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Thermodynamic properties of strange quark matter (SQM) in a nonuniform magnetic field are studied
within the phenomenological MIT bag model under the charge neutrality and beta equilibrium conditions,
relevant to the interior of strange quark stars. The spatial dependence of the magnetic field strength is
modeled by the dependence on the baryon chemical potential in the exponential and power forms. The total
energy density, longitudinal and transverse pressures in magnetized SQM are found as functions of the
baryon chemical potential. It is clarified that the central magnetic field strength in a strange quark star is
bound from above by the critical value at which the derivative of the longitudinal pressure with respect to
the baryon chemical potential vanishes first somewhere in the interior of a star under varying the central
field. Above this upper bound, the instability along the magnetic field is developed in magnetized SQM.
The change in the form of the dependence of the magnetic field strength on the baryon chemical potential
between the exponential and power ones has a nonnegligible effect on the critical magnetic field strength
while the variation of the bag pressure within the absolute stability window for magnetized SQM has a little
effect on the critical field.
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I. INTRODUCTION. BASIC EQUATIONS

It was conjectured some time ago that for a certain range
of model QCD-related parameters strange quark matter
(SQM), consisting of deconfined u, d, and s quarks, can be
the true ground state of matter [1–3]. In that case, at zero
external pressure and temperature, the energy per baryon of
SQM is less than that for the most stable 56Fe nucleus. If
this hypothesis holds true, then the formation of strange
quark stars, composed of SQM and self-bound by strong
interactions, is possible [4–7]. This conjecture got recently
support from the observations of massive compact stars
withM ∼ 2 M⊙ and the indications that some neutron stars
may be very compact (with the radii smaller than 10 km).
While the former implies that the equation of state (EoS) of
strongly interacting matter should be stiff, the latter requires
the soft EoS. A possible explanation of these contradictory
requirements could be the existence of two separate
families of compact stars: quark stars which can be very
massive, according to the perturbative QCD calculations,
and hadronic stars which can be very compact [8].
Another important peculiarity, related to compact stars,

is that they can possess strong magnetic fields. For
example, for magnetars—strongly magnetized neutron
stars [9], the magnetic field strength can reach values of
about 1014�1015 G at the surface [10,11], and can be
even larger, up to 1019 G, in the core of a star [12,13].

Usually, such estimates of the possible interior magnetic
field strengths are based on the virial theorem [14] while
general relativistic calculations, based on the Einstein–
Maxwell equations, lead to the more modest estimate
H ≲ ð1–3Þ × 1018 G [15]. Such strong magnetic fields
can result in the large pulsar kick velocities because of
the asymmetric neutrino emission in direct Urca processes
in the dense core of a magnetized compact star [16]. The
mechanism responsible for generation of strong magnetic
fields of magnetars is still to be clarified, and, among other
possibilities, this can be due to the turbulent dynamo
amplification mechanism in a star with the rapidly rotating
core [10], or because of the spontaneous ordering of
nucleon [17–20], or quark [21] spins in the dense matter
inside a compact star.
Strong magnetic fields can have significant impact on

thermodynamic properties of strongly interacting matter in
the dense interior of a compact star [22–27]. In particular,
because of the breaking of the rotational symmetry, the
pressure becomes essentially anisotropic in strongly mag-
netized matter [28–33]. The longitudinal pressure pl (along
the magnetic field direction) gets the negative contribution
from the magnetic field given by the Maxwell term H2

8π .
Under increasing the magnetic field strength, the longi-
tudinal pressure decreases and, eventually, becomes neg-
ative, resulting in the appearance of the longitudinal
instability in a strongly magnetized matter. For the uniform
magnetic field, the onset of the longitudinal instability*isayev@kipt.kharkov.ua
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corresponds to the critical magnetic field strength, at which
the longitudinal pressure vanishes. The estimates show that
the critical magnetic field has the upper bound of about
1019 G for quark matter [29,30,33], neutron matter [31,32]
and strange baryonic matter [34]. For strange quark stars,
self-bound by strong interactions, the condition of
absolute stability of magnetized SQM, with account of
the pressure anisotropy, sets the constraint on the allowable
magnetic field strength H ≲ ð1–3Þ × 1018 G [35,36]. For
hybrid stars, based on the energy conservation arguments,
the possible magnetic field strength in the quark core
is estimated as H ∼ 1020 G [29]. For a nonuniform
magnetic field, with allowance for the inhomogeneous
mass distribution, the application of the virial theorem
gives the estimate for the central field in a neutron star
H ∼ 1019 G [29].
In this research, we study thermodynamic properties of

SQM in a nonuniform magnetic field, taking into account
that in strange quark stars the magnetic field strength can
change by several orders of magnitude from the core to the
surface of a star. The spatial dependence of the magnetic
field strength is modeled by its dependence on the baryon
chemical potential μB. As will be shown in this study, the
longitudinal instability in a nonuniform magnetic field is
associated with the appearance of the negative derivative
p0
lðμBÞ < 0, unlike to the case of an uniform magnetic field

where the longitudinal instability occurs at pl < 0.
As a theoretical framework to study strongly magnetized

SQM, we will utilize the MIT bag model. The details of a
theoretical formalism are presented in Ref. [33]. The
domain of absolute stability of magnetized SQM within
the MIT bag model with account of the effects of the
pressure anisotropy was determined in [35,36]. To mimic
the spatial dependence of the magnetic field, we will
parametrize the magnetic field strength in terms of
the baryon chemical potential μB in the exponential
form [37–39]:

HðμBÞ ¼ Hs þHcenð1 − e−βð
μB−μB0
μB0

Þγ Þ: ð1Þ

Here μB0 and Hs are the baryon chemical potential and the
magnetic field strength at the surface of a strange quark star,
respectively. In Eq. (1), the quantity Hcen is given by
Hcen ≈HðμB ≫ μB0Þ, assuming that Hcen ≫ Hs; β and γ
are the model parameters. Also, in numerical calculations
we will adopt the power parametrization:

HðμBÞ ¼ Hs þHcen

�
1 −

�
μcB − μB
μcB − μB0

�
α
�
; ð2Þ

where μcB is the baryon chemical potential in the center
of a star, α is the model parameter. One can see that
HðμB0Þ ¼ Hs and HðμcBÞ ≈Hcen. Further we consider bare
strange quark stars (without a thin layer of nuclear matter
above the quark surface). In order to determine the baryon

chemical potential μB0 at the surface, we will use the
conditions of charge neutrality

2ϱu − ϱd − ϱs − 3ϱe ¼ 0; ð3Þ

and chemical equilibrium with respect to weak processes
in SQM:

μd ¼ μu þ μe; ð4Þ

μd ¼ μs; ð5Þ

where ϱi and μi are the number density and chemical
potential for fermions of ith species (i ¼ u, d, s, e). Further
we assume, analogously to Ref. [40], a spherically sym-
metric radial distribution of the magnetic field inside a star.
Then the longitudinal pressure (along the magnetic field
direction) should vanish at the surface of a star:

pl ¼ −
X
i

Ωi −
H2

8π
− B ¼ 0: ð6Þ

Here Ωi is the thermodynamic potential for free relativistic
fermions of ith species in a magnetic field [26,33]:

Ωi ¼ −
jqijgiH
4π2

Xνimax

ν¼0

ð2 − δν;0Þ

×

�
μikiF;ν − m̄2

i;ν ln

���� k
i
F;ν þ μi
m̄i;ν

����
�
; ð7Þ

and

m̄i;ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ 2νjqijH
q

; kiF;ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i − m̄2

i;ν

q
: ð8Þ

In Eq. (7), summation on Landau levels runs up to

νimax ¼ I

�
μ2i −m2

i

2jqijH
�
; ð9Þ

I½:::� being an integer part of the argument, the factor
ð2 − δν;0Þ takes into account the spin degeneracy of Landau
levels, and gi is the remaining degeneracy factor (gi ¼ 3 if
i ¼ u, d, s and gi ¼ 1 if i ¼ e).
The chemical potentials of quarks and electrons at the

surface of a quark star can be determined from Eqs. (3)–(6)
with account of the relationship between the particle
number densities ϱi ¼ −ð∂Ωi∂μi ÞH and respective chemical
potentials μi:

ϱi ¼
jqijgiH
2π2

Xνimax

ν¼0

ð2 − δν;0ÞkiF;ν: ð10Þ

Since
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μB ¼ μu þ μd þ μs; ð11Þ

then one can find the baryon chemical potential μB0 at the
surface of a star. In numerical calculations, we will use the
model parameters β ¼ 45 and γ ¼ 3 for the exponential
parametrization, α ¼ 3

2
for the power parametrization, and

Hs ¼ 1015 G. The bag pressure is set B ¼ 74 MeV=fm3,
which is slightly smaller than the upper bound Bu ≃
75 MeV=fm3 from the absolute stability window for the
quark current masses mu ¼ md ¼ 5 MeV, and ms ¼
150 MeV [35]. Then one can numerically determine the
baryon chemical potential μB0 ≈ 927.4 MeV.

II. NUMERICAL RESULTS AND DISCUSSION

In the MIT bag model, the total energy density E and the
transverse pressure pt in magnetized SQM read

E ¼
X
i

ðΩi þ μiϱiÞ þ
H2

8π
þ B; ð12Þ

pt ¼ −
X
i

Ωi −HM þH2

8π
− B; ð13Þ

whereM ¼ −
P

ið∂Ωi∂HÞμi is the magnetization of the system.
In order to study the impact of a strong nonuniform
magnetic field, parametrized by Eq. (1), or by Eq. (2),
on the anisotropic pressure and the equation of state (EoS)
of the system, we will fix the baryon chemical potential in
the center of a strange quark star, μcB ¼ 1400 MeV (that
corresponds to the baryon number density ϱcB of about eight
times nuclear saturation density—densities of such magni-
tude are expected to occur in the center of strange quark
stars [30,37,38]), and will vary the central magnetic field
strength Hcen.

Figure 1 shows the dependence of the transverse pt and
longitudinal pl pressures in the system on the baryon
chemical potential μB for several values of the central
magnetic field strength Hcen. Let us discuss, first, the case
of the exponential parametrization of the magnetic field
strength, represented in Fig. 1(a). It is seen that, under
increasing the central field Hcen, the transverse pressure pt
increases while the longitudinal pressure pl decreases.
Also, the transverse pressure pt always remains the
increasing function of the baryon chemical potential μB
while the dependence of the longitudinal pressure pl on μB
can be different. At not too strong central fields (e.g., at
Hcen ¼ 2 × 1018 G), the longitudinal pressure pl remains
the increasing function of μB. However, with the increase of
Hcen, the curve plðμBÞ bends down in its middle part, and
there exists such central field Hcen, at which the derivative
p0
lðμBÞ vanishes first somewhere in the interior of a strange

quark star. For a given set of the model parameters, this
happens for Hcen ≈ 2.37 × 1018 G at μB ≈ 1188.4 MeV
(the corresponding point on the curve is marked by the
full dot). Under further increasing the central field Hcen,
there appears the part on the curve plðμBÞ, characterized by
p0
lðμBÞ < 0 (e.g., at Hcen ≈ 2.9 × 1018 G, this part of the

curve on the figure is contained between two full dots).
This contradicts the thermodynamic constraint p0

lðμBÞ > 0.
Hence, such states of magnetized SQM are unstable, and
instability is developed along the magnetic field direction.
The strength of the central field Hcen ≈ 2.37 × 1018 G, at
which the derivative p0

lðμBÞ vanishes first, is the critical
field for the onset of the longitudinal instability. This value
represents the upper bound on the central magnetic field
strength in a strange quark star.
Concerning the criterion p0

lðμBÞ < 0 for the appearance
of the longitudinal instability, it is important to note that,
according to rigorous microscopic derivations [29,41], the

(a) (b)

FIG. 1. Transverse pt and longitudinal pl pressures in magnetized SQM as functions of the baryon chemical potential, corresponding
to: (a) the exponential parametrization (1) with β ¼ 45, γ ¼ 3, and (b) the power parametrization (2) with α ¼ 3

2
, μcB ¼ 1400 MeV for

Hs ¼ 1015 G and variable central field Hcen. The full dots correspond to the points where p0
lðμBÞ ¼ 0.
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total parallel pressure pl contains both matter and field
contributions [cf. Eq. (6)]. While the derivative of the
matter part of the longitudinal pressure with respect to the
baryon chemical potential is positive, the magnetic field
contributes negatively to the derivative p0

lðμBÞ, and, at a
strong enough central field, the field contribution over-
comes the matter contribution, making the derivative
p0
lðμBÞ negative.
For the power parametrization (2) of the magnetic

field strength [cf. Fig. 1(b)], the behavior of the curves
ptðμBÞ; plðμBÞ under varying the central field Hcen is
qualitatively similar to that for the exponential parametri-
zation (1). The derivative p0

lðμBÞ vanishes first for Hcen ≈
3.1 × 1018 G at μB ≈ 1172.1 MeV, and, hence, the change
in the form of the parametrization HðμBÞ from exponential
to the power one has the nonnegligible effect on the critical
magnetic field strength.
We repeated also the calculations for the bag pressure

B ¼ 58 MeV=fm3 which is slightly above the lower
bound Bl ≃ 57 MeV=fm3 from the absolute stability win-
dow [35], but this variation of the bag pressure has a little
effect on the results, e.g., for the power parametrization
the critical magnetic field strength increases till Hcen≈
3.17 × 1018 G.
Note that for an uniform magnetic field the longitudinal

instability in magnetized matter is associated with the
appearance of the negative longitudinal pressure pl < 0
[28–33]. Since vanishing of the derivative p0

lðμBÞ occurs
at smaller central magnetic field strength Hcen than vanish-
ing of pl, for a nonuniform magnetic field, parametrized
by Eq. (1), or by Eq. (2), the corresponding criterion is
the occurrence of the negative derivative p0

lðμBÞ < 0. The
last criterion for the appearance of the longitudinal insta-
bility in a nonuniform magnetic field sets a stronger
constraint on the upper bound of the central magnetic field
in strongly magnetized strange quark star than the criterion
pl < 0.

Figure 2 shows the energy density E of magnetized SQM
and its matter part Em ≡ E − H2

8π (without the pure magnetic
field contribution) as functions of the baryon chemical
potential. With increasing the central magnetic field
strength, the energy density E increases while the matter
part Em remains practically unchanged. In particular, the
curves for Em are almost indistinguishable for the different
values of the central magnetic field Hcen, used in calcu-
lations, and look as one curve. This figure allows to
estimate the relative role of the matter Em and magnetic
field H2

8π contributions to the total energy density E. It is seen
that the matter part dominates over the field part at such
baryon chemical potentials and magnetic field strengths
Hcen for both the exponential and power parametrizations
of the magnetic field strength.
In strong magnetic fields the total pressure in magnetized

SQM becomes essentially anisotropic. Therefore, EoS of
the system becomes also highly anisotropic. Figure 3,
showing the dependence of the transverse pt and longi-
tudinal pl pressures on the energy density E of magnetized
SQM, explicitly demonstrates this moment. In the given
cases, when the values of the central field are smaller than
the critical field for the appearance of the longitudinal
instability, the pressures pt, pl, and the energy densityE are
the increasing functions of the baryon chemical potential
μB. Hence, after excluding μB, one gets the anisotropic EoS
in the form of two distinct increasing functions ptðEÞ
and plðEÞ.
In conclusion, we have considered the impact of a strong

magnetic field on thermodynamic properties of SQM at
zero temperature under conditions relevant to the interior of
magnetized strange quark stars. The spatial dependence of
the magnetic field strength is modeled by the dependence
on the baryon chemical potential in the exponential and
power forms. The total energy density E, transverse pt and
longitudinal pl pressures in magnetized SQM have been

(a) (b)

FIG. 2. Same as in Fig. 1, but for the energy density E and the matter energy density Em ≡ E − H2

8π (the most lower curve) of
magnetized SQM.
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calculated as functions of the baryon chemical potential.
Also, the highly anisotropic EoS has been determined in the
form of ptðEÞ and plðEÞ dependences. It has been clarified
that the central magnetic field in a strange quark star is
bound from above by the critical value, at which the
derivative of the longitudinal pressure p0

lðμBÞ vanishes first
somewhere in the interior of a star under varying the central
field. Above this upper bound, the instability along the
magnetic field direction is developed in magnetized SQM.
The change in the form of the dependence HðμBÞ between
the exponential and power ones leads to the noticeable
quantitative differences, in particular, it has the non-
negligible effect on the critical magnetic field strength.
While the variation of the bag pressure within the absolute
stability window for magnetized SQM has a little effect on
the results, in particular, the critical field remains almost
unaltered under such a change.
Based on the criterion of the longitudinal instability

p0
lðμBÞ < 0, the possible central magnetic field strength

Hcen ≲ ð2–3Þ × 1018 G has been estimated to be more than
three orders of magnitude larger than the surface field.
In some of the previous calculations, based on the
Einstein–Maxwell equations, the central magnetic field
was estimated to be only five times larger than the surface
value [42]. Nevertheless, as discussed in Ref. [15],
where solution of the Einstein–Maxwell equations gives
the estimate on the possible interior magnetic field
H ≲ ð1–3Þ × 1018 G, other choices of the nonuniform
current function, or the relaxation of the condition of axial
symmetry of magnetic field distribution, which can influ-
ence the shape of a star, could lead to even stronger interior
magnetic fields.
In this research, all consideration has been done within

the phenomenological MIT bag model, which is quite
popular and frequently used in various astrophysical
applications (just some of recent references include, e.g.,
[26,38,43–45]). Despite its relative simplicity, it allows to

qualitatively describe the appearance of the longitudinal
instability in strongly magnetized SQM and to get the
correct order of magnitude of the upper bound on the
magnetic field strength in strange quark stars. The MIT bag
model establishes the baseline for more advanced calcu-
lations and further improvement of the obtained estimates
is possible with more elaborated models.
It is worthy to note that the proposed mechanism for the

appearance of the longitudinal instability in magnetized
matter in a nonuniform magnetic field parametrized in
terms of the baryon chemical potential is universal and
does not depend on the specific type of a compact star
whether it is a quark star, or a neutron star, or a hybrid star.
The specific type of a compact star will be reflected in the
underlying model for the EoS of matter in the interior
of compact stellar object, depending on whether it is a
quark phase, or a hadronic phase in the given inner region
of a star. Inevitably, the longitudinal instability will
occur in a strong enough magnetic field as soon as the
derivative p0

lðμBÞ becomes negative in the field beyond the
critical one.
The formulation of the problem in terms of the energy

density E as an independent variable would be the other
possible way to consider the longitudinal instability in a
strong nonuniform magnetic field. This would lead to the
criterion of the longitudinal instability in the form
p0
lðEÞ < 0. Under such an approach, it would be consistent

to parametrize the magnetic field strength H in terms of the
energy density E as well, H ¼ HðEÞ. Nevertheless, taking
into account the possible applications of the criterion of the
longitudinal instability to other types of compact stars, such
as, e.g., hybrid stars, the most flexible way to tackle the
problem is to formulate it in terms of the baryon chemical
potential. If the energy density were used as the indepen-
dent variable, then, because the energy density is discon-
tinuous at the phase boundary of a first order quark-hadron
phase transition, the magnetic field strength HðEÞ would

(a) (b)

FIG. 3. The transverse pt and longitudinal pl pressures in magnetized SQM as functions of the total energy density E, corresponding
to: (a) the exponential parametrization (1), and (b) the power parametrization (2) of the magnetic field strength.
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experience the unphysical jump across the phase transition
boundary, which is missing for the parametrization HðμBÞ.
Note that, although the presence of a magnetic field leads

to the appearance of the local pressure anisotropy, mag-
netized strange quark stars, considered in this study, are
spherically symmetric because of the radial distribution of
the magnetic field inside a star. There can be other sources

of the local pressure anisotropy, like superfluid states with
the finite orbital momentum of Cooper pairs [46–50], or
finite superfluid momentum [51,52], which, nevertheless,
lead to a spherically symmetric star. It would be of interest
to extend this research by incorporating the effects of the
pressure anisotropy within the framework of general
relativity.
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