
matter power spectrum will be suppressed by a factor of
ð1 − fXÞ2.

Additionally, since relics do not cluster in small scales,
the growth of CDM perturbations is stunted. This back
reaction further suppresses the small-scale matter fluctua-
tions. It is estimated that in the presence of massive
neutrinos (carrying a fraction fν of the total matter) the
CDM overdensities evolve as δc ∝ a1−3fν=5, as opposed to
δc ∝ a [10]. This lower growth rate, combined with the
missing neutrino fluctuations at small scales, yields the
well-known (linear) result that ΔPmm=Pmm ≈ 1 − 8fν for
k ≫ kfs (similarly, ΔPcc=Pcc ≈ 1 − 6fν).
For non-neutrino relics these results are slightly differ-

ent. If a light relic becomes nonrelativistic during radiation
domination, as most of the cases we study do, the
suppression of power starts at the free-streaming horizon,
defined as [21]

kfshðt0Þ ¼
�Z

t0

0

dthvi=aðtÞ
�
−1

∼
ffiffiffiffiffiffi
ΩR

p
H0=hvðt0Þi; ð34Þ

whereΩR is the energy density in radiation today, and hvi is
the averaged velocity of the relics, roughly given by c
before the particles turn nonrelativistic, and by 3TXðzÞ=mX
afterwards. This wave number can be significantly smaller
than kfs, since the free-streaming horizon kfsh keeps
shrinking during radiation domination (after the relics
become nonrelativistic), whereas kfs does not. Similarly,
the suppression in the CDM growth factor in the presence
of light relics is more pronounced than for neutrinos, if
these relics become nonrelativistic during radiation domi-
nation, and can be approximated by δc ∝ a1−3fX=4 [21]
(cf. the neutrino exponent of 1 − 3fν=5). Therefore, for
small values of fX, the suppression for k ≫ kfs is given by
ΔPmm=Pmm ¼ ð1 − 14fXÞ, and is thus much larger than for
neutrinos carrying the same fraction of matter. We will
obtain the transfer functions of these particles from the
publicly available CLASS code [53,76], which numerically
includes all these effects at high precision.
For completeness, we will also define the nonrelativistic

scale as the wave number that crossed the horizon when the
relics became nonrelativistic, i.e.,

knr ¼ anrHðanrÞ; ð35Þ

with anr ¼ Tð0Þ
X =mX, roughly corresponding to the scale

factor at which half of the Fermi-Dirac distribution would
have p < TX [41]. Given that all these scales are a function

of Tð0Þ
X =mX, and only have mild redshift dependences, we

choose to parametrize our results in terms of kfs for
simplicity.

IV. BIAS FROM LIGHT RELICS

So far we have only discussed the effect of light relics
on the matter power spectrum. Let us now move on to
calculate their effect on the galaxy bias.
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The free streaming of light relics stunts the develop-
ment of linear perturbations, which manifests itself as a
scale-dependent growth. This is known to cause a scale-
dependent bias in general [83,84], and in particular for
neutrinos [28,85]. Intuitively, the scale dependence of the
bias arises from the sensitivity of halo formation to the
history of perturbation growth [42,86]. To see why, let us
compare two very different scenarios, remembering that the
bias is defined as the (logarithmic) change in the abundance
of haloes in the presence of a long-wavelength perturba-
tion. In the first scenario, the growth of perturbations is
simply given by a scale-independent growth factor DþðzÞ,
and thus, chosen some long-wavelength perturbation at
collapse δL;coll, its value at previous redshifts is δðzÞ ¼
δL;collDþðzÞ=DþðzcollÞ. In the second scenario, the pertur-
bation is frozen at some small value until some redshift z�,
after which it quickly transitions to its value today, so
δðzÞ ≈ Θðz� − zÞδL;coll. In the first scenario increasing
δL;coll produces additional fluctuations at all previous times,
which significantly impacts the abundance of haloes. In the
second scenario, however, for small-enough values of z�,
changing δL;coll has little effect on the halo abundance.
Thus, even though these two cases share the same δL;coll,
the change in the number of haloes in the presence of a
long-wavelength perturbation depends on the growth his-
tory of this perturbation, which causes different halo biases.
Operationally, the bias becomes scale dependent due to the
change in δcrit with different long-wavelength perturbations
δL;collðkÞ, as seen in Eq. (15). This derivative depends both
on the CDMþ b transfer functions at zi and zcoll, which are
used to find δcrit and δL;coll from the initial δS and δL, as well
as on the transfer functions of the other components at all
intermediate redshifts, through the long-wavelength per-
turbation of non-CDM fluids. In fact, even in ΛCDM (with
massless neutrinos) there is a small growth difference
between modes that entered the horizon before and after
matter-radiation equality. This difference, added to the
effect of photon and massless-neutrino perturbations during
the halo collapse, yields a small scale dependence of the
bias, which will become apparent in our analysis.
We emphasize that even if the scale dependence of the

bias induced by light relics is not observable at high
significance in isolation [29,87], it partially counteracts
the suppression that these particles produce, so it is
imperative to characterize it.

A. Light-relic clustering

The thermal velocity of light relics is finite, so some of
them can accumulate in DM haloes. This has been exten-
sively studied for the case of neutrinos, which form “fuzzy”
neutrino haloes, more loosely bound than the DM haloes,
and thus more extended [41,87–89]. This effect is most
important for cluster-sized haloes, with M ∼ 1015 M⊙,
which have deeper potential wells, and for heavier neutrinos,
with masses mν ≳ 1 eV, and thus lower velocities.

The properties of a putative neutrino halo around the
Milky Way can affect, for instance, direct-detection efforts
of the cosmic neutrino background [90]. Here, however,
we are only interested in the overall effect of relics on the
spherical collapse of haloes. Relic clustering can be
accounted for through a new term in Eq. (1), which now
reads [49,51]

R̈ðtÞ ¼ −
G½M þ δMXðtÞ�

R2ðtÞ −
4πGRðtÞ

3

X
i

½ρiðtÞ þ 3PiðtÞ�;

ð36Þ

where δMXðtÞ is the amount of accreted light-relic mass
within RðtÞ. We detail our procedure to obtain δMXðtÞ in
Appendix C, using the first-order “BKT” approximation
from Ref. [87]. In Ref. [49], it was explored what is the
change in the halo collapse when including neutrino
clustering, and it was found that using this BKT approxi-
mation to find δMXðtÞ reproduced the δcrit from an
N-1-body simulation with good accuracy, even for cluster-
sized haloes. Throughout this work we will focus on haloes
with M ∼ 1013 M⊙, where the light-relic clustering is
even less pronounced. Therefore, it is safe for us to use
the BKT approximation [87]. In Appendix C, we find that
the effect from clustering of light relics is largely scale
independent, and thus unimportant for our purposes.
Nevertheless, we will include it in our analysis unless
otherwise stated.

B. Lagrangian bias

Beyond their transfer function, which we calculate with
CLASS, light relics enter our calculation of the spherical
collapse in two ways, (i) they modify the background
cosmology, as in Eq. (5), and (ii) they respond to long-
wavelength CDMþ b fluctuations, as in the right-hand side
of Eq. (36). In all the cases we consider in this work the new
light component is nonrelativistic today, and thus contrib-
utes to the total matter energy density. To account for this,
we will reduce the CDM density Ωd by the necessary value
to keep the total matter density Ωm today fixed (we will
always, of course, keep Ωb fixed). Additionally, we choose
zcoll ¼ 0.7, in line with the median redshift of galaxies
observed in the dark energy survey (DES) [91]. For
reference, at this redshift the nonlinear scale, kNL (defined
by demanding that the power per unit logðkÞ is unity, i.e.,
PmmðkNLÞk3NL=ð2π2Þ ¼ 1), is kNL ¼ 0.43h Mpc−1 for our
fiducial cosmology, although nonlinear effects might start
appearing at lower wave numbers. This scale roughly
coincides with the comoving radius of the initial over-
densities that collapse to form the haloes, as k� ¼ π=RM ¼
0.47h Mpc−1 for theM ¼ 1013h−1 M⊙ haloes we consider,
so we expect the bias to strongly depart from our linear
predictions around that scale [92]. Nonetheless, for illus-
tration purposes we will plot results up to k ≈ 1h Mpc−1, to
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better show the behavior of different linear quantities
beyond the free-streaming scale of the light relics.
We show in Fig. 2 the Lagrangian bias for ΛCDM (with

massless neutrinos) and for three light-relic cases, compos-
ing fractions fX ¼ f1%; 2%; 3%g of the total matter, all of

which have a temperature Tð0Þ
X ¼ 1.4 K, chosen to saturate

the 1-σNeff bound from BBN. These relics have masses of
mX ¼ f0.35; 0.7; 1.05g eV, so they would appear as a
ΔNeff < 0.3 on the CMB, given that they transition to
become nonrelativistic around the epoch of recombination.
Each bias is normalized with respect to its value at a
reference wave number kref ¼ 10−4h Mpc−1.
For ease of visualization and understanding, we will

provide a fit for the Lagrangian bias. As noted before,
ΛCDM shows a small difference in the growth of pertur-
bations that reentered the horizon before and after matter-
radiation equality, even in the absence of light relics (or
massive neutrinos). In order to include this in our analysis,
we use a simple step function as a fit,

RΛCDM
L ≡ bL;ΛCDM1 ðkÞ

bL;ΛCDM1 ðkrefÞ
¼ 1þ ΔΛCDM tanh ðαk=keqÞ; ð37Þ

where at zcoll ¼ 0.7 we find α ¼ 4, ΔΛCDM ¼ 4.8 × 10−3,
and keq ¼ 0.015h Mpc−1 is the scale of matter-radiation
equality [3].
Light relics can cause a significant change in the bias at

smaller scales, as seen in Fig. 2. The size of the bias grows
with fX, and the scale at which it becomes important
depends on the free-streaming scale of the light relic. Given
that the shape resembles a step function in logðkÞ space, we
choose to fit it as

bL;fit1 ðkÞ
bL1 ðkrefÞ

¼ RΛCDM
L

�
1þ ΔL

2

�
tanh

�
logðqÞ
Δq

�
þ 1

��
; ð38Þ

where we find ΔL ¼ 0.6fX, q≡ 5k=kfs, and Δq ¼ 1.6.
A more precise fit can, of course, be achieved, at the cost of
making the fitting function more complicated. Nonetheless,
we will see that this simple functional form provides a
reasonably good fit to all cases we will study. Note that we
have decided to employ kfs to parametrize the scale at
which the step arises in the bias. Using kfsh or knr would be
equivalent, as these quantities are linearly related, barring a
mild redshift dependence. We have checked that this
function provides an excellent fit for other halo masses,
and is not altered significantly for other redshifts. This
shows that, even though the overall value of the Lagrangian
bias is strongly dependent on redshift and halo mass, the
scale dependence induced by light relics is not. We will
elaborate on this later.

C. Eulerian bias

We show in Fig. 3 the linear Eulerian bias, at the redshift
of collapse, as a function of halo mass for the three light-
relic cases defined above, as well as the case of ΛCDM.
We see that adding light relics causes haloes of all masses to
be more biased, as we are substituting some CDM for
(warmer) relics, and thus the growth of fluctuations is
decreased. This change in the bias is, to a large extent, mass
independent, so it might be difficult to observe.
The (scale-independent) value of b1 is usually margin-

alized over in galaxy surveys, as a host of complexities can
affect it. Thus, we will focus on the scale dependence of b1,
as we did for bL1 . We show b1 as a function of wave number
in Fig. 4. We use the fit for bL1 ðkÞ, from Eq. (38), to find the
fitted Eulerian bias as

bfit1 ðkÞ ¼ ½1þ bL;fit1 ðkÞ� T cðkÞ
T mðkÞ

; ð39Þ

which follows trivially from Eq. (19), where we have
defined the matter transfer function

FIG. 2. Lagrangian bias obtained with RelicFast, normal-
ized at kref ¼ 10−4h Mpc−1, for haloes of mass M ¼
1013h−1 M⊙ collapsing at redshift zcoll ¼ 0.7. We fix the light-

relic temperature at Tð0Þ
X ¼ 1.4 K, to saturate the bound ΔNeff ¼

0.3, and change the fraction fX of matter in light relics. The three
cases of fX ¼ 0.01, 0.02 and 0.03 correspond to particles with
masses mX ¼ 0.35, 0.7, and 1.05 eV. Solid lines show the fit
from Eq. (38) for each case, and the vertical dashed line denotes
the scale of matter-radiation equality.

FIG. 3. Linear (Eulerian) bias at zcoll ¼ 0.7 and kref ¼
10−4h Mpc−1, as a function of halo mass, for the same light-relic
cases as in Fig. 2. Dotted lines join the points to guide the eye.
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T mðkÞ ¼ ð1 − fXÞT cðkÞ þ fXT XðkÞ; ð40Þ

in terms of the CDMþ b (T c) and light-relic (T X) ones,
which are calculated with CLASS at zcoll. From Figs. 2
and 4 we also see that the scale dependence of the biases
starts at scales larger than the free-streaming scale of the
light relics, as found in Ref. [28] for the case of massive
neutrinos.
Our prediction for the scale dependence of the

Lagrangian bias is a steplike function, with a plateau at
k ∼ kfs, which yields a steplike Eulerian bias as well. Even
though this is different from the expected k2 scaling of the
bias that appears at small scales inΛCDM [92,93], for large
kfs these two effects might be indistinguishable for all
practical purposes, allowing searches of heavy relics with-
out the need of solving for spherical collapse. Additionally,
part of the scale dependence of b1ðkÞ can be attributed to
the reduction of the matter power spectrum at small scales,
as relic fluctuations vanish [38,39]. However, even if one
defined the bias with respect to CDMþ b only, as opposed
to all matter, there would still be some scale dependence
[28], arising from the behavior of bL1 ðkÞ, which we showed
in Fig. 2. We explore this question in Sec. VI for the case of
neutrinos. Nonetheless, since the observable quantity is the
halo overdensity, it makes little difference how we define
the bias, as long as we are self consistent.
We want to point out that the scale dependence of b1 is

more susceptible to changes in the properties of the haloes
than the scale dependence in bL1 [28]. To showcase this
effect, we have calculated both the linear Eulerian and
Lagrangian biases for a cosmology with one massive
neutrino, of mass mν1 ¼ 0.1 eV, as well as for ΛCDM,
for three halo masses. We show the biases for these cases in
Fig. 5, from where we see that the normalized Lagrangian
bias is nearly identical for all halo masses, whereas the
normalized Eulerian bias shows a larger spread in values.
This is not surprising, as the overall value of the Lagrangian
bias, bL1 ðkrefÞ, enters the calculation of b1, and this quantity

is very different for the three halo masses we show, with
values of bL1 ðkrefÞ ≈ 0.5, 2, and 7. A similar effect arises
when varying the collapse redshift, as we show in
Appendix A, albeit less pronounced. Given this insight,
and the additional myriad of effects that can affect the
overall amplitude of the Lagrangian bias, we encourage
users to marginalize over the amplitude of the Lagrangian
bias, bL1 ðkrefÞ, as opposed to that of the Eulerian one, to
keep the scale dependence in the most pristine state.

D. Power spectrum

Cosmological relics suppress the matter power spectrum,
as we discussed in Sec. III. In order to quantify this effect,
let us define the suppression factor

RsðkÞ≡ PssðkÞ
PΛCDM
ss ðkÞ ; ð41Þ

where the index s ¼ fm; hg stands for matter or halo power
spectra. We work in real space (as opposed to redshift
space), so we can relate the halo and matter power spectra
simply as

PhhðkÞ ¼ b21ðkÞPmmðkÞ; ð42Þ
from where we can easily calculate both Rm and Rh as
a function of scale. We show these two quantities,

FIG. 4. We show the normalized linear Eulerian bias with the
same inputs as in Fig. 2. Solid lines are obtained using Eq. (39),
with the fit for the Lagrangian bias of Eq. (38) and the transfer
functions from CLASS. The vertical dashed lines show the free-
streaming scale of each of the particles considered.

FIG. 5. Linear biases both for ΛCDM (in filled symbols), and
for a cosmology with one massive neutrino (with mν1 ¼ 0.1 eV;
in hollow symbols), normalized at kref ¼ 10−4h Mpc−1. We vary
the halo mass M, assuming a redshift of collapse of zcoll ¼ 0.7.
We ignore neutrino clustering, and we keep the CDM density
today fixed. We warn the reader that haloes of masses M ¼
f1013; 1014; 1015gh−1 M⊙ are formed fromoverdensities of typical
comoving wave number k� ¼ f0.47; 0.22; 0.10gh Mpc−1, shown
as vertical dotted lines, beyond where the bias will depart from
our linear predictions.
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normalized at large scales, in Fig. 6. We find that the
matter power spectrum is suppressed for scales beyond
k ∼ 10−2h Mpc−1, asymptoting to a value of RmðkÞ=
RmðkrefÞ ≈ ð1 − 14fXÞ at very small scales, as found in
Ref. [21]. However, the scale dependence of the bias
reduces the suppression by tens of percent, making the
effect of light relics less obvious in galaxy data.
Note that the lines with light relics in Fig. 6 show

wiggles when compared to ΛCDM. In addition to the well-
known shift in the BAO phase caused by the addition of
free-streaming particles [77], we are changing the back-
ground cosmology when adding relics, as part of the matter
density will become relativistic at high-enough redshift.
The relics in Fig. 6 become nonrelativistic roughly at
z ∼ 3 × 103 − 104, which changes the sound horizon at
recombination with respect to a universe with the same
amount of matter today, but no light relics. Heavier relics
become nonrelativistic earlier, and thus the wiggles are less
pronounced for larger fX in Fig. 6. In any case, part or all of
this effect can be reabsorbed, for instance, in the inferred
value of h, to obtain the same sound horizon. Additionally,
since the relics we study are nonrelativistic during recom-
bination, their effect on the power spectrum appears at
smaller scales than keq. This might not be a disadvantage, as
galaxy surveys, which often cannot observe modes longer
than k ∼ 10−2h Mpc−1, would be sensitive to the “turning
on” of the suppression, perhaps making these relics easier
to constrain than neutrinos.

V. OTHER RELICS

So far we have, for simplicity, only considered the
case of a neutrinolike (spin-1=2 single-family) relic.
Nonetheless, we will now show that a host of other light
relics can be expressed as an equivalent neutrino in terms of
their cosmological effects. We will use this to show results

for other fermions, focusing on nonresonantly produced
(NRP) sterile neutrinos. We will also show how bosonic
d.o.f. can be approximately represented as an equivalent
neutrino as well, and exemplify this with scalar and vector
light relics.

A. Other fermions

At the level of perturbations, it was shown in Ref. [21]
that a nonresonantly produced (NRP) neutrino is equivalent
to a regular neutrino, with an appropriate choice of mass
and temperature. In general, we expect a fermionic particle,
with a number gY of d.o.f., a mass mY , and a temperature
TY , to be equivalent to the one-family neutrino case we
have studied (X) if the following relations are satisfied:

ΩY ¼ ΩX; and ð43aÞ

Tð0Þ
Y

mY
¼ Tð0Þ

X

mX
: ð43bÞ

We can solve these equations to find the equivalent-
neutrino mass and temperature as

mX ¼ mYðgY=gXÞ1=4; and ð44aÞ

Tð0Þ
X ¼ Tð0Þ

Y ðgY=gXÞ1=4; ð44bÞ

where gX ¼ 3=2. We note that two light relics following
this relation would also contribute with the same ΔNeff
at any epoch, and thus either both satisfy, or violate, CMB
and BBN bounds. It is in this sense that we call these relics
“equivalent”, as all their background and linear-level
cosmological effects are identical.
We will use this equivalence to study the case of NRP

sterile neutrinos (ν0) composing a fraction of the cosmo-
logical dark matter [71,94]. In particular, sterile neutrinos
with eV masses have received wide interest, as they could
explain some observed short-baseline neutrino anomalies
(see for instance Refs. [95,96] for recent analyses). These
particles cannot compose all of the DM, as they are too light
to be CDM, but their number density can be suppressed by
many processes, such as interactions with a dark photon
[74], yielding small cosmic abundances. Therefore, we
assume that the NRP neutrinos have a modified Fermi-
Dirac distribution given by

fNRPν0 ðq; zÞ ¼ χ

eq=TνðzÞ þ 1
; ð45Þ

where χ ≤ 1 is a normalization factor, chosen to set the
right NRP neutrino abundance, given its mass mν0 [21].
Sterile neutrinos share the active neutrino temperature

(Tð0Þ
ν0 ¼ Tð0Þ

ν ). Interestingly, for small enough χ the temper-

ature Tð0Þ
X of the equivalent light relic, calculated with

FIG. 6. Normalized suppression factors, as defined in Eq. (41),
for the same parameters as Fig. 2. We show in hollow symbols the
suppression Rm of the matter power spectrum in the presence of
light relics, and in filled symbols that of the halo power spectrum,
Rh. Dashed lines represent Rm, and are obtained with CLASS
output, whereas solid lines represent Rh, and include our fit for
the bias from Eq. (39). The vertical grey-dotted line represents the
nonlinear scale kNL at z ¼ 0.7.
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Eq. (44b) and gν0 ¼ 3χ=2, can be below Tð0Þ
X < 1 K—the

lowest standard-model prediction.
Our analysis is similar to that of Ref. [3], where instead of

varying Neff and the “effective” neutrino mass, defined as

meff
ν0 ¼ 94.1 eV ×Ων0h2; ð46Þ

we vary mν0 and Ων0 , as those parameters are more relevant
for galaxy observables. The Planck collaboration found the
2-σ constraint meff

ν0 < 0.5 eV [3], which can be translated
into a fraction fν0 < 0.035 of the total matter on sterile
neutrinos.Wewill keep this value fixed, and vary themass of
the sterile neutrino, for which we will simply rescale the χ
factor in Eq. (45). We show two cases in Fig. 7, correspond-
ing to mν0 ¼ 1 and 5 eV (or χ ¼ 1=2 and 1=10), where the
mass of the latter is chosen for illustrative purposes only. To
obtain these results, we have ran RelicFast with mX ¼
0.84 and 2.8 eV, taking ΩXh2 ¼ 5 × 10−3 in both cases,

which corresponds to temperatures Tð0Þ
X ¼ 1.7 K and 1.1 K

for the equivalent neutrino. In Fig. 7 the suppression for the
heavier sterile neutrino never reaches the plateau, as the free-
streaming scale of these particles is beyond the nonlinear
scale, and thus not shown in the plots. However, the total
amount of suppression, and the step in the Lagrangian bias,
would be the same at large k for both sterile-neutrino cases
presented. Note, in passing, that these two relics become
nonrelativistic at z ≈ 6 × 103 and 3 × 104, respectively, so
theywould not fully contribute to the radiationdensity during
the CMB epoch. In addition, these relics produce ΔNeff ¼
0.5 and 0.1 at BBN, within current 2-σ limits [4].

B. Bosons

Bosonic relics, such as scalars and vectors, cannot be
trivially expressed in terms of a fermion, given that their
momenta are distributed according to a Bose-Einstein
distribution, instead of a Fermi-Dirac one. These two
distributions, however, share the same ultrarelativistic
and nonrelativistic limits. Therefore, we can approximate
bosonic (Y) and fermionic (X) relics, by demanding

ΩY ¼ ΩX; and ð47aÞ

hvYiBE ¼ hvXiFD; ð47bÞ

where hiFD and hiBE mean average under a Fermi-Dirac or
Bose-Einstein distribution.5 The average velocity of
fermionic particles is hvXiFD ¼ cFD × TX=mX, with cFD ≈
3.15, whereas for bosons it is hvYiBE ¼ cBE × TY=mY , with
cBE ≈ 2.70, where the ratio cFD=cBE ¼ 7=6 exactly.
Moreover, the nonrelativistic FD and BE energy densities
can be expressed as ΩðX=YÞ ¼ gðX=YÞmðX=YÞT3

ðX=YÞC, where
the C factor is cosmology-dependent and common for
both cases. Thus, we can relate the bosonic and fermionic
d.o.f. by

mX ¼ mYðgY=gXÞ1=4ð7=6Þ3=4 and ð48aÞ

TX ¼ TYðgY=gXÞ1=4ð6=7Þ1=4; ð48bÞ

where we remind the reader that each bosonic d.o.f.
contributes with gY ¼ 1, and each fermionic one with
gX ¼ 3=4. Then, we can find the result for an arbitrary
particle with any spin and mass in terms of our one-family
spin-1=2 case, where gX ¼ 3=2.
For illustrative purposes we will consider two different

bosonic cases, a scalar with mass mϕ ¼ 0.5 eV, and a
vector with mass mV ¼ 3 eV, both with an energy density

FIG. 7. Lagrangian and Eulerian biases, and suppression
factors, for the case of sterile neutrinos of different masses,
composing 3.5% of the total matter (and thus saturating the
Planck bound). The amplitudes of their distributions are χ ¼ 1=2
and 1=10 for mν0 ¼ 1, and 5 eV, respectively. We consider a halo
with M ¼ 1013h−1 M⊙, zcoll ¼ 0.7, and normalize all results at
kref ¼ 10−4h Mpc−1. As before, solid lines represent our fit for
the biases in the top two panels, and in the bottom panel solid
lines and filled symbols represent suppression in halo power
spectra, whereas dashed lines and empty symbols correspond to
matter power spectra.

5It might seem more appropriate to demand hv−2i to be the
same for the two distributions, instead of hvi, given the definition
of kfs in Eq. (33). Nonetheless, this quantity is ill-defined for a BE
distribution, and we will see that our definition suffices to make
bosonic and fermionic relics indistinguishable.
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today of ΩYh2 ¼ 5 × 10−3, i.e., composing 3.5% of the
total matter. To find the result for bosons, we have modified
the CLASS code to allow for bosonic light relics, and have
substituted the FD distribution in our code for a BE. Since
the fluid nature of bosonic relics is uncertain, we choose to
set their sound speed in our analysis to c2s ¼ w (and we do
the same for the equivalent neutrinos, to allow for a ready
comparison). We show the biases, as well as the suppres-
sion factors for these two cases in Fig. 8, where we ignore
clustering of these d.o.f., as the usual formulas in
Appendix C are only valid for fermions.
To test the validity of the transformations in Eq. (48b), we

compare the results for bosons with the equivalent-neutrino
approximation outlined above, for which the scalar and
vector cases correspond to mX ¼ 0.51 eV, and mX ¼
4.0 eV, respectively, both with ΩXh2 ¼ 5 × 10−3. We see
that the two results are indistinguishable both in terms
of bias and power spectra, as the equivalent-neutrino

approximation holds excellently well. We note that even
the absolute bias is the same under this approximation, at
the 0.1% level. While this means that we can efficiently
express any relic, even bosons, as an equivalent neutrino, it
also means that elucidating the spin of a relic is virtually
impossible.

VI. NEUTRINOS

Perhaps the best-studied case of light relics is that of
neutrinos. Neutrinos are certain to populate our Universe,
composing almost half of the energy density in the
radiation-dominated plasma after BBN. Interestingly, neu-
trino-oscillation experiments have shown that at least two
of the three propagation eigenstates are massive, with mass-
squared differences of m2

2 −m2
1 ¼ ð9 meVÞ2 and jm2

3 −
m2

1j ¼ ð50 meVÞ2 [8,9]. However, the “zero-point” of these
masses is not known, and neither is the sign of m3 −m1.
Therefore, given a sum of neutrino masses, two hierarchies
can be assumed: the normal hierarchy (NH), where m3 >
m2 ∼m1, and the inverted hierarchy (IH), where m2 ∼
m1 > m3. Finding the sum of the neutrino masses, as well
as which hierarchy is represented in nature, is a goal of
present-day cosmology, and may well be within the reach
of upcoming observations.
As an example of the sensitivity of current measure-

ments, Planck data alone can constrain the sum of neutrino
masses to be

P
imνi < 0.49 eV, at 95% C.L. [3], which can

be further tightened to
P

imνi < 0.14 eV when adding
distance information from BAO surveys [97–100], andP

imνi < 0.12 when considering the Lyman-α forest [11].
This limit is, nonetheless, loosened to

P
imνi < 0.29 eV

when adding the power spectra observed by the DES, as
these probes are in mild tension with each other [13]. This
illustrates that in order to find a definitive measurement of
neutrino masses, we have to study the effect of neutrinos
beyond the background cosmology.
Most neutrino-mass searches with cosmological data

make two simplifying approximations. First, they vary the
sum of the neutrino masses, Mν ¼

P
imνi , either assuming

that all neutrinos have the same mass, or that only one
neutrino is massive. This has been shown to be a good
approximation within the precision of current data
[22,101], but might not be true with next-generation
surveys. Second, these searches commonly assume a
scale-independent bias, over which they marginalize,
ignoring the effect of neutrinos in the halo bias [12,102].
Recently, this assumption has been relaxed in Ref. [15],
where a scale-dependent bias of k2 form was included,
which arises naturally in ΛCDM, but is unrelated to the
scale dependence induced by neutrinos.
We address these two issues with RelicFast. We

obtain the transfer functions from the Boltzmann solver
CLASS, which allows for any number of light relics with
different masses (and temperatures) [76,103]. Moreover,

FIG. 8. Same as Fig. 7, but for the case of two bosons, and their
equivalent neutrinos, all of them composing 3.5% of the matter
today. In (dark) green we show the case of a scalar of mass
mϕ ¼ 0.50 eV, and in light green its corresponding equivalent
neutrino of massmX ¼ 0.51 eV. Similarly, the case of a vector of
mass mV ¼ 3.0 eV is shown in (dark) pink, where the equivalent
neutrino (in light pink) has mX ¼ 4.0 eV. As before, lines are
obtained with the fits of Eqs. (38) and (39) and the transfer
functions from CLASS, with dashed lines (and hollow symbols)
representing Rm, and solid lines (with filled symbols) represent-
ing Rh.
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we implement the spherical collapse of haloes including all
neutrinos simultaneously, which provides us with the halo
bias in the presence of three neutrinos with arbitrary
masses. Then, we find the halo power spectrum for both
the NH and IH, for any Mν, and ask whether considering
one massive neutrino (1ν) or three degenerate ones (3deg.)
are good approximations to either of the two hierarchies.
Throughout this section, we will keep the CDM density

Ωdh2 ¼ 0.12 fixed, as a proxy for CMB observations, since
light neutrinos would always appear as radiation during
recombination (see, however, Ref. [104] for the impact of
CMB lensing). This means that Ωmh2 will be larger for
universes with massive neutrinos, and thus ΩΛ will be
reduced (as we do not alter h). We show, in Appendix D,
how keeping Ωm fixed, instead of Ωc, produces a larger
suppression in the power spectra but almost identical
biases. Additionally, we have not included the effects of
neutrino clustering since it has been shown to be negligible
for the neutrino masses we study here [49]. Finally, we
reduce Neff by Nν

eff ¼ 1.0132 for each massive neutrino we
independently include, both in our calculation and in
CLASS, so as to produce Neff ¼ 3.046 at early times [76].

A. Scale-dependent bias

We begin by finding the effect of neutrinos on the linear
bias. We will treat each massive neutrino as an independent
light relic. Thus, wewill consider an arbitrary numberNν of
them, by self-consistently including them both in the
Boltzmann solver (CLASS) and in the spherical collapse
equation. We show the result for the Lagrangian bias in
Fig. 9, for both the NH and IH, as well as the 1ν and 3deg.
approximations. From this figure, we see that, even with a
modest total mass of 0.09 eV, neutrinos cause a 0.35
percent step in the Lagrangian bias, in addition to the half a
percent already present in ΛCDM.
In order to approximate our result, we fit the combined

effect of a number Nν of massive neutrinos through

bL;fit1 ðkÞ
bL1 ðkrefÞ

¼ RΛCDM
L

�
1þ

XNν

i¼1

ΔðiÞ
L

2

�
tanh

�
logðqiÞ
Δq

�
þ 1

��
;

ð49Þ

where at zcoll ¼ 0.7, similarly to the light-relic case, we find

that ΔðiÞ
L ¼ 0.55fνi , qi ¼ 5k=kðiÞfs , where we have defined

fνi ¼ Ωi=Ωm, with Ωih2 ¼ mvi=ð93.14 eVÞ. The slope of
ΔL ≡ ΔbL=bL − 1 ¼ 0.55fν is consistent with that of
Ref. [85], found to be in agreement with simulations in
Ref. [42]. Note that the scaling of the step in the bias,ΔL, is
smaller than we found for light relics, where ΔL ¼ 0.6fX,
since here we are giving mass to an otherwise present
(albeit massless) neutrino, as opposed to including a whole
new particle in our analysis. Additionally, we calculate the
linear Eulerian bias with Eq. (39), where now

T mðkÞ ¼ fcT cðkÞ þ
XNν

i¼1

fiT iðkÞ; ð50Þ

and we remind the reader that the subscript c stands
for CDMþ b.
Adding massive neutrinos also causes a scale-dependent

Eulerian bias, of size fν ≡P
ifνi , as we show in Fig. 10.

Part of this bias is caused by the inclusion of neutrinos in
the matter budget, and part of it is due to the effect of
neutrinos in the collapse of the haloes. Both effects
contribute with similar sizes, and simply considering the
bias with respect to cold dark matter does not result in a
purely scale-independent bias, as we will explore later.
As a consequence, we can read from Fig. 10 that the 3%
suppression in the matter power spectrum caused by
massive neutrinos is reduced to 1% for the haloes, making
the effect of neutrinos harder to observe in galaxy power
spectra [28]. In Ref. [105], it was shown that ignoring the
scale dependence of the bias is a safe approximation with
current cosmological data, albeit it would induce biases
with more-precise data from next-generation surveys. With
RelicFast we can compute the linear bias quickly and
precisely, so it would be possible to include a calculation of
the bias in any cosmological search of neutrino masses.
Additionally, both matter and halo power spectra in

Fig. 10 show a bump at scales k ¼ 10−3 − 10−2h Mpc−1,
when including neutrinos. This result was expected for the
matter power spectrum [76,106], but we see that the scale

FIG. 9. Linear Lagrangian bias and Eulerian bias with respect
to CDM (defined as b̃1 ¼ Phc=Pcc), for the IH, NH, and the
approximations with only one neutrino (1ν) and three degenerate
neutrinos (3 deg.), all with same total mass

P
mνi ¼ 0.09 eV, as

well as for ΛCDM with massless neutrinos (in black). The fit for
the bias is obtained with Eq. (49). Similarly to other figures, we
set M ¼ 1013h−1 M⊙, zcoll ¼ 0.7, and kref ¼ 10−4h Mpc−1,
although we keep Ωd fixed instead of Ωm.
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dependence of the linear bias enhances the bump in the halo
power spectrum to the half-percent level. This enhancement
is also present in the rest of the relics we have studied,
although it is too small to warrant any further consideration.

B. Neutrino hierarchies

Let us now study the effect of the neutrino hierarchy on
the halo bias and power spectrum. For total neutrino masses
Mν ≫ 0.1 eV the precise difference between the neutrino
mass eigenstates is largely irrelevant, and both hierarchies
are well approximated as three degenerate neutrinos, with
the same mass. Let us, instead, study the opposite case,
where Mν ¼ 0.09 eV. This is nearly the lowest mass
possible within the IH [107], where we will have two
massive neutrinos, with mIH

νi ¼ f0.045; 0.045g eV. In the
NH, however, we will have three massive neutrinos, with
massesmNH

νi ¼ f0.05; 0.02; 0.02g eV. We compare the two

hierarchies to the 3 deg. approximation, where m3deg:
νi ¼

f0.3; 0.3; 0.3g eV, and the 1ν case in Fig. 10. This figure
shows that the 1ν approximation fails to reproduce either
of the two hierarchies, as it overpredicts the amount of
suppresion [10], and the more-massive single neutrino has
a larger kfs, resulting in a displacement of the suppression to
larger k. However, taking three degenerate neutrinos, with
the same Mν ¼ 0.09 eV, reproduces the bias for the NH to
great precision at all scales, and only deviates from the IH
within 0.1% at intermediate scales, showing that the 3 deg.
case is indeed a good approximation to both hierarchies.
We now study the case of Mν ¼ 0.06 eV, at the edge of

the minimum neutrino mass possible (and thus only
allowed by the NH). In this case the NH has two massive

neutrinos, with mνi ¼ f0.05; 0.01g eV, which we compare
in Fig. 11 with the 1ν approximation (with mν ¼ 0.06 eV),
and the 3 deg. case (with m3deg:

νi ¼ f0.02; 0.02; 0.02g eV).
We find that the suppression in the matter power spectrum
is roughly 2% for all cases, (with exact values of
f2.1; 2.0; 1.8g% for 1ν, NH, and 3deg., respectively, all
at k ¼ 1h Mpc−1), whereas for the halo power spectrum
this suppression is less pronounced, reaching values of
f0.7; 0.6; 0.3g% for the same cases. Thus, the 1ν approxi-
mation is better at reproducing the NH, as expected, but the
relative difference between these two cases is still of the
order of 20%. This is to be expected, as these two cases
have a distribution of neutrino masses that is also different
by 20%. Additionally, we see that while for Mν ≳ 0.1 eV
the 3deg. approximation works better than the 1ν case, this
trend is reversed at lower masses, so one should use the
right hierarchy whenever possible.
Before moving on, let us correct some results from

Ref. [28]. Our formalism draws heavily from this reference,
on which the scale-dependent bias induced by massive
neutrinos was studied. However, we find that the step in the
Lagrangian bias is, to a good approximation, proportional
to the total neutrino mass, regardless of how this mass is
distributed amongst the neutrinos (see, for instance, Fig. 9).
This is in stark contrast to the result in Ref. [28], where the
1ν and 3deg. approximations yielded steps in the bias that
differed by a factor of two. As we advanced in Sec. II, the
source of this discrepancy is the treatment of the neutrino-
pressure fluctuations. In Ref. [28] the sound speed of
massive neutrinos was set to zero (and, therefore, pressure
fluctuationswere ignored).Neutrinos are confirmed to have a
nonvanishing sound speed [3,108], so we self-consistently
compute the density and pressure fluctuations induced by a
long-wavelength perturbation, by using Eq. (11) and the
adiabatic sound speed calculated with Eq. (28). The effect

FIG. 10. Linear bias and suppression factors for the same inputs
as Fig. 9 (i.e.,

P
imνi ¼ 0.09 eV). The vertical dashed lines

represent the largest kfs for each case, and in hollow symbols and
dashed lines in the bottom panel denote Rm, whereas filled
symbols and solid lines denote Rh.

FIG. 11. Same as Fig. 10, albeit with
P

mνi ¼ 0.06 eV.
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of the sound speed is more significant for lighter neutrinos,
for which c2sð≈wÞ can be important. We have checked that
under the same assumptions as Ref. [28], namely, taking
c2s;i ¼ 0, we recover their results, and the step in the
Lagrangian bias due to light neutrinos (with mνi ≤ 0.1 eV)
is overestimated by a factor of two. We note, however, that in
the separate-universe formalism pressure fluctuations from
all species are automatically included in the evolution of
the long-wavelength CDMþ b overdensity δL, as shown in
Ref. [36]. Therefore, one only needs to explicitly specify c2s
during the collapse when evolving RðzÞ, as we do, instead
of δSðzÞ. Nonetheless, the CLASS code takes the same
assumption of c2s ¼ c2ad, so both formalisms should be
equivalent.
We have also compared our results with those of Ref. [42],

where the scale-dependent bias of massive neutrinos was
computed both with N-body separate-universe simulations,
as well as with different theoretical estimates. As Ref. [42],
we include Nν ¼ 28 neutrinos of mνi ¼ 0.05 eV (which
yields large neutrino energy density, while keeping the
neutrino free-streaming scale in the linear regime), and fix
the cosmological parameters to h ¼ 0.7, Ωbh2 ¼ 0.0245,
Ωdh2 ¼ 0.1225, and a helium fraction of YHe ¼ 0.24. For
practical purposes, instead of adding 28 massive neutrinos
we make use of the equivalent-fermion approximation,
outlined in Sec. V, and simply run RelicFast with
ΩXh2 ¼ 0.015 andmX ¼ 0.115 eV, with no other neutrinos
(massive or massless). In this casewe find steps in the bias of
ΔbL1=bL1 ¼ 1.065 and ΔbL1=bL1 ¼ 1.068, at zcoll ¼ 0 and 1,
respectively, in excellent agreement with Ref. [42]. Note,
however, that this step is not entirely due to the neutrino
masses, since a largeNν increases the amount of radiation in
the early Universe, and thus the step in the Lagrangian bias,
even if these neutrinos are massless. For instance, we
estimate that setting Neff ¼ 28 (and thus considering 28
massless neutrinos) causes steps in the Lagrangian bias of
ΔbL1=bL1 ¼ 1.01 at z ¼ 0, and ΔbL1 =bL1 ¼ 1.02 at z ¼ 1,
which are a factor of ∼4 larger than the expected ΛCDM
results for Neff ¼ 3.046.

C. Bias with respect to cold dark matter

Throughout this work we have employed the usual
definition of the linear Eulerian bias of Eq. (19), which
includes the effect of light relics both in the spherical
collapse and in the matter power spectrum. This bias allows
for a direct comparison of the halo power spectrum, as
observed in galaxy surveys, and the matter power spectrum,
inferred for instance through weak lensing. One can choose
to define the linear bias with respect to the cold dark matter,
though, in which case it would be given by

b̃1ðkÞ≡ PhcðkÞ
PccðkÞ

¼ ½1þ bL1 ðkÞ�; ð51Þ

where the contribution of light relics as matter is removed,
and the only scale dependence is through bL1 ðkÞ. We show
this quantity, along with bL1 ðkÞ for ease of comparison, in
Fig. 9. Clearly, b̃1 shows a smaller scale-dependent feature
than b1, as pointed out in Refs. [38,39], although the effect
is still nonvanishing, as reported by Ref. [28]. From Fig. 9
we find that, for Mν ¼ 0.09 eV, the amplitude of the b̃1
step is Δb̃1=b̃1 ≈ 0.35% for the haloes we consider, clearly
tracing bL1 , which shows a percent step due to neutrinos
(half of which is already present in ΛCDM). We have
confirmed that forMν ¼ 0.06 eV this effect persists, with a
0.6% step in bL1 , and therefore Δb̃1=b1 ≈ 0.3% for the
haloes we consider.

VII. CONCLUSIONS

In this paper we have presented the code RelicFast,
which can compute, through spherical collapse and the
peak-background split, the bias of haloes in the presence of
light relics, including neutrinos. We have argued that this
allows galaxy surveys to target light relics with masses
above an meV, which comprise part of the matter today, and
thus complements searches for relativistic relics, such as
those of Refs. [6,7], which target their effect on Neff .
Light relics can be any d.o.f. that decoupled from the

standard model in the early Universe and stayed relativistic.
We have shown how all light relics with a Fermi-Dirac
distribution can be expressed in terms of an equivalent
neutrino with some mass and temperature. Using this
insight, we have studied the effects in the halo power
spectrum of an eV-scale sterile neutrino, with an arbitrary
cosmic abundance, as suggested by short-baseline neutrino
experiments [95]. Additionally, we have shown that even
bosonic d.o.f. can be well approximated by a neutrino, if
the neutrino temperature and mass are chosen wisely. We
illustrated this by computing the matter and halo power
spectra for both a scalar and a vector relic. In all cases, we
have chosen relatively large values of the light-relic fraction
fX to more clearly showcase their effect on the halo power
spectrum, although given that both the suppression in
power and the scale-dependent bias scale roughly linearly
with fX, our results can be easily translated to other relic
abundances.
We have also explored the impact of massive neutrinos in

the galaxy bias. We find that the linear bias is modified both
by the inclusion of neutrinos in the cosmic matter budget,
as well as by their effect on the spherical collapse of the
haloes. Together, these effects cause a steplike linear bias
of size fν, which partially compensates for the neutrino-
induced suppression in the matter power spectrum. In
addition, we have shown how the effect on the galaxy power
spectrum of both the normal and inverted hierarchies cannot
be well represented by either three degenerate neutrinos, or
a single one, for small neutrino masses (Mν < 0.1 eV).
It is, therefore, imperative to properly model each neutrino
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hierarchy for a robust detection—or constraint—of the
neutrino masses.
Throughout this workwe have only computed local biases

to linear order. It would be interesting, however, to go beyond
this approximation, in order to include larger k modes with
the necessary precision. Thiswould require carefulmodeling
of the neutrino and CDM fluids [45,109–111], and of their
nonlinearities [40,41,68,112]. Additionally, galaxies are
observed in redshift space, and the redshift-space distortions
can be modified in the presence of light relics [113–115].
Nonetheless, we do not expect the scale dependence of the
linear bias to be significantly altered by any of these effects,
and we leave their modeling for future work.
We have argued that any search of neutrinos, or other

massive relics using galaxy power spectra should include
their effect on the galaxy bias, even if this effect is not
observable at high significance in isolation. Simulations
have been used to obtain these biases [40,115], although
they are computationally prohibitive if cosmology or the
relic properties are to be varied. RelicFast computes
halo bias efficiently and accurately for any given cosmol-
ogy including light relics, which allows for MCMC
searches of these particles. Additionally, constraints on
the neutrino mass can be consistently achieved, by
including all effects of neutrinos in the power spectra.
Therefore, we believe that RelicFast holds great
potential for the use of galaxy data.
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APPENDIX A: USE OF THE CODE

In this Appendix, we explain the main properties of the
RelicFast code, and how to best utilize it. RelicFast
is written in C++, and is parallelized using OpenMP. After a
successful installation, RelicFast will read a text file
with the input parameters and output the Lagrangian and
Eulerian biases to a text file. The inputs are the cosmo-
logical parameters (the relevant ΛCDM parameters, the
neutrino masses, and the light-relic parameters), the k
values for which the bias is to be calculated, as well as
the redshifts zcoll of collapse, and the masses M of the
haloes that are formed.
The code runs CLASS for the input cosmology (albeit it

can be easily adapted for CAMB). It then uses the transfer
functions outputted to find the initial conditions for RðzÞ

(since Ri and _Ri depend on σðMÞ), as well as for the
evolution of the noncold components inside the collapse
equation. We evaluate the transfer functions at 100 values
of redshift between 0 and zi ¼ 200 (spaced as

ffiffiffi
z

p
for

efficiency) and interpolate between them. As a note, we
follow Ref. [28] in choosing zi ¼ 200, early enough that
little nonlinear evolution has occured, but late enough that
baryons have transferred most of the acoustic oscillations to
the dark matter. We have found that starting at different zi in
the 100-400 range makes a relative change in ΔL [defined
as in Eq. (38)] of a few percent, owing to both nonlinearities
in the initial δS and the effect of baryon pressure [50],
which we do not include. This should be treated as a lower
bound on the uncertainty of our estimates.
We solve for the spherical collapse as explained in the

main text, albeit using z instead of time as the variable. The
equation of motion is, thus,

R00ðzÞ þ R0ðzÞ
�

1

1þ z
þH0ðzÞ

HðzÞ
�

¼ −
G½M þ δMXðzÞ�

R2ðzÞH2ðzÞð1þ zÞ2

−
RðzÞH2

0

2H2ðzÞð1þ zÞ2
X
i

Ω̃iðzÞ½1þ 3wi þ ð1þ 3c2ad;iÞδi�;

ðA1Þ

where prime denotes derivative with respect to z, and where
we have defined

Ω̃iðzÞ ¼
ρ̄iðzÞ
ρcrit

ðA2Þ

with a tilde, to distinguish it from the z ¼ 0 values used
throughout the text. The i-th species long-wavelength
fluctuation is calculated as

δi ¼ δL
T iðk; zÞ
T cðk; ziniÞ

; ðA3Þ

and its (adiabatic) sound speed as

c2ad;iðzÞ ¼ wiðzÞ þ
w0
iðzÞð1þ zÞ

3½1þ wiðzÞ�
: ðA4Þ

Most of the numerical burden of solving this ODE is
caused by the multiple interpolations of the transfer
functions T i. We numerically solve this equation using
Heun’s method (a second-order Runge-Kutta method), as
it improves accuracy dramatically over Euler’s method,
requiring no additional interpolations. We logarithmically
bin in redshift to better sample low redshifts, where the halo
evolves faster (note that this means that our z ¼ 0 results
are actually at z ¼ 10−2, to avoid changing to linear binning.
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We have confirmed that this small difference in redshift does
not change any results).
The precision of RelicFast can be manually altered

by the user. We have found that the scale dependence of bL1
can be calculated at great accuracy even for moderate
precision in its overall amplitude. This is because we are
finding the change in δcrit when adding a long-wavelength
perturbation δL, and thus any overall rescaling of δcrit
only modifies the absolute value of bL1 , and not its scale
dependence. Therefore, for best results, we encourage
users to treat bL1 as the free parameter to marginalize over,
instead of b1. Additionally, as shown in Fig. 5 for the case
of a 0.1-eV neutrino, the scale dependence of bL1 is almost
entirely mass-independent, as opposed to that of b1, which
depends moderately on redshift, and strongly on mass.
We show the result of a similar analysis, albeit varying
zcoll instead of M, in Fig. 12. This shows that the scale
dependence varies comparably in b1 and bL1 when chang-
ing the redshift of collapse.

APPENDIX B: OTHER HALO MASS FUNCTIONS

Here we discuss our bias results when using other HMFs,
in particular those of Ref. [56] (which was calibrated for
wCDM cosmologies) and [47]. In the first case, the HMF
term is [28]

∂ log n
∂δcrit ¼

q −
� ffiffiffiffiffiffiffiffiffi

aðzÞp
δcrit=σ

	
2

δcrit

−
2p

δcrit
h
1þ

� ffiffiffiffiffiffiffiffiffi
aðzÞp

δcrit=σ
	
2p
i ; ðB1Þ

with q ¼ 1.795, p ¼ 0.807, and aðzÞ ¼ 0.788ð1þ zÞ−0.01.
Additionally, the more traditional ST HMF from Ref. [47]
is well fit by the previous formula, albeit with q ¼ 1,
a ¼ 0.707, and p ¼ 0.3.
In Fig. 13 we show the relative difference between the

Eulerian biases when compared to our baseline case (MICE,
from Ref. [55]), for haloes of different massesM, collapsing
at z ¼ 0.7, all measured at kref ¼ 10−4h Mpc−1. The three
HMFs agree well, and in particular the wCDM one (from
Ref. [56]) and MICE agree at the percent level.
Nonetheless, the small discrepancies are very much scale

independent. As we explained in the main text, the scale
dependence of the Lagrangian bias is indifferent to the
choice of HMF, which can only affect its normalization.
A change in the overall value of bL1 can, however, modify
the scale dependence of b1. To find the size of this effect we
define the quantity

Rb1 ¼ b1ðksÞ=b1ðkrefÞ; ðB2Þ

as a measure of the step induced in the Eulerian bias by a
light relic, where we have chosen the short-wavelength
mode to be ks ¼ 1h Mpc−1, and the long wavelength
mode at kref ¼ 10−4h Mpc−1. To show that the choice of
the HMF does not alter the step in the Eulerian bias at
any appreciable level, we have run a case with a massive
neutrino with mν ¼ 0.1 eV (which yields a step of
Rb1 ¼ 1.01, and similarly in the Lagrangian bias). We
find that the percent-level differences in the overall values

FIG. 12. Same as Fig. 5, albeit fixing M ¼ 1014h−1 M⊙ and
varying the redshift zcoll of collapse. The blue squares represent
the same haloes here and in Fig. 5.

FIG. 13. We show the ratio of b1 (the linear Eulerian bias) and
Rb1 (the step in b1 caused by neutrinos) obtained with different
mass functions, compared the one from MICE (Eq. (16), as a
function of halo mass. In the bottom panel we have taken a
cosmology with a 0.1-eV neutrino, and the step in the bias is
computed at two different wave numbers, kref ¼ 10−4h Mpc−1

and ks ¼ 1h Mpc−1.
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of the bias predicted by each HMF translate into a
difference in Rb1 only at the 0.02–0.05% level, decreasing
for higher-mass haloes, as we show in Fig. 13. Thus, it is
largely irrelevant which HMF to choose. In any case, this
problem disappears if one marginalizes over the amplitude
of bL1 instead of b1, as the scale dependence is then
independent of the chosen HMF.

APPENDIX C: CLUSTERING OF LIGHT RELICS

Here we detail the process of calculating the clustering of
light relics, as well as how much it can affect our results.
We emphasize that our focus is not on the properties of a
light-relic halo surrounding the DM one, but instead we
want to know its effect on the collapse time, and thus on the
halo bias.
In principle one should solve for the evolution of the DM

and light-relic haloes collapsing simultaneously. However,
the thermal speed of light relics for all cases we consider
is rather large, so their clustering in the potential well of
a halo can be expanded perturbatively. To estimate this
clustering we will employ the Vlasov equation for a
fermion [41,88],

∂τf þ p
am

∇xf − am∇xϕ · ∇pf ¼ 0; ðC1Þ

where τ is the conformal time, ϕ is the gravitational
potential perturbation, p ¼ aðtÞq is the comoving momen-
tum, and x ¼ a−1r is the comoving position of a particle.
We can now expand f perturbatively in ϕ, so

f ¼ f0ðpÞ þ δfðx;p; tÞ; ðC2Þ

where f0 is the unperturbed (Fermi-Dirac) distribution,
and δf is the first-order perturbation. We can thus use
the“BKT” approximation of the equation for δf [87]

∂τδf þ p
am

·∇xδf −
am
p

∇xϕ · p
df0
dp

¼ 0: ðC3Þ

For the particular case of a top-hatmass overdensity, which is
radially symmetric, this equation has an exact solution [89]

δfðx; p; μ; zÞ ¼ 2mX
df0=dp

x2

Z
zi

z

dz0

Hðz0Þ δMðz0Þ
�
xc
x
− μ

�

×

8<
:

x3

x3halo
; if xhalo > jx − xcj:

1
jx−xcj3 ; otherwise;

ðC4Þ

where μ ¼ x̂ · p̂ is the cosine of the angle between position
and momentum, xc ≡ ½ηðzÞ − ηðz0Þ�p=mX is related to the
distance traveled by a particle, with ηðzÞ the superconformal
time (dη ¼ dzð1þ zÞ=HðzÞ), and we explicitly compute

jx − xcj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x2c − 2xxcμ

q
: ðC5Þ

We have also defined the comoving radius xhaloðz0Þ ¼
Rhaloðz0Þð1þ z0Þ of the halo, and the (DMþ b) mass over-
density δMðz0Þ ¼ Mhalo −Msmoothðz0Þ, with

Msmoothðz0Þ ¼
4π

3
R3
haloðz0Þρcðz0Þ ¼

H2
0Ωc

2
x3haloðz0Þ: ðC6Þ

Note that we require to know the solution for the halo
collapse [i.e., RðzÞ] in order to calculate δf, which would
require for us to solve both equations simultaneously.
However, given that the change due to the clustering of
light relics is a small perturbation, we can solve for RðzÞ
once without including it, and use that solution to find the
clustering, which is then fed back to the collapse equation.
We have attempted to perform this procedure iteratively, and
found that after just one iteration it is converged better than
one part in 104. We calculate the integral in Eq. (C4) for a set
of values of x, p, and μ to be able to find the light-relic mass
overdensity as

δMXðzÞ ¼
mX

π

Z
xhaloðzÞ

0

dxx2
Z

∞

0

dpp2

Z
1

−1
dμδfðx;p;μ; zÞ;

ðC7Þ
in natural units (note that if we had used h instead of ℏ
we would have not had a ð2πÞ−3 factor in the p integral).

FIG. 14. Top: Shows the ratio of the linear bias with and
without including collapse, for the same cases as Fig. 3. Bottom:
Same as Fig. 2, where open symbols (and lighter colors) denote
no-clustering.
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This factor would enters the ODE we solve, Eq. (36), as
explained before.
In Ref. [49] it was shown that the calculation here

outlined, while producing a smaller neutrino halo, agreed
with an N-1-body simulation on the collapse time, even
for neutrinos as heavy as mν ¼ 1 eV, and haloes of
M ¼ 1015 M⊙. This comprises all the light-relic cases
that we have studied in this paper for M ¼ 1013h−1 M⊙.
Moreover, we have seen that, while δcrit changes when
considering light-relic collapse (see the top panel of
Fig. 14), the change is largely scale independent, even
in b1, so whether we include clustering of light relics
or not does not change our main results in this paper.
We show this in the bottom panel of Fig. 14. Therefore, for
fastest results we suggest ignoring light-relic clustering.

APPENDIX D: FIXING Ωm VERSUS Ωd

We show in Fig. 15 the Eulerian bias and suppression
factors for the case of neutrinos with

P
mνi ¼ 0.09 eV,

both with the NH and with the 1ν approximation, where
now we keep Ωm fixed (by varying the DM density Ωd
when adding neutrinos). The suppression in the matter
power spectrum is more pronounced in this case, reaching
a value of 6%, as opposed to the 3% we found in Fig. 10.
Similarly, in Fig. 10 we found a 1% suppression in the
halo power spectrum, which grows to 4% when varying
Ωd, as read from Fig. 15. The Lagrangian bias is, however,
rather insensitive to whether Ωd or Ωm is kept fixed. We
find that for light relics the same result holds true: fixing
Ωd results in a smaller suppression in the matter power
spectrum, but does not significantly change the biases we
calculate. Throughout this work we have kept Ωm fixed

for non-neutrino light relics, to simulate a CMB prior,
although one is free to change either.
Additionally, in the case of neutrinos, changing Ωd to

keep Ωm fixed results in wiggles in the curves of Fig. 15.
This is because of the change in the sound horizon, as we
explained in Sec. IV for the case of light relics. In this case
no new d.o.f. were added to the cosmological model, so the
phase of the BAO is unchanged, which is why no wiggles
were found in Figs. 10 and 11, where we kept Ωd fixed.
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