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The gravitomagnetic monopole is the proposed gravitational analogue of Dirac’s magnetic monopole.
However, an observational evidence of this aspect of fundamental physics was elusive. Here, we employ a
technique involving three primary X-ray observational methods used to measure a black hole spin to search
for the gravitomagnetic monopole. These independent methods give significantly different spin values for
an accreting black hole. We demonstrate that the inclusion of one extra parameter due to the
gravitomagnetic monopole not only makes the spin and other parameter values inferred from the three
methods consistent with each other but also makes the inferred black hole mass consistent with an
independently measured value. We argue that this first indication of the gravitomagnetic monopole, within
our paradigm, is not a result of fine tuning.
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I. INTRODUCTION

The gravitational analogue of Dirac’s magnetic monopole
[1,2] is known as the gravitomagnetic monopole [3], which, if
detected, can open a new area of research in physics.
Historically, Newmann et al. discovered a stationary and
spherically symmetric exact solution (now known as the NUT
solution) of the Einstein equation that contains the gravito-
magneticmonopole or the so-calledNUT(Newman,Unti, and
Tamburino [4]) parameter [5,6]. Note that Einstein-Hilbert
action requires no modification [7] to accommodate the
gravitomagnetic monopole. Demianski and Newman found
that theNUTspacetime is producedby a “dualmass” [8] or the
gravitomagnetic charge/monopole. Bonnor [9] physically
interpreted it as “a linear source of pure angular momentum”
[10,11], i.e., “a massless rotating rod”. Moreover, the NUT
spacetime is free of curvature singularities [7], and themass (or
the so-called gravitoelectric charge) quantization [3] is pos-
sible due to the presence of the gravitomagnetic charge, which
is a general feature [12] of a spacetime with dual mass [7,11].
Therefore, the gravitomagnetic monopole or NUT parameter
is a fundamental aspect of physics.
Although the existence of the gravitomagnetic monopole

is an exciting possibility, to the best of our knowledge, a
serious effort to search for it among the astronomical objects
has not beenmade so far. Lynden-Bell andNouri-Zonoz [13],

whowere possibly the first to motivate such an investigation,
argued that the best place to look for the gravitomagnetic
monopole is in the spectra of supernovae, quasars, or active
galactic nuclei (see also [14]). However, practical ways to
detect the gravitomagnetic monopole in nature, if it exists,
were not proposed. In this paper, we demonstrate that X-ray
observations of a black hole X-ray binary (BHXB), i.e., an
accreting stellar mass collapsed object, can provide a way to
detect a nonzero NUT parameter or the gravitomagnetic
monopole. This is because, while the spacetime of such a
spinning collapsed object (a black hole or even a naked
singularity) is usually describedwith theKerrmetric [15], the
Kerr geometry may naturally contain the NUT parameter
along with the mass and the angular momentum and be
known as the Kerr-Taub-NUT (KTN) spacetime [16], which
is geometrically a stationary, axisymmetric vacuum solution
of the Einstein equation and reduces to the Kerr spacetime if
the NUT parameter is zero. Therefore, identification of a
collapsed object having the KTN spacetime with a nonzero
NUT parameter can be ideal to establish the existence of the
gravitomagnetic monopole. In this paper, we demonstrate
thatX-rayobservations of aBHXBcanprovide away to infer
and measure the NUT parameter. Note that, whereas the
collapsed object is usually thought to be a black hole, i.e., a
singularity covered by an event horizon, here we do not
exclude the possibility that it could also be a naked or
uncovered singularity in some cases [17].
We search for the gravitomagnetic monopole using three

independent X-ray observational methods used to measure a
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black hole spin. We briefly discuss these methods in Sec. II.
In our study, we use fundamental frequencies, ISCO radius,
and gravitational redshift. We derive and provide formulae
for some of these quantities for various spacetimes in Sec. III.
In Sec. IV, we use these expressions to explore the possibility
of the nonzero NUT parameter in a BHXB: GRO J1655–40.
The additional plausible solutions of our work are discussed
in Sec. V, and finally, we conclude in Sec. VI.

II. MATERIALS AND METHODS

Measurement of the NUT parameter can be done by
combining several methods, which are used to measure the
spin parameter (or Kerr parameter), a=M, of an accreting
collapsed object. Here, a=M ¼ J=M2, where M and J are
the collapsed object mass and angular momentum, respec-
tively. Note that measuring a=M can be very useful to probe
the strong gravity regime and to characterize the collapsed
object, and a significant effort in astronomy has been made
for such measurements [18–20]. However, different meth-
ods to measure a=M do not always give consistent results,
which makes these methods unreliable. In this paper, we
demonstrate that these results can be consistent with each
other if we allow a nonzero NUT parameter value.
Some of the X-ray spectral and timing features, originat-

ing from the accreted matter within a few gravitational radii
of a collapsed object in a BHXB, can be used to measure the
spin parameter a=M [18–20]. There are two main spectral
methods for a=M estimation: (1) using a broad relativistic
iron Kα spectral emission line [18], and (2) using a
continuum X-ray spectrum [19]. There is also a timing
method based on the relativistic precession model (RPM) of
quasiperiodic oscillations (QPOs) of X-ray intensity [21].
We briefly discuss these methods below.
A broad relativistic iron Kα spectral emission line in

X-rays is observed frommanyBHXBs, and such a fluorescent
line is believed to originate from the reflection of hard X-rays
from the inner part of the geometrically thin accretion disk.
This intrinsically narrow iron line (6.4–6.97 keV) is broad-
ened, becomes asymmetric, and shifts toward lower energies
by physical effects, such as Doppler effect, special relativistic
beaming, and gravitational redshift [18,22]. Note that it is
primarily the extent of the red wing of the line that determines
the observed constraint on a=M [23]. This is because this red
wing extent gives a measure of the gravitational redshift at
the disk inner edge radius, rin (as this redshift in the disk is the
maximum at the inner edge), and for rin ¼ rISCO (rISCO is the
innermost stable circular orbit (ISCO) radius), the a=M value
can be inferred for a prograde accretion disk in the Kerr
spacetime [Eqs. (11) and (12)].
The modeling of the observed continuum X-ray spec-

trum can also be used to constrain a=M. In this method, the
thermal spectral component from the accretion disk is fit
with a relativistic thin-disk model, and this gives a measure
of the rin if the source distance (D) and the accretion disk
inclination angle (i) are independently measured [24].

Then, from a known M value, rISCO=M, and hence
a=M, can be inferred assuming a Kerr spacetime.
The QPO-based timing method uses three observed

features to estimate a=M: (a) the upper high-frequency
(HF) QPO, (b) the lower HFQPO, and (c) the Type-C
low-frequency (LF) QPO [21]. HFQPOs are rare, and
they are observed in the frequency range of ∼40–450 Hz
[25]. Type-C QPO is the most common LFQPO, and it is
observed in the frequency range of ∼0.01–30 Hz [20].
According to this method based on the RPM, which was
first proposed for accreting neutron stars in [26,27], the
Type-C QPO frequency is identified with the Lense-
Thirring (LT) precession frequency (νLT), and the upper
and lower HFQPO frequencies are identified with the
orbital frequency (νϕ) and the periastron precession
frequency (νper), respectively [21]. For the Kerr space-
time, each of these three frequencies is a function of three
parameters: M, a=M, and the radial coordinate rqpo of the
location of origin of these QPOs. Hence, the RPM
method can provide not only the a=M value but also
the values of M and rqpo [21].
So far, the RPM method could be fully applied for one

BHXB (GRO J1655–40) because, to the best of our knowl-
edge, the three above-mentioned QPOs could be simulta-
neously observed only from this BHXB [21]. The mass of
the collapsed object of GRO J1655–40 is either ð6.3�
0.5ÞM⊙ [28] or ð5.4� 0.3ÞM⊙ [29] (it is not yet clear which
one is more reliable [24]). According to the RPM, the
observed frequencies of the above mentioned three simulta-
neous QPOs imply νϕ ¼ 440 Hz, νper ¼ 300 Hz, and
νLT ¼ 17 Hz for GRO J1655–40. Using these frequencies,
a=M ≈ 0.286� 0.003, M ≈ ð5.31� 0.07ÞM⊙, and rqpo ≈
ð5.68� 0.04ÞM were determined in [21]. Moreover, the
inferred M ≈ 5.31 M⊙ is consistent with an independently
measured mass ð5.4� 0.3ÞM⊙ [29], which indicates the
reliability of the RPM method and the corresponding
inferred parameter values for GRO J1655–40.
Although such a QPO-based estimation of the a=M

value is model dependent, we would like to note that a
recent observation of a variation of the relativistic iron line
energy with the phase of the Type-C QPO from the BHXB
H1743-322 supports that this QPO is caused by the LT
precession ([30]; see also [31,32]), as considered in the
RPM. Note that this may require a tilted inner disk, which
has recently been theoretically shown to be possible [33].
Besides, whereas the RPM interpretation of HFQPOs is not
unique, the reliability of the RPM method can be tested by
comparing the mass inferred from this method with an
independently measured M value (as mentioned in the
previous paragraph). Moreover, [21] listed some HFQPOs
simultaneously observed with Type-C QPOs from GRO
J1655–40. They identified some of these HFQPOs as lower
HFQPOs and some as upper HFQPOs. For theM and a=M
values inferred by [21], and assuming the Type-C QPO
frequencies to be νLT, a radius of origin for each of these
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LFQPOs can be calculated for Kerr spacetime (see Sec. III).
In Fig. 5 of [21], they showed that the simultaneous lower
HFQPO frequencies match well with the νper values at the
corresponding radii for the same M and a=M values.
Similarly, the simultaneous upper HFQPO frequencies
match well with the νϕ values at the corresponding radii.
These provide support for the RPM for QPOs.
GRO J1655–40 is currently the only BHXB for which all

three above-mentioned a=M estimation methods are avail-
able, and hence, this source provides a unique opportunity to
test the reliability of these methods by comparing the three
estimated a=M values. The timing method gives a=M ≈
0.286� 0.003 [21], the line spectrum method gives a=M ≈
0.90 − 0.99 [23], and the continuum spectrum method
gives a=M≈0.65−0.75 (using M ≈ 6.3 M⊙, D ≈ 3.2 kpc,
i ≈ 70°.2; [34]) for GRO J1655–40. Therefore, not only is
the a=M value inferred from the timing method inconsistent
with those inferred from the spectral methods, but also the
results from the two spectral methods are grossly incon-
sistent with each other. Even ifM ≈ 5.4 M⊙ [29] was used,
which would be consistent with the finding from the RPM
method [21], the continuum spectrummethodwould give an
a=M range of 0.50–0.63. This is inconsistentwith the results
from both the RPM method and the line spectrum method.
These suggest that all three methods could be unreliable. If
true, this will make some of our current understandings of
black holes doubtful, will deprive us of reliable a=M
measurement methods, and could impact the future plans
of X-ray observations of BHXBs.
Can it be possible that these methods are actually reliable

(as indicated by the works reported in a large volume of
publications; e.g., [18,19,22]), but they are missing an
essential ingredient? Here, we explore an exciting possibility
that the inclusionof the gravitomagneticmonopolemaymake
the results from threemethods consistent, thus suggesting that
such a monopole exists in nature. For this purpose, we allow
nonzero NUT parameter values (implying gravitomagnetic
monopole) in our calculations, by considering the KTN
spacetime, instead of the previously used Kerr spacetime.
Note that the former spacetime, having one additional
parameter, i.e., the NUT parameter n=M, is a generalized
version of the latter. Before testing this new idea, let us first
consider the KTN metric and derive the corresponding three
fundamental frequencies: orbital frequency νϕ, radial epicy-
clic frequency νr, and vertical epicyclic frequency νθ.

III. FUNDAMENTAL FREQUENCIES
IN KERR-TAUB-NUT SPACETIME

The metric of the KTN spacetime is expressed as [16]

ds2 ¼ −
Δ
p2

ðdt − AdϕÞ2 þ p2

Δ
dr2

þ p2dθ2 þ 1

p2
sin2θðadt − BdϕÞ2; ð1Þ

with

Δ ¼ r2 − 2Mrþ a2 − n2; p2 ¼ r2 þ ðnþ a cos θÞ2;
A ¼ asin2θ − 2n cos θ; B ¼ r2 þ a2 þ n2; ð2Þ

where M is the mass, a=M is the Kerr parameter, and n=M
is the NUT parameter.
Now, substituting the metric components (gμν) of KTN

spacetime in Eqs. (A3)–(A5) of the Appendix, we can
obtain the three fundamental frequencies. The orbital
frequency can be written as [35]

ΩKTN
ϕ ¼ 2πνKTNϕ ¼ � m

1
2

r
1
2ðr2 þ n2Þ � am

1
2

; ð3Þ

where m ¼ Mðr2 − n2Þ þ 2n2r. In all of the equations
here, the upper sign is applicable for the prograde orbits
(which we use throughout our paper), and the lower sign
is applicable for the retrograde orbits.
Similarly, radial and vertical epicyclic frequencies are

(which, to the best of our knowledge, reported for the first
time here)

νKTNr ¼ νKTNϕ

m
1
2ðr2 þ n2Þ :½Mðr6 − n6 þ 15n4r2 − 15n2r4Þ

− 2M2rð3r4 − 2n2r2 þ 3n4Þ − 16n4r3

� 8ar
3
2m

3
2 þ a2fMðn4 þ 6n2r2 − 3r4Þ − 8n2r3g�12

ð4Þ

and

νKTNθ ¼ νKTNϕ

m
1
2ðr2 þ n2Þ :½Mðr6 − n6 þ 15n4r2 − 15n2r4Þ

þ 2n2rð3r4 − 2n2r2 þ 3n4Þ þ 16M2n2r3

∓ 4ar
1
2m

1
2ðn2 þMrÞðn2 þ r2Þ

− a2fMðn4 þ 6n2r2 − 3r4Þ − 8n2r3g�12; ð5Þ

respectively.
Setting the square of Eq. (4) equal to zero (i.e.,

½νKTNr �2 ¼ 0), we obtain the ISCO condition as
follows [35]:

Mðr6 − n6 þ 15n4r2 − 15n2r4Þ
− 2M2rð3r4 − 2n2r2 þ 3n4Þ − 16n4r3

� 8ar
3
2m

3
2 þ a2fMðn4 þ 6n2r2 − 3r4Þ − 8n2r3g ¼ 0:

ð6Þ
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Gravitational redshift in KTN spacetime.—The gravita-
tional redshift in the KTN spacetime is expressed as [using
Eq. (A7) of the Appendix]

ZKTN¼ r
1
2ðr2þn2Þþam

1
2

½ðr2þn2Þfrðr2−3n2ÞþMðn2−3r2Þþ2aðmrÞ12g�12
:

ð7Þ
A. Special cases

1. Kerr spacetime (n = 0 and a ≠ 0)

Now, in the Kerr spacetime (n ¼ 0), Eqs. (3)–(5) reduce
to [36,37]

ΩKerr
ϕ ¼ 2πνKerrϕ ¼ � M

1
2

r
3
2 � aM

1
2

; ð8Þ

νKerrr ¼ νKerrϕ

r
:½r2 − 6Mr� 8ar

1
2M

1
2 − 3a2�12; ð9Þ

and

νKerrθ ¼ νKerrϕ

r
:½r2 ∓ 4ar

1
2M

1
2 þ 3a2�12; ð10Þ

respectively.
Setting the square of Eq. (9) equal to zero, we obtain the

ISCO condition [38]:

r2 − 6Mr� 8ar
1
2M

1
2 − 3a2 ¼ 0: ð11Þ

Gravitational redshift in Kerr spacetime.—In Kerr
spacetime, the gravitational redshift equation Eq. (7)
reduces to

ZKerr ¼ r
3
2 þ aM

1
2

r
1
2½r2 − 3Mrþ 2aðMrÞ12�12

: ð12Þ

From the above expression, we can obtain the well-
known redshift expression in the Schwarzschild spacetime:
ZSchwarzschild ¼ ð1 − 3M

r Þ−
1
2.

2. NUT spacetime (a = 0 and n ≠ 0)

In the case of NUT spacetime (a ¼ 0), Eqs. (3)–(5)
reduce to [35]

ΩNUT
ϕ ¼ 2πνNUTϕ ¼ � m

1
2

r
1
2ðr2 þ n2Þ ; ð13Þ

νNUTr ¼ νNUTϕ

m
1
2ðr2 þ n2Þ :½Mðr6 − n6 þ 15n4r2 − 15n2r4Þ

− 2M2rð3r4 − 2n2r2 þ 3n4Þ − 16n4r3�12; ð14Þ

and

νNUTθ ¼ νNUTϕ

m
1
2ðr2 þ n2Þ :½Mðr6 − n6 þ 15n4r2 − 15n2r4Þ

þ 2n2rð3r4 − 2n2r2 þ 3n4Þ þ 16M2n2r3�12; ð15Þ

respectively. Here, m ¼ Mðr2 − n2Þ þ 2n2r.
Setting the square of Eq. (14) equal to zero, one can

obtain the ISCO condition:

Mðr6 − n6 þ 15n4r2 − 15n2r4Þ
− 2M2rð3r4 − 2n2r2 þ 3n4Þ − 16n4r3 ¼ 0: ð16Þ

Remarkably, in general, νNUTϕ ≠ νNUTθ in the NUT space-
time. This means that the LT precession frequency
νNUTLT ð≡νNUTϕ − νNUTθ ) does not vanish in NUT spacetime,
i.e., inertial frames are dragged due to the presence of a
nonzero NUT charge, although the spacetime is nonrotat-
ing (a ¼ 0).
Gravitational redshift in NUT spacetime.—In NUT

spacetime, the gravitational redshift equation [Eq. (7)]
reduces to

ZNUT ¼
�

rðr2 þ n2Þ
rðr2 − 3n2Þ þMðn2 − 3r2Þ

�1
2

: ð17Þ

IV. EXPLORING THE POSSIBILITY OF A
NONZERO NUT PARAMETER IN GRO J1655-40

The three fundamental frequencies [Eqs. (8)–(10)] for
the Kerr spacetime and for infinitesimally eccentric and
tilted orbits were used by [21] for a=M estimation using the
RPM method. Because we use the KTN spacetime instead
of the Kerr spacetime, here, we use the expressions of these
frequencies [see Eqs. (3)–(5)] corresponding to the KTN
spacetime. One can now derive the periastron precession
frequency νKTNper ð¼νKTNϕ − νKTNr Þ and the LT precession
frequency νKTNLT ð¼νKTNϕ − νKTNθ Þ using these three funda-
mental frequencies. In addition, the conditions to derive the
radius of the innermost stable circular orbit rISCO and the
expression of the gravitational redshift for the KTN
spacetime are given by Eq. (6) (see also [35]) and Eq. (7),
respectively.
Now, we apply the RPM method to GRO J1655–40

using the KTN frequencies. Following [21], we consider

νKTNϕ ¼ 440 Hz; νKTNper ¼ 300 Hz; νKTNLT ¼ 17 Hz

ð18Þ

for GRO J1655–40, and using the expressions given in
Eqs. (3)–(5), we can solve Eq. (18) for a=M, M, and the
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radius rqpo of QPO origin for a given n=M value. For
n=M ¼ 0, we naturally recover the a=M, M, and rqpo
values reported in [21]. Now, if we increase n=M from zero,
a=M also increases [whereas Eq. (18) is satisfied], and
hence the RPM method gives an allowed n=M versus a=M
relation (shown by the green dotted curve in Fig. 1) for
GRO J1655–40.
Note that the range of a=M is 0–1 for a Kerr black

hole. For a=M > 1, the radii of the horizons r�ð¼M �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ become imaginary, and hence the collapsed

object becomes a naked singularity [17,39]. However, for a
KTN collapsed object, the radii of the horizons are
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ n2 − a2

p
, and hence the condition for a naked

singularity is a=M >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðn=MÞ2

p
[40]. This condition is

shown by a black dashed line in Fig. 1, which divides the
n=M versus a=M space into a black hole region and a naked
singularity region for the KTN spacetime. This figure shows
that a=M can easily be much higher than 1 for a black hole
for nonzero n=M values. We find that the n=M versus a=M
curve allowed from the RPM method for GRO J1655–40
extends into the naked singularity region (Fig. 1). Note that
black holes and naked singularities could coexist in nature
[41], and hence the detection of an event horizon of a
collapsed object does not rule out the possibility of the
existence of a naked singularity and vice versa.
Let us now explore if nonzero n=M values can make the

a=M ranges inferred from the RPM method and the line

spectrum method consistent with each other for GRO
J1655–40, and if so, what constraints of a=M and n=M
can be obtained. We do this by combining these two
methods as described below. The a=M range for GRO
J1655–40 was estimated to be ≈0.90 − 0.99 using the line
spectrum method [23], but this estimation assumed Kerr
spacetime, whereas we need to constrain parameters in the
KTN spacetime to allow nonzero n=M values. Therefore,
using Eqs. (11) and (12), we calculate the gravitational
redshift range (≈2.70 − 6.08) from the reported a=M range
(≈0.90 − 0.99). This gravitational redshift could be directly
inferred from the extent of the red wing of the observed
broad iron line (see Sec. II) and itself does not depend on
the Kerr spacetime. Therefore, we treat this gravitational
redshift range (≈2.70 − 6.08) as the primary observational
constraint, independent of the Kerr spacetime. Using this
primary constraint and assuming the KTN spacetime, i.e.,
ZKTNðat rISCOÞ ¼ 2.70 − 6.08 [lhs is given by Eqs. (6) and
(7)], and using Eq. (18), we solve for M, a=M, n=M,
rISCO=M, and rqpo (in units of M). This solution gives the
following constraints for GRO J1655–40, which are con-
sistent with both the RPM method and the line spectrum
method:M ≈ 6.76 − 6.83 M⊙, a=M ≈ 2.12 − 2.27, n=M≈
1.86 − 1.97, and rqpo=M ≈ 4.99 − 5.04. Whereas the non-
zero n=M range implies the existence of the gravitomag-
netic monopole, the red dotted curve in Fig. 1 shows that
this n=M versus a=M range implies a naked singularity.
TheM range is consistent with an independently measured
mass (½6.3� 0.5�M⊙; [28]) for GRO J1655–40, which
provides a confirmation of the reliability of our method
and results.
Next, we explore if the a=M ranges inferred from the

RPM method and the continuum spectrum method can be
consistent with each other for GRO J1655–40 if nonzero
n=M values are allowed. For GRO J1655–40, the a=M
range estimated from the continuum spectrum method
is ≈0.65 − 0.75 [34], assuming the Kerr spacetime.
Therefore, as argued in the previous paragraph, we need
a primary observational constraint, independent of the Kerr
spacetime, so that the more general KTN spacetime for
nonzero n=M values can be used. For GRO J1655–40, we
find that the quoted a=M range of ≈0.65 − 0.75 [34] was
inferred from an rISCO range of ≈29.8–34.2 km and using
M ¼ 6.3 M⊙. As mentioned in Sec. II, rISCO could directly
(i.e., independent of the Kerr spacetime) be inferred from
the observed spectrum using the known source distance (D)
and the accretion disk inclination angle (i) values.
Therefore, using rISCO ¼ 29.8–34.2 km as the primary
constraint and assuming the KTN spacetime [e.g., using
Eq. (6)], and using Eq. (18), we solve for M, a=M, n=M,
rISCO=M, and rqpo=M. Consequently, the following param-
eter constraints could be obtained: M ≈ 6.79 − 6.86 M⊙,
a=M ≈ 2.04 − 2.21, n=M ≈ 1.79 − 1.93, and rqpo=M ≈
4.96 − 5.02. These parameter ranges are largely overlap-
ping with those obtained from the combined RPM and line

FIG. 1. NUT parameter (n=M) versus the spin parameter (a=M)
space, which is divided into a black hole region and a naked
singularity region (see text) by the black dashed line. The n=M
versus a=M constraints for GRO J1655–40 are given by (1) the
green dotted curve (using only the RPM timing method), (2) the
red dotted curve (using the RPM timing and line spectrum
methods), and (3) the blue solid curve (using the RPM timing and
continuum spectrum methods). A zoomed-in version of the latter
two is shown in the inset for clarity. This figure shows that there is
a range of n=M and a=M values for GRO J1655–40 allowed by
all three methods.
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spectrum method. We find that even for this combined
RPM and continuum spectrum method, the nonzero n=M
range implies the gravitomagnetic monopole, and the
mass is consistent with an independently measured mass
(½6.3� 0.5�M⊙; [28]) for GRO J1655–40, and the n=M
versus a=M curve (the blue solid curve in Fig. 1) mainly
implies a naked singularity, although a black hole is also
possible.

V. OTHER PROBABLE SOLUTIONS WITH A
NONZERO NUT PARAMETER IN GRO J1655–40

It should be noted that there is a possibility to obtain
other solutions with the nonzero NUT parameter and,
consequently, other sets of parameter constraints. This is
because the LT precession frequency can change sign as
one moves outwards from the collapsed object. This
implies the same absolute value of the LT precession
frequency at three radius values. In this section, we discuss
these other plausible solutions and show that those sol-
utions are not viable.
The three simultaneous QPOs from GRO J1655–40 were

used by Motta et al. [21] to infer the parameter values of
this source using the RPM method. These parameter values
were used in Fig. 5 of their paper to make the theoretical
frequency versus radius curves (three curves for three
frequencies). Then they collected pairs of two simulta-
neously observed QPOs (one is LFQPO, and another one is
HFQPO) from this source. Among the HFQPOs, they
considered two as upper HFQPOs and rest as lower
HFQPOs. Using an LFQPO frequency and the theoretical
LT precession frequency curve (drawn using the inferred
parameter values from three simultaneous QPOs, as men-
tioned above), the radius of origin of the LFQPO is
calculated. Then if it is assumed that the simultaneously
observed HFQPO originates from the same radius, the
frequency of the HFQPO comes out to be more-or-less
consistent with the theoretical frequency curve, as required
by RPM (see Fig. 5 of Motta et al. [21]). This provides
support for the RPM method to estimate a=M.
In our paper, we have considered a nonzero NUT

parameter, which makes the results from three a=M
measurement methods consistent with each other. An
important point is that, even for a nonzero NUT parameter,
our results could qualitatively explain the pairs of simulta-
neous LFQPO and HFQPO by RPM (like in Fig. 5 of Motta
et al. [21]). We show it in our Fig. 2. However, a difference
with Fig. 5 of Motta et al. [21] is how we consider Motta
et al.’s upper HFQPOs as lower HFQPOs and Motta et al.’s
lower HFQPOs as upper HFQPOs. Our assumption is not
worse than Motta et al.’s assumption because there is no
independent way to find out which HFQPOs are lower ones
and which are upper ones (when they are not simulta-
neously observed). Note that in both figures (our Fig. 2 and
Motta et al.’s Fig. 5), the data points and model curves
have similar trends, although the model curves do not

quantitatively describe the data points well either in
Motta et al.’s case or in our case, possibly due to
systematics related to additional physical complexities
(see Sec. VI). Nevertheless, the qualitative matching
between the model and the data, shown in both figures,
tentatively supports the RPM method.
However, the LT precession frequency can change

sign for a nonzero NUT parameter, as one moves outwards
from the collapsed object. This implies the same absolute
value of the LT precession frequency at three different
radius values (see Fig. 2). Note that we take the absolute
value because a negative frequency only implies the
opposite direction, which is not important for our purpose.
Therefore, applying a method similar to the one we
followed to solve Eq. (18), two more sets of parameter
values could be obtained from the solution of the following
equations:

νKTNϕ ¼440Hz; νKTNper ¼300Hz; νKTNLT ¼−17Hz: ð19Þ

It is clearly seen from Fig. 3 that, for the second set of the
parameter values, no range of n=M and a=M values for
GRO J1655–40 is allowed by all three methods (RPM, line
spectrum, and continuum spectrum). Therefore, we can rule
out this solution. The third set of parameter values does not
come out as real and physical for the observed frequencies
of the three simultaneous QPOs. Therefore, as the second
solution is not consistent with the three different spin
measurement methods, and the third solution does not
exist, we do not consider these additional sets of parameter
values. Thus, only the first solution (for the “positive” LT

FIG. 2. LT precession frequency (dotted line), periastron
precession frequency (dashed line), and orbital frequency (dot-
dashed line) as a function of the distance (r) around a KTN
collapsed object as predicted by the RPM. The lines are drawn for
M ¼ 6.83 M⊙, a ¼ 2.12M, and n ¼ 1.86M. The observed QPO
frequencies (red, black, and green points in the plot) are from
Table 1 of Motta et al. [21]. This plot may be compared with
Fig. 5 of Motta et al. [21] (see Sec. V).
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precession frequency), which is discussed in Sec. IV, is
acceptable.

VI. CONCLUSION AND DISCUSSION

It has been shown that a=M ≈ 2.12 − 2.21 and n=M ≈
1.86 − 1.93 are consistent with all three methods. These
ranges imply that the collapsed object in GRO J1655–40 is
a naked singularity (Fig. 1). The lower limit of 1.86 for
n=M implies the existence of the gravitomagnetic monop-
ole. Although this is not a direct detection of such a
monopole, the indication is strong within our paradigm for
the following reasons. Recall that the three methods gave
widely different constraints on a=M (≈0.286� 0.003 [21];
≈0.90 − 0.99 [23]; ≈0.65 − 0.75 [34]). With only one
additional parameter (i.e., the NUT parameter n=M), it
might be possible to make the constraints from two of these
methods consistent with each other. We have attempted this
separately for two joint methods, (1) the RPM and line
spectrum method and (2) the RPM and continuum spec-
trum method, and obtained combined parameter constraints
for each of these cases. Although this is not unexpected (as
we have used an additional parameter n), the combined
constraint on M being consistent with an independently
measured mass value for each of the joint methods already
shows the reliability of our approach. However, the main
strength of our results is we also find that the combined
constraints on each of n=M and a=M from these two joint

methods are largely overlapping with each other. This
cannot be a result of fine tuning, as with just one additional
parameter (n), it is not possible to fine tune and make three
different results from three independent methods consistent
with each other. Hence, the fact that we have found
consistent a=M and n=M ranges from all three methods
by invoking just one additional parameter (n) points to the
nonzero n values for GRO J1655–40 and hence suggests
the existence of the gravitomagnetic monopole in nature.
This is further confirmed by the consistent ranges of
rqpo=M (≈4.99− 5.02) and M (≈6.79 − 6.83 M⊙) for
the methods, as well as the consistency of this M range
with an independently measured value (½6.3� 0.5�M⊙;
[28]). This confirmation also provides a new way to
measure the NUT parameter, even when only two a=M
measurement methods are available for a BHXB. It should
be noted that, like a=M, the value of n=M can be different
for different objects, and a high n=M value inferred for one
object in this paper does not mean that every object will
have a high n=M value. The value of n=M can even be very
close to zero for some objects, but the inferred significantly
nonzero n=M value for even one object could strongly
suggest the existence of the gravitomagnetic monopole in
nature. Our new technique also makes the black hole spin
measurement methods more reliable.
Here, we note that the “extra angular momentum” [9]

makes the Taub-NUT metric singular (coordinate singu-
larity) at θ ¼ π, which is a “Dirac string singularity” [7].
Misner [42] wanted to present an entirely nonsingular
cosmological model (homogeneous and anisotropic) with
the Taub-NUT metric, which contains the closed spacelike
hypersurfaces (but no matter), and this made this metric
singularity free. Ramaswamy and Sen [7,11] pointed out
that the presence of a NUT parameter requires that either
the Taub-NUT metric can be singular (not the curvature) or
the spacetime contains closed timelike curves. As, in this
paper, we have also included a possibility of the KTN
“naked singularity”, we do not require the “singularity-free
spacetime” to interpret our results. This means that
the “closed timelike curves” are not required for our
interpretation.
Note that we have not fit the observed spectra with KTN

spectral models because such models are not currently
available. Instead, for the purpose of a=M estimation, we
have used rISCO and the gravitational redshift at rISCO as
proxies for the details of the continuum spectrum and line
spectrum, respectively. As argued in this paper, the use of
these proxies is reasonable, although such a use can
introduce some systematics in the inferred parameter
ranges. However, given that the inferred n=M range
(≈1.86 − 1.93) is significantly away from n=M ¼ 0 (see
Fig. 1), the inferred nonzero n=M values cannot be caused
by these systematics. In addition, n=M ¼ 0 gives three
widely different a=M ranges from three different methods
for GRO J1655–40, as discussed earlier. Therefore, this

FIG. 3. NUT parameter (n=M) versus the spin parameter (a=M)
space, which is divided into a black hole region and a naked
singularity region by the black dashed line. The n=M versus a=M
constraints for GRO J1655–40 are given by (1) the green dotted
curve (using only the RPM timing method), (2) the red dotted
curve (using the RPM timing and line spectrum methods), and
(3) the blue solid curve (using the RPM timing and continuum
spectrum methods). A zoomed-in version of the latter two is
shown in the inset for clarity. This figure (for the second set of the
parameter values; see Sec. V) shows that there is no range of n=M
and a=M values for GRO J1655–40 allowed by all three methods,
unlike Fig. 1.
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paper presents the first significant observational indication
of the gravitomagnetic monopole, which, even though is
not a direct detection, can have an exciting impact on
fundamental physics and astrophysics. However, although
the allowed n=M versus a=M range is in the naked
singularity region (Fig. 1), it is close to the border of
the black hole region, and hence the indication of a naked
singularity is only suggestive.
Finally, note that our inference of a nonzero NUT

parameter could be correct for our assumption, i.e., the
three existing methods of black hole spin measurements are
reliable. However, one or more of these methods may not
be entirely reliable due to additional physical complexities.
Some of these complexities may be due to the following
reasons (e.g., [43] discusses how difficult it is to test the
Kerr metric with X-ray observations). (1) The continuum
X-ray spectrum method assumes that the thin disk emission
can be fully separated from emissions from other X-ray
components, which may not be correct. (2) Spectral meth-
ods also assume that the black hole’s spin is aligned with
the inner disk angular momentum vector, which is not
necessarily true [33]. (3) The relativistic precession model
assumes that particles in the accretion disk travel on exact
geodesic orbits and neglects important physics such as
radiation physics, viscosity, and magnetic fields that
could affect the motion of material in the disk. Whereas
there is a possibility that such systematic uncertainties
could explain the three different ranges of spin values
obtained from three methods for n ¼ 0, such a level of
unreliability of the methods would make many of the
current black hole studies doubtful and could impact the
plans of X-ray observations of BHXBs with future space
missions (Sec. II).
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APPENDIX: FUNDAMENTAL FREQUENCIES
IN A GENERAL STATIONARY AND

AXISYMMETRIC SPACETIME

Let us consider a general stationary and axisymmetric
spacetime as

ds2 ¼ gttdt2 þ 2gtϕdϕdtþ gϕϕdϕ2 þ grrdr2 þ gθθdθ2;

ðA1Þ

where gμν ¼ gμνðr; θÞ. In this spacetime, the proper angular
momentum (l) of a test particle can be defined as

l ¼ −
gtϕ þΩϕgϕϕ
gtt þΩϕgtϕ

; ðA2Þ

where Ωϕ is the orbital frequency of the test particle. Ωϕ is
defined as [44]

Ωϕ ≡ 2πνϕ ¼ dϕ=dτ
dt=dτ

¼ dϕ
dt

¼
−g0tϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0tϕ

2 − g0ttg0ϕϕ
q
g0ϕϕ

�������
r¼constant;θ→π=2

; ðA3Þ

where the prime denotes the partial differentiation with
respect to r. The general expressions for calculating the
radial (νr) and vertical (νθ) epicyclic frequencies are [44]

ν2r ¼
ðgtt þΩϕgtϕÞ2
2ð2πÞ2grr

½∂2
rðgϕϕ=YÞ þ 2l∂2

rðgtϕ=YÞ

þ l2∂2
rðgtt=YÞ�jr¼constant;θ→π=2 ðA4Þ

and

ν2θ ¼
ðgtt þΩϕgtϕÞ2
2ð2πÞ2gθθ

½∂2
θðgϕϕ=YÞ þ 2l∂2

θðgtϕ=YÞ

þ l2∂2
θðgtt=YÞ�jr¼constant;θ→π=2; ðA5Þ

respectively, and Y is defined as

Y ¼ gttgϕϕ − g2tϕ: ðA6Þ

Gravitational redshift.—The general expression of
gravitational redshift (z) in an axisymmetric and stationary
spacetime can be obtained from [45,46]

Z ¼ 1þ z ¼ ð−gtt − 2Ωϕgtϕ −Ω2
ϕgϕϕÞ−

1
2: ðA7Þ

Now, substituting the expressions of metric components
(gμν) and the orbital frequency (Ωϕ) in Eq. (A7), one can
derive the expression of Z of a particular axisymmetric and
stationary spacetime, i.e., KTN, Kerr, NUT, etc. We discuss
these in Sec. III.
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